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Abstract. A decision tree is considered to be appropriate (1) if the tree can classify the
unseen data accurately, and (2) if the size of the tree is small. One of the approaches to
induce such a good decision tree is to add new attributes and their values to enhance
the expressiveness of the training data at the data pre-processing stage. There are many
existing methods for attribute extraction and construction, but constructing new attributes
is still an art. These methods are very time consuming, and some of them need a priori
knowledge of the data domain. They are not suitable for data mining dealing with large
volumes of data. We propose a novel approach that the knowledge on attributes relevant
to the class is extracted as association rules from the training data. The new attributes and
the values are generated from the association rules among the originally given attributes.
We elaborate on the method and investigate its feature. The effectiveness of our approach
is demonstrated through some experiments.
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1. Introduction

Data mining is becoming a key technique in discovering meaningful patterns and
rules from large amounts of data (Berry and Linoff, 1997). It is often used in the
fields of business such as marketing and customer support operations. However,
one of the major difficulties in the practical approach is scarceness of experts in
the application domain and good data-mining tools.

In the data-mining process, a decision tree is often used as knowledge repre-
sentation of the mined result, because it is easy to understand for human analysts.
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In general, the appropriateness of the decision tree is evaluated from the next
two criteria.

• Size: The size of decision tree is evaluated by the number of nodes in the tree.
A smaller decision tree is easier to understand. It is also known that a smaller
decision tree leads to avoiding overfitting to the data.

• Prediction accuracy: The decision tree predicting the correct class of a new
instance with higher accuracy is desired.

However, inducing an appropriate decision tree is often difficult. In many cases, the
original attributes are not expressive enough. Further, some of them are irrelevant
or redundant. Feature selection removes irrelevant and redundant attributes (Liu
and Motoda, 1998). Feature extraction and construction create new attributes
(Bloedorn and Michalski, 1998; Lavrǎc et al., 1998) and add them to the original
training data. As a result, the description of the original training data is enriched.
The decision tree induced from the pre-processed training data can be better than
that induced from the original training data. Constructing new attributes without
domain knowledge is computationally very expensive. Preparing appropriate
construction operators and applying them in the right order is still an art. These
processes are very time consuming and some of them need a priori knowledge
of the data domain. These features are not suitable for data mining. When the
method is applied to data mining, the computational cost of the method should
be reasonably small even if the data size is large. Furthermore, domain knowledge
is insufficient at the beginning of the data-mining process, because the human
analyst may not be an expert in the data domain.

In this paper, we propose a novel method of attributes generation, which has
suitable properties as a data-mining method. Our proposed method generates
new attributes based on association rules among the original attributes. The rules
are extracted from the original training data automatically.

The proposed method has the following properties:

1. It does not need any a priori knowledge of the attributes and their association.
The knowledge is extracted from the original training data automatically.

2. It adopts the Apriori algorithm to generate attributes association rules so that
the rules are extracted with reasonable computational cost even if the data size
is large.

These properties are very advantageous compared to the aforementioned tradi-
tional attribute generation methods. The first property makes it easy to use the
method from the beginning of the data-mining process when domain knowledge
is insufficient. The second enables to apply the method to large scale data.

The paper is organized as follows. In Section 2, we briefly explain association
rules and Apriori algorithm. In Section 3, we propose the novel attribute gener-
ation method based on the Apriori algorithm. In Section 4, we investigate the
performance of our proposed method. In Section 5, we discuss the characteristics
of the proposed method based on experimental results.
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2. Association Rules

The Apriori algorithm (Agrawal and Srikant, 1994) extracts a co-occurrence
pattern of items from the instances in the following form of an association rule.

R : B ⇒ H , (1)

where

B : Body which is the condition part of the association rule, and

H : Head which is the conclusion part of the association rule.

Both ‘Body’ and ‘Head’ are a set of items. This association rule means that ‘If
an instance includes all the items in Body, then the instance also includes all the
items in Head in many cases.’ In other words, the association rule indicates a
co-occurrence pattern of item sets in the data.

Traditional algorithms need much computation time to extract association
rules. The Apriori algorithm proposed by Agrawal succeeded in reducing the
search space efficiently so that the computation time is much smaller than
traditional methods even if the data size is large.

In the Apriori algorithm, the candidates of the association rule are evaluated
by two indices, i.e., ‘support value’ and ‘confidence value’. The support value
sup(R) of the association rule R is defined as follows:

sup(R : B ⇒ H) =
n(B ∪H)

N
, (2)

where

n(B ∪H) : number of instances which include all items in both B

and H , and

N : total number of data.

The support value indicates the ratio of the number of instances including all
items appearing in the rule to all instances. Therefore, the rule covers larger
portion of the data if the support value of the rule is higher.

The confidence value of the association rule conf(R) is defined as follows:

conf(R : B ⇒ H) =
n(B ∪H)

n(B)
, (3)

where

n(B) : number of instances which include all items in B.

If the confidence value is higher, the association is more plausible.
In the Apriori algorithm, both the minimum support value and the minimum

confidence value are given as threshold parameters. In the association rule ex-
traction process, the rules which do not satisfy these threshold conditions are
removed from the set of candidates. The search uses the monotonicity of support
values; i.e., if the support of an item set is below the threshold, its super set is
pruned from the search. If these minimum thresholds given are decreased, more
candidates for association rules are generated and evaluated in the algorithm.
As a result, the computation time increases, though a more complete set of
good association rules would be extracted. On setting these minimum thresholds,
the trade-off between the cost of computation time and the rule covering good
association should be taken into account carefully.
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3. Proposed Attribute Generation Method

First, the proposed method extracts Attributes Association Rules (AARs) as the
basic knowledge of associations among attributes from the original training data
prepared for decision tree induction. Next, the proposed method generates some
new attributes based on the extracted AARs, and adds them to the original
training data. Therefore, the data description is extended by this data pre-
processing. After this data pre-processing to the original training data, a decision
tree is induced by the standard decision tree algorithm.

The AARs represent associations among attributes and the class. Our pro-
posed method consists of the following steps:

Step 1: Description of training data for a decision tree is transformed to the
transaction format.

Step 2: Apriori algorithm extracts AARs from the transaction data.

Step 3: Some candidates of new attributes are generated based on AARs.

Step 4: Degree of contribution of the new attribute candidates to identifying the
class is evaluated.

Step 5: The new attribute candidates that satisfy a criterion (explained later) are
added.

The details of each step are explained in the following subsections.

3.1. Step 1: Data Description Transformation

First, the proposed method transforms the data description of the original training
data to the transaction format.

The training data is described as a set of instance data, train data. An instance
in train data, datum is represented as follows:

datum = {vi,j | ∀i ∈M, ∃j ∈ Ni} ∪ {vc,j | ∃j ∈ Nc}, (4)

where

M = {1, . . . , m},
Ni = {1, . . . , ni},
Nc = {1, . . . , nc}

where vi,j is a value of an attribute ai, m the number of attributes, ni the total
number of values of ai, and nc the total number of values of the class c.

In the proposed method, each pair of attribute ‘ai’ and its value ‘vi,j ’ is
transformed to an item in the form of itemi = 〈ai, vi,j〉 and itemm+1 = 〈c, vc,j〉. Under
this transformation, datum in equation (4) becomes a transaction as follows:

trans = {item1, . . . , itemi, . . . , itemm+1} (5)

The transaction data, trans data, is a set of transactions.

3.2. Step 2: Extraction of Attributes Association Rules

Next, the proposed method extracts AARs that represent the association among
pairs of attributes and its attribute value.
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The attribute value that has strong association with the class value is useful in
predicting the class. Accordingly, the association between the attributes and the
class is a measure of the goodness of the attribute. For that reason, we extract
AARs, which satisfy the following two conditions:

• The condition part includes only an item set consisting of attributes.

• The conclusion part includes only an item representing the class.

An AAR R that satisfies these conditions is described as follows:

R : if
⋃
∀i∈Ms

{〈ai, vi,j〉 ∈ ITEMai |∃j ∈ Ni}

then {〈c, vc,j〉 ∈ ITEMc|∃j ∈ Nc}, (6)

where

Ms ⊆M,

ITEMai =
⋃

∀〈ai,vi,j〉∈∀trans∈trans data

{〈ai, vi,j〉},

ITEMc =
⋃

∀〈c,vc,j〉∈∀trans∈trans data

{〈c, vc,j〉}

This represents a fact that the instance involving these pairs of the attribute and
its value in the condition part is concluded with the class vc,j with high confidence.
Consequently, a new composed attribute which is the collection of the attributes
and their values in these pairs is expected to be useful in predicting the class of
an instance.

3.3. Step 3: Generating New Attribute Candidates

Let R be a set of all AARs extracted in Step 2. Each AAR R(∈ R) is a basic
unit of this attribute generation algorithm. Let B is the body of R, H is the head
of R, A(B) = {ai|∀〈ai, vi,j〉 ∈ B}, and C(H) = {vc,j |〈c, vc,j〉 ∈H}. Define a partition
P such that each element of P is Pq = {R|∀A(B);A(B)s are mutually identical
in R}.

A new attribute candidate is characterized by the following quadruple ANq

for each Pq:

ANq = 〈Aq,Vq,Sq,Cq〉, (7)

where

Aq : A(B) where B is the body of R in Pq,

Vq = {Vq0
, Vq1

, . . . , Vq|pq | },
Sq = {sup(R)| ∀R ∈ Pq} ,
Cq = {conf(R)| ∀R ∈ Pq}

where

Vq0
=
∧
∀R∈Pq

¬true(B)

Vqk ∈ {true(B)|∀R ∈ Pq} (k = 1, . . . , |Pq|)
The attributes in the Body A(B) where B is the body of AARs R in Pq are
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Table 1. New attribute generation algorithm: NewAttributeCand

A set of AARs extracted in Step 2: R
An AAR: Rp(∈ R) : Bp ⇒ Hp,

where
Bp =

⋃
∀i∈Msp

{〈ai, vi,j〉 ∈ ITEMai |∃j ∈ Ni}; /*condition part*/

Hp = {〈c, vc,j〉 ∈ ITEMc| ∃j ∈ Nc}; /*conclusion part*/
sup(Rp); /*support*/ conf(Rp); /*confidence*/
A(Bp) = {ai|∀〈ai, vi,j〉 ∈ Bp};

A set of new attribute candidate information: AN
A new attribute candidate information: ANq = 〈Aq ,Vq ,Sq ,Cq〉 ∈ AN,

where
Aq; /* new attribute candidate*/
Vq; /* a set of attribute values*/
Sq; /* a set of support value of each original AAR */
Cq; /* a set of confidence value of each original AAR */

Algorithm:
NewAttributeCand(R,AN){

/* Generate a partition P such that each element of */
/* P is a partition such that the element */
/* Pq = {Rp|∀A(Bp);A(Bp)s are mutually identical in R} */
q = 1;P1 = {R1};P ← {P1};
for(p = 2; p <= |R|; p + +){

/* A(Bp) is identical with a A(B) where B is the body of R ∈ Pq ∈ P */
if(∃Pq ∈ P|A(Bp) == A(B); B is the body of R ∈ Pq){

/* Add Rp to Pq*/
Pq ← Pq ∪ {Rp};

}
/* A(Bp) is not identical with any A(B) */
else {

q + +;
Pq = {Rp};
P ← {Pq};

}
}
/* Generate new attribute candidate information ANq from each Pq*/
for(q = 1; q <= |P|; q + +){

ANq = 〈Aq ,Vq ,Sq ,Cq〉;
Aq = A(B);
Vq = {Vq0

, Vq1
, . . . , Vq|pq | };

where
Vq0

=
∧
∀Rp∈Pq ¬true(Bk);

Vqk ∈ {true(Bp)| ∀Rp ∈ Pq} (k = 1, . . . , |Pq |);
Sq = {sup(Rp)| ∀Rp ∈ Pq};
Cq = {conf(Rp)| ∀Rp ∈ Pq};
AN←AN∪ ANq;

}
}

merged into the new attribute of Aq . The value Vq of a new attribute candidate
is defined by the predicate ‘true(B)’. This predicate becomes true when all of the
items in Body B appear in an instance. The set of support and confidence values
of AARs R ∈ Pq that constitutes the new attribute candidates are recorded as
Sq and Cq for the evaluation of the candidate in a later step.

The proposed attribute generation process is explained using the following
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example. The original training data consists of two attributes, A1 (attribute value
V1 = {0, 1}), A2 ( attribute value V2 = {0, 1}), and a class C(class C = {0, 1}).
Furthermore, suppose that the following two AARs are extracted:

R1 : if {〈A1, 0〉, 〈A2, 0〉} then {〈C, 0〉},
support : sup(R1), confidence : conf(R1), (8)

where

B1 = {〈A1, 0〉, 〈A2, 0〉},
H1 = {〈C, 0〉}, and

A(B1) = {A1, A2}.

R2 : if {〈A1, 1〉, 〈A2, 1〉} then {〈C, 0〉},
support : sup(R2), confidence : conf(R2), (9)

where

B2 = {〈A1, 1〉, 〈A2, 1〉},
H2 = {〈C, 0〉}, and

A(B2) = {A1, A2}.
The two AARs R1 and R2 have identical A(B), i.e., A(B1) and A(B2). Therefore,
these AARs are in the same partition element P1 = {R1, R2}. A new attribute
candidate AN1 is generated as follows:

AN1 = 〈A1,V1,S1,C1〉, (10)

where

A1 = {A1, A2},
V1 = {V10

, V11
, V12
},

S1 = {sup(R1), sup(R2)}, and

C1 = {conf(R1), sup(R2)}.
Here, V11

= true(B1), V12
= true(B2), and V10

=
∧
∀R∈P1

¬true(B). The attribute
generation process explained above is depicted in Fig. 1.

3.4. Step 4: Evaluation of Generated Candidates

To evaluate the goodness of generated candidates to induce a decision tree,
we adopt the information gain criterion used in the decision tree algorithm
ID3 (Russell and Norvig, 1995). We use an approximated definition of gain,
Gain(Aq), to reduce the computation cost for the large amount of data. In
the evaluation of the approximated gain, the information given in the former
steps, e.g., support, confidence, and total number of instances, is used, but any
other information requiring further heavy computation is not needed. This fea-
ture of the approximation enhances the applicability of our proposed method
to the large amount of data through a significant reduction in computation
time.
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Fig. 1. New attribute candidate generation from AARs : R1 and R2.

In detail, the information gain, Gain(Aq), is calculated by using the support
values in Sq and the confidence values in Cq . Let Rk ∈ Pq (k = 1, . . . , |Pq|).

Gain(Aq)

= −
|nc|∑
j=1

n(vc,j)

N
log2

n(vc,j)

N

−
|Pq |∑
k=1

sup(Rk)

conf(Rk)

{
−conf(Rk) log2 conf(Rk)− pk log2

pk

nc − 1

}

−

1.0−

|Pq |∑
k=1

sup(Rk)

conf(Rk)


 {−rj log2 rj} , (11)

where

N : number of training data,

sup(Rk) ∈ Sq : support value of Rk which corresponds to Vqk ,

conf(Rk) ∈ Cq : confidence value of Rk which corresponds to Vqk ,

pk = 1.0− conf(Rk),
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rj =
Nq0

(vc,j)

N −N
∑|Pq |

k=1
sup(Rk)
conf(Rk)

,

n(vc,j) : number of instances whose class is vc,j ,

Nq0
(vc,j) = n(vc,j)−

|Pq |∑
k=1

Nqk (vc,j),

: number of instances whose attribute value and class

value are Vq0
and vc,j respectively,

Nqk (vc,j) =




N · sup(Rk) (vc,j ≡ C(Hk))

N · sup(Rk)
conf(Rk)

(1.0− conf(Rk))

nc − 1
(otherwise)

.

In this equation, the first term of the right-hand side represents the amount
of information necessary to predict the class of the instances without using
any information of the attributes. The second term represents the sum of the
information amount needed to predict the classes of the instances having the
attribute value Vqk ∈ Vq , k = 1, . . . , |Pq|. The third term stands for the amount of
information needed to classify the instances having the attribute value Vq0

. For
more detail, refer to the Appendix.

If this information gain of the candidate is larger than 0, the candidate is
considered to be informative for classification.

3.5. Step 5: Adding New Attributes

The new attribute candidates A whose information gains Gain(Aq) are larger
than 0 are added to the attributes of the original data. By adding these new
attributes to the data, the descriptive power of the data is expected to be improved,
and a better decision tree may be induced.

4. Experiment

4.1. Conditions of Experiment

To confirm the effectiveness of our proposed method for the improvement of
decision tree induction, experiments have been conducted for several sample data
sets. In these experiments, we use C4.5 for decision tree induction (Quinlan, 1993).
All of the functional options of C4.5 are set to defaults. The pruned decision
trees are used for evaluation.

The sample data sets are selected from the UCI Machine Learning Repository
(Blake et al., 1998). They are selected from data sets used in Zheng (1995) to
compare the results. The specifications of the test data sets are summarized in
Table 2. Because the proposed method can only deal with nominal attributes,
only the data sets that include nominal attributes are used. The Monk’s data
sets (Monk1, Monk2, Monk3) comprise artificial data designed for evaluation of
machine-learning algorithms. The other five data sets are real-world domain data.
They are from a molecular biology domain (Promoters), three linguistic domains
(Phoneme, Stress, Letter), and a game domain (Tic-Tac-Toe).
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Table 2. The specifications of data sets for experiment

Data set # of # of # of # of
Training data Test data Attribute Class

Monk1 124 432 6 2
Monk2 169 432 6 2
Monk3 122 432 6 2
Promoters 8124 CV10 22 2
Phenome 12960 CV10 8 52
Stress 12960 CV10 8 5
Letter 12960 CV10 8 163
Tic-Tac-Toe 958 CV10 9 2

*CV10, 10-fold cross-validation.

Table 3. Accuracy (%) and size on the Monk’s data sets

Algorithm Monk1 Monk2 Monk3

Accuracy Size Accuracy Size Accuracy Size

C4.5 75.7 18 65.0 31 97.2 12
AQ17-DCI 100.0 N/A 100.0 N/A 94.2 N/A
AQ17-HCI 100.0 N/A 93.1 N/A 100.0 N/A
CI 100.0 14 67.1 22 95.8 14
ID2-of-3 100.0 18 98.1 24 97.2 21
XofN 100.0 17 100.0 13 100.0 9
AARs 100.0 8 75.5 35 92.8 11

We evaluate mainly the following two aspects for data mining:

• Improvement of decision tree: Two indices are used to evaluate the effect of the
proposed method for improvement of the decision tree. One is the size of the
decision tree, and the other is the prediction accuracy.

• Applicability to large data sets: The applicability to the large data is evaluated.
In the experiment, we investigate the computation time for various data sizes.

The features of the decision tree are evaluated using 10-fold cross-validation,
except for the Monk’s data sets.

4.2. Effect to Improve Decision Tree

The experimental results on Monk’s data sets of our proposed method (AARs
method) are summarized in Table 3. For comparison, we also give the results of
some other attribute generation methods: AQ17-DCI, AQ17-HCI (Bloedorn and
Michalski, 1998), CI (Zheng, 1992), ID2-of-3 (Murphy, 1991), XofN (Zheng, 1995)
and decision trees generated with original attribute (C4.5). In this experiment, we
set the minimum support and minimum confidence at 0.05 and 0.95 respectively.

In the Monk1 data set, both the size and the prediction accuracy are much
improved by the AARs method. On the other hand, the AARs method does not
demonstrate good performance in the Monk2 and Monk3 data sets.

Next, we evaluate the experimental results using real-world domain data. The
experimental results are summarized in Tables 5 and 6. For the AARs method,
we also investigate performance with several settings of minimum confidence and
minimum support. The result of the AARs method is chosen for the case where
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Table 4. Settings of minimum support and
minimum confidence when best accuracy is
demonstrated

Data set AARs

Minimum Minimum
support confidence

Promoters 0.25 0.95
Phoneme 0.001 0.80
Stress 0.01 0.85
Letter 0.003 0.90
Tic-Tac-Toe 0.05 0.45

Table 5. Accuracy (%) on real-world domains

Data set C4.5 CI ID2-of-3 XofN AARs

Promoters 76.3 81.0 87.6 88.5 90.4
Phoneme 81.1 82.3 83.1 83.9 83.6
Stress 82.7 83.8 86.2 87.6 86.1
Letter 73.7 65.6 75.1 76.9 76.6
Tic-Tac-Toe 84.7 94.2 94.9 98.4 99.7

the induced decision tree’s prediction accuracy is the best among several settings.
The best setting of minimum support and minimum confidence is summarized in
Table 4.

In Promoter and Tic-Tac-Toe data sets, the AARs method improves both
prediction accuracy and size over C4.5. On the other hand, in the three linguistic
data sets (Phenome, Letter, Stress), the AARs method cannot improve the size
although prediction accuracy is improved compared to C4.5.

4.3. Applicability to Large-Scale Data

Next, the applicability of the proposed method to large-scale data is evaluated.
One of the main factors that affect the computation time of the proposed method
is the number of training data. Various sizes of test data sets have been generated
as follows. An instance is picked up from Monk1 data set, and the class is
changed to an erroneous value with probability 5%. This process is repeated
until the number of data values needed is attained. Training data sets of sizes
10,000, 50,000, 100,000, and 500,000 are prepared. A personal computer having
the specification of Linux OS, Pentium 166 Hz CPU and main memory 128
Mbytes is used in this experiment. The experimental results are shown in Table
7, from which the following are concluded:

Table 6. Size on the real-world domains

Data set C4.5 CI ID2-of-3 XofN AARs

Promoters 22.6 15.0 11.2 13.9 7.0
Phoneme 2339.2 1634.5 1188.4 1506.0 3221.6
Stress 2077.3 1074.1 961.5 739.6 1751.6
Letter 3394.9 1024.9 1654.8 2242.4 2825.8
Tic-Tac-Toe 128.5 82.0 95.8 42.8 23.7
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Table 7. The number of training data values and computation time for pre-processing

# of C4.5 AARs Pre-processing
Training (Original data) (Pre-processed data) computation

Data Accuracy Size Accuracy Size time
(%) (%) (s)

10,000 78.7 90 95.0 9 4
50,000 82.9 79 95.1 12 13

100,000 85.4 79 95.0 12 22
500,000 80.3 90 95.0 13 114

• The computation time for data pre-processing also increases when the data size
becomes large. The increase is almost proportional to the size of the data.

• The effect of improving the decision tree is maintained even if the data size is
large.

5. Discussion

5.1. Basic Features of the Proposed Method

The basic features of the proposed method are well demonstrated in the case of
the decision tree induced from Monk’s data sets. Monk’s data sets are artificial
data prepared for classification problem(Thrun et al., 1991). As indicated in the
experimental results in Section 4.2, the AARs method improves the prediction
accuracy and size of the induced decision tree over the other attribute generation
methods. However, the AARs method does not demonstrate good performance
in Monk2 and Monk3 data sets. We explain the reason for the performance
difference.

Each data set has six attributes, a1, . . . , a6, and two class values, Class = {0, 1}.
Each data set contains its target concept. The logical descriptions of the target
concept are as follows:

Monk1: If (a1 = a2) or (a5 = 1) then Class = 1.

Monk2: If (an = firstvalue) for exactly two choices of n in {1, 2, . . . , 6} then
Class = 1.

Monk3: If either (a5 = 3 and a4 = 1) or (a5 6= 3 and a1 6= 3) then Class = 1.
Monk3 data has 5% additional noise (misclassifications) in the training
data.

Here, ‘ax = ay ’ means that these attributes take the same attribute value. The
performance of the proposed method is summarized for each data as follows:

• Monk1: By applying the AARs method to the original training data, 16 new
attributes a7, . . . , a22 are generated. The decision trees induced from the original
data and the pre-processed data by the AARs method are depicted in Fig. 2
respectively. The decision tree induced from the training data pre-processed
by the AARs method includes new attributes a7 in the root node, and a10

as a node at the next level. The new attribute a7 implies a target concept
‘if (a1 = a2) then Class = 1’ appropriately with conjunction of two original
attributes. These included new attributes imply the target concept, so that the
AARs method improves the prediction accuracy and size of decision trees.
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• Monk2: Thirteen new attributes a7, . . . , a19 are generated. In this example, we
notice the limitation of the AARs method and its new attribute representation.
As new attributes, the AARs method can generate only conjunction (not
disjunction) of original attributes. Even under this representation constraint on
new attributes, the proposed method can extract the correct target concept of
the data in the form of AARs such as

if {〈a1, 1〉, 〈a2, 1〉, 〈a3, 0〉, 〈a4, 0〉, 〈a5, 0〉, 〈a6, 0〉} then {Class = 1}
. . .

if {〈a1, 0〉, 〈a2, 0〉, 〈a3, 0〉, 〈a4, 0〉, 〈a5, 1〉, 〈a6, 1〉} then {Class = 1}
However, such conjunctive associations of many attributes rarely appear; i.e.,
their support is very small in this data set. For this reason, extracting such
associations and generating new attributes are very difficult for this data set.
Like the AARs method, CI (Zheng, 1992) also represents new attributes as a
conjunction of original attributes. Therefore, CI does not improve the decision
tree in Monk2.
On the other hand, the XofN and its new attribute representation X-of-N
(Zheng, 1995) can represent the target concept as follows:

if X − of − {〈a1, 1〉, 〈a2, 1〉, 〈a3, 0〉, 〈a4, 1〉, 〈a5, 1〉, 〈a6, 1〉} = 2

then {Class = 1}
The target concept of Monk2 is more suitable for X-of-N representation than
AARs’ representation. This is one of the major reasons why the improvement
of the decision tree is different between XofN and the AARs method.

• Monk3: The 21 new attributes a7, . . . , a27 are generated. The decision tree from
the data pre-processed by the AARs method includes new attributes a13. By
data pre-processing, the size of the decision tree becomes smaller. However,
the prediction error is slightly increased. The proposed method extracts one
of the target concepts ‘if (a5 = 3 and a4 = 1) then Class = 1’. However, the
other target concept ‘if (a5 6= 3 and a1 6= 3) then Class = 1’ is not extracted by
AARs because of the representation constraint mentioned above. Owing to this
limitation of extracting the latter target concept, the good set of new attributes
which expresses the target concept appropriately cannot be generated. This
fact adversely affects prediction accuracy of the decision tree induced from the
data pre-processed by the AARs method.

5.2. Effectiveness of the Proposed Method in Data Mining

In most of the data sets, the AARs method improves prediction accuracy. The
AARs method improves both prediction accuracy and size particularly in Monk1,
Promoter, and Tic-Tac-Toe. The target concepts in these data sets are suitable
for representation using AARs. On the other hand, the AARs method does not
work well in Monk2 and Monk3 data sets, where target concepts are not suitable
for the AARs method’s new attribute representation. These target concepts are
more suitable for representation using X-of-N and negation.

The adopted new attribute representation is different from other attribute
generation methods. From the practical point of view, attribute generation meth-
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Fig. 2. Two decision trees induced from the Monk1 data set: (a) original; (b) pre-processed by the
AARs method.

ods which adopt different representations should be applied to the original data,
and the generated attributes should be selected by an attribute selection method.

When the training data size becomes large, the computation time required
by the proposed method increases. However, the increase is almost proportional
to the size of the data. This result guarantees the applicability of the proposed
method to large data sets.

The levels of minimum support and minimum confidence are main parameters
of the proposed method for new attribute generation. When the minimum support
is set small, the associations among attributes which appear infrequently in the
data are extracted as AARs. On the other hand, association rules which are not
plausible are extracted as AARs when the minimum confidence is set small. Thus,
the smaller the values of the minimum support and the minimum confidence, the
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Fig. 3. The relation between minimum thresholds and the number of attribute values per new
attributes (Phenome).

more AARs are extracted. Accordingly, each new attribute takes many attribute
values. The relations between these parameters’ thresholds and the number of
attribute values per new attribute in the Phoneme data set is depicted in Fig. 3.
By including such new attributes taking many attribute values, the size of the
decision tree becomes larger.

The association pattern appears less frequently when either the number of
attribute values or the number of classes increases. Therefore, the minimum
support should be set smaller when the number of attribute values per attribute
or number of classes is larger. Figure 4 depicts the relationship between (a) the
product of the number of attribute values per attribute and the number of classes
and (b) the minimum support value when the prediction accuracy of the induced
decision tree is the best. The results are for the real-world data used in Section 4.2.
The negative correlation is confirmed between these two values. The regression
equation is

y = 0.34x−0.67 (R2 = 0.820), (12)

where

x : product of the number of attribute values per attribute and the

number of classes,

y : minimum confidence when the prediction accuracy of the induced

decision tree is the best, and

R2 : coefficient of determination

The coefficient of determination R2 is calculated as follows. This represents the
fraction of the deviation component explained by this regression in the data.

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

, (13)

where

{xi, yi} : (observed) data (i = 1, . . . , n),
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Fig. 4. The relationship between x (product of the number of attribute values per attribute and
classes) and y (the minimum support value when the prediction accuracy of induced decision tree is
the best).

ŷi : estimates on yi predicted with the regression equation, and

ȳ : mean of y

The regression equation indicates that the minimum support should be set smaller
when the product of the number of attribute values and classes is larger.

6. Related Work

Many have investigated attribute generation methods. ID2-of-3 (Murphy and
Pazzani, 1991) adopts M-of-N new attribute representation, and generates binary
attributes. XofN (Zheng, 1995), an extension of ID2-of-3, represents new nomi-
nal attributes by X-of-N. As discussed in Section 5, these methods improve the
prediction accuracy and size when these new attribute representations are appro-
priate to describe the target concept. As for representation of new attributes, CI
(Zheng, 1992) is one of the closest to the AARs method, because it also uses
conjunction to represent the target concept of data. However, the authors did not
discuss the applicability to data mining dealing with large-volume data.

Bloedorn and Michalski (1998) investigated the method of data-driven con-
structive induction (DCI). In this method, new attributes are generated by apply-
ing the various attribute construction operators to the original ones. Although
evaluation of the new attributes is conducted by using training data, the operators
need to be selected from the prepared repository by the human user.

Lavrǎc et al. (1998) investigated the method of attribute generation based on a
priori knowledge of attributes in the framework of inductive logic programming.
Although the algorithm works very well in many cases, applicability to large-scale
data has not been assessed.

Liu et al. (1998) proposed a classifier induction algorithm which induces the
classifiers from association rules. The algorithm shows better performance on
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the classification problem than C4.5. However, their algorithm does not induce a
decision tree but only a rule classifier.

7. Conclusion

In this paper, we proposed a novel data pre-processing method to improve the
performance of decision tree induction. The effectiveness of our method has
been demonstrated through experiments using a subset of UC Irvine data sets.
Without using a priori knowledge of attributes and associations among them,
our method extracts the knowledge of association among attributes in the form
of AARs from the data automatically, and uses them to generate new attributes.
The computation time required by the method remains small even if the size of
the training data is large. These features are highly advantageous for the purpose
of data mining.

The following issues remain for our future work:

• By applying the proposed method to the decision tree algorithm such as C4.5,
we expect to induce appropriate decision trees. We plan to evaluate the effect
to improve decision trees by our method together with the attribute grouping
function implemented by C4.5 (Quinlan, 1993).

• Currently, our method is not directly applicable to continuous valued attributes.
Adopting a function dealing with continuous valued attributes to our method
will be a future study.

• In processing new attribute evaluation by equation (11), we mainly consider
processing time. The process does not need much calculation cost, and this
feature is appropriate for the data-mining method. However, attribute selection
mechanisms should be investigated because increase of the number of attributes
requires the expansion of the database and more calculation to induce the
decision tree.
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Appendix: On Evaluation Equation (11)

We give additional explanation on how to derive the evaluation equation (11) for
a new attribute candidate Aq . Here, its attribute values Vq are assumed to be
Vq={Vq1

, . . . ,Vq|Pq | ,Vq0
}.

The new attribute candidate is evaluated using the approximated information
gain Gain(Aj) when it is adopted at the root node of the decision tree.

First, the amount of information Groot, which is necessary to predict the class
correctly in the root node, is calculated with the number of instances n(vc,j) which
belong to each class vc,j:

Groot = −
nc∑
j=1

n(vc,j)

N
log2

n(vc,j)

N
, (14)

where

N : number of training data,

n(vc,j) : number of instances whose class is vc,j

Next, the amount of information which is necessary to predict the class in the child
node childk , which has the following the attribute value {Vqk |k = 1, . . . , |Pq|} ∈ Vq

defined by the AAR Rk , is calculated as follows.
From the definition of support value sup(Rk) and confidence value conf(Rk)

of Rk , the number N1
qk

of instances falling into childk is equal to the number of

instances which match the condition part of AAR Rk . Therefore, N1
qk

is calculated
with support value sup(Rk) and confidence value conf(Rk) as follows:

N1
qk

= N · sup(Rk)

conf(Rk)
(15)

Furthermore, the number of instance N2
qk

which belongs to the class C(Hk) is
calculated by the support value sup(Rk) of Rk:

N2
qk

= N · sup(Rk) (16)

On the other hand, the number of instances which belong to other classes cannot
be calculated using the index of AARs alone. Thus, we take the conservative
approximation by considering the case that the amount of information to predict
the class correctly is the maximum. The case occurs when the numbers of
instances that belong to each class are even. The number of instance N3

qk
is
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calculated as follows:

N3
qk

=
N1

qk
−N2

qk

nc − 1

=
N · sup(Rk)

conf(Rk)
(1.0− conf(Rk))

nc − 1
(17)

Hence, the approximated amount of information Gchildk which is necessary to
predict the class correctly in the child node childk can be estimated as follows:

Gchildk

=
N1

qk

N

{
−
(
N2

qk

N1
qk

)
log2

(
N2

qk

N1
qk

)
− (nc − 1) ·

(
N3

qk

N1
qk

)
log2

(
N3

qk

N1
qk

)}

=
sup(Rk)

conf(Rk)

{
−conf(Rk) log2 conf(Rk)− pk log2

pk

nc − 1

}
, (18)

where

pk = 1.0− conf(Rk)

N1
q0

, the number of instances which belong to the child node child0 corresponding
to the attribute value Vq0

, is calculated by subtracting the number of instance
belonging to the other child node childk from the number of all instance N:

N1
q0

= N −
|Pq |∑
k=1

N1
qk

= N


1.0−

|Pq |∑
k=1

sup(Rk)

conf(Rk)


 (19)

Nq0
(vc,j), the number of instances which belong to the class vc,j is estimated

by the number of instances of the same class in other children:

Nq0
(vc,j) = n(vc,j)−Nq(vc,j), (20)

where

Nq(vc,j) : number of instances whose attribute values are

{Vqk |k = 1, . . . , |Pq|}, and class is vc,j ,

Nq(vc,j) =

|Pq |∑
k=1

Nqk (vc,j),

Nqk (vc,j) : number of instances whose attribute values are Vqk

and class is vc,j ,

Nqk (vc,j) =




N · sup(Rk) (vc,j ≡ C(Hk))

N · sup(Rk)
conf(Rk)

(1.0− conf(Rk))

nc − 1
(otherwise)

As mentioned above, the information quantity Gchild0
which is necessary to predict
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the class correctly in the child node child0 is calculated as follows:

Gchild0

=
N1

q0

N

nc∑
j=1

{
−
(
Nq0

(vc,j)

N1
q0

)
log2

(
Nq0

(vc,j)

N1
q0

)}

=


1.0−

|Pq |∑
k=1

sup(Rk)

conf(Rk)




nc∑
j=1

{−rj log2 rj} ,

where

rj =
Nq0

(vc,j)

N −N
∑|Pq |

k=1
sup(Rk)
conf(Rk)

The approximated information gain Gain(Aq) is therefore calculated by

Gain(Aq) = Groot −
|Pq |∑
k=1

Gchildk − Gchild0
(21)

This leads to equation (11).
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