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Abstract   Chain architecture effect on static and dynamic properties of unentangled polymers is explored by molecular dynamics simulation

and Rouse mode analysis based on graph theory. For open chains, although they generally obey ideal scaling in chain dimensions, local structure

exhibits nonideal behavior due to the incomplete excluded volume (EV) screening, the reduced mean square internal distance (MSID) can be well

described by Wittmer’ theory for linear chains and the resulting chain swelling is architecture dependent, i.e., the more branches a bit stronger

swelling. For rings,  unlike open chains they are compact in term of global sizes.  Due to EV effect and nonconcatenated constraints their  local

structure exhibits a quite different non-Gaussian behavior from open chains, i.e., reduced MSID curves do not collapse to a single master curve

and fail to converge to a chain-length-independent constant, which makes the direct application of Wittmer’s theory to rings quite questionable.

Deviation from ideality is further evidenced by limited applicability of Rouse prediction to mode amplitude and relaxation time at high modes as

well as the non-constant and mode-dependent scaled Rouse mode amplitudes, while the latter is architecture-dependent and even molecular

weight dependent for rings. The chain relaxation time is architecture-dependent, but the same scaling dependence on chain dimensions does

hold for all studied architectures. Despite mode orthogonality at static state, the role of cross-correlation in orientation relaxation increases with

time and the time-dependent coupling parameter rises faster for rings than open chains even at short time scales it is lower for rings.

Keywords   Rouse model; Unentangled chains; Architecture; Excluded volume effects

Citation:  Yao,  P.;  Feng,  L.  K.;  Guo,  H.  X.  Combined  molecular  dynamics  simulation  and  rouse  model  analysis  of  static  and  dynamic  properties  of
unentangled polymer melts with different chain architectures. Chinese J. Polym. Sci. 2021, 39, 512–524.

 

INTRODUCTION

Modern  synthesis  techniques[1−3] have  opened  many  new
opportunities  to  synthesize  polymers  with  complex  chain
architectures  such  as  ring,  star,  comb,  and  so  on.  Considering
that the macroscopic characteristics of polymers are a result  of
different structural and dynamic behavior occurring over a large
range  of  length  and  time  scales,  a  deep  investigation  of  the
static and dynamic properties of polymer melting with complex
internal topologies in terms of local and global scales as well as
auto-  and cross-correlations  would be of  critical  importance to
understanding the polymer architecture effect[4−6] and of great
practical  interest  in  technical  applications,[7] but  it  remains  as
one  of  the  main  challenges  in  polymer  science.  Under  such
circumstances,  molecular  dynamics  (MD)  simulation  is  an
invaluable  tool  to  access  these  desired  quantities  since  every

individual  chain  can  be  directly  monitored.  As  such,  a  MD
simulation  study  of  structural  and  dynamical  properties  of
unentangled  polymer  chains  with  different  molecular
architectures  and  a  quantitative  comparison  of  the  observed
behavior  with  the  mechanisms  already  proposed  in  simplified
theories  will  not  just  provide  important  insights  into  the
relationship  between  the  topology  of  a  polymer  and  its
distinctive structural and dynamical behaviors but also clear up
some  of  the  confusions.  These  can  be  considered  as  a  useful
starting point for a systematic study of polymer architecture and
further  studies  would  be  very  beneficial  to  development  of
more realistic models for (un)entangled polymers.

According  to  “Flory  ideality  hypothesis”,  in  the  un-
entangled  polymer  melts  the  excluded  volume  (EV)  interac-
tions  are  screened  on  the  length  scale  beyond  the  diameter
of  monomers,[8] and thus polymer chains behave statistically
as  ideal  chains  with  Rouse-like  chain  dynamics.  Among  vari-
ous  static  properties,  the  mean  square  internal  distance
(MSID) is often used to analyze internal structure or conform-
ation of chains, i.e., for the linear polymers in melts it can rep-
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be cs

resent  the  information  of  a  single  chain  on  all  scales  inde-
pendent of the molecular weight.[9−13] Recent theoretical cal-
culations and simulation studies on the linear chains have re-
vealed some deviations from the ideal chain behavior due to
an incomplete  EV  screening like  the  increasing of  the  scaled
MSID  to  an  asymptotic  plateau.[6,14,15] Moreover,  Wittmer
et  al.[16−18] proposed  an  improved  theory  for  linear  chains,
which considers the above “swelling effect” as a result of the
long-range intrachain correlation, a phenomenon manifested
as the bond-bond decorrelation behavior unable to be simply
described as an exponential decay but rather a power law de-
cay for a larger chemical distance, or more precisely, as a res-
ult of the repulsive interactions between segments due to the
chain connectivity and the incompressibility. Thus, by analyz-
ing MSID they derive two parameters of effective bond length

 and swelling coefficient  for systematic evaluations of the
relative  deviation  from  the  ideal  chain  behavior.  Unfortu-
nately, to our knowledge, relatively little is known for wheth-
er  or  how  the  chain  architecture  affects  such  deviation  from
the ideal chain. It should be noted that polymers with nonlin-
ear  architectures, i.e.,  star  and  comb,  can  experience  some
volume exclusions for chain architecture reasons when com-
pared to linear polymers. And the correlation hole in the melt
of  ring  chains  is  found  to  be  deeper  and  wider  than  that  of
linear  chains.[19] Therefore,  it  is  of  great  interest  to  study  the
internal  structure  of  polymer  chains  with  nonlinear  architec-
tures,  in  order  to  gain  more  insights  on  the  relationship
between architecture and conformation properties.

As  for  polymer  dynamics,  the  well-known  Rouse  model  is
commonly  employed  to  describe  dynamics  of  unentangled
polymer melts.[20] When directly solving the Rouse equations
at continuum level, unlike the linear and ring polymers[19] the
boundary  condition  relating  to  the  chain  topology  becomes
hard to handle for more complex architectures such as asym-
metrical  star  and comb.  On the other  hand,  with the help of
the  graph theory,  the  quantitative  descriptions  for  the  chain
architecture information are accessible by a Laplacian matrix,
solutions  of  the  Rouse  equations  can thus  be  derived in  dis-
crete form for various architectures. Along this line, a new ap-
proach,  generalized  Gaussian  structures  (GGS),[21] has  re-
cently  been  proposed  based  on  the  original  Rouse  model,
which sets up a unified standard to quantify the architecture
effect  of  chain  architecture  on  dynamics  properties.  Further
extension  of  the  GGS  model  has  been  developed  by
Dolgushev et  al.[22−24] to  involve  the  chain  stiffness,  which
provides  valuable  analytical  insights  into  single-polymer  dy-
namics of semiflexible polymer systems with complex intern-
al topologies. However, when comparing the resulting analyt-
ic  data with Monte Carlo simulations some discrepancies are
observed  by  Dolgushev et  al.,[24] since  the  above  GGS  ap-
proach  is  a  single  chain  model  and  within  this  framework
many-chain effects as well as excluded volume interactions in
real systems are disregarded. Nevertheless, it has been recog-
nized  that  quantifying  polymer  dynamics  of  more  involved
models at various length scales using a Rouse mode analysis
will  also  contribute  significantly  to  the  full  understanding  of
the  dynamic  behavior  of  complex  polymer  systems,  in  addi-
tion to testing the applicability limit of Rouse model. This ap-
proach  has  been  applied  widely  to  the  analysis  of  experi-
mental data and simulation data on linear chains.[25−27] Unfor-

tunately,  to  our  best  knowledge,  relatively  few  efforts  have
been devoted toward the Rouse mode analysis of MD simula-
tion  data  through  GGS  calculations  especially  for  non-linear
polymers.  Actually,  by  means  of  the  above  more  general
Rouse mode analysis on MD data, we can measure the relaxa-
tion of internal modes of the chains which is essential for our
understanding  of  a  hierarchical  relaxation  processes  occur-
ring in real systems, and also check the internal correlations of
the chain which continues to elucidate our understanding of
how  the  underlying  topologies  of  real  polymeric  materials
affect  their  local  static  properties.  Even  more  excitingly,  re-
searches of this kind will offer a chance to test the validity of
current  theoretical  models  and help the development of  im-
proved theories for polymer dynamics that take into account
the excluded volume interactions as well as interactions with
other  chains  which  are  encountered  in  real  systems  but  are
disregarded in the GGS.

κ(t)
κ(t)

κ(t)

As  addressed  above,  although  the  Rouse  model  has  been
shown  to  successfully  describe  the  large  time  and  length
scale behavior of short polymers in melts, there are still some
contrary phenomena observed from experiments and simula-
tions.[4,28] The  reason  for  these  discrepancies  also  lies  in  the
fact that Rouse model relies on “Flory ideality hypothesis”, i.e.,
the chains are assumed to be Gaussian and excluded volume
interactions  are  screened.  Furthermore,  Masubuchi et  al.[5]

observed  that  the  deviations  from  Rouse  model  have  close
relationship  with  interaction  potentials.  Additionally,  the
cross-correlations  vanish  in  Rouse  model,  but  recent  experi-
ments[29,30] and simulations[31−33] show that orientation cross-
correlation makes a significant contribution to mechanical re-
laxation  process.  For  example,  Likhtman et  al.[32] proposed  a
time-dependent coupling parameter  to quantify the relat-
ive importance of cross-correlations during the orientation re-
laxation  and  their  MD  study  on  linear  polymer  melts  indic-
ated  that  is  independent  of  molecular  weight  or  blend
composition  and  the  cross-correlations  constitute  a  promin-
ent fraction about 50% at long time. Very recently, Masubuchi
et  al.[33] performed  multi-chain  slip-link  simulations  on  en-
tangled branched polymers and found  is virtually identic-
al to that of linear polymers. However, a full understanding of
whether  or  how  the  chain  topology  affects  the  orientation
cross-correlation or the deviation from the Rouse model is yet
to be achieved. Also, by means of graph theory, the cross-cor-
relation  contributions  to  dynamics  properties  of  polymer
chains  with  various  architectures  can  be  studied  by  orienta-
tion  correlation  functions via integrating  the  orientation  of
the segments corresponding to the edges of graph.

In  this  work,  to  explore  the  architecture  restriction  effects
on  static  and  dynamic  behaviors  of  unentangled  polymer
chains, the linear, symmetric star, asymmetric star, comb, and
ring polymer melts are investigated by a MD simulation with
generic coarse-grained flexible polymer chain model, namely
Kremer-Grest  (KG)  model  and  the  resulting  trajectories  are
analyzed by Rouse model based on graph theory to evaluate
the  various  correlation  functions.  As  a  key  challenge  in  a
deeper  understanding  of  chain  topology,  we  pay  special  at-
tention to the deviations of  both static  properties and dyna-
mics  from  Flory’s  theorem  of  equilibrated  melts  of  these
chains on different time- and space-scales.
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ROUSE MODE ANALYSIS

LG

We note that by the study of the Rouse modes of the chain or
Rouse  mode  analysis  we  cannot  just  check  the  single  chain
dynamics  but  also  the  structural  properties  of  the  polymers.
Recently,  Rouse model was extended to polymers with various
architecture[21,34] based  on  graph  theory,  wherein  the  linear,
ring, star, A-star and comb polymers are viewed as chain graphs
with  their  edges  and  vertices  corresponding  to  the  harmonic
springs  and  beads  of  polymers,  respectively.  A  connectivity
matrix  or  a  Laplacian  matrix  can  thus  be  constructed  to
describe  the  bonded  interactions  between  neighboring
beads.[35] In matrix notation, the linearized Langevin equation of
motion in the Rouse model can be rewritten as:[36,37]

ζ
dR
dt

= −
3kBT

2b2
LGR + F (1)

ζ

R = [r0, r1, . . . , ri, . . . , rN−2, rN−1]T ri
k = 3kBT

b2

F = [f0, f1, . . . , fi, . . . , fN−2, fN−1]T
fRi (t)⟨fRiα (t) fRjβ (t′)⟩ = 2kBTζδijδαβδ (t − t′)

α, β = x, y, z

LG

LG

where  denotes  monomeric  friction  coefficient. R is  the
vector  for  a  polymer  chain  with N beads  and

 with  being  the  position

vector of the bead i.  On the right-hand side of Eq. (1), 

represents  the  elastic  constant  of  Gaussian  entropic  elastic
springs  and b denotes  the  average  bond  length. F is  the  vec-
tor  of  random  forces  and 

with  the  random  forces  interrelated  through  the  fluctua-
tion  dissipation  theorem: ,

. One should note here that Eq. (1) may be solved by
decoupling  into  independent  normal  mode  equations via
diagonalization of the Laplacian matrix  and transformation of
the  Cartesian  coordinates R to  the  normal  coordinates X.  The
linear transformation matrix to diagonalize  is defined as:

P = [p0,p1, . . . ,pi, . . . ,pN−2,pN−1]T (2)

pi ith

λi λi pi

X = P−1R
i = 0, 1, 2, ..., N−1 i=0

λ0=0.

where  is  the  normalized  eigenvector  and  its  correspon-
ding eigenvalue is .  The details  of  derivation of  and  for
our  studied  chain  architectures  are  provided  in  the  electronic
supplementary  information  (ESI).  The  normal  coordinates  are
given  by  a  linear  transformation  with  the  Rouse
modes .  For  the  mode , X0 represents  the
motion  of  the  center  of  mass  of  chain  and  the  corresponding
eigenvalue  is  In  this  way,  the  Rouse  correlators  for  all
polymers  with  different  architectures  evaluate  the  single  chain
dynamics and the structural  properties of  the polymers can be
deduced.

For the ideal chain, Rouse modes are independent of each
other,  the  cross-correlations  should  vanish  while  the  auto-
correlation  function  is  expected  to  decay  exponentially  with
time, so the correlation function is given by

⟨Xp (t) Xq (0)⟩ = δpq
b2

λp
exp (− t

τp
) (3)

τpwhere  denotes  the  characteristic  relaxation  time  of  the pth

mode,

τp = b2ζ
3λpkBT

(4)

At t=0  the  static  correlation  of  the  modes  or  the  Rouse
mode  amplitudes, i.e.,  the  amplitude  of  the  autocorrelation
function of Rouse mode p, which reflects local chain structure,
is expected to obey a simple power law:

⟨X2
p⟩ = b2

λp
(5)

λp ⟨X2
p⟩

Additionally,  further  multiplying  the  Rouse  mode  amp-
litude  by  the  corresponding  eigenvalue,  the  resulting  scaled

Rouse  mode  amplitudes  ( ),  which  is  given  by  the  fol-

lowing formula:

λp ⟨X2
p⟩ = b2 (6)

would allow for comparisons of segment size.
However, when the excluded volume interaction and topo-

logical  constraint  are  considered,  the  normalized  time-de-
pendent autocorrelation function can hardly be described by
a  simple  exponential  fashion  but  always  be  described  by  a
stretched  exponential  Kohlrausch-Williams-Watts  (KWW)
function: ⟨Xp (t) ⋅ Xp (0)⟩⟨X2

p⟩ = exp [−( t
τKWWp

)βp] (7)

τKWWp βpwhere  two  fitting  parameters  and  are  the  KWW
characteristic  relaxation  time  and  the  stretching  exponent  of
the  mode p.  Thus,  the  effective  relaxation  time  of  mode p is
given by

τeff
p = ( τKWWp

βp
)Γ ( 1

βp
) (8)

Γ (x)where  is the gamma function.
In this case, to validate the applicability of the Rouse mode

analysis,  it  is  important  to  assess  whether  the  Rouse  modes
are  indeed  orthogonal  or  not.  Following  the  method  de-
scribed in  Refs.  [38−40]  the orthogonality  of  Rouse modes is
estimated by a normalized static (t=0) correlation product:

χpq =
∣⟨Xp ⋅ Xq⟩∣√⟨X2

p⟩ ⟨X2
q⟩ (9)

p=q χpq
p≠q χpq

Accordingly, for the diagonal elements of the correlation matrix,
corresponding  to ,  are  unity.  For  the  off-diagonal
elements ,  should be zero if the modes are orthogonal.
Deviation from Rouse model can be detected from the heatmap
of the cross-correlation matrix.

METHODOLOGY

Model and Simulation Details

rc = 21/6σ

Similar  to  those  used  in  the  literatures,[9,41−43] the  model  of
the  polymer  chains  we  employed  in  this  work  is  a  generic
coarse-grained  flexible  polymer  chain  model  or  the  so  called
Kremer-Grest (KG) model. All beads interact via a shifted purely
repulsive Lennard-Jones (LJ)  potential  with a cutoff  distance of

:

ULJ (rij) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4ε [( σrij )12

− ( σrij )6

+
1
4
] , rij < rc

0 , rij ⩾ rc

(10)

ε σ rij

K = 30ε/σ2

R0 = 1.5σ∶

where ,  and  are the energy scale, the length scale, and the
distance  between  beads,  respectively.  In  addition,  the  nearest
neighbor  beads  along  the  chain  interact via the  finitely
extensible  nonlinear  elastic  (FENE)  potential  with  the  spring
constant  of  and  the  maximal  bond  length  of

[9,41]
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UBond (rij) = −
1
2
KR2

0In [1 − ( rij
R0

)2] , rij < R0 (11)

kBT/ε
ρ=0.85 kB

Γ = 0.5m/τ
τ

τ = σ
√
m/ε

Δt=0.01τ
1×108

Ne

In  the  present  study,  MD  simulations  are  carried  out  in
a  NVT  ensemble  at  the  same  temperature  of =1.0  and
a  constant  monomer  number  density  of ,  where 
is  the  Boltzmann  constant.  We  use  a  Langevin  thermostat
with a friction constant  to maintain the temperat-
ure,  wherein m is  the mass of  a  bead and  is  the time scale
given  by .  All  simulations  are  performed  using
LAMMPS[44] with  a  time  step  of  and  run  up  to  at
least  MD  steps  after  equilibration.  A  cubic  simulation
box  with  periodic  boundary  conditions  in  all  dimensions  is
adopted for each simulation. The studied polymer melts con-
sist of 1000 chains with N (N = 50, 52, 61, 67, 73, 76, 83) beads
per chain. Note that the entanglement length ( ) is about 85
for  the  flexible  linear  chains[11,26,45] verified  by  stress  relaxa-
tion data,[46] thus the studied chains are unentangled. The ar-
chitecture and the bead number per chain (N) of each system
are  listed  in Table  1.  As  indicated  schematically  in  this  table,
for the asymmetric star (A-star) polymers the arm length satis-
fies arm1 = arm2, while for comb polymers the length of each
part  satisfies  arm1  =  arm2  =  arm3  and  arm4  =  arm5.  To  en-
sure good statistics, each run is repeated at least 8 times and
then  the  results  are  averaged.  Additionally,  we  should  stress
that  our  shortest  ring  with N=50  is  beyond  the  short  limit,
below which the single ring will  lead to explosion of the sys-
tem due to strong repulsive forces between intra beads along
the chain for Kremer-Grest model.[47]

Observables
To  quantify  the  static  and  dynamic  behaviors  of  unentangled
polymer  melts  with  different  chain  architectures,  besides  the
chain Rouse modes, we monitor the chain dimensions, position-
al  intrachain  correlations,  the  stress  and  orientation  relaxation
functions, and the relevant definitions are given below.

Intrachain correlations

⟨R2 (s, G)⟩
To learn the intrachain correlations for bead positions along the
chain  with  complex  architectures,  we  can  regard  the  chain
architectures  as  a  graph[21,35] and  calculate  the  mean  square

internal  distance , i.e.,  the  average  squared  distance

between  two  monomers  separated  by  a  curvilinear  (chemical)

s Gdistance  on the chain graph ,⟨R2 (s, G)⟩ = ⟨(rm − rn)2⟩ ∣Path(m,n,G)=s (12)

rm
Path(m, n, G)

⟨R2 (s, G)⟩
⟨R2 (s, G)⟩

Gauss
= sb2.

S
N − S ⟨R2 (s, G)⟩

where  is  the  position  vector  of  the mth monomer.
 is  the  function  to  calculate  the  path  length  from

the mth bead to the nth bead on the graph G according to the
Floyd-Warshall  algorithm[48] and  all  path  length  equal  to s
should  be  taken  into  account.  The  Floyd-Warshall  algorithm  is

given  in  ESI.  Physically,  represents  the  size  of  chain

segments  or  sub-chains.  For  an  ideal  chain,  the  probability
distribution  function  of  internal  distances  would  follow  a

Gaussian  distribution  with  One  expects

that  the  distribution  of  internal  distances  of  sufficiently  long
polymer  chains  should  follow  this  distribution  after  the
excluded volume becomes vanished. For ring polymers, due to
the  close-loop  geometry  the  two  strands  are  considered.  We
suppose  that  denotes  the  length  of  shorter  strand  and  the

length  of  the  longer  strand  is .  Thus,  is  mostly

monitored in terms of the effective length of the strand, s:[49]

s =
S (N − S)

N
with S ≤ N

2
and s ≤ N

4
(13)

⟨R2 (s, G)⟩
Gauss

= sb2
By  virtue  of  the  concept  of  effective  strand  length,  one  can

derive  for a Gaussian ring.

Stress and orientation relaxation

Stot(t)
G(t)

The stress-optical law states that the relaxation function of total
orientation  tensor  should  be  proportional  to  the  stress
relaxation function :

G (t) = 1
αStot (t) (14)

α G(t)where  is the stress-optical coefficient.  is calculated at each
MD time step according to the Ref. [31]:

G(t) = V
kBT

⟨σαβ(t) σαβ(0)⟩ (15)

σαβ α,β = x, y, z
jth

where  is  the  stress  tensor, , V is  the  volume  of
simulation  box.  The  orientation  tensor  of  the  molecule  is
defined as:

Oαβ
j (t) = ∑Nbond

i=1
uαij (t) uβij (t) (16)

Nbond j uij
ith jth

where  is the bond number in chain ,  is a bond vector
of the  bond in the  chain. The autocorrelation contribution
to  the  total  orientation  relaxation  within  the  same  chain  is
defined as:

AM (t) = 1
NcNbondkBT

∑Nc

i
⟨Oαβ

i (t)Oαβ
i (0)⟩ (17)

Ncwhere  is  the  number  of  chains  in  the  systems.  The  total
orientation correlation function is given by:

Stot (t) = 1
NcNbondkBT

⟨∑Nc

j=1
Oαβ
j (t)∑Nc

j=1
Oαβ
j (0)⟩ (18)

Hence, the cross-correlation function of the orientation can
be directly obtained by

CM (t) = Stot (t) − AM (t) (19)

κ (t)
Finally,  the  contribution  of  the  cross-correlation  effect  or

coupling effect is described by the time-dependent coupling
parameter , which is defined as following:

κ (t) = CM (t)
Stot (t) = Stot (t) − AM (t)

Stot (t) (20)

Table 1    The architecture and the bead number per chain (N) of each
system.

Architecture N

Linear 50 52 61 67 73 76 83

Ring 50 52 61 67 73 76 83

Star 52 61 67 76 82

A-star

arm1 = arm2

arm3

61 67 83

Comb
arm4 = arm5

arm1 = arm2 = arm3

61 67 73 83
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Note that all these dynamical correlation functions are cal-
culated by a multiple-tau correlator method[50] in order to as-
sure the numerical  accuracy and improve the computational
efficiency.

RESULTS AND DISCUSSION

To  explore  the  internal  architecture  restriction  effects  on  static
and dynamic behaviors of unentangled polymer chains, we inves-
tigate various structural properties and relaxation characteristics
of  polymer  melts  with  different  architectures  by  analysing  the
chain  size,  positional  intrachain  correlations,  the  chain  Rouse
modes, the stress and orientation relaxation functions.

Chain Dimensions (⟨R2
g⟩)

⟨R2
g⟩

⟨R2
g⟩

⟨R2
g⟩

The mean square radius of gyration  values for our studied

architectures are presented as a function of molecular weight, N,
in Fig.  1.  For  a  given N,  the chain size of  linear  polymers  is  the
largest  while for  rings it  is  the smallest  and the branched ones
like  (a)symmetrical  star  and  comb  polymers  lie  in-between.
Furthermore, as linear polymers can be regarded as asymmetric
star (or comb) polymers with the short arm length equal to zero
while symmetric star polymers can be regarded as an extension
of  asymmetric  star  chains  with  all  arm  lengths  equal  to  each
other,  the  overall  dimensions  of  asymmetric  star  chains  are
expected to locate between the linear chain and symmetric star
chain and display a crossover from linear to symmetric star with
the  growth  of  short  arm  to  the  long  arm  length.  As  illustrated

in Fig.  1,  values  of  asymmetric  star  chains  are  indeed

generally in-between linear and symmetric star chains. With the
increase of molecular weight N or corresponding to the increase

of the short arm (arm3 shown in Table 1) length, their  data

become  closer  to  the  symmetric  star  chains  and  the  order  of

 for a fixed N is symmetric star ≤ asymmetric star < linear.

These results are not surprising as the shape of asymmetric

κ2

G
λ1 λ2 λ3

star chains is not fixed with increasing the length of the short
arm towards its long arm counterpart and there exists a shape
transition  from  the  linear  structure  to  the  symmetric  star
structure.  However,  the  chain  shape  of  our  studied  symmet-
ric star or linear polymers is fixed with the increase of molecu-
lar  weight N or  the  simultaneous  increase  of  the  three  arm
lengths.  We note that  the relative anisotropy  is  often em-
ployed  to  characterize  the  chain  shape,  which  is  calculated
based on the radius of gyration tensor  or its three eigenval-
ues with > > :[43,51,52]

κ2 = 1 − 3
λ1λ2 + λ2λ3 + λ3λ1(λ1 + λ2 + λ3)2 (21)

κ2

κ2

κ2
linear κ2

comb κ2
Astar κ2

star κ2
ring

⟨R2
g⟩

κ2 κ2=0.43, 0.24 and 0.29,

κ2 ⟨R2
g⟩

ν=1/2 Rg

⟨R2
g⟩ ∼ N

ν = (1 −
π
3
) /2 ≈ 0.45

ν = 1/3
Nc

Nc
6500

The value of  is normalized and in a range of [0, 1], i.e.,  it
takes 1 when all monomers are located on a line while it takes
0  when  all  monomers  are  spherically  symmetric  distributed.
As presented in Fig. S2 (in ESI),  is sensitive to the chain ar-

chitectures.  For  a  given N, , , ,  and 

are in descending order, almost in the same order as the cor-

responding global chain size , indicating the more aniso-

tropy  in  shape  the  more  extension  in  size.  As  expected,  our
studied linear, ring and symmetric star polymers have a stable
value of  with  independent of their
molecular  weight.  However,  the  relative  anisotropy  of  our
studied  asymmetric  star  chains  is  in-between  the  linear  and
symmetric  star  polymers  and follows the order  of  symmetric
star  ≤ asymmetric  star  < linear,  and with the increase of  mo-
lecular weight N or corresponding to the increase of the short
arm  value  is  reduced  to  their  symmetric  counterpart,  in

consistency  with  the  above  results.  Despite  the  short-

ness of our chains, the open chains with free ends like the lin-
ear  and  symmetric  star  architectures  in  the  melt  they  are
Gaussian  in  the  sense  of  a  linear  scaling  (i.e.,  Flory  exponent

)  of  with N.  Additionally,  unlike  the  symmetric  star
chains,  asymmetric  star  chains do not show the ideal  scaling

of  within our studied N range. As for the scaling be-

havior of our unentangled rings, the derived ν approaches to
0.46, indicative of a somewhat compact structure. We note a

theoretical  value of  has been predicted

based  on  the  perturbation  calculation  for  unlinked  rings.[53]

However,  to  reach  the  asymptotic  scaling  regime  with
,  characteristic  of  a  compact  object,  very  long  ring

polymers with N exceeding a critical ring length of  (see Eq.
(6) in Ref. [54]) are required, wherein  for our employed KG
model is .

Internal Structure of the Chains

⟨R2(s, G)⟩⟨R2(s, G)⟩/s
⟨R2(s, G)⟩

N ≈ 2Ne

To obtain the information about the chain conformation for all
these  chain  architectures  on  all  scales  in  real  space,  the  mean

square  internal  distance  is  calculated  and  the  typical

results  of  reduced  MSID  for  polymer  melts  with

N=61 are shown in Fig. 2(a).  Additionally,  to have a knowledge

of molecular weight effect,  data of our studied unentan-
gled linear  and ring chains  with N=61 and 83 as  well  as  of  the
entangled linear and ring polymer melts with N=151 ( )
are presented in Fig. S1 (in ESI). ⟨R2(s, G)⟩ /sFor the open chains, we see  increases with s, in-

dicating  that  there  does  exist  the  correlation  between  the
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Fig. 1      for all architectures as a function of molecular weight, N,

in  logarithmic  scale.  The  solid  lines  show  a  fit  with  which

gives =1/2  for  linear  and  symmetric  star  polymers  and =0.46  for
rings.

516 Yao, P. et al. / Chinese J. Polym. Sci. 2021, 39, 512–524  

 
https://doi.org/10.1007/s10118-020-2489-4

 

https://doi.org/10.1007/s10118-020-2489-4


s ⟨R2(s, G)⟩ /s

⟨R2(s, G)⟩/s
s≈10 s

⟨R2(s, G)⟩ /s s

⟨R2(s, G)⟩/s

bond  vectors.  However,  for  larger ,  gradually

converges to a constant value, corresponding to the decay of
bond vector  correlation function.  These findings confirm the
existence  of  long-range  intrachain  correlations  or  “swelling
effect”,[17] which  is  caused  by  incomplete  EV  screening  but
ignored  in  Gaussian  chain  model.  Moreover,  as  shown  in

Fig.  2(a),  curves  of  these  open  chains  display  a

good collapse within . However, for larger , the reduced
MSID  curves  exhibit  a  small  but  still  clearly  visible architec-

ture  dependence:  the  order  of  for  a  fixed  is

comb > symmetric star ≥  asymmetric star > linear. This slight
increase  behavior  is  indicative  of  the  fact  that  open  chains
with more branches or more free ends are a bit more swollen.
Although such phenomena have not been reported so far,  it
is  not unreasonable since the existence of additional topolo-
gical constraints would lead to a further increase in excluded
volume  interactions.  Moreover,  as  typically  illustrated  in  Fig.

S1(a) (in ESI),  curves of the open chains with differ-

ent chain lengths are almost superimpose,  implying that the
non-ideal  behavior  from  the  EV  effect  is  chain-length  inde-
pendent.  We note again that such nonideal behavior was in-
vestigated  by  Wittmer et  al.,[17] who  considered  the  chain
swelling  effect  and  proposed  corrections  for  Gaussian  chain
model and predicted the reduced MSID for linear polymers as⟨R2(s, G)⟩

s = b2
e (1 −

cs√
s
) (22)

be = lim
s→∞

(R2(s,G)
s )1/2

s

R2(s, G)⟨R2(s, G)⟩/s

with  the  effective  bond  length .  The  idea

behind  this  prediction  is  that  for  linear  chains  due  to  the
incomplete EV screening at short length scales, they are swollen
compared  to  a  Gaussian  chain  of  non-interacting  subchains.
However, for sufficiently long subchains or curvilinear length ,
the  distribution  function  of  internal  distances  approaches  to  a
Gaussian distribution for ideal chains, a linear scaling of 

in s or  an  asymptotic  plateau  of  are  expected  to

reach, as the excluded volume interactions become screened.
Interestingly, the MSID of our studied linear and non-linear

open chains can be well described by Eq. (22), as typically in-

be

s≈N
be cs

be cs

be cs
be cs

be cs

dicated by lines in Fig. 2(a) and the resulting fit parameters in-
cluding  effective  bond  length  and  swelling  coefficient cs

for  all  systems  are  shown  in Figs.  2(b) and 2(c).  To  minimize
the chain-end effects or the reduced self-interactions at chain
ends,  the  fitting  is  done  after  eliminating  the  data  around

.  Herein,  we  notice  several  important  features.  First,  for
the open chains  and  are almost independent of the mo-
lecular  weight N.  Particularly,  the  derived  two  values  for  our
linear  chains  are  nearly  the  same  as  ones  reported  by
Wittmer,[17] wherein  the  flexible  bead-spring model  with  the
LJ  9-6  potential  is  constructed  in  such  a  way  that  the  mean
bond length is fixed at 0.97 as in our KG model. Another strik-
ing observation for these open architectures is that similar to
MSID, both  and  display a small but still clearly visible ar-
chitecture dependence: the more branches the somewhat lar-
ger  and ,  indicating  again  a  bit  stronger  swelling  effect.
For example, the linear molecules have the smallest  and ,
the  comb  ones  have  the  largest  and ,  while  the  (a)sym-
metric  stars  are  in-between with all  data  for  asymmetric  star
chains  slightly  falling  below  those  of  symmetric  star  chains.
To  our  knowledge,  such  weak  architecture-dependent  devi-
ation  from  an  ideal  chain  behavior  has  not  previously  been
observed.

⟨R2(s, G)⟩ /sFor the rings, as illustrated in both Fig. 2(a) and Fig. S1(a) (in

ESI), although the overall shape of  for our studied

unentangled ones, i.e., N=61 and 83, is identical to those seen
in  the  open  chains;  unlike  the  open  chains  they  do  not  col-
lapse to a single master curve and fail to converge to a chain-
length-independent  constant.  This  is  not  surprising  because
in addition to the “swelling effect”[17] or the excluded volume
effect,  the  topological  constraint  like  nonconcatenation  (un-
crossability) constraints between ring chains affects the devi-
ations from an ideal chain behavior. Also, Brown et al.[55] poin-
ted  out  that  the  condition  of  nonconcatenation  is  another
constraint  which leads  to  the  non-Gaussian behavior  so  that
the  Gaussian  distributions  of  chain  segment  size  cannot  be
recovered  even  at  large s regime  after  the  excluded  volume
effects gradually vanish. Moreover, if the ring is long enough,
the constraints of entanglements will set up. Actually, our res-
ults  verify  the  non-Gaussian  behavior  of  rings  very  different
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Fig. 2    (a) The reduced mean square internal distance  as a function of s for chains with N=61 and the fitting curves of Eq. (22), which

are represented by open symbols and lines, respectively. (b, c) The derived effective bond length  and swelling coefficient  as a function N for
chains with different architectures.
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⟨R2(s, G)⟩/s(N=151≈2Ne) s≈20,

Ne

⟨R2(s, G)⟩/s

from  that  of  linear  counterparts  with  respect  to  local  chain
structure.  Recent  simulation  results  of  Lang[49] do  show  that
the interpenetrating rings lead to similar non-Gaussian beha-
vior to the linear melts, which is quite different from the non-
Gaussian behavior of nonconcatenated ring polymers. For our
nonconcatenated  rings,  such  chain-length-dependent  non-
Gaussian  behavior  is  further  evidenced  by  appearance  of  a

horizontal tangent in  curve for the entangled ring

 at  as shown in Fig. S1(a) (in ESI).  Similar
behavior  has  been  found  in  Ref.  [49]  for  the  fully  entangled
rings (N>10 ) and attributed to the compensation of the re-
maining  effect  of  excluded  volume  by  topological  interac-

tions.  Moreover,  differences  in  curve  shape

between  the  entangled  ring  and  unentangled  rings  validate
that the static or equilibrium structural properties of our stud-
ied unentangled rings are not susceptible to some precursor
(crossover) effects of the ultimate reptational dynamics.

R2 (s)

S
S

Rg

Due  to  the  more  factors  responsible  for  the  non-Gaussian
behavior  of  rings and the resulting different  MSID character-
istics  from  open  chains,  the  direct  application  of  Eq.  (22)  to
our rings is questionable. Unfortunately, since there is no way
to calculate topological constraints within a Hamiltonian rep-
resentation,[56] it is currently not possible to implement stand-
ard  analytical  results  of  for  rings.  Therefore,  we  cannot
quantify  the swelling effect  for  rings  as  what  has  been done
for  open  chains.  We  may  obtain  a  qualitative  conclusion  by
comparing the reduced MSID at the same curvilinear (chemic-
al) distance, which is denoted as S thereafter and S = s for the
linear chains and for rings  is the length of shorter strand. As
shown in Fig. S1(b) (in ESI), the subchain size with  segments
of rings is smaller than that of linear polymers, indicating that
ring  polymers  are  relatively  compact  compared  with  linear
counterparts, in consistence with the results from  versus N.
Of  course,  this  is  not  surprising because there is  no free end

but a rather deeper correlation hole in the ring chains.

Rouse Mode Analysis

⟨X2
p⟩ λp

p

λp<0.1 ⟨X2
p⟩

λp

λp>0.1 ⟨X2
p⟩

We  performed  the  detailed  Rouse  mode  analysis  of  our  MD
trajectories  to  evaluate  both  static  and  time-dependent  (auto)
cross-correlation  functions.  As  another  check  of  the  internal
structure  of  chain,  we  firstly  investigate  the  relationship  of  the

Rouse  mode  amplitude  with  its  eigenvalue  and  the

typical results for N=61 are shown in Fig. 3(a). We note that the
amplitude of Rouse mode  is expected to obey a simple power
law of Eq. (5) in Rouse model theorem. We see that all the curves
nearly  collapse  to  a  single  master  curve.  For  the  lower  modes

(i.e., ),  the  resulting scaling exponent  between  and

 is approximately equal to 1.041±0.002, quite compatible with
the prediction of Rouse model in Eq. (5).  For the higher modes

(i.e., ),  the  Rouse  model  overestimates  for  all  the

architectures.  Such  deviations  in  higher  mode  regime  were
observed  in  PE  melts[19] and  entangled  linear  melts.[26,57]

Evidently  the  physical  origin  is  that  the  original  Rouse  model
ignores the excluded volume interaction, topological constraint,
intramolecular  correlation,  and  chain  stiffness.  For  example,  to
consider  the  local  chain  stiffness  Binder et  al.[14] proposed  a
modified Rouse model by replacing the random walk with a free
rotation chain model, which can to some extent account for the
suppression of correlations below the Rouse prediction.

λp ⟨X2
p⟩

(N<Ne) N=151 (N≈2Ne)
λp ⟨X2

p⟩ = b2,which

Nonideal  behavior  is  also  evidenced  by  the  non-constant

and mode-dependent scaled Rouse mode amplitudes ,

as typically presented in Fig. 3(b). Note that to study the mo-
lecular  weight  effects,  we  have  performed  additional  Rouse
mode  analysis  for  the  ring  and  linear  polymers  with N=83

 and  and  the  corresponding  results
are included in Fig. 3(b). We stress again that for ideal chains

 is  constantly independent of  mode num-
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Fig. 3    (a) Log-log plot of the amplitude of the  mode  and its effective relaxation time ( ) as a function of eigenvalue 

for  the  systems  with N=61.  In  addition,  the  theoretical  predictions  of  Eqs.  (4)  and  (5)  are  shown  as  the  red  dash  and  solid  lines  for

comparison. (b) Log-log plot of  as a function of  for the same samples with N=61 as well as for the linear and ring polymers

with  and .
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λp ⟨X2
p⟩ ,

⟨R2(s, G)⟩ /s

b2
e ⟨R2(s, G)⟩ /s

λp ⟨X2 (p)⟩ N/p
⟨R2(s, G)⟩ /s

N=151≈2Ne N/p≈20⟨R2(s, G)⟩ /s

ber.  Although  the  above  scaling  relationship  between  the
Rouse  mode  amplitude  and  its  eigenvalue  derived  from  our
MD  simulations  in Fig.  3(a) seems  independent  of  architec-

tures,  the  scaled  Rouse  mode  amplitudes  which  al-

lows for comparison of segment length across different archi-
tectures,  is  architecture-dependent.  We  see  that  like  the  re-

duced  mean  square  internal  distance  in Fig.  2(a)

all open chains of N = 61 exhibit the tendency to level off and
roughly fall onto a single curve. Particularly, for linear chains,
the data points of different chain lengths almost collapse to-
gether  and  asymptotically  approach  the  effect  bond  length

, very similar to  in Fig. S1 (in ESI). As for the ring

polymers,  we  do  find  that  unlike  the  above  linear  counter-

parts, the curves of  versus  depend on the mo-

lecular  weight N,  also  in  agreement  with  the  result  of

 in  Fig.  S1  (in  ESI).  As  addressed  above,  there  are

two  effects  driving  the  ring  polymers  to  deviate  from  the
Gaussian chains, i.e.,  the excluded volume effects and the to-
pological constraints. Due to the interplay of the two effects,
not only the expected plateau for Gaussian model is  not ob-
served  but  also  this  non-Gaussian  behavior  is  chain-length-
dependent. Moreover, with the increase of molecular weight,
the  deviation  caused  by  topological  constraints  becomes
more  prominent.  For  example,  for  the  entangled  ring  of

, a pronounced peak is found at ,  similar

to the horizontal tangent at s≈20 in  curve Fig. S1

(in ESI).

χpq

χpq

χpq p≠q

Along the line discussed above, it is important to check the
normalized  static  correlation  matrixes  to  further  inspect
the applicability  of  the  Rouse model.  We note  again  that  for
the  ideal  chain  Rouse  modes  are  independent  of  each  other
and  the  cross-correlations  should  vanish.  The  typical  heat-
maps  of  for  all  architectures  with N=61  are  presented  in
Fig. S3 (in ESI). Compared with the diagonal elements, the off-
diagonal ones are observed at least 1−2 orders of magnitude
smaller  than  unity,  suggesting  that  the  cross-correlation  of
Rouse modes should have an extremely small effect on static
properties  and  the  Rouse  modes  are  approximately  ortho-
gonal.  Nevertheless,  the  weak  off-diagonal  elements  exhibit
some  architecture-dependent, i.e.,  ( )  values  for  the
open chains are generally a bit larger than the rings, wherein
the  resulting  correlation  heat  map  in  open  architectures
shows more pale blue coloring.

β p

τKWWp

N/p
τKWWp

Note that for the ideal chain the autocorrelation function of
Rouse modes is  expected to follow an exponential  decay.  As
typically  illustrated  in  Fig.  S4  (in  ESI)  for  our  simulated
samples of N=61 with different architectures,  the normalized
autocorrelation  functions  for  all  architectures  in  our  simula-
tions are obviously not in a simple exponential decay but can
be  rather  well  described  by  a  stretched  exponential
Kohlrausch-Williams-Watts  (KWW)  fashion  with  the  stretch-
ing exponent 0< <1 and decreasing with increasing  as lis-
ted in Table S1 (in ESI).  Similar behavior has also been found
in entangled linear melts.[26] The resulting KWW characteristic
relaxation time for mode p, , is listed in Table S2 (in ESI).
Since the autocorrelation function of Rouse modes is physic-
ally corresponding to the relaxation of  segments, we find
the  values for different architectures at the same p are

p=2
p=2

close to each other except at  for the symmetric star poly-
mers. The mode  for star polymers represents the largest
relaxation time of star polymers and hence the derived KWW
characteristic  relaxation  time  of  symmetric  star  polymers  is
quite larger than the other ones.

τp,effect

i.e., ⟨X2
p⟩

τp,effect λp

τp,effect

The resulting effective relaxation time of mode p,  as
a function of eigenvalue λp is shown in Fig. 3(a). Interestingly,

like  the  static  autocorrelation  functions  ( )  all  curves

nearly collapse to a single master curve. For the lower modes,
the  scaling  exponent  between  and  is
−1.029±0.003,  which  is  consistent  with  the  Rouse  prediction
of  Eq.  (4)  as  indicated  by  the  red  dash  line.  However,  the
Rouse  model  overestimates  the  relaxation  time  in  higher
mode regime. The neutron scattering experiments and atom-
istic  molecular  dynamics  simulations  on  PEO  melts  give  the
similar results.[58] Note that reasons for the deviation of Rouse
mode amplitude from the Rouse model also hold for .

τrelax

⟨R2
g⟩

To understand the relation between chain size and relaxa-
tion time for different chains, we calculate the relaxation time

 for  the  different  architectures  based  on  the  effective
time  of  the  auto-correlation  function,  that  is,  Eq.  (8),  for  the
first  mode  of  each  chain  (Note  that  relaxation  time  can  also
be  derived  from  the  autocorrelation  function  of  the  vector
with the largest end-to-end distance, a detailed discussion of
the  different  relaxation  time  can  be  found  in  Ref.  [59]).  The
resulting relaxation time is plotted as a function of molecular

weight N in Fig. 4(a) and mean-square radius of gyration 

in Fig. 4(b).

τrelax

⟨R2
g⟩ κ2

τrelax
τrelax

⟨R2
g⟩ κ2.

τrelax

τrelax ∼ N2.0

τrelax ∼ N2.36±0.01

τrelax ∼ N2.22±0.02 τrelax ∼ N2.26

τrelax ∼ N2.1 N < Ne

We can see that with the same molecular weight the relax-
ation time is architecture dependent.  of linear polymers
is  the largest  while  rings take the least  time to relax and the
branched ones like (a)symmetrical star and comb polymers lie
in-between, in the opposite to the order of the chain dimen-

sions  and  the  relative  anisotropy  of  chain  shape .  For

the  asymmetrical  star  and  comb  polymers,  their  relaxation
time varies between those of linear and (perturbed) symmet-
ric  star  chains.  With  the  increase  of  molecular  weight N or
corresponding  to  the  increase  of  the  short  arm  (arm3  for
asymmetric star and arm4 or arm5 for comb shown in Table 1)
length,  their  data  become  closer  to  the  (perturbed)
symmetric  star  chains  and  the  order  of  for  a  fixed N is
(perturbed)symmetric star ≤ asymmetric star < comb < linear,

in the almost same tendency as  and  As for the scaling

behavior of the relaxation time  with molecular weight N,
Rouse  theory  predicts  for  linear,  ring,  and  sym-
metric  star  polymers.  However,  a  little  deviation  is  observed
for  our  studied  systems, i.e.,  the  power  laws  for  linear  and
(perturbed)symmetric star polymers are  and

, respectively.  Similar scaling of  
has  been  reported  for  linear  polymers  in  Ref.  [60],  wherein
a  critical  test  of  the  KG  model  on  the  scaling  laws  of  the
polymer  melts  was  performed.[60] Additionally,  such  small
deviation  from  Rouse  theory  is  found  in  the  united-atom
model  of  polyethylene  (PE)[61] with  for .
This deviation might come from the strong excluded volume
effect,  which  is  provided  by  the  LJ  force  and  leads  to  the
collisions between hard-core particles no longer equal to the
Gaussian  random  force.[61] As  for  the  ring  polymers,  the  res-
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τrelax ∼ N1.88±0.03

τrelax ∼ N1.9
ulting  scaling  law  is ,  quite  similar  to  the

scaling of  found in the unentangled PEO melts,[62]

and  the  resulting  smaller  scaling  exponent  than  the  open
chains arises from the fast diffusion of ring polymers. Besides,
the  different  power  law  behaviors  could  be  relevant  with
the architecture-dependent or the molecular weight depend-
ent  effective  friction  constant.  We  note  that  in  Rouse  theory
the  friction  constant  is  independent  of  chain  architecture  or
molecular  weight.  However,  recent  experiments  and  simula-
tions[41,63−65] show  the  correlation-hole  interactions[66] and
the  viscoelastic  hydrodynamic  effects[67] result  in  deviations
from  Rouse  theory  like  the  subdiffusion  behavior[68] in  the
mean-square  displacement  of  the  center-of-mass  of  chain.
The  friction  constant  of  linear  polymers  is  found  to  increase
with  molecular  weight[64] and  quite  larger  than  that  for  ring
polymers.[19]

τrelax⟨R2
g⟩

τrelax (N) ∼ ⟨R2
g (N)⟩2.0

When  the  relaxation  time  is  plotted  as  a  function  of

the  chain  size  in Fig.  4(b),  we  find  the  architecture  de-

pendence  becomes  weaker.[47,59] All  data  points  almost  lie
around  the  master  curve  except  for  the  symmetric  star  and
the perturbed symmetric star polymers which fall slightly be-

low, however the same scaling of  holds

for all studied systems.

Orientational Relaxation Function

G(t)
Stot(t) .

Recent  simulations  on  both  linear  and  entangled  branched
polymers indicated although each individual chain obeys Rouse
dynamics,  the  cross-correlation  between  the  chains  is  not
negligible.[32,33,69,70] Orientation  correlation  function  is  parti-
cularly relevant to the mechanical and dielectric relaxations. To
explore the chain architecture effect on orientational relaxation,
we  firstly  check  the  stress-optical  law  which  tells  the  relation-
ship  between  the  time-dependent  relaxation  modulus 
and  total  orientation  correlation  function  As  typically

G(t) Stot(t)
τ

α
α

α

indicated by Fig.  5,  the stress optical law works in our systems,
i.e.,  the  two  relaxation  functions  and  become
proportional to each other after about 30 , which corresponds
to  the  time  scale  of  the  bond  relaxation  and  glassy  modes.[31]

The stress-optical coefficient  derived by Likthman in Ref. [32]
for standard KG model systems of linear chains is 0.0885 and  is
independent of molecular weight and blend composition. Here
roughly  the  same magnitude of  applies  to  our  systems with
different  chain  architectures.  Therefore,  the  stress-optical
coefficient  is  independent  of  chain  topologies  and  molecular
weight in polymer melts.
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polymers with different architectures. Note that results of the perturbed symmetric star polymers, that is, a kind of weak asymmetric star
polymers  by  inserting  an  additional  bead  in  one  arm  of  the  symmetric  star  chain  to  break  the  chain  symmetry,  is  also  shown  for
comparison.
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Stot(t) AM(t)
κ(t)

We  note  again  that  the  cross-correlation  contribution  to
the  orientation  correlation  is  neglected  in  the  Rouse  model.
To  explore  the  cross-correlation  role  in  the  total  orientation
relaxation in our MD samples, we plot total orientation correl-
ation  and autocorrelation contribution  in Fig. 6(a)
and  the  corresponding  time-dependent  coupling  parameter

 in Fig. 6(b).
AM(t)

Stot(t) AM(t) Stot(t)
AM(t) τ

τ
κ(t)

12% t=0 50%

κ(t)
κ(t)

τ
κ(t)

κ(t)

For  each  studied  architecture  nearly  overlaps  with
 at short time but  turns to relax faster than 

at  long time,  indicating that  the role of  cross-correlations in-
creases with time. Additionally, we find that the relaxation of

 after  about  10  is  clearly  faster  for  ring-shaped  chain
than for open chains, which may suggest that the relative im-
portance of cross-correlations in total orientational relaxation
function will grow faster with time in rings than in the open-
chain counterparts. Indeed, as typically illustrated in Fig. 6(b),
the  cross-correlation  role  in  the  total  orientation  relaxation
seems  to  grow  with  time  and  such  growth  becomes  more
pronouncedly  for  rings  after  about  10 .  For  example,  the
time-dependent  coupling  parameter  for  all  the  architec-
tures increases from about  at  to about  at later
time. Recent MD simulations on linear polymers[32] and multi-
chain  slip-link  simulations[33,71] on  star-branched  and  H-
branched  polymers  also  give  similar  results.  Meanwhile,  we
see all the curves of  are roughly overlapped of each other
except  for  ring  polymers, i.e.,  rings  have  the  lowest  at
short time scales but the situation is reversed after about 10 .
Additionally,  by  comparing  the  results  of  our  rings  with
N=61  and  83  we  find  that  like  the  open  chains  such  as
linear[32] and  branched  ones,[33,71,72]  of  ring  polymers  is
independent of the molecular weight.

The origin of  orientational  cross  correlation has been con-
jectured to be a coupling in the chain dynamics through the
excluded volume interactions.[72] Masubuchiet  al.[33,71,72] sug-

κ (t)
κ(0)

κ(0)
κ(0)
χpq

AM(t) τ κ(t)

κ(t)

gested that  is affected by the density fluctuations due to
the incompressibility. Cao et al.[32] pointed out that any static
calculations can just provide the information of , whereas
the  important  long-time  coupling  can  be  only  obtained  by
dynamics  calculations.  On  the  one  hand,  we  note  that  the
coupling at time zero, ,  represents the influence of cross-
correlation part on static properties.[32] The  extrapolated
from  curves  in Fig.  6(b) should  be  very  small  and  lowest  for
rings,  consistent  with  the  result  of  small  but  weak  architec-
ture-dependent  cross-correlation amplitude .  This  finding
is  related  to  the  chain  correlation  hole,  which  is  deeper  for
rings and thus may lead to the stronger local intra-ring correl-
ations  and  enhances  the  relative  role  of  auto-correlations  at
short  time  scales  during  orientational  relaxation  of  rings.  On
the  other  hand,  the  effective  pressure  exerted  on  individual
ring  chains via nonconcatenation  constraints  between  ring
chains  may  slow  down  the  inter-ring  or  cross-correlation  re-
laxation  so  that  rings  can  relax  their  intra-coil  much  faster
than  relax  their  inter-coil  correlations  (the  faster  decay  of

 for  rings  after  about  10 )  and  their  tends  to  rise
faster  than  the  open-chains  at  late  time.  To  test  these  ideas,
we  attempt  to  extract  the  (dynamic)  correlation  information
of inter-polymers, and more details can be found in ESI. As in-
dicated by Fig. S5 (in ESI), for the rings the mutual (inter-ring)
interpenetration is  less  pronounced but relaxes more slowly,
indicative of a deeper correlation hole but a suppressed inter-
ring  correlation  relaxation  when  compared  with  the  linear-
chain counterpart. The correlation hole effect weakens the re-
lative role of cross-correlations at short time scales during ori-
entational relaxation of rings, while an enhanced mutual cor-
relation is  responsible  for  the faster  growth of  with  time
and even becoming more significant than linear polymers at
later time.
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Fig. 6    (a) The total (solid lines) and the auto-correlations (dash lines) of chain orientation relaxation functions of  and  for all
the architectures with a given molecular weight of N=61. (b) The time-dependent coupling parameter  for all the architectures with a
given  molecular  weight  of N=61.  Note  that  in  order  to  have  a  knowledge  of  the  molecular  weight  effects  on  for  our  studied
unentangled ring polymers, we include the  results of our ring polymer melt with molecular weight N=83 in (b).
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In conclusion, by a combined MD simulation and detailed Rouse
analysis based on graph theory, the chain architecture effects on
static  and  dynamic  behaviors  of  unentangled  polymers  are
investigated. For the global sizes of chains, at a given molecular

weight N,  is  the  largest  for  linear  polymers  while  it  is  the

smallest for rings and the branched ones like (a)symmetrical star

and  comb  polymers  lie  in-between.  Furthermore,  of

asymmetric  star  chains  generally  lies  in-between  linear  and

symmetric  star  chains,  and  the  order  of  for  a  fixed N is

symmetric  star  ≤  asymmetric  star  <  linear.  The  architecture
dependent  chain  dimension  is  closely  relevant  to  the  chain
shape.  For  a  given N,  the  relative  anisotropy  is  sensitive  to
the  chain  architectures.  For  example,  at  a  given N, ,

, ,  and  are  in  descending order,  almost  in

the same order as , indicating the more anisotropy in shape

the  more  extension  in  size.  Particularly,  like  above  result

the relative anisotropy of our studied asymmetric star chains is
in-between the linear and symmetric star polymers and follows
the order of symmetric star ≤ asymmetric star < linear. Although
the  open  chains  like  linear  and  symmetric  star  architectures
obey  the  ideal  scaling,  rings  are  in  a  somewhat  compact  non-
Gaussian structure with a Flory exponent ν = 0.46 < 1/2.

Such architecture dependence is also reflected in the local
chain  structure,  which  exhibits  some  deviations  from  the
ideal  chain  behavior.  For  the  open  chains,  reduced  MSID
curves  prove  the  existence  of  long-range  intrachain  correla-
tions  or  incomplete  EV  screening  and  can  be  well  described
by  Wittmer’  theory  for  linear  chains,  and  the  resulting  chain
swelling  is  architecture  dependent  but  chain-length  inde-
pendent, i.e.,  the  more  branches  a  bit  stronger  swelling.  As
for  the  rings,  due  to  the  EV  effect  and  nonconcatenated
constraints,  reduced  MSID  curves  exhibit  a  quite  different
non-Gaussian behavior from open chains, i.e., unlike the open
chains  reduced  MSID  curves  do  not  collapse  to  a  single
master  curve  and  fail  to  converge  to  a  chain-length-inde-
pendent constant.  Hence,  more factors  (let  alone constraints
of entanglements which set up if the ring is long enough) re-
sponsible for the non-Gaussian behavior of rings and the res-
ulting  different  MSID  characteristics  from  open  chains  make
the  direct  application  of  Wittmer’s  theory  to  our  rings  quite
questionable.

τrelax

Additionally, although the Rouse modes are approximately
orthogonal,  the weak off-diagonal elements of static correla-
tion  product  exhibit  some  architecture-dependence.  Also,
due to neglect of the excluded volume interaction, topologic-
al  constraint  and  intramolecular  correlation,  the  scaling  pre-
dictions  of  the  Rouse  model  overestimate  mode  amplitude
and  relaxation  time  at  high  modes  (or  local  length-scale).
Such  nonideal  behavior  is  detected  again  by  the  non-con-
stant  and  mode-dependent  scaled  Rouse  mode  amplitudes,
which is architecture-dependent and even becomes molecu-
lar  weight  dependent  for  rings.  Furthermore,  the  relaxation
time of  whole  chain is  architecture dependent.  For  example,

 of  linear  polymers  is  the  largest  while  it  is  the  least  for
rings  and  the  branched  ones  like  (a)symmetrical  star  and
comb  polymers  lie  in-between,  in  agreement  with  the  order

⟨R2
g⟩

κ2

τrelax

τrelax

⟨R2
g⟩ κ2.

τrelax

τrelax(N) ∼ ⟨R2
g(N)⟩2.0

of  the  chain  dimensions  and  the  relative  anisotropy  of

chain  shape ,  indicating  the  more  anisotropy  in  shape  the
more extension in size and the faster chain relaxation. Particula-
rly,  of  asymmetrical  star  and  comb  polymers  vary
between  those  of  linear  and  (perturbed)  symmetric  star
chains, and the order of  for a fixed N is (perturbed) sym-
metric  star  ≤ asymmetric  star  <  comb < linear,  in  the  almost

same  tendency  as  and  Although  the  scaling  expo-

nents  of  with N are  architecture-dependent,  the  same

scaling  of   holds  for  all  studied  architec-

tures.

κ(t)
κ(t)

κ(t)
κ(t)

κ(t)

Consistent with the recent work on linear[32] and branched
polymers,[33] the  role  of  cross-correlation  in  orientational  re-
laxation  increases  with  time  and  the  time-dependent  coup-
ling  parameter  is  increased  from  about  12%  at t =  0  to
about  50%  at  later  time.  Interestingly,  although  is  archi-
tecture-independent  for  the  open  chains,  for  rings  is
lower  at  short  time  scales  but  rises  faster  at  later  time  than
open chains. Furthermore, like the open chains such as linear
and  branched  ones,  of  ring  polymers  is  independent  of
the  molecular  weight.  The  stronger  correlation  hole  effect
weakens  the  relative  role  of  cross-correlations  at  short  time
scales  during  orientational  relaxation  of  rings,  while  an  en-
hanced mutual correlation is responsible for the faster growth
of  with  time.  These  results  demonstrate  the  architecture
dependent  nonGaussian behavior,  while  up to  now only  the
linear chains have revealed such deviation. Researches of this
kind will  help for the development of modified Rouse model
to  account  for  the  topological  information  and  the  internal
architecture  restriction  effects  as  well  as  the  excluded  volu-
me interaction. It is worthy to note that to our knowledge it is
the first time to successfully adopt the combined MD simula-
tion  and  graph  theory  to  explore  chain  architecture  effects,
which  provides  a  route  to  investigate  polymers  with  any
chain-topology.
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