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Abstract We report the polymerization of phenyl isocyanides with the chiral palladium(II) initiating system. The resulting polymers
with optically active properties were obtained by polymerization of the racemic isocyanide monomer (rac-1), and enantiomerically
unbalanced polymerization of the monomer was found, providing substantial evidence for the enantiomer-selective polymerization of rac-
1 mediated through chiral catalyst. A comparison between the enantiomerically pure monomers, 4-isocyanobenzoyl-L-alanine decyl ester
(1s) and 4-isocyanobenzoyl-D-alanine decyl ester (1r), revealed a drastic discrepancy in the reactivity ratio of their homopolymerizations.
It turned out that the monomer reactivity ratio of 1s was higher than that of 1r with chiral ligands. The results clearly demonstrated the
inclination for incorporation of the 1s enantiomer during the polymerization process and thus resulted in the enantiomer-selective
polymerization in this system. The effects of the catalyst chirality on the optically active properties of polymerization were investigated,
and it was concluded that the formation of higher-ordered conformation with a handed helicity might be attributed to the chiral induction
of chiral palladium(II) catalyst. Moreover, the polymers obtained through the enantiomer-selective polymerization of the enantiomerically
pure monomer were with a significant improvement of the optical activity if the chirality of the monomer and the catalyst matched with

each other.

Keywords
polymerization

Enantiomer-selective polymerization; Kinetic resolution; Chiral sulfinamide bisphosphine; Polyisocyanides; Living

Citation: Huang, J.; Shen, L.; Zou, H.; Liu, N. Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst.

Chinese J. Polym. Sci. 2018, 36(7), 799-804.

Stimulated by the discovery of helical structures in
biopolymers, a considerable number of studies have been
conducted on artificial helical polymers in recent years, such
as steric restricted polyacrylates'> 2 and poly(arylvinyl)si* ],
polyisocyanidesl® 1% polyisocyanatel' 141 polycarbodi-
imidel'>"'8] and polyacetylenes!'*?7]. Among them, helical
polyisocyanide has attracted great attention due to its unique
rigid rod helical structure and various applications, such as
enantiomeric  separation, asymmetric catalysis, chiral
recognition, as well as in material sciences. Thus, the
development of a novel synthetic method for facile synthesis
of optically active helical polyisocyanides becomes much
more urgent.

Among the methods for synthesizing chiral molecules,
enantiomer-selective polymerization is a unique one in
which an enantioenriched monomer and an optically active
polymer are generated simultaneously from a racemic
monomer mixture by incorporating a favored enantiomer
into the backbone of polymer while leaving the unreacted
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enantioenriched monomer through the selection of chiral
initiating systems. Considerable effort has been made on the
development of enantiomer-selective polymerizations, such
as the design of initiators, catalysts, and the synthesis of
monomers, etcl28734], Enantiomer-selective polymerization is
most commonly described by chiral metal catalysts or
initiators and has been established for a variety of monomer
classes, including vinylB35-371 lactide[3®4!1 and cyclic
monomersB% 401, We have reported an enantiomer-selective
polymerization of phenyl isocyanides by using a single
handed helical polyisocyanide bearing a living chain end as a
macroinitiator. Although the enantiomer selectivity of those
polymerizations could introduce chiral unit of the optically
active initiators or catalysts in the generated polymers, the
chiral source was lost after the polymerization and could not
be reused in the further polymerizations, thus the chiral
economy was low. Therefore, the development of new
strategies for enantiomer-selective polymerization of racemic
monomers to afford optically active helical polymers is of
great significance.

Recently, the controlled/living polymerization of
isocyanides has been achieved using a series of novel
organo-palladium complexes by our group, which could
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afford well-defined polyisocyanides in high yields with the
controlled molecular weights and the narrow polydispersity.
In this contribution, we reported the enantiomer-selective
polymerization of chiral phenyl isocyanides with the achiral
palladium catalyst in the presence of the chiral additive and
the polymerization proceeded in highly enantiomer-selective
manner with one of the enantiomers(#4 431, To the best of our
knowledge, the enantiomer-selective polymerization of
racemic isocyanides has not been reported, in which one of
the enantiomers is preferentially polymerized through the
kinetic resolution of a racemic monomer, whereas achiral
organopalladium(II) complexes produce stereo-regulated
polyisocyanide through chain-end control with no
enantiomer-selectivity. To achieve the enantiomer-selective
polymerization, we now focused on the enantiomer-selective
polymerization method using chiral initiating system.

For this study, we prepared a class of chiral palladium
catalysts bearing chiral sulfinamide bisphosphine ligand
(Wei-Phos)l#6: 471 for the polymerization of phenyl
isocyanides (Scheme 1). Monomer 1 is a phenyl isocyanide
derivative that contains L-, D- or rac-alanine residues with a
long alkyl chain as the pendants through an amide linkage.
The experimental section is shown in the -electronic
supplementary information (ESI).

=0

W

(S.R)-[Pd]" E?
—>
7 /NKH

The number-average molecular weights (Mn) of the
obtained polymers from racemic monomers could reach 5 x
10* g/mol, and the molecular weight distributions (Mw/Mn)
were quite narrow. The enantiomeric excess (ee) of the
unreacted monomer was 54.9%. In addition, the chiral
sulfinamide bisphosphine ligand could affect the enantiomer
selectivity, and the enantiomer selectivity changed when the
chirality of the used phosphorus ligands altered. It has been
found that the enantiomer bearing an S-alanine pendant with
a long decyl chain was predominantly polymerized when
using (S,Rs)-[Pd]", while the enantiomer bearing an R-alanine
pendant with a long decyl chain was predominantly
polymerized when using (R,Ss)-[Pd]*. The obtained polymers
possessed an optical activity, and the molar CD intensity at
364 nm (Ae3e4, in THF, at 25 °C) of the polymers could
achieve —11.9 and +11.8, respectively.

We explored the enantiomer-selective polymerization of
rac-1 using (S,Rs)-[Pd]" and conducted the kinetic studies of
this system. The relationship among Mn, Mw/Mn, and the
monomer conversion for the polymerization of rac-1 using
the chiral palladium(Il) initiating system is shown in
Fig. 1(a) and Fig. S1 (in ESI). The Mn values of the resulting
polymers increased with the increase of the monomer
conversion, and the Mw/Mn values of the obtained polymers
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Scheme 1 Enantiomer-selective polymerization of rac-phenyl isocyanide by using chiral palladium(II) catalyst
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Fig. 1 (a) Dependence of My and My/M; on the monomer conversion for the polymerization of rac-1 using the (S,Rs)-[Pd]"
initiating system; (b) Kinetic plots for the polymerization of rac-1 using the (S,Rs)-[Pd]" initiating system
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were relatively narrow (1.21-1.28), suggesting that the
polymerization proceeded in a controlled/living manner.
Further studies revealed that the apparent polymerization
rates of rac-1 using the chiral palladium(Il) initiating
complex were first-order with respect to the monomer
concentration because a linear correlation could be clearly
observed between —In([M]/[M]o) with the polymerization
time, indicating that the polymerization of rac-1 using chiral
palladium(Il) initiating system was living-like (Fig. 1b).
Meanwhile, as expected, the 1s enantiomer was polymerized
faster than the 1r enantiomer as shown in Fig. S2 (in ESI). In
order to further classify the living property of this
polymerization, the freshly generated Pd(II)-terminated
(S,Rs)-P10oo was used to initiate the rac-1 monomer in CHCI3
at 50 °C under the similar conditions described in ESI. As
shown in Fig. S3 (in ESI), the SEC trace of the afforded
block copolymer (S,Rs)-Pioo-»-50 shifted to the higher
molecular weight region as compared to that of the (S,Rs)-P
macroinitiator precursor. This result further confirmed that
the polymerization of rac-1 using the chiral palladium(II)
catalyst indeed proceeded in a living/controlled chain-growth
manner, affording well-defined polymers with an active
living chain end.

Moreover, an enantioenriched polymer could lead to
higher ordered conformations. The UV-Vis absorption and
CD spectra of rac-P, (S,Rs)-P and (R,Ss)-P in solution are
depicted in Fig. 2(a). It can be found that the racemic
polymer rac-P polymerized with the achiral palladium(II)
catalyst showed no CD signals in solution, and no obvious
absorption and cotton effects were observed around 364 nm,
suggesting that equivalent left- and right-handed helices
were simultaneously produced as expected. For comparison,
after polymerization under the same experimental condition
using the chiral catalyst, the chiroptical properties of the
isolated polymers were investigated. (S,Rs)-P showed a
negative cotton effect around 364 nm that corresponds to the
n-* transition of imino groups of polyisocyanide backbone.
The molar CD intensity at 364 nm (A&3e4) of (S,Rs)-P was
estimated to be —11.9, suggesting that the polymer adopted a
higher ordered chiral conformation, a left-handed helicity.
The CD spectrum of the afforded (R,Ss)-P is also shown in
Fig. 2(a). As expected, the polymer showed a mirror image
to that of the (S,Rs)-P. The Ae3z64 was estimated to be +11.86,
almost the same absolute value to that of the (S,Rs)-P but
opposite in the sign, suggesting that the right-handed helix
was preferentially yielded. This result further confirmed that
the enantiomer-selective polymerization of the racemic
phenyl isocyanides was ascribed to the asymmetric induction
of the chiral catalyst, and the helicity of the afforded polymer
was controlled by the phosphorus ligand. What is more, the
helical structures of the afforded polymers were quite stable;
no helix inversion was observed in the toluene solution of
(S,Rs)-P at 100 °C for even 24 h (Fig. S4 in ESI).
Additionally, the intensity of this cotton effect depended on
the molecular weight, which increased with the molecular
weight. This is because the helix became more-developed
with the increase of the molecular weight to reach a single-
handed helicity, resulting in the increase of the optical
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Fig. 2 (a) CD and UV-Vis absorption spectra of (S,Rs)-P, (R,Ss)-P,
rac-P in THF at 25 °C; (b) Relationship between ee of unreacted
monomer, Aezes of polymer (S,Rs)-P, and monomer conversion of
polymerization of rac-1 using the (S,Rs)-[Pd]" initiating system

activity. Meanwhile, it should be noted that after reaching
the maximum value, CD signal no longer increased even
though the molecular weight of the polymer still increased
largely.

The enantiomeric imbalance of the left-over monomers
and chiroptical activity of the resulting polymers showed that
the chiral catalyst could be applied to promote the
enantiomer-selective polymerization of the racemic phenyl
isocyanides. For the (S,Rs)-[Pd]" initiating system, the 1s
enantiomer was preferentially polymerized with the
unreacted monomer of 13.1% ee at the 80% monomer
conversion, and the resulting polymer showed the Ag3ss of
—10.52 (Fig. 2b). The reaction rate of the 1s enantiomer was
faster than that of the Ir enantiomer. Fig. 2(b) shows the
change in ee of the unreacted monomer and the chiroptical
properties of the isolated polymers as a function of monomer
conversion in the polymerization of rac-1 using chiral
palladium catalyst. The ee value of the unreaction monomer
increased with increasing monomer conversion, and the
optical purity (o.p.) of the resulting polymers increased with
increasing monomer conversion. The o.p. value of the
resulting polymer is given by ee/conv — eel®>- 461, and the o.p.
value of resulting polymer was 3.11% at the 80.8% monomer
conversion. This indicated that the chiroptical properties of
the polymer were due to the excess of the 1s enantiomer in
the obtained polymer. These results showed that the chiral
palladium(II) complex could affect the addition of rac-1 to
the growing end, where the Is enantiomer of racemic

https://doi.org/10.1007/s10118-018-2136-5


https://doi.org/10.1007/s10118-018-2136-5

802

monomers was predominantly polymerized,
enantiomer-selective polymerization.

To better understand the results of the polymerization of
rac-1 (Scheme 2), we examined the homopolymerizations of
phenyl isocyanides bearing R- or S-alanine pendant with a
long decyl chain (1r or 1s) using the chiral palladium catalyst
(S,Rs)-[Pd]*. Fig. 3 shows the kinetic plots of the individual

l.e., an
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homopolymerizations. The polymerization rate for 1s was
significantly faster than that of 1r, supporting the results
observed from the enantiomer-selective polymeri-zation of
rac-1 with (S,Rs)-[Pd]*. The homopolymerization rates of the
1s and 1r monomers (kis and kir) were 2.37 x 107 s7! and
0.85 x 107* s71, respectively.

The CD and UV-Vis spectra of the afforded polymers are
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Scheme 2 Enantiomer-selective polymerization of enantiomeric pure monomers 1r and 1s using the chiral catalyst in CHCl3 at 50 °C
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Fig. 3 (a) CD and UV-Vis absorption spectra of poly-1s, poly-1s(S,Rs), poly-1s(R,Ss), poly-1r, poly-1r(S,Rs) and poly-
1r(R,Ss) prepared from the living polymerization of 1r and 1s using the chiral Pd(II) catalyst; (b) Plots of the conversions
with the polymerization time of chiral monomer 1s, 1r, and rac-1 monomer using the chiral Pd(II) catalyst (S,Rs)-[Pd]" in
CHCI;s at 50 °C; (c) First-order kinetic plots for the polymerization of chiral monomer 1s, 1r, and rac-1 monomer using

the chiral Pd(II) catalyst (S,Rs)-[Pd]" in CHCl3 at 50 °C ([M]o = 0.15 mol/L, [

M]o/[Pd]o = 150)
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depicted in Fig. 3(a). When 1s was polymerized with the
chiral catalyst (S,Rs)-[Pd]", the isolated poly-1s(S,Rs) showed
a strong positive CD signal at 364 nm with a value of
—19.89, suggesting that a left-handed helix was
predominately produced. For comparison, chiral phenyl
isocyanide 1s was directly polymerized by the achiral Pd(II)
catalyst. The CD and UV-Vis spectra of the isolated poly-1s
are shown in Fig. 3(a). Because of the chiral induction of the
monomer, the poly-1s showed a negative CD at 364 nm with
the value of —11.59, much lower than that of the poly-
1s(S,Rs) through the chiral inductions by both the chiral
catalyst and the chiral monomer itself. This result indicated
that the presence of chiral catalyst during the polymerization
could remarkably heighten the enantiomer-sense selectivity,
and almost a single left-handed helix was selectively
produced. Remarkably, when 1s was polymerized with the
(R,Ss)-[Pd]*, the afforded poly-1s(R,Ss) exhibited a very
weak negative CD at 364 nm. The Ae¢3es was estimated to be
—1.05, indicating that a slight excess of left-handed helix was
produced. Thus, the helicity of the afforded polymers was
determined by the chirality of the catalyst. When the
enantiomer 1r was polymerized with the presence of (R,Ss)-
[PA]* or (S,Rs)-[Pd]*, similar results could be obtained.
However, the CD of the resulting polymers was opposite to
those polymerized from 1s due to the opposite chirality of
the two monomers (Fig. 3a). The interesting chiroptical
property of the afforded polymers was ascribed to the dual
chiral inductions by both the monomer and the chiral catalyst
used in the polymerization. When the chirality of the
monomer was matched with the chiral phosphine ligand, the
collaborative chiral inductions led to a better helix-sense-
selectivity of the polymerization, and produced a single-
handed helical polymer with strong CD intensity at 364 nm.
When the chirality of the monomer and the chiral phosphine
ligand was mismatched, the contradictive chiral inductions
resulted in a lower helix-sense-selectivity and only a slight
excess of one handed helix was produced.

In summary, the enantiomer-selective polymerization of
phenylisocyanides bearing a racemic alanine (rac-1) or chiral
alanine (1s, 1r) pendent with a long n-decyl chain was
achieved for the first time by using a chiral initiating system.
From the kinetic study for homopolymerizations of
enantiomerically pure 1s and 1r, the reactivity ratio of kis/kir
was found to be 2.79. Thus, the chiral initiating system
involving (S,Rs)-W1 preferentially catalyzed the 1s
polymerization into the growing ends with rac-1 monomers
to achieve the enantiomer-selective polymerization and the
ee of the unreacted monomers increased with the increase of
monomer conversion. And the growing polymer chain
adopted a higher-ordered conformation with one-handed
helicity excess. In addition, for the homopolymerization of
the enantiomerically pure monomer, the optical activity of
the afforded polymers was significantly improved when the
chirality of the monomer matched with the chiral ligand.
This work on enantiomer-selective polymerization provides
the beginning point for the polymerization of isocyanides.
Ongoing research will focus on the isocyanide monomer and
catalyst design in order to develop a high level of
enantiomer-selectivity.
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