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Abstract   In this study, wide bandgap (WBG) two-dimensional (2D) copolymer donors (DZ1, DZ2, and DZ3) based on benzodithiophene (BDT)

on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluorobenzotriazole (FBTZ) are designed

and  synthesized  successfully  for  efficient  non-fullerene  polymer  solar  cells  (PSCs).  Three  polymer  donors DZ1, DZ2,  and DZ3 display  similar

absorption spectra at 300−700 nm range with optional band-gap (Eg
opt)  of 1.84, 1.92, and 1.97 eV, respectively. Compared with reported DZ1

without  chlorine  substitution,  it  is  found  that  introducing  chlorine  atoms  into  the meta-position  of  the  alkoxyphenyl  group  affords  polymer

possessing a deeper the highest occupied molecular orbital (HOMO) energy level, which can increase open circuit voltage (VOC) of PSCs, as well as

improve hole mobility. Non-fullerene bulk heterojunction PSCs based on DZ2:MeIC demonstrate a relatively high power conversion efficiency

(PCE) of 10.22% with a VOC of 0.88 V, a short-circuit current density (JSC) of 17.62 mA/cm2, and a fill factor (FF) of 68%, compared with PSCs based

on DZ1:MeIC (a PCE of 8.26%) and DZ3:MeIC (a PCE of 6.28%). The results imply that adjusting chlorine atom amount on alkoxyphenyl side chains

based on BDT polymer donors is a promising approach of synthesizing electron-rich building block for high performance of PSCs.
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INTRODUCTION

Polymer  solar  cells  (PSCs)  consist  of  a  p-type  conjugated  poly-
mer  donor  and  an  n-type  organic  semiconductor  (including
fullerene  derivatives  and  non-fullerene  organic  semiconduc-
tors).[1−32] For  the  past  few  years,  PSCs  have  been  developed
rapidly,  exhibiting  outstanding  advantages  such  as  simple
device structure, low cost, lightweight, flexibility, and semitran-
sparency.[33−36] Now,  it  has  become  a  global  frontier  and  hot
spot in organic photovoltaic research, which mainly focuses on
improving  power  conversion  efficiency  (PCE)  and  stability,
reducing  the  cost  of  photovoltaic  materials  and  device

preparation,  and  subsequent  industrialization  and  practical
application.[37] PCEs of the single-junction solar cells have been
over  16%  according  to  reported  studies  so  far.[38−43] Currently,
typical polymer donors are mainly D-A type copolymers PBDB-
T,[44] PM6,[45] J91,[46] P2F-EHp[47] with 2D conjugated side chains,
and  2D  polymer  donors  have  more  advantages  such  as
extensive intramolecular conjugation, facilitated intermolecular
interaction  and π-π overlap,  compared  with  1D  conjugated
polymer  donors.  Meanwhile,  acceptors  are  mainly  n-type
organic  semiconductors.  With  regard  to  fullerene  and  its
derivatives  as  acceptors  for  PSCs,  fused-ring  acceptors  (some
typical  ones  such  as  ITIC,  Y6)  feature  good  stability,  easily
tailored synthesis methods, strong absorption in the visible light
region,  and  tunable  energy  levels,  thus  becoming  more  and
more dominant in PSC research community.  Excellent polymer
donors usually contain complementary absorption spectra with
above-mentioned  acceptors,  which  is  very  important  to  build
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highly efficient organic photovoltaics.[48,49]

It is well known that donor materials need to match the en-
ergy  level  of  the  acceptors  to  obtain  increased  open-circuit
voltages (VOCs), and have a relatively strong absorption spec-
trum  and  morphological  compatibility  with  the  acceptors  to
increase  short-circuit  current  densities  (JSCs)  and  fill  factors
(FFs)  for  PSCs.  Benzodithiophene  (BDT)  is  an  excellent  elec-
tron-donating  donor  unit  with  a  large  planar  structure  and
outstanding  crystallinity.  Highly  efficient  PSCs  generally  in-
clude  BDT  units  for  D-A  copolymer  donors  as  electron-rich
segments  and  A-D-A  type  small  molecule  donors  or  accept-
ors as conjugated core to build two-dimension (2D) excellent
molecular  systems.[50−53] In  general,  BDT  unit  based  2D  con-
jugated photoelectronic materials  show excellent  photovolt-
aic  performance  in  nonfullerene  PSCs  (NF-PSCs).[54] BDT  unit
with  2D  conjugated  side  chains  is  adopted  most  widely  by
phenyl and thiophene substitution to tune energy levels and
improve  geomorphology  of  active  layers.[51,55,56] In  order  to
further improve the photovoltaic properties of PSCs, halogen
atoms are introduced into 2D conjugated side chains to regu-
late molecular energy levels, charge transfer, and the compat-
ibility of donor and acceptor, since halogenation is a very ef-
fective  method for  increasing the  corresponding parameters
of  organic  semiconductors.  In  recent  years,  fluorinated  and
chlorinated  substituted  photovoltaic  materials  (including
donors and acceptors) have shown great potential in achiev-
ing highly efficient PSCs.[57−61] Hou’s group studied systemat-
ically  the  effects  of  fluorinated  and  chlorinated  donors  and
acceptors on the performance, and the results indicated that
chlorination was more effective than fluorination in reducing
molecular  energy  levels  and  broadening  absorption
spectra.[62,63] Zhang et al.  introduced a fluorine atom into the
thienyl  conjugated  side  chain  to  synthesize  the  polymer
donor  PM6,  which  was  measured  with  deeper  HOMO  levels
and higher PCE.[51] Recently, Yan’s group used polymer donor
PM7 with chlorine atoms to replace fluorine atoms on thienyl
side  chains,  which  resulted  in  enhanced VOC,  when  coping
with acceptor Y6 achieving a PCE as much as 17% efficiency.

PSCs based on BDT unit with conjugate side chains on phenyl
group  using  chlorine  substitution  also  obtain  the  excellent
performance in reported literatures, and chlorinated polymer
acquired  the  lower  HOMO  energy  level  as  well  as  high VOC

and  PCE.[64] Huang’s  group  synthesized  P2F-Ehp  by  introdu-
cing  two  fluorine  atoms  on  phenyl  substituted  side  chains
and  it  was  applied  in  PSCs,  which  achieved  higher VOC and
PCE.[47] These results imply that chlorination may have great-
er potential for large-scale applications as it is more attractive
to design low-cost photovoltaic materials.

In this study, we designed and synthesized WBG 2D copoly-
mers DZ1, DZ2,  and DZ3 with  different  degrees  of  chlorine
substitution  by  using  difluorobenzotriazole  (FBTZ)  through
Stille  coupling  polymerization  (Scheme  1 and  Scheme  S1  in
the  electronic  supplementary  information,  ESI).  Three  poly-
mer  donors DZ1, DZ2,  and DZ3 displayed  broad  absorption
in the ultraviolet-visible light region of 300−700 nm with op-
tional band-gap (Eg

opt) of 1.84, 1.92, and 1.97 eV, respectively.
HOMO energy level of polymer donors DZ2 and DZ3 by intro-
ducing  chlorine  into  the  alkoxyphenyl  group  is  deeper  than
that of reported DZ1 without chlorine substitution, which can
increase VOC of  PSCs,  correlative charge carrier,  compatibility
of  donor  and  acceptor,  and  photovoltaic  performance.[56]

Non-fullerere PSCs based on DZ2 as the donor and MeIC[65] as
the  acceptor  demonstrates  a  relatively  high  PCE  of  10.22%
with a VOC of 0.88 V, a JSC of 17.62 mA/cm2,  and a FF of 68%,
compared with PSCs based on DZ1:MeIC (a PCE of 8.26%) and
DZ3:MeIC (a PCE of 6.28%).  The results suggest that introdu-
cing  different  numbers  of  chlorine  atoms  on  alkoxyphenyl
conjugated side chains based on BDT polymer donors is a vig-
orous  strategy  to  synthesize  electron-rich  building  block  for
high performance of PSCs.

RESULTS AND DISCUSSION

Synthesis and Characterization
The  molecular  structures  of  polymer  donors DZ1, DZ2, DZ3,
and  acceptor  MeIC  are  shown  in Figs.  1(a) and 1(b).  Three
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Scheme 1    Chemical structures and synthetic routes of DZ1, DZ2, and DZ3.
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polymer  donors  were  synthesized  through  the  Stille  coupling
reaction using Pd(PPh3)4 as a catalyst and toluene as a reactive
solvent. The detailed synthetic procedures and characterization
methods  of  monomers  and  polymers  are  displayed  in  ESI.  The
high-temperature  gel  permeation  chromatography  was  used
to  test  the  number-average  molecular  weight  (Mn)  and
polydispersity index (PDI) of polymers DZ1, DZ2, and DZ3. Mn of
polymer  donors DZ1, DZ2,  and DZ3 was  15.3,  19.6, and  9.04
kDa  with  a  PDI  of  2.06,  2.20,  and  3.10,  respectively.  The  data
were tested at 160 °C using polystyrene as a reference and 1,2,4-
trichlorobenzene  as  the  eluent.  Three  polymers  showed  good
solubility in normal organic solvents, such as toluene, o-dichloro-
benzene,  chlorobenzene,  and  chloroform.  Thermodynamic
stability  of  the  three  polymers  was  measured  by  TGA  in  a
nitrogen atmosphere at a rate of 10 °C/min. The decomposition
temperatures (defined as the temperature of 5% weight loss) of
polymers DZ1, DZ2,  and DZ3 were  359,  352,  and  400  °C,
respectively (Fig. S1a, in ESI). Fig. S1(b) (in ESI) shows differential
scanning  calorimetry  (DSC)  thermograms  of  three  polymers
DZ1, DZ2, and DZ3, which suggest no obvious crystalline peaks
from 50 °C to 300 °C.

Optical and Electrochemical Properties
Fig. 1 and Fig. S2 (in ESI) show the UV-visible absorption spectra
of  three  polymers  in  chloroform  solution  and  as  film,

respectively.  In  solution,  the  absorption  spectra  of  polymers
DZ2 and DZ3 were  slightly  red-shifted,  and  displayed  the
strong π-π stacking.  And  three  polymers  showed  a  similar
intramolecular  charge transfer  (ICT)  peak at  around 532 nm.  In
the solid film, by comparison with polymer DZ1, the absorption
spectra of DZ2 and DZ3 were slightly  blue-shifted and narrow
(Fig.  1c).  And  the  absorption  maxima  of  all  polymers  were  at
538, 540, and 542 nm, respectively. The absorption edges of the
three  donors  were  at  647,  629,  and  640  nm  with  the
corresponding  optical  bandgap  (Eg)  of  1.84,  1.92,  and  1.97  eV,
respectively (Table 1). Such a blueshift phenomenon expended
the  main  absorption  region,  which  would  enable  the  greater
complementary  light-harvesting  spectrum  to  produce  higher
JSC and  PCE  values.  The  absorption  maximum  and  absorption
edge of the acceptor MeIC were 718 and 795 nm, respectively.
The UV-visible absorption spectra of three polymer blends with
acceptor MeIC are shown in Fig. 1(d). The blend film absorption
intensity  (ɛ)  exhibited  the  following  order: DZ2:MeIC  (5.30  ×
104 cm−1)  > DZ1:MeIC  (4.50  ×  104 cm−1)  > DZ3:MeIC  (2.95  ×
104 cm−1),  as outlined in Table 1. It was obvious that DZ2:MeIC
obtained the strongest absorption coefficient among the three
blends. The result is consistent with the JSC discussed below. The
hole  mobilities  of  three  polymers  were  measured  by  using
space  charge  limited  current  (SCLC)  method,  as  shown  in  Fig.

Table 1    Optical properties, electronic energy levels and hole mobilities of DZ1, DZ2, and DZ3.

Donor Td (°C) λmax
sol (nm) λmax

film (nm) Eg a (eV) ɛ b × 10−4 (cm−1) HOMO c (eV) LUMO c (eV) μh (cm2·V−1·s−1)

DZ1 359 535 538 1.84 4.50 −5.26 −3.05 7.56 × 10−4

DZ2 352 531 540 1.92 5.30 −5.32 −3.13 8.43 × 10−4

DZ3 400 533 542 1.97 2.95 −5.40 −3.17 9.64 × 10−4

a Estimated from the absorption edge in film; b Molar absorptivity at λmax in blended films; c Measured from the cyclic voltammograms.
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Fig. 1    (a) The chemical structure of DZ1, DZ2,  and DZ3;  (b) Chemical structure of MeIC; (c) Normalized absorption spectra of DZ1, DZ2, DZ3,
and MeIC in  film;  (d)  Normalized absorption spectra  of DZ1:MeIC, DZ2:MeIC,  and DZ3:MeIC in  CHCl3 solution;  (e)  The energy level  diagram of
donor and acceptors.
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S3  (in  ESI).  Polymer  donors DZ2 and DZ3 exhibited  higher
hole mobility (8.43 × 10−4 and 9.64 × 10–4 cm2·V−1·s−1) than DZ1
(7.56  ×  10−4 cm2·V−1·s−1)  (Table  1).  Such  high  mobility  of  neat
films  may  be  ascribed  to  the  introduction  of  chlorine  atoms,
which resulted in the stronger molecular interaction to improve
more effective charge transport.

The  electrochemical  properties  of  three  polymer  donors
were  measured  by  cyclic  voltammetry  (CV)  using  the  stand-
ard three electrode electrochemical cell. The energy level dia-
gram and the  CV curves  of the  three  polymers  are  shown in
Fig. 1(e) and Fig. S4 (in ESI). According to the formula: EHOMO =
−e(Eox + 4.71) (eV) and ELUMO = −e(Ered + 4.71) (eV), the highest
occupied molecular orbitals (HOMOs) and the lowest unoccu-
pied  molecular  orbitals  (LUMOs)  were  calculated,  respect-
ively.  The  HOMO  energy  levels  of  the  three  polymer  donors
were  measured  as  −5.26,  −5.32,  and  −5.40  eV,  respectively.
The  corresponding  LUMO  energy  levels  were  −3.05,  −3.13,
and  −3.17  eV,  respectively.  The  HOMOs  and  LUMOs  of  poly-
mers DZ1, DZ2,  and DZ3 were consistent with the results  of
DFT calculation with the HOMO/LUMO of −4.86/−2.78 eV for
DZ1,  −5.05/−2.94  eV  for DZ2,  and  −5.19/−3.05  eV  for DZ3
(Fig. S5, in ESI). Obviously, the HOMO energy level of polymer
DZ3 with  four  chlorinated  substitutions  was  deeper  than
those of  polymers DZ1 without  chlorinated substitution and
DZ2 with two chlorinated substitutions, which was beneficial
to  obtaining  a  high VOC value.  Besides,  the  strategy  demon-
strated that chlorine atom was a stronger electron-withdraw-
ing  group,  generating  the  deeper  HOMO  energy  levels.  And
the trend is similar to the reported literature with fluorinated
and  trifluoromethyl  substitution  on  phenyl  conjugated  side
chains. These results implied that chlorinated substitution is a
promising approach of achieving deeper HOMO energy levels
to increase VOC for efficient NF-PSCs.

Theoretical Calculations
Theoretical  calculations  were  performed  by  adopting  density
functional theory (DFT) with the B3LYP/6-31G (d, p) basis set. To

simplify  the  calculation  procedure,  long  alkyl  chains  were
changed to methyl groups. As shown in Fig.  S5 (in ESI),  HOMO
surface of the polymers was delocalized on both BDT and FBTZ
segments.  Nevertheless,  LUMO  surface  of  the  polymers  was
more localized on the acceptor units,  demonstrating that FBTZ
unit  displayed  strong  electron-withdrawing  character.  In  addi-
tion, three polymeric skeletons exhibited good planar and linear
construction,  as  well  as  a  predominant  homogeneous  disper-
sion of  positive electrostatic  potential  (ESP),  which is  beneficial
to obtaining high charge carrier mobilities (Fig. 2). As illustrated
in Fig. 2, the optimal molecular configuration of polymer DZ2 is
that  the  asymmetrical  side  chains  with  two  chlorine  substitu-
tions  on  phenyl  groups  were  located  on  the  two  sides  of  the
molecule plane, which is different from polymers DZ1 and DZ3
without  and  with  the  symmetrical  chlorine  substitution
conjugated  side  chains,  generating  the  different  molecular
arrangement  and  dipole  moments.  Polymer DZ2 with  two
chlorine  substitutions  on  the  phenyl  conjugated  side  chains
obtained the dipole moment value of 8.81 D, being superior to
that of DZ1 (5.43 D) and DZ3 (3.15 D). The result indicates that
the orientation of the dipole moment would force polymer DZ2
to enlarge the accumulation area and intensity.[66−68]

Photovoltaic Properties
The  photovoltaic  performance  of  polymer  donors DZ1, DZ2,
and DZ3 was  studied  by  fabricating  NF-PSCs  with  MeIC  as  an
acceptor  and DZ1 or DZ2 or DZ3 as  a  donor  with  the
conventional  device  architecture  of  ITO/PEDOT:PSS/photo-
voltaic  active  layer/Zracac/Al,  where  ITO  is  indium  tin  oxide,
PEDOT is poly(3,4-ethylenedioxythiophene), PSS is poly(styrene
sulfonate),  and  Zracac  is  zirconium(IV)  acetylaceton. Fig.  3(a)
depicts  the  current  density-voltage  (J-V)  plots  of  the  devices
with  the  best  performance.  The  corresponding  device  para-
meters with JSC, VOC, FF, and PCE are outlined in Table 2. The PSC
based on DZ1:MeIC obtained a PCE of 8.262%, a VOC of 0.814, a
FF of 0.667, and a JSC of 15.237 mA·cm−2. PCE of 10.215% based
on DZ2:MeIC  blend  with VOC of  0.877,  FF  of 0.684,  and JSC of
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Fig. 2    Optimized geometries of polymers DZ1, DZ2, and DZ3 by DFT at the B3LYP/6-31G (d, p) level. (a, c, e) Side view and (b, d, f) map
of the DFT electrostatic potential (ESP) surface of DZ1, DZ2,  and DZ3,  respectively. Cyan color indicates greater negative charge, while
yellow and red colors indicate positive charges.
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17.061 mA·cm−2 is higher that of DZ3:MeIC (PCE of 5.966%, VOC

of  1.000,  FF  of  0.609,  and JSC of  10.311  mA·cm−2). It  is  obvious
that VOC of the DZ3:MeIC-based PSC was the highest due to the
deeper  HOMO  energy  level  of  polymer DZ3.  Furthermore,  a
device based on DZ2:MeIC achieved the optimized efficiency of
photovoltaic  performance,  which  was  attributed to  the
balanced  charge  transport  below  discussed  mobilities.  The
result  suggested  that  introducing  suitable  chlorine  amount  on
phenyl  conjugated  side  chains  could  obtain  the  increments  of
JSC, VOC, FF, and PCE.

Charge Carrier Mobilities
In  order  to  better  understand  the  effect  of  internal  charge
carriers  on  the  photovoltaic  properties  of  NF-PSCs,  the  charge
mobility measurements of the neat polymer donors DZ1, DZ2,

and DZ3, and the polymer blends of DZ1:MeIC, DZ2:MeIC, and
DZ3:MeIC  were  carried  out  by  adopting  the  space-charge-
limited  current  (SCLC)  method  with  a  device  structure  of  ITO/
PEDOT:PSS/active  layer/MoO3/Al  for  the  hole  mobility  (μh)  and
ITO/ZnO/active  layer/Zracac/Al  for  the  electron  mobility  (μe).
The current-voltage curves of mobilities are exhibited in Fig. 4. It
can be seen from Table 2 that the hole mobilities of DZ1:MeIC,
DZ2:MeIC, and DZ3:MeIC blends were 6.12 × 10−4,  6.78 × 10−4,
and 7.36 × 10−4 cm2·V−1·s−1,  respectively.  The electron mobility
of DZ2:MeIC  blend  (3.74  ×  10−4 cm2·V−1·s−1)  was  higher  than
those  of DZ1:MeIC  (3.02  ×  10−4 cm2·V−1·s−1),  and DZ3:MeIC
blends  (3.34  ×  10−4 cm2·V−1·s−1).  And the  specific  value  of  hole
and  electron  mobility  of DZ2:MeIC  blend  (μh/μe =  1.81)  was
more  balanced  than  that  of DZ1:MeIC  (μh/μe =  2.00)  and DZ3:
MeIC  blends  (μh/μe =  2.20)  (Table  2).  The  result  demonstrates

Table 2    Photovoltaic data of the donors:MeIC (1:1, W:W)-based OSCs.

Donor VOC (V) JSC (mA·cm–2)
Calcd. JSC

(mA·cm–2)
FF (%) PCE a (%)

μh × 104

(cm2·V−1·s−1)

μe × 104

(cm2·V−1·s−1)
μh/μe

DZ1 0.810 ± 0.010 (0.814) 15.010 ± 0.211 (15.237) 14.530 0.653 ± 0.007 (0.667) 7.939 ± 0.19 (8.262) 6.12 3.02 2.00
DZ2 0.872 ± 0.008 (0.877) 16.911 ± 0.231 (17.061) 16.688 0.677 ± 0.010 (0.684) 9.983 ± 0.20 (10.215) 6.78 3.74 1.81
DZ3 0.998 ± 0.011 (1.000) 9.997 ± 0.228 (10.311) 9.763 0.598 ± 0.006 (0.609) 5.77 ± 0.20 (5.966) 7.36 3.34 2.20

a Average values and standard deviation are calculated from 20 devices. The values in parentheses belong to the best device.
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Fig. 3    (a) J-V characteristics of the best OSCs under the illumination of AM 1.5G, 100 mW·cm−2; (b) IPCE spectra of the devices based on
DZ1:MeIC, DZ2:MeIC, and DZ3:MeIC.
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Fig. 4    J0.5-V (V = Vappl − Vbi − Vs) characteristics of (a) the hole-only devices (ITO/PEDOT:PSS/active layer/MoO3/Al) and (b) the electron-
only devices (ITO/ZnO/active layer/Zracac/Al).
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that  a  better  balance  charge  mobility  was  achieved  by DZ2
based system, which could contribute to its higher FF value.

Morphology Study
The  optimized  geomorphology  is  important  to  enhance  the
photovoltaic  performance  of  PSCs.  To  further  gain  insight  into
the  morphology  of  the  photovoltaic  layers,  atomic  force
microscopy  (AFM)  was  implemented.  As  shown  in  Fig.  S6  (in
ESI), the AFM images of neat DZ1, DZ2, and DZ3 films revealed

that the root mean square (RMS) values of neat DZ1, DZ2,  and
DZ3 films  were  1.00,  1.10,  and  1.32  nm,  respectively. Fig.  5
shows the AFM images of DZ1:MeIC, DZ2:MeIC, and DZ3:MeIC
blends.  The  arranged  order  of  surface  roughness  of  blends
was DZ1:MeIC < DZ2:MeIC < DZ3:MeIC, and the corresponding
RMS values were 1.34, 2.10, and 2.89 nm, respectively. The result
implied  that  the  suitable  surface  roughness  was  crucial  to
enhancing the efficiency of PSCs.

CONCLUSIONS

In  summary,  we  have  successfully  designed  and  synthesized
new  WBG  2D  copolymer  donors DZ1, DZ2,  and DZ3 without
and with different degrees of chlorination for application in NF-
PSCs. These 2D conjugated polymer donors exhibited the broad
absorption  spectra  in  the  UV-visible  light  region  and  its
absorption  spectra  were  well  complementary  with  that  of
acceptor MeIC. Polymers DZ2 and DZ3 displayed deeper HOMO
energy  levels,  compared  with  polymer DZ1,  and  generated
the  higher VOC value.  The  NF-PSCs  based  on DZ2:MeIC  with
two  chlorinated  substitutions  achieved  an  optimized  PCE
of  10.215%  with VOC of  0.877,  FF  of  0.684,  and JSC of
17.061  mA·cm−2,  which  was  superior  to  those  of DZ1:MeIC
(PCE  =  8.262%)  and DZ3:MeIC  (PCE  =  5.966%).  More  balanced
charge  carrier  mobilities  and  suitable  surface  roughness  are
consistent with the best device condition of NF-PSCs based on
DZ2:MeIC.  Obviously,  these  BDT  unit-based-chlorinated
polymers significantly enhanced the photovoltaic performance
of  NF-PSCs.  In  addition,  we revealed the close-knit  relationship
between  the  molecular  structure  with  chlorinated  substitution
and  device  properties.  This  study  implies  that  appropriately

introducing chlorine atoms on alkoxyphenyl  side chains  based
on  BDT  polymer  donors  was  a  feasible  strategy  for  efficient
NF-PSCs.

 Electronic Supplementary Information
Electronic  supplementary  information  (ESI)  is  available  free  of
charge  in  the  online  version  of  this  article  at
https://doi.org/10.1007/s10118-020-2435-5.
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