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Abstract. Finding the rare instances or the outliers is important in many KDD (knowledge
discovery and data-mining) applications, such as detecting credit card fraud or finding
irregularities in gene expressions. Signal-processing techniques have been introduced to
transform images for enhancement, filtering, restoration, analysis, and reconstruction. In
this paper, we present a new method in which we apply signal-processing techniques to
solve important problems in data mining. In particular, we introduce a novel deviation (or
outlier) detection approach, termed FindOut, based on wavelet transform. The main idea
in FindOut is to remove the clusters from the original data and then identify the outliers.
Although previous research showed that such techniques may not be effective because of
the nature of the clustering, FindOut can successfully identify outliers from large datasets.
Experimental results on very large datasets are presented which show the efficiency and
effectiveness of the proposed approach.
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1. Introduction

Data mining is a process of extracting valid, previously unknown, and ultimately
comprehensible information from large datasets and using it to make crucial
decisions. Modern companies are awash in data on customers, clients, suppliers,
and industry trends. But data is of little use without intelligence. Here, intelligence
refers to combing through the data to notice patterns, devise rules, and make
predictions about the future. Data-mining technology permits organizations to
make the most effective use of the vast amounts of data that they have gathered.
For example, in the banking industry, data mining can be used in modeling and
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predicting credit fraud, bankruptcy, evaluating risk, performing trend analysis,
analyzing profitability, and helping with direct marketing campaigns.

One of the very interesting problems arising recently in the data-mining
research community is the deviation (or outlier) detection problem. Here outliers
refer to those exceptions which deviate from the values anticipated based on
a given (usually statistical) model or from some previously known expectation
and norm (Sarawagi et al., 1998). The identification of outliers can lead to the
discovery of truly unexpected knowledge in areas such as electronic commerce
exceptions, bankruptcy, credit card fraud, and even the analysis of performance
statistics of stock exchange (Knorr and Ng, 1998). Such knowledge can lead
to detecting abnormal events that happened in the past or predicting potential
trends in the future. Such potential trends may become new directions for future
investment, marketing, and other purposes.

1.1. Related Work

Most of the previous research in outlier detection has been in the field of statistics
(Hoaglin et al., 1983; Johnson, 1992; Barnett and Lewis, 1994). These methods
usually make assumptions about data distribution, statistical distribution par-
ameters, type or number of outliers. However, these parameters generally cannot
be easily determined, which makes these methods difficult to apply. Ruts and
Rousseeuw (1996) proposed a depth-based method to detect the outliers. The
data points are organized in layers in the data space according to the value
of the point depth.1 Outliers are expected to be in the layers with smaller
depth. Such methods do not have the distribution fitting problem. However,
for multidimensional spaces they may not be applicable. Sarawagi et al. (1998)
proposed a discovery-driven method in which the search for exceptions is guided
by pre-computed indicators of exceptions at various levels of detail in a data
cube. They consider a value in a cell of a data cube to be an exception if it
is significantly different from an anticipated value based on a statistical model.
Although this method can handle hierarchies and ordered dimensions, model
selection is still a difficult issue.

Arning et al. (1996) introduced a method for outlier detection which relies on
the observation that after seeing a series of similar data an element disturbing the
series is considered an outlier. Their method requires a function that can yield the
degree to which a data element causes the dissimilarity of the dataset to increase.
It looks for the subset of data that leads to the greatest reduction in Kolmogorov
complexity for the amount of data discarded (Arning et al., 1996).

Knorr and Ng (1997, 1998) presented the algorithms to detect distance-based
outliers. They consider a data point O in a dataset T , a DB(p, D)-outlier, if at
least a fraction p of the data points in T lies greater than distance D from O.
Their index-based algorithm executes a range search with radius D for each data
point. If the number of data points in its D-neighborhood exceeds a threshold,
the search stops and that data point is declared as a non-outlier, otherwise it is
an outlier. In their cell-based approach, they quantize the complete data space

1 The depth of a point p to a one-dimensional dataset X = x1, x2, . . . , xn is the minimum of the
number of data points to the left of p and the number of data points to the right of p. The depth of a
d-dimensional data point p = 〈p1, p2, . . . , pd〉 is defined as the smallest depth of pi in the i-dimensional
projection of the dataset, where 1 6 i 6 d.
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and assign the data points to the cells. By pruning away a large number of red
cells which contain too many data points and their immediate neighbors, their
approach avoids testing unnecessary cells and speeds up outlier detection. Their
experiments show that their cell-based algorithm is the most efficient when the
number of dimensions is less than or equal to 4. However, for higher number of
dimensions (>5), the number of cells grows exponentially, and the nested loop
which they provided in the same paper outperforms the cell-based algorithm. In
addition to the identification aspect for outlier detection, the same authors (Knorr
and Ng, 1999) attempted to provide intensional knowledge to explain why an
identified outlier is exceptional.

In Ramaswamy et al. (2000), another distance-based outlier detection algor-
ithm was proposed: the top n points with the maximum Dk are considered outliers,
where Dk(p) denotes the distance of the k-th nearest neighbor of p. They used a
cluster algorithm to partition a dataset into several groups. Pruning and batch
processing on these groups could improve efficiency for outlier detection.

Recently, Breunig et al. (2000) proposed the notion of LOF (local outlier
factor) to indicate the degree of outlier-ness for each data point in a dataset. A
strong outlier is the one which has high LOF value. Their basic idea is to compare
the local density ρp of each data point p in a dataset with the local density ρp′
of each data point p′ from p’s k-nearest neighbor set NNk(p) in the same dataset.
If p’s local density is lower, while its k-nearest neighbors’ local densities are
higher, then the LOF for p is higher (i.e., p is more likely to be an outlier). Their
definition of LOF has some benefits: (1) for the data points in a cluster, the LOF
value approaches 1; for other data points, the lower and upper bounds of their
LOF values can be easily estimated; (2) by intelligently choosing the range of
k, the LOF approach has lower computational complexity than the depth-based
approaches for large dimensionality; (3) their notion generalizes many ideas from
the distribution-based outlier detection algorithms; and (4) it can detect data
points that are outliers relative to the densities of their local neighborhoods.
These kinds of outliers cannot be detected by previous approaches.

We look at outlier detection from a signal-processing point of view and apply
signal-processing techniques to address this problem.

1.2. Our Contributions

In this paper, we present an approach, named FindOut (which stands for Find
Outliers), to efficiently detect outliers from large datasets. The main idea in Find-
Out is to remove the clusters from the original data and thus identify the outliers.
Using the multi-resolution property of wavelet transforms, FindOut can success-
fully identify various percentages of outliers from large datasets. It can also detect
the outliers for complicated data patterns with various densities. Furthermore,
FindOut can handle high-dimensional datasets, which have not been addressed by
most existing approaches. For instance, WaveCluster (Sheikholeslami et al., 1998)
requires modifications to efficiently handle high-dimensional datasets, because
it is affected by curse of dimensionality. Using a hash table data structure to
represent the dataset, FindOut makes intelligent use of available resources to ef-
ficiently perform wavelet transform on high-dimensional datasets. This hash-based
data representation technique can be applied for any grid-based data-processing
approach. We demonstrate that the cost of wavelet transform can be reduced
significantly, yet maintaining all the advantages of the wavelet process.
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The rest of the paper is organized as follows. Section 2 defines the concept
of outliers, introduces wavelet transforms, presents the outliers detection ap-
proach, and extends this approach into high dimensions. Section 3 presents the
experimental results. Section 4 offers a conclusion.

2. Finding Outliers

The primary motivation for applying signal-processing techniques to spatial
datasets comes from the observation that the multidimensional data points can be
represented as a d-dimensional signal, and we can apply the following processing
primitive on it.

2.1. Linear Space System

From the original dataset, information for detecting outliers is usually hidden
and scattered. We introduce the linear space system to expose and gather such
information. Given an input dataset, we summarize it as a distribution function
and input it to the linear space system. We then get a new function which is called
a transformed distribution function. If the transformed distribution function can
make the outliers more salient than other data points, we can then easily detect
outliers within the dataset.

Many signal-processing operations can be modeled as a linear space system
(Jain et al., 1995). For a d-dimensional space, a linear space (LSg) system can
be completely described by its kernel function g(x1, x2, . . . , xd). The kernel func-
tion acts like a processor on the input signal. For such a system, the output

f̂g(x1, x2, . . . , xd) is defined as the convolution of the input signal f(x1, x2, . . . , xd)
with the kernel function g(x1, x2, . . . , xd). When the kernel is a wavelet function
w, we call the linear system the wavelet transform system. We denote the output

as φ̂w when the input is a signal described by function φ.

2.2. Problem Formalization

Let A = {A1, A2, . . . , Ad} be a set of bounded, totally ordered domains and
S = A1×A2× . . .×Ad be a d-dimensional numerical space or data space. A1, . . . , Ad

are referred as dimensions of S . The input dataset is a set of d-dimensional points
O = {o1, o2, . . . , oN}, where oi = 〈oi1, oi2, . . . , oid〉, 1 6 i 6 N. The j-th component
of oi is drawn from domain Aj .

We first partition the original data space into non-overlapping hyper-rectangles
which we call cells to generate the quantized space Q. The cells are obtained by
segmenting every dimension Ai into mi number of intervals. Each cell ci is the
intersection of one interval from each dimension. It has the form 〈ci1, ci2, . . . , cid〉
where cij = [lij , hij) is the right open interval in the partitioning of Aj . Each cell
ci has a list of statistical parameters ci · param associated with it.

We say that a point ok = 〈ok1, . . . , okd〉 is contained in a cell ci, if lij 6 oki < hij
for 1 6 j 6 d. The list ci · param keeps track of the statistical properties such as
aggregation, mean, variance, and the probability distribution of the data points
contained in the cell ci. In general, in grid-based approaches by a single pass
through the dataset, the containment relations are discovered and appropriate
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statistical parameters are computed. Each cell has information about the density
of the data contained in the cell. Thus, the collection of ci · param summarizes
the dataset.

We choose the number of points contained in each cell as the statistic to
be used. That is, we use ci · count to be the ci · param, which is called density.
Thus a density function φ(ci) is specified in the quantized space. A cell in the
quantized space with 0 count value is called an empty cell. A cell in the quantized
space with nonzero count value is called a nonempty cell. In our approach we
apply wavelet transform on ci ·count values. The transformed space Q′ is the result
after wavelet transform on the count values of the cells in the quantized space.
The procedure can be easily illustrated by the linear space system. A wavelet
transform is described by wavelet function w; thus a linear space system LSw is
defined based on w. A density function φ is defined on the quantized space which

maps a cell ci to ci · param. The result of LSw is a new density function φ̂w on
the transformed space which maps ci to the transformed value of ci · param, as
follows:

Input
φ(ci)

−→ Linear space system
w

−→ Output

φ̂w(ci)

We introduce the following definitions to be used in the rest of the paper.

Definition 1. (Significant cell) Given a linear space system LSw and density func-

tion φ, a cell c is a significant cell if φ̂w(c) > τ, where τ = p ×V, p is an input

parameter and V is a statistical value of φ̂w .

The statistical value V can be the average value, maximum value, or summation

of φ̂w .

Definition 2. (ε-neighbor) A cell c1 is an ε-neighbor of cell c2 if both are significant
cells in the transformed space and D(c1, c2) 6 ε, where D is an appropriate distance
metric and ε > 0.

When the cells are ε-neighbor, they are ε-connected.

Definition 3. (Cluster) A cluster C is a set of significant cells {c1, c2, . . . , cm} which
are ε-connected in the transformed space.

Informally, we say that a data point is an outlier if it does not belong to any
clusters. We give a precise definition of the outliers as follows:

Definition 4. (Outlier) Given a linear space system LSw and density function φ,

a data point in a cell c is an outlier if φ̂w(c) < τ, where τ is given by Definition 1.

Our definition can be related to the outliers as defined by Knorr and Ng (1998).
For a dataset, it defines a density function φ. We define a kernel function g as
follows:

g(ci) =

{
1 if D(ci,~0) 6 ε
0 otherwise

where~0 is the origin in the data space and D is a distance function. A linear system

LSg is defined based on g. A data point oi in LSg is an outlier if φ̂g(oi) < p×N,
where N is the size of the data points. Thus the outlier under this linear system
is similar to the one defined in Knorr and Ng (1998).
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Given a set of N data points O = {o1, o2, . . . , oN} in the d-dimensional data
space, our goal is to find the outliers as defined above. From the clustering point
of view, outliers are the objects not located in the clusters of the dataset, usually
called noise. For example, in gene research, a natural basis for organizing gene
expression data is to group together genes with similar patterns of expression.
Most regular gene expressions can be grouped into clusters. These gene expres-
sions show a similar pattern. But there are some irregular gene expressions which
cannot be grouped into any existing clusters because they have some attribute
values which are distinct from others. This kind of gene belongs to outliers which
may indicate new important patterns. It is difficult to detect this kind of gene
because they mix with a vast amount of clustered gene expressions. After we
remove the clustered gene expressions, the remaining outliers can be uncovered
and explored carefully. We first propose FindOut to detect outliers in very large
datasets with low dimensions. Then we extend it to efficiently handle datasets
with high dimensions by incorporating the carefully designed data structure.

2.3. Wavelet Transform on Multidimensional Data

We first discuss the relationship between multidimensional data and multidimen-
sional signals and show how to use wavelet transform to detect the inherent
relationships in the data. We propose to look at the multidimensional data
space from a signal-processing perspective. The collection of data in the multi-
dimensional data space composes a d-dimensional signal. The high-frequency
parts of the signal correspond to the regions of the data space where there is
a rapid change in the distribution of data; they are the boundaries of clusters.
The low-frequency parts of the d-dimensional signal which have high amplitude
correspond to the areas of the data space where the data are concentrated. For
example, in a two-dimensional data space, each row or column can be considered
as a one-dimensional signal, so the whole data space will be a two-dimensional
signal. Boundaries and edges of the clusters constitute the high-frequency parts
of this two-dimensional signal, whereas the clusters themselves correspond to the
parts of the signal which have low frequency with high amplitude. When the
number of data point is high, we can apply signal-processing techniques to find
the high-frequency and low-frequency parts of the d-dimensional signal which
represents the data points, resulting in detection of the clusters. The key idea is
to apply signal-processing methods to transform the space and find the dense
regions in the transformed space. The data points in the remaining non-dense
regions will be the outliers.

Wavelet transform is a signal-processing technique that decomposes a signal
into different frequency sub-bands (for example, high-frequency sub-band and
low-frequency sub-band). A one-dimensional signal s can be filtered by convolving
the filter coefficients ck with the signal values

ŝi =

M−1∑
k=0

cksi+k−M
2
, (1)

where M is the number of coefficients in the filter and ŝ is the result of con-
volution. Wavelet transform provides us with a set of interesting filters. For ex-
ample, Fig. 1 shows the Cohen–Daubechies–Feauveau (2,2) biorthogonal wavelet
(Uytterhoeven et al., 1997).
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Fig. 1. Cohen–Daubechies–Feauveau (2,2) biorthogonal wavelet.
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Fig. 2. Block diagram of multi-resolution wavelet transform.

We now briefly review wavelet-based multi-resolution decomposition. More
details can be found in Mallat (1989). To have multi-resolution representation
of signals we can use discrete wavelet transform. We can compute a coarser
approximation of the one-dimensional input signal S0 by convolving it with the
low-pass filter L̃ and down-sampling the signal by two (Mallat, 1989). All the
approximation signals Sj , 1 < j < J (J is the maximum possible scale) can thus
be computed from S0 by repeating this process. Figure 2 illustrates the method.

Dj denotes the difference between approximations Sj and Sj−1 and is called
the detail signal at the scale j. We can compute the detail signal Dj by convolving

Sj−1 with the high pass filter H̃ and returning every other sample of output.
The wavelet representation of a discrete signal S0 can therefore be computed by
successively decomposing Sj into Sj+1 and Dj+1 for 0 6 j < J . This representation
provides information about signal approximation and detail signals at different
scales.

We can easily generalize the wavelet model to d-dimensional data space in
which a one-dimensional transform can be applied multiple times. For example,
in two-dimensional data space, we can represent the data space as an image
where each pixel of an image corresponds to one cell in the data space, and
the gray value of each pixel represents the number of data points which are in
the corresponding cell. Wavelet transform can be applied along the axes x and
y. It decomposes an image into an average signal (LL) and three detail signals
which are directionally sensitive: LH emphasizes the horizontal image features,
HL the vertical features, and HH the diagonal features. Figure 4 shows the
wavelet representation of the image in Fig. 3 at three scales. At each level, LL is
shown in the upper left quadrant, LH is shown in the upper right quadrant, HL
is displayed in the lower left quadrant, and HH is in the lower right quadrant.
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Fig. 3. A sample two-dimensional data space.

(a) (b) (c)

Fig. 4. Multi-resolution wavelet representation at (a) scale 1; (b) scale 2; (c) scale 3.

As shown in Fig. 4, LH shows the horizontal boundaries, HL shows the vertical
boundaries, and HH shows the diagonal boundaries of the image.

2.4. Wavelet in High-Dimensional Space

In a high-dimensional space, it is expected that data will be sparse and most of
the cells in the quantized space will be empty. An efficient way of storing only the
nonempty cells in the quantized space is expected to drastically reduce the space
complexity. We use a hash table approach to keep track of the nonempty cells
only. The main idea is to efficiently represent high-dimensional data in limited
memory and perform wavelet transform on this representation. But performing
a convolution operation such as wavelet transform on this representation is a
nontrivial problem. We present an accumulative approach to calculate wavelet
transform in high-dimensional spaces.

2.4.1. Data Space Representation

In the quantized space, every cell ci has the form of 〈ci1, ci2, . . . , cid〉 which is
called the key or index for ci, where cij = [lij , hij) is the right open interval in
the partitioning of dimension Aj . The address of a cell in the hash table can be
calculated by applying appropriate hash function on the index of a cell. A hash
table requires much less storage than a direct-address table, which was used in
Sheikholeslami et al. (1998). Specifically, the storage requirement can be reduced
from O(md) to Θ(N ′ × d), where N ′ is the number of nonempty cells in the
quantized feature space. With hashing, a cell ci = 〈ci1, ci2, . . . , cid〉 is stored in the
hash bucket h(ci).
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2.4.2. Calculating Wavelet Transform on Hashed Feature Space

Wavelet transform is applied on the hashed representation of the quantized
space to generate a new hash table consisting of only the nonempty cells. The
neighboring cells in the original quantized space are scattered in the hash table
because the hash table might not preserve the spatial locality. By scanning
through the hash table, recovering the original quantized space and convolving
the wavelet filter with each cell and its neighbors, we generate new cells in
the transformed space. Directly recovering the original space is extremely time-
consuming. We propose the ‘accumulative’ wavelet transform without directly
recovering the original space from the hash table. For any nonempty cell ci =
〈ci1, ci2, . . . , cid〉, the cells which will contribute to its value in the transformed
space along dimension Aj are, ck = 〈ci1, ci2, . . . , cij + k, . . . , cid〉, where M

2
6 k 6 M

2
and M is the width of the wavelet filter. All the cells stored in the hash table
will get new values after the wavelet transform is applied (see Fig. 5). Also,
because of the convolution operation in the wavelet transform, some of the
previously empty cells will become nonempty by receiving contributions from
their neighboring cells. We call each potential nonempty cell a receiver and each
old nonempty cell a contributor. In traditional implementation of the wavelet
transform, each receiver knows which cells to ask for contributions. Thus, the
algorithm scans through all the potential receivers. In a multidimensional array
implementation, every cell is considered as a potential receiver. So the algorithm
has to scan through the entire space of cells which we should try to avoid in
high-dimension cases because of the exponential growth in the number of cells.
But in the case of hashed implementation we only have information about the
cells which are nonempty. Thus there are many potential receivers for which
we have no knowledge of their hashed location. Therefore, it is not possible to
use traditional scanning algorithms directly on the hashed and quantized feature
space.

In our approach, each contributor knows its receivers and the addresses of the
receivers can be calculated by using the hash function in time O(l). So, instead
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of receivers asking for values, contributors distribute values to receivers. Thus, it
is sufficient to just scan through the contributors which are already saved in the
hash table. With slight modifications, we can rewrite Formula 1 as

s′i+j = αM
2 −jsi +

M
2 −j−1∑
k=0

αksi+j−M
2 +k +

M−1∑
k=M

2 −j+1

αksi+j−M
2 +k, (2)

where −M/2 6 j < M/2.
Using this formula while scanning the hash table, each old nonempty cell or

contributor is multiplied by a coefficient and the result is accumulated into its
receiver cells which are hashed into a new table (see Fig. 6).

2.5. Selection of Wavelet Filters

The motivation for using wavelet transform and thereby detecting outliers in the
transformed space is drawn from the observations on the properties of outliers.
From the signal point of view, outliers are localized high-frequency phenomena.
They show significant changes when compared with their neighbors. If they occur
as anything other than isolated aberrations in the data, they would be considered
as part of the signal’s structure, not outliers. For many real-world datasets which
exhibit a more complex structure, some outliers are very close to the boundaries of
the clusters. Therefore, they might be misclassified as normal data points. While
usual Fourier methods do well at picking out frequencies from a signal, they
are incapable of dealing properly with a signal that changes over time or space.
These facts greatly limit the capability of Fourier methods in outlier detection.
Wavelet is a refinement of the Fourier analysis, and it is well suited to this type
of problem because wavelets can capture local changes. When wavelet transforms
are applied to signals, local features (such as discontinuities and turning points)
are preserved, while still discerning outliers (Donoho, 1992; Donoho et al., 1995).
Greenblatt (1995) introduced the theory of applying wavelet to time series to
detect outliers.
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(a) (b) (c)

Fig. 7. (a) Original data space; (b) transformed space with a wavelet filter; (c) transformed space with
a Gaussian filter.

Applying a discrete wavelet transform on a dataset, the wavelet transform
must satisfy the following properties:

– orthogonality;

– adaptation to a finite quantization with flexible size;

– ease of implementation.

The orthogonality property is an important property when a wavelet transform
is applied on a dataset with outliers, since it ensures mutual independence of
wavelet coefficients generated from the normal data points and those generated
from outliers. When we remove the wavelet coefficients generated from outliers,
the majority of the data points will not be affected. Cohen et al. (1992) designed
a hat-shaped wavelet (one of which is shown in Fig. 1) that satisfies the above
three requirements.

The Cohen–Daubechies–Feauveau filter (shown in Fig. 1) can effectively
smooth the dataset and remove noise. It emphasizes regions where points clus-
ter, but simultaneously tends to suppress weaker information in their boundary.
Intuitively, dense regions in the original space act as attractors for the nearby
points and at the same time as inhibitors for the points that are not close enough.
This means the majority of the data points automatically stand out and clear
regions around them, so that they become more distinct. Figure 7 shows the
experimental results when we apply wavelet and Gaussian filters on a dataset
with two clusters. This dataset contains 500,000 data items in the two clusters
plus 25,000 randomly distributed noise data items. As Fig. 7(b) shows, when we
apply the wavelet transform the regular data points in the transformed space
are more salient and thus easier to find. Figure 7(c) shows the result of using
a Gaussian filter of a size similar to our wavelet filter. The two clusters in the
original dataset merge in the transformed dataset when we apply a Gaussian
filter. The outliers between these two clusters cannot be detected. When we try
to raise the threshold to separate the two clusters, many regular data points will
be misclassified as outliers. Therefore, the wavelet filter shows better performance
than the Gaussian filter on dataset cleaning.

The multi-resolution property of wavelet transform can help detecting the
clusters at different levels of detail. As we showed in Fig. 4, wavelet transform
provides multiple levels of decomposition, which results in clusters at different
scales from fine to coarse. Figure 4(a) shows the first level of decomposition,
and its LL sub-band shows two circles with clear boundaries. Figure 4(b) shows
the second level of decomposition, and its LL sub-band shows that the bound-
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aries between the two circles become blur. Figure 4(c) shows the third level of
decomposition, and its LL sub-band shows that the two circles merge together.
The appropriate scale for choosing clusters can be decided based on the user’s
needs. Also, since applying wavelet transform is very fast, it makes our approach
cost-effective. As it will be shown later, applying wavelet transform on very large
datasets takes only a few seconds. Using parallel processing we can get even faster
responses.

2.6. Outlier Detection

As discussed in Section 2.3, wavelet transform has two filters: a high-pass filter
and a low-pass filter. In this section, we show the characteristics of its low-pass
filter and how it can be applied in outlier detection. One step of wavelet transform
is to convolve its input with a low-pass filter. A low-pass filter has the property
of removing the outliers (noise) from the input. It considers the influence of the
neighboring data points in computing its output. For example, Fig. 8(a) presents
a one-dimensional low-pass CDF filter. Figure 8(b) shows a one-dimensional
dataset (signal) containing some noise, with amplitude on the y-axis and time
on the x-axis. The amplitude near the origin is high. It approaches zero as time
approaches infinity in both directions, which corresponds to the noise part of the
signal. Figure 8(c) shows the signal after convolving with the low-pass filter g(t).
The amplitude rapidly approaches zero when time > 20 or time 6 −20. It shows
how the low-pass filter removes the outliers and smoothes the input data.

WaveCluster takes advantage of this property of low-pass filters and removes
the outliers that may cause problems in detecting the clusters. However, in
FindOut, our goal is to find the outliers and not to remove them. The main idea
in FindOut is to remove the clusters from the original data and thus identify the
outliers. We now present the definition of 	 to subtract quantized spaces.

Definition 5. (Scale compatibility): Given two quantized spaces Q1 = A1×A2 . . .×
Ad and Q2 = B1 × B2 . . . × Bd, let mi be the number of cells along dimension Ai

and ni be the number of cells along Bi. Q1 and Q2 are scale-compatible if

∀i 1 6 i 6 d ∃si ∈ Z+ | mi = sini, or ni = simi

Based on Definition 5, we know that the original space Q and the transformed
space Q′ are scale-compatible. If the wavelet transform is applied once, each cell
Q′(i, j) in Q′ corresponds to four cells in the original space Q: Q(2i, 2j), Q(2i, 2j+1),
Q(2i+1, 2j) and Q(2i+1, 2j+1). Similarly, we can map the cells in the transformed
space to the cells in the original space.

Definition 6. (Subtraction of quantized spaces): Given two scale-compatible spaces
Q1 and Q2, R = Q1 	 Q2 is the result of their subtraction. If Q1(a1, a2, . . . ,
ad) is nonempty and Q2(b1, b2, . . . , bd) is empty then R(c1, c2, . . . , cd) is nonempty,
otherwise R(c1, c2, . . . , cd) is empty, where ci = siai or ci = sibi.

The main steps of FindOut’s algorithm are listed in Algorithm 1. Based on
the definition of cells in Section 2.2, the data points will be assigned to the cells
in step 1.1 of the algorithm. We denote this quantized space as Qorig . Applying
wavelet transform (step 1.2) on Qorig results in a set of sub-bands Ql,t for each level
l (1 6 l 6 J) of the transform. For each level l, Ql,t consists of one approximation
space (signal) Ql,A and a set of detail spaces (signals) Ql,D (as defined in Section
2.3). The clusters are detected in the transformed spaces Ql,A in step 1.3. In step
1.4, the clusters will be mapped to the original data and will be represented in the
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Fig. 8. (a) Low-pass filter g(t); (b) original signal f(t); (c) output signal f′(t) , f′(t) = f(t) ? g(t).

spaces Ql,c. In step 2 of FindOut, the subtraction results of spaces will be stored
in Ql,out, which only contain the outliers at different levels l. Since in wavelet
transform we always down-sample the signals by two, all the above spaces are
scale-compatible.



400 D. Yu et al.

(a) (b)

Fig. 9. (a) Original data 	 clusters; (b) outliers detected by FindOut.

Algorithm 1. FindOut

Input: Multidimensional data points
Output: Outliers

1. Apply WaveCluster.
1.1. Quantize the data space. /* Qorig */
1.2. Apply wavelet transform. /* Ql,t = {Ql,A,Ql,D} */
1.3. Find the connected components (clusters) in Ql,A.
1.4. Map original data to the clusters. /* Ql,c */

2. Ql,out ← Qorig 	 Ql,c 	 Ql,D .

From Fig. 7, if we remove the pixels from the original space which correspond to
the cluster cells, we will get the space Qorig 	 Q1,c, shown in Fig. 9(a). For better
visualization, all nonempty cells in Fig. 9(a) (and 9(b)) are shown in black instead
of gray scale. Figure 9(a) shows that in addition to the outliers, the points in the
boundaries of clusters are also included in the result. The goal of WaveCluster is
to detect the core of the main clusters in the dataset. Thus it applies those wavelet
transforms that can clear the area around the clusters to make them more distinct.
However, such points should not be considered as outliers. To detect the clusters
we use the information in the low- frequency sub-bands (approximation signals)
Ql,A. The other detail sub-bands Ql,D have information about the boundaries of
the clusters. We can apply this information and remove the cluster boundary
points from the set of outliers. To do so, we subtract Ql,D from the spaces in the
previous step and get the results shown in Fig. 9(b).

2.6.1. Handling Complex Datasets

Real-world datasets exhibit more complex structures (Breunig et al., 2000). For
example, a dataset might contain several clusters which have different densities.
Figure 10 gives an example which contains two clusters. The density of cluster A
is much higher than cluster B. There are two outliers: o1 and o2. The figure shows
that: for any data point p ∈ B, the distance between o1 to its nearest neighbor
is smaller than the distance between p and its nearest neighbor in B. When we
apply wavelet transform once on this dataset, either o1 and cluster B are classified
as outliers, or o1 is classified as a cluster point because it is close to cluster A.
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Fig. 10. A dataset contains clusters with different densities.

One step of wavelet transform with single resolution is not enough for de-
tecting outliers. Wavelet has a multi-resolution property, which can be extended
to detect the clusters at different density levels. Clusters with high density (dense
clusters) are detected at higher resolution, and clusters with low density (sparse
clusters) could not be detected because they are affected by the existing dense
clusters. Once we remove the dense clusters from the dataset, clusters with rel-
atively low density can be detected at lower resolution. Therefore, we design a
sifting algorithm for detecting this type of outlier based on multi-resolution. The
basic idea is: apply wavelet transform on the quantized data space, remove all of
the cluster points, and repeat the sifting process on the remaining part of the data
space T times. We choose T = 3 in our experiments. Algorithm 2 is a modified
version of Algorithm 1 to detect outliers in a dataset with different densities. In
Algorithm 2, we add step 3.5 to compress the data space Ql to reduce the time
complexity. For a given space Q, the compressed space Q′ is defined as follows: a
cell Q′(i, j) is created from four neighboring cells Q(2i, 2j), Q(2i, 2j+1), Q(2i+1, 2j)

and Q(2i + 1, 2j + 1) in space Q, and Q′(i, j) =
∑1

µ=0

∑1
ν=0 Q(2i + µ, 2j + ν). We

introduce the compressing process because the data distribution is sparse after
we remove the dense clusters. Without losing any accuracy of representing the
remaining data points, we shrink the size of the quantized space into a quarter
of the original size. As a result, we reduce the memory and time requirements.

In Fig. 10, after applying the sifting algorithm with T = 1, cluster A is
removed. Repeat the same step again, and cluster B is removed. Also, the outliers
o1 and o2 are detected.

Algorithm 2. Enhanced FindOut

Input: Multidimensional data points
Output: Outliers

1. Quantize the data space. /* Qorig */
2. Ql ← Qorig , where l = 1.
3. For l = 1 to T do /* Sifting process */

3.1. Apply wavelet transform on Ql . /* Ql,t = {Ql,A,Ql,D} */
3.2. Find the connected components (clusters) in Ql,A.
3.3. Create a sub-band Ql,A′ for all clusters.
3.4. Ql+1 ← Ql 	 Ql,A′ 	 Ql,D .
3.5. Compress Ql+1

4. Ql,out ← QT+1.
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2.7. Time Complexity

Let N be the number of data points in the dataset, where N is a very large number.
Assume that the data points are d-dimensional, resulting in a d-dimensional data
space. FindOut’s time complexities on the low or high number of dimensions
are different. We will first discuss the low-dimensional case. The time complexity
of the first step of the FindOut algorithm is O(N), because it scans all the
data points and assigns them to the corresponding cells. Assuming m cells in
each dimension of the data space, there would be K = md cells. The complexity
of applying wavelet transform on the quantized data space (step 3.1) will be
O(ldK) = O(dK), where l is a small constant representing the length of filter used
in the wavelet transform. Since we assume that the value of d is low, we can
consider it as a constant, thus O(dK) = O(K). To find the connected components
in the transformed data space (step 3.2), the required time will be O(cK) = O(K),
where c is a small constant. The required time for steps 3.3, 3.4, and 3.5 will be
O(K). If we apply T levels of sifting, since for each level we shrink the space by
two, for d > 2, the required time would be

O(K + K
2d

+ K
(2d)2

+ . . . + K
(2d)T

) = O(K
∑T

i=0
1

(2d)i
)

= O(K
∑T

i=0(2
−d)i)

= O(K 1−(2−d)T+1

1−2−d )

6 O( 4
3
K)

That means that the cost of applying the process of sifting for multiple levels
would be at most O( 4

3
K). After reading data points, the processing of data is

performed in steps 3.1 to 3.5 of the algorithm. Thus the time complexity of
processing data (without considering I/O) would be O(K), which is independent
of the number of data points (N). Since this algorithm is applied on very large
datasets with low number of dimensions, we can assume that N > K . As an
example, for a dataset with 1,000,000 data points when the number of dimensions
d is less than or equal to 6, and the number of intervals m is 10, this condition
holds. Thus based on this assumption the overall time complexity of the algorithm
will be O(N).

When the dimension d is high, we may have N < K = md. In Section 2.4, we
have provided a solution of using a hash-based data structure for handling the
high-dimensional datasets. The total time for quantization is O(d×N×log2 N). The
time complexity of applying wavelet transform on one dimension is O(N×log2 N).
The total time taken in applying wavelet transform in all d-dimensions is the
summation of the time taken in applying wavelet transform in each dimension.
Therefore, it is O(d × N × log2 N). The complexity of the subtraction step is
O(d×N × log2 N). If we apply T levels of wavelet transforms to detect outliers,
the time complexity of FindOut is O(T × d×N × log2 N).

3. Experiments

In this section, we evaluate the performance of FindOut and demonstrate its
effectiveness and efficiency on different types of distributions of data. Tests are
done on both synthetic and real-world datasets. All of the tests are done on a
Sun UltraSPARC 168 MHz machine having 1024 MB of main memory.
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Table 1. Parameters for generating DS3

Parameters µx µy σx σy ρ

Cluster1 125.0 55.0 60.0 13.0 0.7
Cluster2 125.0 120.0 50.0 30.0 0.5

(a) (b) (c)

Fig. 11. The datasets used in the experiments. (a) DS1; (b)DS2-10; (c) DS3-10.

3.1. Synthetic Datasets

We present the experiments on two-dimensional datasets so that the results can be
easily visualized. Figure 11 shows the synthetic datasets used in the experiments.
We used a technique similar to one described in Zhang et al. (1996) to generate
the dataset DS3. Two cluster centers are first placed on the two-dimensional
plane and then 500,000 data objects are spread following 2-D normal distribution
around these points. For the 2-D normal distribution we used the polar method
given in Knuth (1998). The dataset is shown in Fig. 11(c). The parameters used for
this are shown in Table 1, where µx and µy specify the mean in each dimension,
i.e., the location of the cluster center σx and σy specify the variance in each
dimension, and ρ specifies the correlation coefficient between the variables in
each dimension.

DS3-5, DS3-10, DS3-15, DS3-20, DS3-25, and DS3-50 are different versions
of DS3 with different percentages of outliers. For example, DS3-5 has 5%
outliers. Similarly, we generated DS1. DS1 contains 735,000 data points with 5%
outliers, as shown in Fig. 11(a). Dataset DS2 was generated by spreading 65,193
data points in three manually generated regions. Each region has about 21,700
uniformly distributed data points. Each region represents a cluster, as shown in
Fig. 11(b). The three clusters have different densities because their regions have
nonequal areas. The datasets DS2-5, DS2-10, DS2-15, DS2-20, and DS2-25 refer
to the same as DS2 but with 5%, 10%, 15%, 20%, and 25% outliers, respectively.

3.1.1. Finding Outliers in Large Datasets

All the datasets used in the experiments contain more than 50,000 data points.
For a fixed quantization, larger datasets do not affect CPU time of the outlier
detection. FindOut can successfully handle a large number of data points. Figure
12 shows the outliers detected for DS1.
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Fig. 12. The outliers of DS1.

3.1.2. Different Percentage of Outliers

We did experiments on five DS2 variants. Figure 13 only shows the outliers
that have been detected in two datasets with different percentages of randomly
generated outliers. To compare the behaviors of other clustering algorithms,
we applied BIRCH on the dataset DS2 and detected three clusters, and then we
subtracted the three clusters from the original dataset and got the outliers detected
by BIRCH. Figure 13(a) shows the original datasets, Fig. 13(b) shows the outliers
detected by FindOut, Fig. 13(c) shows the clusters detected by BIRCH, and Fig.
13(d) shows the outliers detected by BIRCH. From the experimental results, we
observe that both approaches can effectively detect different scales of outliers. We
know that WaveCluster (Sheikholeslami et al., 1998a) is outlier invariant because
the wavelet transform can effectively filter out the outliers. When we subtract
wavelet clusters from the original dataset, all of the outliers can be detected.
BIRCH shows a similar behavior when it is used to detect clusters. Figure 13(c)
shows that when the percentage of outliers over all of the data points increases,
the shapes of the clusters detected by BIRCH do not change significantly. The
distribution pattern of the dataset can also affect the performance of detection.
WaveCluster can successfully cluster any complex patterns consisting of nested
or concave clusters. Therefore, when it is applied to outlier detection it can find
all of the outliers which locate close to the cave parts of the clusters, as shown in
Fig. 13(b). BIRCH uses spheres to represent clusters, so that the outliers in the
sphere are classified as cluster points and the cluster points outside the sphere
are detected as outliers, as shown in Fig. 13(d).

3.1.3. The Important Role of Thresholding in Outlier Detection

The selection of threshold p (defined in Section 2.2) directly affects the results
of the outlier detection. Higher thresholds may result in a larger number of
outliers. We used a simple uniform threshold value in the above tests. Figure 14
shows different threshold values applied to outlier detection in dataset DS3-10.
We can see that the real dense and sparse areas do not change too much when
the threshold changes. But the border area between them is highly affected by the
chosen threshold.

The selection of the threshold is determined by three main factors: the data
distribution, the wavelet filter, and the level of the wavelet transform. Donoho
Donoho et al. (1995) introduced a thresholding method (called sure thresholding)
which uses the wavelet coefficients at each level j of the wavelet transform
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Fig. 13. FindOut on datasets with different levels of outliers. (a) Datasets with outliers; (b) outliers
detected by FindOut; (c) clusters detected by BIRCH; (d) outliers detected by BIRCH.

(a) (b)

(c) (d)

Fig. 14. The outliers of DS3-10 with different threshold values p. (a) p = 0.2; (b) p = 0.05; (c)
p = 0.10; (d) p = 0.50.

to choose a threshold λj . The sure thresholding is a popular data-dependent
threshold selection method. We adopt it in our threshold estimation. Let the
wavelet coefficients of a dataset without any outliers be true wavelet coefficients
and the wavelet coefficients of the dataset with outliers be corrupted wavelet
coefficients. Sure thresholding can help uncover the true wavelet coefficients from
the corrupted coefficients. The basic idea behind the method is to find a set of
estimated wavelet coefficients based on thresholding, and this set of the estimated
wavelet coefficients can best approximate the true wavelet coefficients without
noise. We call the difference between the estimated coefficients and the true
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Fig. 15. The outliers of DS3-10 with sure thresholding.

coefficients risk. In reality, the true wavelet coefficients without noise may not
be available. Therefore, we use a function to find the solution to reduce the risk
without knowing the true coefficients:

SURE(η;W ) = d− 2‖{k : |wk| 6 η}‖+

d∑
k=1

(min(|wk|, η))2

where ‖S‖ denotes the cardinality of the set, d is the number of wavelet coefficients
and W (w1, w2, . . . , wd) are the corrupted wavelet coefficients before thresholding.
The threshold λ is set so as to minimize the difference between the estimated
wavelet coefficients and the true coefficients as follows:

λ = argmin min{|wi|}6t6max{|wi|}SURE(t,W )

The mathematical details are discussed in Donoho et al. (1995). It was proved
that the sure thresholding works effectively in many areas (Donoho et al., 1995).
Using this thresholding method, we can reduce the number of misclassified data
points. Figure 15 shows the detected outliers based on the sure thresholding. We
observe that there is even more clear border between the normal data points and
outliers with this thresholding than with a pre-specified threshold value.

3.1.4. Outlier Detection in the Dataset with Different Scales of Density

We created a dataset with five clusters which have different densities. There are
two clusters which have high density, and they are located in the lower left corner
in Fig. 16(a). There are three clusters which have low density, and they are located
in the center of Fig. 16(a). Here, the color intensity represents the density of the
five clusters. The average density of the black clusters is 20 times more than
the density of the gray clusters. When we apply the wavelet transform once, the
two clusters with higher density are removed from the dataset. The outliers and
other three clusters are left, as shown in Fig. 16(b). When we continue to apply
wavelet transform on the remaining dataset, the outliers are detected, as shown
in Fig. 16(c). This experiment demonstrates that the multi-resolution property
of wavelet transform can be used to detect the clusters which have different
densities; therefore, the performance of FindOut is not affected by complex data
distribution.
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(a) (b) (c)

Fig. 16. The outliers of DS4 with different scales of density.

Table 2. Execution time (in seconds) for different number ofdimensions and quantizations m

m
Number of
dimensions 32 64 96 128 256

5 118 132 216 256 340
10 1,042 1647 2,166 2,680 3,280
15 2,374 3958 7,332 7,156 8,080
20 3,742 6153 10,983 10,660 13,400

3.1.5. Timing on Different Quantizations and Wavelet Transform

Quantization m affects running time. When m is low (very coarse quantization),
the total number of cells is small, and thus it takes less time. Running time is
also affected by wavelet filters of different width. The width of the wavelet filter
determines the range of the neighborhood. The larger the neighborhood of a
data point that is considered, the longer it takes in detecting outliers. Figure
17 shows CPU time when wavelets Haar, Cohen–Daubechies–Feauveau (2,2),
Cohen–Daubechies–Feauveau (4,2) (Uytterhoeven et al., 1997), and Daubechies
(Strang and Nguyen, 1996) are used on dataset DS3-10 under different quantiz-
ations.

Knorr and Ng (1998) and Breunig et al. (2000) showed that their cell-based
algorithm is the most efficient when the number of dimensions is less than or
equal to 4. However, for higher number of dimensions, its efficiency decreases
(Knorr and Ng, 1998). Using the hash-based strategy, FindOut can work with high
dimensions with arbitrary quantization. Table 2 shows the timing requirements
of FindOut with different numbers of dimensions and quantizations. The size of
the testing dataset is 100,000.

3.2. Real-World Datasets

3.2.1. Soccer Data

In Breunig et al. (2000), the authors conducted experiments on soccer-player
information from the ‘Fußball 1. Bundesliga’ (the German national soccer league)
for the season 1998/99. The dataset consists of 375 players. A detailed explanation
of the attributes used can be found in Breunig et al. (2000). We repeated their
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Fig. 17. Run time under different wavelet and quantizations.

experiment on the dataset provided by the authors. The LOF approach detects
five strongest outlier points which represent players Michael Preetz, Michael
Schjönberg, Hans-Jörg Butt, Ulf Kirsten, and Giovane Elber. They are listed in
decreasing order based on their LOF factors. FindOut found the first four outliers
because they are far away from any other player’s record. We do not consider
Giovane Elber’s record as an outlier because his record (games played: 21; goals
scored 13) is very close to the records of Bernhard Winkler (games played: 24;
goals scored 11) and Carsten Jancker (games played: 26; goals scored: 13). Their
LOF values are close to each other. Therefore, it is not an outlier according to
our definition. The LOF value indicates the degree of outlier-ness for each data
point. The outliers with the highest LOF values, (known as strongest outliers),
constitute the most important information in these applications. Our approach
can identify these outliers which Breunig et al. (2000) find in their experiment.

3.2.2. Image Feature Dataset

Dataset R is created based on the image feature vectors from the University of
California at Irvine Machine Learning Repository. The original dataset has 700
data points and each element describes hue and saturation values of segmentations
of seven types of images: brickface, sky, foliage, cement, window, path, and grass.
Our experiment showed that our algorithm can detect all of the exceptional data
points which represent the exceptional images. To scale up the test, without loss
of generality, we expand R to 392,402 data points by randomly generating 10
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Fig. 18. Image feature dataset. (a) Dataset R; (b) detected outliers.

to 1000 data points around each basic feature vector (data point) within the
hyper-sphere centered at the basic feature vector with a small-radius r. Figure
18 shows the histogram of dataset R and detected outliers. In Fig. 18, the three
dimensions (n, h, s), number of images, hue, and saturation, represent that there
are n images that have hue value h and saturation value s. Figure 18(a) shows
the distribution of the image set. Figure 18(b) shows the detected outliers which
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represent the exceptional images in the original dataset. The needle-shape peaks
in Fig. 18(b) denote the images which have exceptional hue and saturation values,
and the heights of the needle represent the number of such images. We use a
small scale for the axis of number of outliers in Fig. 18(b) to better visualize the
detected outliers. From the experiment, we discovered that all the detected points
have exceptional hue and saturation values.

3.2.3. Chase Bank Dataset

A large customer dataset is collected to detect bankruptcy. This dataset contains
39,244 elements with 18 dimensions. We performed our outlier detection algorithm
on the dataset to measure the deviation of abnormal customers. Any data which
are detected as outliers will be considered as bankruptcy cases. The results confirm
the historical records of bankruptcy obtained from the bank in most cases. In
comparison, FindOut performed much better than many algorithms which are
based on decision trees.

4. Conclusion

This paper has addressed an interesting problem of how to apply signal-processing
techniques to solve important data-mining problems and the effectiveness of such
approaches. We presented a novel deviation (or outlier) detection approach,
termed FindOut, based on wavelet transform. By combining outlier detection
with clustering, FindOut can successfully identify various percentages of outliers
from large datasets. Thus our approach is highly cost-effective. Experimental
results on very large datasets have demonstrated the efficiency and effectiveness
of the proposed approach.
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