
Knowledge and Information Systems (2002) 4: 168–201
Ownership and Copyright
c© Springer-Verlag London Ltd. 2002

XSD: A Hierarchical Access Method for Indexing
XML Schemata

Evangelos Kotsakis
Joint Research Center, Space Applications Institute, Ispra, Italy

Abstract. Search operations and browsing facilities over an XML document database
require special support at the physical level. Typical search operations involve path
queries. This paper proposes a hierarchical access method to support such operations
and to facilitate browsing. It advocates the idea of searching large XML collections
by administering efficiently XML schemata. The proposed approach may be used for
indexing XML documents according to their structural proximity. This is obtained by
organizing the schemata of a large XML document collection in a hierarchical way by
merging structurally close schemata. The proposed structure, which is called XML Schema
Directory (XSD), is a balanced tree and it may serve two purposes: (1) to accelerate XML
query processing and (2) to facilitate browsing.

Keywords: Directory/indexing structures; Hierarchical access methods; Semi-
structured data; Web data processing; XML schema directory; XML sources/documents

1. Introduction

In the last few years, there has been an increasing interest in managing semi-
structured data (Abiteboul et al., 1997; Buneman, 1997; Buneman et al., 1999; Pa-
pakonstantinou and Velikhov, 1999). Techniques for extracting structured infor-
mation from semi-structured data have been for long the main theme of research
endeavors (Atzeni et al., 1997; Adelberg, 1998; Nestorov et al., 1998; Bertino
et al., 1999). The recent emergence of the eXtensible Markup Language (XML)
(Bray et al., 1998) as a standard for data representation and exchange on the
World Wide Web has attracted the interest of many researchers who observed
a resemblance between semi-structured models and XML. Literally, XML data
sources (documents) may be viewed as entities whose structure is not fixed and

Received 15 Mar 2001
Revised 12 Apr 2001
Accepted 11 May 2001

XSD: A Hierarchical Access Method for Indexing XML Schemata 169

regular and both the data described and the structure itself are blurred. It is ex-
pected that much of the data encoded in XML will be semi-structured and it will
be irregular or incomplete and its structure will change rapidly and unpredictably.

With an increasing interest in XML data processing, the database community
has recently devoted considerable attention to XML data management (Widom,
1999; Ceri et al., 2000). The main motivation originated in the area of electronic
data exchange and electronic commerce (Meltzer and Glushko, 1998; Glushko et
al., 1999; Blair and Boyer, 1999; Mylopoulos, 2000). Migrating web information
to XML is a significant step in turning the web into a database. XML databases
are deemed as repositories containing XML documents with or without explicit
structure (schema).

The motivation for schema-based retrieval is to facilitate the manipulation of
XML data sources by administering the schemata, which the XML data sources
have been derived from. The challenge in developing XML database systems lies
in providing a special-purpose data structure that accelerates query processing
and facilitates browsing. Important issues in this context include the handling of
XML data representation as well as the choice of an efficient access method.

This article introduces a hierarchical access method to support search op-
erations in XML document databases as well as to facilitate browsing. In our
approach, XML documents are indexed according to their structural proximity.
Each document added to the XML database system is classified according to its
structure (schema) and it is stored next to the most relevant documents. Conse-
quently, structurally close documents are stored near to each other. The XML
Schema Directory (XSD) structure does not require any transformation of XML
documents into an internal form and it uses a document schema to distinguish
query paths relevant to documents. The main objective of XSD is to provide
an efficient way for identifying those XML documents, in an XML corpus, that
include the paths of a given XML query. Consequently, it is proposed as a
document access method aiming at retrieving all the XML documents which are
relevant to a path query. Moreover, XSD may be used to support content-based
search on large collections of XML documents. The idea of aggregating similar
XML schemata into a merger schema allows faster query processing. The merger
schema represents a general class that contains all those XML documents of the
original schemata. As long as a schema becomes part of this merger, all XML
documents derived from it are considered instances of the merger schema.

The access granules in XSD are XML documents rather than XML elements
found in such documents. Further processing may be needed in case one is
interested in retrieving parts of relevant XML documents. XML documents
are retrieved according to whether the paths that constitute the XML query
are embedded into them. Structural proximity between documents is taken into
account to group structurally close documents in a hierarchical way, which
tends to be advantageous in searching and browsing large collections of XML
documents. In summary, this paper makes the following contributions:

• It proposes a novel access method, which is called XML Schema Directory
(XSD) for XML data sources.

• In order to support XSD features, a novel merging operation between XML
schemata is introduced.

• It provides all the necessary support operations and algorithms for searching
and maintaining the XSD structure and it explains how XSD can be used in a
filter/refine model for XML query processing.

170 E. Kotsakis

The rest of this paper is organized as follows. Related work is presented in
Section 2. Section 3 discusses XML schemata and XML query evaluation by
introducing the concept of Document Compound Structure (DCS) to portray
the structural composition of XML documents. Some general requirements for
an efficient access method are also discussed. Section 4 introduces the basic
operations between DCSs. Similarity measures between DCSs are also discussed
and defined in terms of editing operations. Section 5 presents the XSD tree
structure and discusses how an XML query may be evaluated by using the XSD
tree. XSD maintenance operations and all the necessary supporting algorithms to
perform these operations are also presented in this section and their performance
is discussed. Conclusions are discussed in Section 6.

2. Related Work

A collection of XML documents can be seen as a collection of objects. Finding
relevant objects in a given set has been for many years the main research effort of
the information retrieval community (Grossman and Frieder, 1998; Baeza-Yates
and Ribeiro-Neto, 1999). In a traditional text information retrieval system, each
document is segmented into significant terms (words) and indexing structures
are generated to indicate what term occurred in what document as well as
term frequency, term weight and possibly position data. A user query, in such a
system, consists of a set of terms and it may be literally viewed as a document.
The information retrieval system retrieves those documents that are considered
close to the query. Certain similarity or dissimilarity (distance) measures have
been invented to estimate proximity between a query and a document (Wang
et al., 1999).

Although numerous techniques exist to identify relevant documents, their
effectiveness is not adequate and consequently they are not appropriate for use
in an XML repository. XML documents cannot be sufficiently represented as
multidimensional patterns (feature vectors), since their elements cannot construct
a common feature space with constant dimensionality. The existence of such a
feature space is difficult because XML documents are irregular; new tags can
appear, which are not included in the existing feature space. Even if we extend the
feature space by adding new dimensions in order to accommodate new features
there are still three basic problems that complicate the situation: (a) it is likely the
dimensionality becomes very large and the complexity will increase; (b) computa-
tions of distances between patterns may be non-continuous, since some features
may not be comparable; (c) XML tags may be infinitely nested and consequently
it would be difficult to develop features that capture containment relationships
in an arbitrary depth. For instance, in traditional information retrieval systems,
queries are limited to simple keyword-based expressions and documents are seen
as streams of words. In an XML repository, both queries and documents are
arbitrarily structured and consequently there is a need to develop new techniques
that take into account the structural nature of the documents.

Collections of semi-structured sources have been proposed as the basis for
improving query handling and indexing in Bertino et al. (1999). However, this
approach is directed to classifying semi-structured sources by using generic classes
(structural expressions). That is, a set of classes should be supplied for classifying
the semi-structured objects. In practice, it might be difficult to specify such
generic classes that capture abstract types whose realization could be found in

XSD: A Hierarchical Access Method for Indexing XML Schemata 171

semi-structured sources. Constructing collections of semi-structured objects is
also presented in Nestorov et al. (1998) through approximate typing. Approximate
typing assumes that each single object is of a unique type and then elimination
of types is accomplished by checking for equivalence among the initial types. In
Bertino et al. (1999) and Nestorov et al. (1998) the resulting organizations are
approximate types that are aimed at describing semi-structured objects.

Previous approaches in designing XML database systems use specialized
models for storing XML data sources. The XML documents are transformed
into internal structures according to the model, and future data handling is
accomplished by accessing the internal structures. For example, the Lore system
(McHugh et al., 1997), which is one of the pioneer database systems used to
manage semi-structured XML and in general weakly defined data, is based on
the OEM model (Papakonstantinou et al., 1995). Lore accomplishes the uploading
of new documents by adding the elements of the documents in a tree-like structure
and updating several indexes (value index, text index, link index and path index
McHugh et al., 1998) during the insertion phase. From that point on, any data
access is performed by considering the whole database as a huge tree that contains
XML elements. After uploading a document, its contents are added to the tree and
any path query returns those XML elements for which there is a match in the tree.
The Lore approach seems to view an XML document as a database (‘load file’)
and a set of documents as a single large database where all documents are blended
together into a tree-like structure. In our approach a set of XML documents is
handled as is (set of documents) and XSD is used to retrieve the whole content of
relevant documents. In fact, the Lore approach is more database oriented, while
XSD is document based. The retrieved objects in XSD are XML documents.

The XSD is a schema organization, which organizes several XML schemata,
with the form of DCSs, into a tree structure. It is different from that in Adelberg
(1998), Bertino et al. (1999), Goldman and Widom (1997), and Nestorov et al.
(1998) at the level of organizing information; it is a construction that classifies
XML schemata. However, the methods in Adelberg (1998), Bertino et al. (1999),
Goldman and Widom (1997), and Nestorov et al. (1998) may be used to extract
primitive schemata and then XSD may be applied to organize these schemata
hierarchically. Therefore, under this perspective, XSD may act as a complement
to the proposed techniques aiming to optimize queries that are targeted on large
XML collections.

3. Organization of XML Data

3.1. XML Document Collection

Data on the web may be traditionally stored either in HTML files or in a
traditional DBMS. In the former case, searching is feasible by employing a
keyword-based search technique, while in the latter case the only way to extract
useful information is to use parameterized queries. Both approaches are limited
because the full text search is not accurate and the query parameterization is
strongly associated with the underlying database schema. An immediate benefit
from the use of XML would be the lack of necessity for developing rigid form-
based interfaces. There are many reasons to use XML as an enabling data
format and many potential applications have been suggested in Bosak (1997).
Such applications include those that require the web client to mediate among

172 E. Kotsakis

(a)

game

instructions name manufacturer shipping

slide the
numbers
around until
they are in
order

sliding
number
puzzle

Micro
Games Inc.

price

10

�����
���
b
b

``````

(b)

game

name manufacturer shipping

Tumbling
Tower

name address price size weight

Fun
Games
Inc.

345 Toy St.
New York

15
15X12X13

0.5 kg

���
b

b
``````

�
� AA

�
�

HHH��

(c)

miniature

scale name creator year maintenance

1:100 Pisa
Tower

Marconi 1967 Keep it in
a leaning
place

(((((((
�����
��� ��
HHH

(d)

miniature

scale name creator image maintenance

1:10 Ferrari
Modena

modena360.gif Don’t go
for a ride

name Web
home

Lapietro www.lapietro.com

�����
���
aaa
```````

�� AA

Fig. 1. Four XML documents: (a) and (b) are structurally close to each other, as are (c) and (d). It
is desirable in this case to form two groups of documents: one containing (a) and (b) and the other
containing (c) and (d).

heterogeneous databases and provide different views of the same data: those
that use web clients to distribute significant proportions of the processing load
as well as those that utilize intelligent web agents for information discovery. In
all of these applications, XML advocates the philosophy that data belongs to
its creators and data is exchanged without defining any binding between them
and an authoring tool or scripting language. Therefore, XML is considered as
a machine-readable format, which allows formatted data to be combined with
other data and transformed into any other format for computation or display.
Initially the data may be stored in some private repository by the creator. Such
a repository may utilize existing database management systems. A web client
may collect XML-formatted data from different repositories and store them as
unique XML resources. In this case the client collection is generally viewed
as a collection of XML documents. There are already a substantial number
of information sources, including web sites, that publish information as XML
documents and this number is growing rapidly.

For example, a toy manufacturer may maintain a catalogue of its entire
collection of toys and provide an XML description for each toy. An on-line
store may collect the XML-formatted descriptions of toys from many different
manufacturers and maintain its own collection of XML sources regarding the
toys. The question is, how should the on-line store maintain this collection of
XML sources in a way that accelerates browsing and searching? The problem
becomes more difficult if we consider that different toy manufacturers possibly
use different description types for the same toy. Is there any possible way to group
such XML documents so that similar toys are placed in the same group? This
would be very advantageous in the case of someone wanting to browse the on-line
store. The notion of similarity introduced here is based on the examination of
the structural composition of the XML documents with a view to discovering the
resemblance or differences.

Figure 1 shows four XML documents that might be used to describe toys
in an on-line store. In order to facilitate browsing and searching, it is desirable
to store similar documents together. As we can see, the document structures of



XSD: A Hierarchical Access Method for Indexing XML Schemata 173

(a) and (b) are close to each other. Thus it would be useful to put (a) and (b)
in the same class of documents. If someone is looking for game manufacturers,
(a) and (b) documents will be candidates for further searching, while (c) and (d)
will not. Therefore, the purpose of a method that supports efficient browsing and
searching should be to efficiently identify the group of XML documents that are
relevant to a given query. The problem of identifying relevant XML documents is
slightly different from the one found in full text document information retrieval
techniques. Relevance, in the context of information retrieval, inevitably involves
the human factor in order to determine whether the result set of documents is
according to the user expectations. This is because relevance, in this context, is
based on subjective criteria that have to do with how the data in the documents
are interpreted and how the desired information is derived from the documents.
That is, subjective criteria defined by the user are mainly used to interpret the
semantics of the terms found in the documents for a given context. In XML
documents, relevance could be defined according to path inclusion. A path query
is relevant to a document if its paths are included in the document. The rationale
beside this definition is that tags on data elements identify the meaning of the
data. Therefore, no additional criteria are needed for semantic interpretation,
since each element comes together with its meaning in a given context.

3.2. XML Data and Document Compound Structure (DCS)

An XML data source is a composite structure that may consist of a single atomic
element or several hundreds of such elements arbitrarily nested in several layers.
An XML document may be interpreted literally or semantically (Goldman et
al., 1999). In the semantic mode, the XML document is represented as a graph
that includes semantic relationships between XML elements. This is supported by
the current XML version (Bray et al., 1998) by assigning special meaning to some
attributes. Attributes like ID and IDREF can be used to define relationships
between XML elements. In the literal mode, an XML document is represented as
a tree. There are no attributes with semantic interpretations. In this paper, XML
documents are viewed literally and all kinds of attributes are visible as textual
strings. Well-formed XML is also assumed, which places no restrictions on tags,
attribute names or nesting patterns.

XML structural constraints may be expressed using a Document Type Defini-
tion (DTD). A DTD may define a class of XML documents using a context-free
grammar with several restrictions. A DTD actually specifies what elements may
occur and how the elements may nest in an XML document that conforms to the
DTD. It serves two purposes: (1) it describes the characteristics of XML elements
and (2) it declares constraints on the use of mark-up. Figure 2(a) shows a DTD
specification to constraint XML documents such as those in Fig. 3(a).

While DTDs are adequate for some applications they may be insufficient
for applications that impose constraints on the type of referenced elements and
require the value of some elements to be within a certain range. The limitations
of DTDs are summarized as follows: (1) they do not allow atomic types (except
for #PCDATA, which means string) and (2) there is no way to define range
specifications and type constraints. The XML schema proposal (Fallside, 2000;
Thompson et al, 2000; Biron and Malhotra, 2000) defines facilities that address
such needs. Figure 2(b) shows an XML schema whose instances are documents
such as those in Fig. 3(a).



174 E. Kotsakis

(a) (b)

<schema>
    <element name="purchaseOrder" type="PurchaseOrderType"/>

    <complexType name="PurchaseOrderType">
        <element name="shipTo" type="AddressType"/>
        <element name="billTo" type="AddressType"/>
        <element name="items"  type="ItemsType"/>     </complexType>

    <complexType name="AddressType">
        <element name="name"   type="string"/>
        <element name="address" type="string"/>     </complexType>

    <complexType name="ItemsType">
        <element name="item" minOccurs="0" maxOccurs="unbounded"> <complexType>
             <element name="productName" type="string"/>
             <element name="quantity">
                 <simpleType base="positiveInteger">
                     <maxExclusive value="100"/>      </simpleType>    </element>
             <element name="price"    type="decimal"/>
             <element name="shipDate" type="date" minOccurs='0'/> </complexType>   </element>
     </complexType>
</schema>

<!DOCTYPE purchaseOrder [
               <!ELEMENT purchaseOrder (shipTo,billTo,items)>
               <!ELEMENT shipTo (name, address)>
               <!ELEMENT billTo (name, address)>
               <!ELEMENT items (item*)>
               <!ELEMENT item (productName,quantity, price, shipDate?)>
               <!ELEMENT name (#PCDATA)>
               <!ELEMENT address (#PCDATA)>
               <!ELEMENT productName (#PCDATA)>
               <!ELEMENT quantity (#PCDATA)>
               <!ELEMENT price (#PCDATA)>
               <!ELEMENT shipDate (#PCDATA)>
]>

 

Fig. 2. (a) A Document Type Definition (DTD). (b) An equivalent XML schema.

When neither a DTD is supplied nor an XML schema, the XML documents
are self-describing and they may be viewed as semi-structured sources. That is,
the XML document is combined from data whose structure is not regular and
its schema is contained within the data. In this case, a dynamic schema such as
a DataGuide (Goldman and Widom, 1997) may be used to describe the XML
document structure. DataGuides are dynamic schemata generated from semi-
structured data sources describing every unique label path of the source once.
Figure 3(b) shows the DataGuide that may be constructed from the document in
Fig. 3(a).

Observing the structural composition of DTDs, XML schemata and Data-
Guides, we notice a remarkable similarity between these constructs. For instance,
apart from the ability to specify type constraints, XML schemata are structurally
composed in the same way as DTDs. There is also a close relationship between
DataGuides and DTDs. The only difference between a DTD and a DataGuide is
that a DTD is a structural composite that restricts allowable XML data, while a
DataGuide infers the document structure directly from the XML documents.

For the sake of clarity, we introduce a rooted graph-based structural de-
scription, called Document Compound Structure (DCS), to portray the structural
composition of XML documents. A DCS is simply a rooted directed graph that
specifies nested relationships between XML mark-ups.

Definition 3.1. A Document Compound Structure (DCS) is a directed graph such
that it contains a node designated as the root, from which there is a path to every
other node. Each node in the graph carries its own label, which is a literal of an
XML element mark-up. A DCS node is also known as an element. A child–parent
pair of nodes in the DCS preserves the child–parent relationship between two
mark-ups in an XML document. Paths are allowed to appear at most once in the
graph.

Although an XML document may be generally represented as a tree, its structure
may be a graph. A DCS explicitly captures the relationship between child–parent
pairs of XML mark-ups and it may be deemed as a diagrammatic representation
or a skeleton of an XML document. Any of the above-mentioned structural
descriptions might be seen as a DCS specialized specification. A DTD may be



XSD: A Hierarchical Access Method for Indexing XML Schemata 175

(a) (c)

items

purchaseOrder 

 shipTo  billTo

 item

priceproduct
Name

quantity

name address

shipDate

(d)

items

purchaseOrder 

 shipTo  billTo

 item

price

name address

product quantity

name address

shipDateName

items

purchaseOrder 

 shipTo  billTo

 item

priceJim Doe John Smith

52.95

name address

product
Name

quantity

name address

13th street,
NY

18 Oak Av.
Old Town,
CA

priceproduct
Name

quantity shipDate

 item

1
ABC
CD-
ROM

Keyboard 1 19.98 2000-09-21

(b)
items

purchaseOrder 

 shipTo

 b
ill

T
o

 item

price

address

productName

quantity

name

ad
dr

es
s

shipDate

name

 

Fig. 3. (a) An XML document. (b) A DataGuide for this document. (c) A Document Compound
Structure (DCS) for this XML document and (d) the unfolded DCS for this document. Notice that
the DCSs in (c) and (d) can be easily derived from the DTD in Fig. 2(a) or the XML schema in
Fig. 2(b).

seen as a DCS, which additionally may constrain the usability of some XML
mark-ups. An XML schema may be seen as a DCS that has been enriched with
type constraints and a DataGuide may be seen as a DCS supporting target sets
(sets of objects, which are reachable via the DCS paths). In general, a DCS may
be viewed as the common ground (or the conceptual intersection) between DTDs,
XML schemata and DataGuides. The nodes of a DCS are the labels (mark-up
elements) found in XML documents and an edge from label a to b represents a
parent/child relationship between a and b. A label path starts from the root and
terminates at the label. Each label path appears at most once. Figure 3(c) shows
a DCS, which may be obtained from the DTD in Fig. 2(a), the XML schema in
Fig. 2(b), or the DataGuide in Fig. 3(b).

We distinguish between two types of DCS: primitive DCS and merger DCS.
A primitive DCS is derived directly from a DTD, XML schema or a DataGuide.
A merger DCS is a structure obtained by merging one or more DCSs (primitive
or merger). DCS merging is obtained by using a similarity criterion based on
editing operations and it is discussed in detail in a subsequent section. In general,
merger DCSs may be viewed as generic composite structures containing simpler
DCSs. Figure 4(a) shows a merger DCS, which is obtained by merging the DCSs
in Fig. 4(b) and (c). As we can observe in Fig. 4, the merger DCS contains the
union of the elements in the simpler DCSs. In a sense, a merger DCS may be
viewed as a bounding structure that unifies simpler DCSs.

Definition 3.2. An XML document is said to be an instance of a DCS if its
structure is embedded in the DCS root-directed graph. This means that the XML
schema (DTD or DataGuide), from which the XML document has been derived,
will be completely enclosed in the DCS. In case the XML schema is a tree, then
this tree is said to be embedded in the DCS if it is completely embedded in the
unfolded root-directed graph of DCS. The unfolded root-directed graph is a tree
which has the same root as the initial graph. It may be obtained from the initial



176 E. Kotsakis

(a)

(b) (c)

Merger

d e

f g

a

b c

e

a

b c

d

f g

a

b c

 

Fig. 4. DCS merging.

graph by unfolding recursively all the subgraphs rooted at the children of the
initial graph root. Figure 3(d) shows the unfolded DCS, which may be obtained
from the DCS in Fig. 3(c).

In order to facilitate the discussion and without loss of generality, we represent
the DCSs as trees. In a large XML corpus, there may be many primitive DCSs,
each one depicting a different schema. Figure 5 shows such primitive DCSs as
structure composites of XML document groups. Each such DCS represents a
class of documents that have been derived from it. One way to organize XML
documents according to their structural similarity is to elaborate methods that
administer DCSs. An XSD access method is introduced to address such needs.
It focuses on organizing efficiently DCSs in a hierarchical manner by examining
the structural similarity between DCSs.

As information is stored in XML, the ability to intelligently query XML data
sources becomes increasingly important. Toward this objective, several XML
query languages have been proposed (Deutsch et al., 1999; Bonifati and Ceri,
2000). The realization of a query system is mainly accomplished through a query
engine, which accepts XML queries, executes them on a predefined set of XML
sources and finally returns the result set.

The main role of an XML query language is to allow the formulation of
queries and determine the result set of the XML elements that should be returned.
Even though all of the proposed query languages address the problem of query
formulation, they assume that the input to such a query is a set of known
documents or nodes within multiple documents. In other words, to execute an
XML query, the query engine should be supplied with (1) the query string and
(2) the URL data sources on which the query will perform.



XSD: A Hierarchical Access Method for Indexing XML Schemata 177

XML document collection

... <XML><XML>

Primitive DCSs

... <XML><XML> ... <XML><XML> ... <XML><XML>

XSD structure

 

Fig. 5. Document Compound Structures (DCSs) in an XML document collection.

3.3. Querying XML Data and Access Method Requirements

Executing an XML query over a large corpus, which may consist of tens of
thousands of XML documents with diverse schemata, may slow down the query-
answering process. It is then obvious that, if the input documents are not known
in advance, an access structure is required to alleviate the answering process by
restricting the search space to a few documents which actually contain the desired
data. Then these documents may be used as the input to the XML query.

Limiting the search space of a query means finding the XML documents
which are relevant to the query. This implies dividing the initial search space
of the query into two disjoint sets: one containing those documents which are
relevant to the query and the other one containing those documents which are
not. Therefore, the objective of an XML access structure must be twofold: (1) to
partition the initial set of documents into relevant and not relevant and (2) to
supply the XML query engine with only those XML documents that are relevant
to the query.

Figure 6 shows a typical way of processing XML path queries by utilizing
the XSD access method. An XML query may consist of path expressions and
conditions. The query execution is divided into two steps: the filter step and
the refinement step. The XSD structure is used in the filter step to produce
a set of relevant XML documents, which is usually a fraction of the whole
collection. For each document obtained during the filter step we check the query
conditions. The query results include those XML elements in the relevant set
of XML documents that satisfy the query conditions. In the refinement step we
retrieve the exact elements in the relevant set of documents that satisfy the path
conditions described in the query. If the predicates for these paths evaluate to
true, the corresponding elements are added to the query result.

The question is which structure an access method must support in order to
filter out the relevant documents to a given XML path query. The complexity and
nesting capability of XML data pose certain problems in designing a satisfactory
access method. Some of these problems are caused by inherent shortcomings of



178 E. Kotsakis

the XML data. First, there is no straightforward way to store a collection of
XML documents in a relational database with a fixed schema and tuple size. This
is because of the irregularity or incompleteness of the data and the potential of
the data structure to be unpredictably changed. The dynamic nature of XML
data requires such data structures that support this dynamic behavior without
deteriorating over time. Second, there is no standard algebra defined on XML
data. This means that there is no standardized set of basic operators. The set of
operators heavily depends on the given application that processes the XML data.
An algebra for handling nested queries and general path expressions could be
used to support XML query evaluation and can furnish a concise representation
of query execution plans and optimization. If such a set of standard operators is
specified, then more complex operators can be expressed by using the standard
ones, and a basic operator optimization would result in an overall performance
improvement.

Although some basic operators like selection, regular-expression mapping and
join have been introduced (Beeri and Tzaban, 1999; Christophides et al., 2000),
they are, in general, more expensive than the standard well-known relational
operators. A retrieval query on an XML database requires fast execution of the
search operations involving paths in several XML documents. To support such
search operations, one needs a special access method. The main problem in the
design of such a method is that it is difficult, if not impossible, to define total order
among XML documents. Such an order could be used to preserve proximity. That
is, there is no way to define a total order in a set of XML documents since we
cannot define a mapping from the set of documents to a sorted sequence such
that any two XML documents with similar schemata are close to each other
in the sorted sequence. This makes the design of an access method in an XML
database more difficult than in traditional databases. Although XML documents
are ordered data sets of elements, a collection of XML documents of diverse
schemata is not ordered. A data model for semi-structured data, named OEM,
has been proposed and widely accepted (Papakonstantinou et al., 1995; Abiteboul
et al., 1997) and recently adapted for modeling XML data (Goldman et al., 1999).
OEM views such a collection of XML documents as an edge-labeled directed
graph with a distinguished single root. As such, one may imply a total order in
this model. However, this order is randomly defined; it is not based on schema
similarity and it cannot be used to preserve document proximity.

Therefore, the requirements of desired XML access methods can be summar-
ized as follows:

1. Dynamics: XML documents are inserted and deleted from the corpus and an
access method should continuously keep track of the changes.

2. Delete and Insert operations should not be very expensive (do not require
reorganization of the support structure of the access method).

3. Scalability: Access method should adapt to database growth.

4. Efficiency: Search should be fast and the method should require as little space
as possible.

5. The support structure should preserve proximity based on schema similarity.



XSD: A Hierarchical Access Method for Indexing XML Schemata 179

XSD
Structure 

Relevant XML
Documents

Query Paths

XML
Document
collection

Test

XML Query

Query Conditions

Query
Results

Refinement stepFilter step  

Fig. 6. Retrieving relevant XML documents in a filter/refinement model for path query processing.

3.4. XML Query Matching and Path Expressions

As mentioned previously, there exists neither an XML (or semi-structured) al-
gebra, nor a standard XML query language. Some form of SQL-like syntax with
regular expression enhancements often expresses XML queries. XML queries
are based on pattern matching on the syntax of the XML data format and they
express the ability to reach to arbitrary depth in the XML data tree. XML queries
may consist of one or more path expressions because there is often a need to
express multiple search conditions. All of these path expressions may be matched
against the XML documents of the repository. Wildcards are often used because
the schema of XML sources is not known in advance or it may change often. A
simple path expression is a sequence of labels separated by a delimiter. In this
paper, we use the slash character (‘/’) as the delimiter for separating labels. In
order to facilitate the subsequent discussion about XSD structure, we introduce
some definitions.

Definition 3.3. A label is a literal that describes a mark-up. A label instance is
an instance of this mark-up in a DCS. A label instance is associated with the
location of the label in a DCS. For example, in Fig. 3(d), ‘name’ is a label with
two instances in the DCS (one being the child of the ‘shipTo’ label and the
another one being a child of the ‘billTo’ label). If a DCS is a graph, the number
of instances of a label is equal to the number of paths from the root to the label.

Definition 3.4. Let L be the set of all labels, then an expression ‘l1/l2/, . . . , /ln’ is
a simple path expression of length n with li ∈ L and 1 6 i 6 n.

Definition 3.5. A parameterized path expression is a path expression which is
specified by a regular expression.

There are two levels at which one can apply regular expressions on a path:
(1) at label level and (2) at the alphabet level. Wildcard patterns may be used
to represent arbitrary repetition of regular expressions. A parameterized path
expression is actually a pattern, which may be matched against simple path
expressions.



180 E. Kotsakis

Definition 3.6. A DCS matches a parameterized path expression if there is at least
one simple path in the DCS which matches the parameterized path expression.
Algorithm 3.1 shows how to find whether a DCS tree matches a parameterized
path expression (ppe). If a matching path is returned by Algorithm 3.1, then the
parameterized path expression is matched against the DCS.

Definition 3.7. Let D be the set of all primitive DCSs of a document collection.
D matches a parameterized path expression if there exists at least one primitive
DCS in D that matches the parameterized path expression.

D may be used to check whether a given path exists in any of the XML documents
in the collection. DCSs are mainly used to efficiently find simple paths that match
a given parameterized path expression.

Definition 3.8. An XML query is relevant to a DCS if all of the path expressions
of the XML query are matched against the DCS. In other words, this means that
if a subtree of DCS matches the XML query pattern, then the query is relevant
to this DCS. Algorithm 3.2 returns true if an XML query is relevant to a given
DCS.

Definition 3.9. An XML query is relevant to an XML document if the query is
relevant to the primitive DCS from which the XML document has been derived.

When an XML query is relevant to a primitive DCS, all the XML documents
that have been derived from this DCS are relevant to the query.

Algorithm 3.1. FindPath(T, ppe)

Input: A DCS tree T and a string of characters ppe describing the parameterized
path expression.

Output: A set of paths M in T that match ppe.

Method: In general, ppe is a regular expression. In order to perform the checking,
an automaton A, which is equivalent to the regular expression, is constructed;
any non-deterministic automaton suffices (Hopcroft and Ullman, 1979). The
method computes a set C (closure) as described in steps F1 and F2 and then
when the set C converges a path (if exists) is constructed from those elements
of C that contain the terminal state of A.

F1 Initialization: Let S be the set of states of the automaton A (i.e., S =
{s0, s1, . . .}) and N be the set of the nodes in DCS (i.e. N = {n0, n1, . . .}). C is
initially empty. Let l(n) be the label of the node n ∈ N. Let s0 be the initial

state of A and n0 be the root of T . If there is a transition s0
l(n0)−→ si in A

with si ∈ S , then add (n0, si) to C . Repeat step F2 until C does not change
any more.

F2 Choose a pair (n, s) ∈ C and consider those children of n (say n′) for which

there exists a state s′ ∈ S such that the transition s
l(n′)−→ s′ is in A and then

add (n′, s′) to C . Stop when C reaches a fix-point (C does not change any
more).

F3 Let n be a node in T for which there exists a pair (n, s) ∈ C with s being
the final state of the automaton A. The path from node n toward the root
of T is a path that matches ppe. For all such nodes n, construct the path
by ascending T from n toward the root n0 and add the path to M.



XSD: A Hierarchical Access Method for Indexing XML Schemata 181

<Portfolio >
   <Sto ck Ma r ke t =" " T i cke r ="^DJI" >
      <Name>  DJ I NDU AVERAGE  </N ame>
      <Last >      10430.88      </ Last >
      <Vol ume>       N/A        </V ol ume>
      <Change>       -2 .00 %    </ Change>
      <Day_ Range>  <DMi n>  103 56. 96  </ DMi n>
                   <DMax>  10638. 64  </ DMax>
      </ Day_ Range>
      <Year _Range> <YMi n> 9099.04     </ YMi n>
                   <YMax> 11750. 28   </ YMax>
      </ Year _Range>
   </ Sto ck >

    <Sto ck Ma r ke t =" OSA" T i cke r ="^ N225" >
       <Name>    NI KKEI 225 I NDEX     </N ame>

       <Last >       19791.40      </ Last >

       <Vol ume>       N/A         </V ol ume>
       <Change>       +0. 98%     </ Change>
       <Day_ Range>  <DMi n> 19518.08    </ DMi n >

                   <DMax> 19803. 69   </ DMax>
       </ Day_ Range>
       <Year _Range> <YMi n> 180 68.10    </ YMi n>

                   <YMax> 2004 6.14    </ YMax>
       </ Year _Range>

    </ Sto ck >

</ Portfolio >

Name Last Volume Change Day 
Range

Year
 Range

DMin DMax YMin YMax

Stock

Portfolio

Name DMin

Stock

Portfolio

(a)

(c)

(b)

 

Fig. 7. Example of querying XML data. (a) Document Compound Structure (DCS). (b) XML
document derived from this DCS. (c) A relevant XML query.

Algorithm 3.2. IsRelevant(T, Q )

Input: A DCS tree T and an XML query Q. The query Q is a set of parameterized
path expressions.

Output: It returns true if Q is relevant to T , otherwise it returns false.

Method: For each parameterized path expression p of the query, it checks whether
p is matched against T . If T matches all of the path expressions of the query
Q then it returns true, otherwise false.

IR1 Let Q = {p1, p2, . . . , pn} , where pi (1 6 i 6 n) is a parameterized path
expression. Let Mi be the set of paths in T such that Mi = FindPath(T , pi).

IR2 For each pi ∈ Q with 1 6 i 6 n do Mi = FindPath(T , pi).
If ∀Mi (1 6 i 6 n), Mi 6= ∅ then return true, otherwise false.

Example 3.1. To illustrate the above terms, let us consider the XML document
and the DCS as shown in Fig. 7. The XML document in Fig. 7(b) could have
been actually derived from a DTD or an XML schema whose skeleton may be
depicted by the DCS in Fig. 7(a). Let us also assume the following simple XML
query expressed in XQL (Robie et al., 1998), which requests the stock names of
those stocks with a day minimum greater than 10000.

/Portfolio/Stock/Name[/Portfolio/Stock//DMin > 10000]

This query consists of two path expressions: one is a simple path expression
‘/Portfolio/Stock/Name’ and the other one is a parameterized path expression
‘/Portfolio/Stock//DMin’. There is also a condition associated with the para-
meterized path expression. The double slash (‘//’) means that the simple paths
that match this expression are those which contain a label DMin one or more
levels deep below the label Stock (arbitrary descendants). The XQL query above



182 E. Kotsakis

may be graphically depicted as shown in Fig. 7(c). In Fig. 7(c), each single slash
delimiter is depicted as a solid edge connecting the labels, while a double slash
delimiter is depicted as a dashed edge. The query in Fig. 7(c) is relevant to the
DCS in Fig. 7(a) if there exists a subtree of the DCS which is an instance of
the query pattern. The shaded nodes in Fig. 7(a) show the existence of such a
tree in the DCS; therefore we may conclude that the query is relevant to all
documents that are derived from this DCS. Executing the above query on the
XML document in Fig. 7(b) with an XQL-compliant query engine yields the
following result:

<Name> DJ INDU AVERAGE </Name>
<Name> NIKKEI 225 INDEX </Name>

By checking the occurrence of an XML query pattern in a DCS, we may find out
which DCSs are relevant to the query and consequently consider all the XML
documents derived from these DCSs as candidates for the refinement phase. If
a query pattern does not occur in a DCS, then it is considered irrelevant to
any document derived from this DCS. Executing an irrelevant query over some
documents yields no results; i.e., the result set is empty.

A straightforward way to find relevant XML documents to a given query in a large
XML repository which encompasses numerous schemata is to check exhaustively
the query against every single DCS in the repository. However, doing so may
slow down the process of finding the candidate set of XML documents for the
refinement phase. The following section introduces the concept of merging DCSs
into more generic structures in order to solve the problem of exhaustive checking.

4. DCS Basic Operations

4.1. DCS Merging

A merger DCS depicts a generic XML schema which combines two or more
simpler DCSs. The introduction of the concept of merger DCS aims at limiting
the initial search space by merging primitive DCSs into more general ones, which
may then be used as matching targets against XML queries. The merging process
is accomplished as follows.

Let X be a DCS. Let us denote as root(X) the root label instance of X. Let us
denote as LX the multiset containing all the label instances of X. LX is a multiset
rather than a set since a label may occur more than once in a DCS at different
locations. Let us denote as CX(l) the set containing all the children of the label
instance l in X (child set). Let us denote as T (l) the tree whose root is the label
instance l and as TX(l) the subtree of X whose root is the label instance l ∈ LX .

To ease the process of DCS separation, which is discussed in a subsequent
section, a reference number nX(l) is introduced for each label instance l of the
DCS X, which indicates the number of underlying primitive DCSs in which the
label instance is present. In a primitive DCS each label instance can be referenced
only once; consequently for all labels in a primitive DCS X nX(l) = 1. A merger
DCS is created by the unification of many DCSs. If a merger DCS is formed
by joining m primitive DCSs and a label instance l appears in n DCSs, then the
reference number of this label instance in the merger will be equal to n.

Let A and B be two DCSs and M be the resulting merger DCS. The merger



XSD: A Hierarchical Access Method for Indexing XML Schemata 183

DCS M contains finally the union of elements of A and B. The merger DCS is
built recursively by using Algorithm 4.1.

Algorithm 4.1. Merge(A, B)

Input: DCS trees A and B, which are to be merged.

Output: A merger DCS tree M that contains A and B.

Method: It merges two DCSs into a merger DCS. The merger DCS contains all
the paths found in any of the original DCSs.

M1 Initialization: The method creates a temporary root label tl and sets
TM(root(M)) = T (tl). It makes the tree A subtree of M by assigning the
root(A) to be a child of root(M). It calls the recursive function Join in step
M2 by Join(TM(root(M)), TB(root(B))).

M2 Function Join(TM(m), TB(b)).

M2.1 if b /∈ CM(m) then add b in CM(m)
nM(b) = nM(b) + nB(b)

M2.2 For each x ∈ CB(b) and b ∈ CM(m) do Join(TM(b), TB(x)).

M3 if root(A) = root(B) then root(M) = root(A).

Step M1 is the initialization step used to call the recursive function Join.

Step M2 merges two trees: one is a subtree of M and it is rooted by the label m
and the other is a subtree of B and is rooted by the label b.

Step M2.1 checks to make sure that the label b is a child of label m. If it is
not (b /∈ CM(m)), then it adds the label to the child list of m. This means that a
new instance of the label is created and it is assigned to be a child of m, so that
eventually b ∈ CM(m). The reference number of the label instance b in M, nM(b),
is updated by adding to it the reference number of the label b in B, nB(b). If B is
always a primitive DCS, nB(b) is equal to 1.

Step M2.2 performs the Join function for all the children of b. The recursion
stops when there are no x ∈ CB(b) any more because CB(b) = ∅, which means
that b has no children (it is a leaf label).

Step M3 checks if the DCSs A and B have the same root label. tl is just an
assisting label to realize the merging. The resulting merger DCS is the child of tl
if both A and B have the same root label. In case A and B have different root
labels, the merger DCS is rooted at tl, which is the parent label of both root(A)
and root(B) labels.

In the discussion that follows, we assume merging of DCSs which have common
root labels. The following example shows the merging of two primitive DCSs.

Example 4.1. Constructing a merger DCS. Let us consider the primitive DCS
in Fig. 8(a), which is similar to that in Fig. 7(a), although it has a different
structure. The merger DCS will be the one shown in Fig. 8(b). The merger DCS
keeps the structure of both primitive DCSs. It could be seen as the union of
the two primitive DCSs in Fig. 8(a), and Fig. 7(a). The reference number of
each element of the merger schema is also shown on the nodes of the tree in
Fig. 8(b). Those nodes that have reference number equal to 1 occur only in one
of the corresponding primitive DCSs, while those nodes with reference number
equal to 2 occur in both DCSs. The advantage of the merger DCS is that it is
sensitive to queries that are relevant to both primitive DCSs. Considering again



184 E. Kotsakis

Last Volume Change

Day 
Range

Year
 Range

DMin DMax YMin YMax

Stock

Portfolio

DMin

DMax

YMin YMax

2

2

2 2 22

1 1

1
1

1 1

1111

Name Last Volume Change DMin DMax

YMin YMax

Stock

Portfolio

(a) (b)

 

Name

Fig. 8. (a) A primitive DCS, which is similar to that in Fig. 7(a). (b) The merger DCS obtained by
merging the primitive DCSs in (a) and that in Fig. 7(a).

the query in Example 3.1: we see that the query is matched against both DCSs
and consequently it is relevant to all the documents derived from these DCSs.
The shaded nodes in Fig. 8 show the subtree, which matches the pattern tree in
Fig. 7(c) of the XML query.

A merger DCS captures the relevance between primitive DCSs and allows us to
avoid exhaustive checking to find out the relevant XML document to a given
query. What is actually needed in this case is to check if the query is matched
against the merger DCS. In that way, we may substantially decrease the search
effort for relevant XML documents. Although using mergers to join DCSs is
promising, it may not yield the expected gain if we do not consider carefully what
to merge. The primitive DCSs to be merged should be as similar as possible.
Merging similar DCSs offers an advantage since the resulting mergers act as meta-
classes that organize the underlying XML documents in separate categories, which
may be used to efficiently evaluate XML queries over large collections of XML
sources. A subsequent section defines a measure for similarity between XSDs and
discusses how it can be estimated.

4.2. Merge Performance

The merging operation, Merge(A,B), is realized by performing a pre-order parsing
in the tree B. Each label in B is visited once. Therefore, the cost for accomplishing
the merging operation linearly depends on the size of the tree B. The processing
of each label in B includes the following:

• Add the label to A if it is not present.

• Update the reference number of the label.

Both the above operations have a constant cost. Therefore, the Merge operation
works in O(|B|) time, where |B| is the number of nodes in B.

4.3. DCS Separation

The Merge operation is used to join two relevant DCSs. The DCS separation
procedure does exactly the opposite. It splits a merger DCS into two DCSs.



XSD: A Hierarchical Access Method for Indexing XML Schemata 185

Separation is the complement of the Merging operation. That is, if A and B
are two primitive DCSs, the sequence C = Merge(A,B), Separate(C,B) has no
effect at all and it results in two primitive DCSs A and B. Let M be a merger
DCS and B be a DCS that is contained in M and we want to extract B from
M. The operation Separate(M,B) removes an instance of the B subtree from M.
Let us consider the example in Fig. 9. The merger DCS M unifies two other
merger DCSs A and B. As we mentioned previously, the reference number in
each label depicts the number of primitive DCSs in which the label instance
is present. For example, label instance c in B has a reference number equal to
1 because one primitive DCS contains this label instance. The label instance c
in the merger DCS M has a reference number 3, which is the sum of those in
B and A (this summation is performed in step M2.1 in the Merge algorithm).
Separating B from M will yield A. This means that the reference number of a
label instance contained in B will be decreased to the extent dictated by B. In the
case of the label instance c, the reference number will decrease by one, because
one reference of this label instance exists in B. Doing so in label e, the resulting
reference number is zero; in that case the label e is totally removed from M. The
Separate(M,B) operation is described in Algorithm 4.2.

Algorithm 4.2. Separate(M, B)

Input: DCS trees M and B. The tree B is a subtree of M.

Output: The DCS tree M from which B has been removed.

Method: It subtracts B from M. Label instance reference numbers are updated
and if a reference number becomes zero the label instance is removed from the
tree M.

S1 Initialization: Find where B is embedded in M.

S2 Let the tree TM(root(B)) be the instance of B in M. We parse the tree
TM(root(B)), in any order (pre-order or post-order) and we decrease the refer-
ence number of each label instance by the amount dictated by the corresponding
label instance in B (i.e. nM(b) = nM(b) − nB(b), where nM(b) and nB(b) are the
reference numbers of label instance b in M and B respectively). If the result
is zero for a label instance reference number (nM(b) = 0), this label instance is
removed from TM(root(B)).

In the Example 4.1, if M is the merger DCS in Fig. 8(b), and B is the DCS in
Fig. 8(a), then Separate(M,B) will result in the schema shown in Fig. 7(a).

4.4. Separate Performance

The operation of separating a DCS B from a merger M includes two steps. The
first one is to find where B is located in M and the second one is to remove B
from M The first step includes a search for finding where B is located in M. This
is a tree-matching problem and algorithms already exist that provide a solution
in O(|M||B|) time (Kilpeläinen and Mannila, 1995), where |M| and |B| are the
number of nodes in M and B respectively. B is parsed during the second step
and its corresponding labels are removed from M by updating the label reference
numbers. In this process, each label is visited once and the cost for updating the
labels depends on the size |B| of the tree B. Thus, this step is performed in O(|B|)
time.



186 E. Kotsakis

Merger

1
d e

f g

a

b c

5

3
13

2 1

e

a

b c
1

3

2 1

d

f g

a

b c1

2 1

2 1

2

M

B A

 

Fig. 9. DCS separation.

4.5. Similarity Measures Between DCSs

Similarity between DCSs is defined in terms of proximity, which is based on the
distance between DCSs. The larger the distance between two DCSs, the more
dissimilar they are. DCSs may be viewed as trees and therefore the distance
between them should be based on tree differences. A mathematical model for
obtaining distance measures between DCSs is therefore discussed. Similarity
measures between trees are based on syntactical approaches and they are further
discussed in Zhang (1995).

The distance between two DCSs is based on the edit operations that should
be performed to one of them in order to obtain the other. An edit operation on
a DCS may be an insertion, a deletion or a substitution of one node by another.
Insertion is the complement of deletion.

Insertion of a node x into a DCS as a child of node y may be accomplished so
that the resulting DCS contains x as a child of y with no children or takes
as children some of the children of y. Let y1, . . . , yk be children of y, then for
some 0 6 i 6 j 6 k, the children of y in the resulting tree (after the insertion
of x) will be y1, . . . , yi, x, , yj , . . . , yk . If j = i + 1, x has no children otherwise x
has children yi+1, . . . , yj .

Deletion of a node x from a DCS is accomplished so that the father y of x takes
all the children of x. Let y1, . . . , yk be the children of y and x = yi, and let
x1, . . . , xj be children of x, then the children of y in the resulting tree (after the
deletion of x) will be y1, . . . , yi−1, x1, . . . , xj , yi+1, . . . , yk .

Substitution of a node x by a node y is accomplished so that the children of y in
the resulting DCS are the children of x in the original DCS.

Any of the above elementary edit operations may be represented as a general



XSD: A Hierarchical Access Method for Indexing XML Schemata 187

substitution of the form α → β, which means α is replaced by β. In the case of the
substitution operation above, α and β represent two distinct nodes. The deletion
of a node α may be represented as α → ∅ (i.e. β = ∅), where ∅ is the null node.
The insertion of the node β may be represented as ∅ → β (i.e. α = ∅).

An editing operation α → β is associated with a cost w(α → β). This cost
can be different for different nodes. For example editing a node, which is closer
to the root might have higher cost than editing a leaf node or vice versa. In the
case that there is no distinction between nodes, a universal editing weight for all
nodes may be used.

The distance between two DCSs T1 and T2 is measured in terms of the
number of editing operations required to change T1 into T2 taking into account
the cost of each editing operation. The cost w to be a distance metric should
satisfy the following metric axioms (Kruskal, 1983; Zhang and Shasha, 1989).

1. w(α → β) > 0 and w(α → α) = 0

2. w(α → β) = w(β → α)

3. w(α → γ) 6w(α → β)+w(β → γ)

Let Si be a sequence of editing operations si1, si2, . . . , siki that changes the DCS T1

into T2. The cost of performing all the operations in the editing sequence is then
given by

W (Si) =

ki∑
j=1

w(sij) (1)

The distance between the DCSs T1 and T2 is then formally defined as

δ(T1, T2) = min{W (Si)|Si is an editing operation sequence} (2)

where Si is an editing operation sequence that changes T1 into T2. An algorithm
that estimates the above-defined distance between trees is discussed in Zhang and
Shasha (1989), which also presents a dynamic algorithm that solves the minimum
distance problem in sequential time.

4.6. Properties of Merger DCS

A merger DCS is a bounding structure that unifies simpler DCSs. The main use
of a merger DCS is to facilitate the evaluation of XML queries. In order to
achieve this, DCSs must have the following properties:

Subset property: If M is a merger of A and B, then A and B are subtrees of M,
i.e., A ⊆ M and B ⊆ M.

Distance property: Let MX be the merger of X1, X2, . . . , Xn and MY be the merger
of Y1, Y2, . . . , Ym. Then δ(Xi, Xj) 6 δ(Xi, Yk), for any 1 6 i 6 n, 1 6 j 6 n and
1 6 k 6 m. This means that the distance between two DCSs belonging to the
same merger is smaller than the distance of any pair of DCSs belonging to
different mergers. This property keeps a merger tightly bound and cohesive.



188 E. Kotsakis

5. The XSD Structure and Maintenance Algorithms

5.1. XSD Tree

XSD is a hierarchical structure whose aggregation technique to cluster XML
schemata is based on DCS merging. The objects used for merging are primitive
DCSs. The motivation for forming such a structure is that DCSs relevant to a path
query tend to be more similar to each other than irrelevant DCSs and they may
be merged together. XSD structure is mainly used to accelerate query processing
by considering only a small number of relevant DCSs and consequently a limiting
number of XML documents, rather than the entire corpus of XML documents.
An alternative advantage of XSD structure is that it may also be suggested as a
method for facilitating browsing. XSD is a data structure, which is designed to
ease the process of finding relevant XML documents in a corpus and it is mainly
used as an access means to XML repositories.

An XSD tree has two types of node entries; internal (non-leaf node) entries
and leaf node entries (see Fig. 10). Each entry E in an XSD node has two fields,
named S and P , which are denoted E.S and E.P respectively. The E.S field
accommodates a DCS and E.P contains one or more pointers. If the entry E is
in a non-leaf node, E has the form (E.S, E.P ), where E.S represents a merger
DCS and the E.P field contains a single pointer to a child XSD node. The child
node may contain many entries whose DCSs compose the merger schema E.S of
the parent. In other words, the merger schema E.S is the union of the DCSs of
the entries in the child node pointed to by E.P .

If the entry E is in a leaf node, the E.S represents a primitive DCS and E.P
is a list of pointers, each one pointing to an XML document that is derived from
this primitive DCS. Consequently, a leaf node entry E has the form (E.S, E.P ),
with E.P = E.X1, E.X2, . . . , E.Xn, where E.X1, E.X2, . . . , E.Xn are pointers to XML
documents which are instances of the E.S primitive DCS. Every leaf node may
contain an arbitrary number of references (i.e., many XML documents may be
derived from the same DCS).

The number of entries in an XSD node is n, with m 6 n 6 M, where M and
m are the maximum and minimum numbers respectively of the DCSs that can
be accommodated in the XSD node. The relationship between m and M could
be defined as m 6 M

2
. It is worth noting that while the leaf nodes may have

an arbitrary number of pointers to XML documents, the non-leaf nodes have a
limited number of pointers to child nodes. This is because the XSD structure is
tuned to organize DCSs, which are actually XML schemata, rather than XML
sources. Limiting the number of DCSs that can be accommodated in a node
between m and M is done for performance purposes. For instance, small values
of M will create a deep XSD structure, whereas large values of M may create a
wide XSD structure. In general, m and M may vary and different values may be
used in a way that increases the performance.

Figure 10 shows the structure of a typical XSD organization and illustrates
the merger DCSs as entries of non-leaf nodes and primitive DCSs as entries of
leaf nodes. In Fig. 10 the nodes N1, N2 and N3 contain merger DCSs and the leaf
nodes N4, N5 and N6 contain primitive DCSs. A DCS entry of an intermediate
node is the merger of all descendant DCSs. For example, the schema S5 in the
intermediate node N3 in Fig. 10 is the merger of S10 and S11. Referring to Example
4.1, S5 may represent the DCS in Fig. 8(b) and the child DCSs S10 and S11 may
be the primitive DCSs in Fig. 7(a) and Fig. 8(a) respectively.



XSD: A Hierarchical Access Method for Indexing XML Schemata 189

...

<XML><XML>

...

... <XML><XML>

...

...

... <XML><XML>

......

... <XML><XML>

... root

...
Intermediate node

Leaf node

...

1 2 n

1 2 n

...

...

...

<XML><XML>...

...

<XML><XML>

E.S E.P

Entry E

E.S E.P

Entry E

N1

S1

S5

S2

S4S3

S6 S7 S8 S9
S10 S11

N2 N3

N4 N5 N6

Documents
derived from S6

Documents
derived from S7

Documents
derived from S8

Documents
derived from S9

Documents
derived from S10

Documents
derived from S11

 

...

Fig. 10. XSD Tree. Each node may contain n entries. DCSs in intermediate node entries are mergers,
while DCSs in leaf node entries are primitive. A primitive DCS points to all XML documents derived
from it (m 6 n 6 M).

Two basic algorithms are proposed for maintaining the XSD structure: the
first one for inserting new primitive DCSs and the other one for deleting existing
primitive DCSs. There are also two other operations, which are used in the
XSD structure but these are not for maintaining the XSD tree. They are mainly
used to associate and disassociate XML documents to an existing primitive DCS.
The association (disassociation) of an XML document to a primitive DCS is
accomplished by adding (removing) a pointer to that leaf entry at which the DCS
resides. These operations are trivial and they will not be discussed further.

5.2. Indexing Overhead

The primitive DCSs, which actually are the XML schemata to be indexed, are
stored at the leaf nodes of the XSD tree. All intermediate nodes are used to
facilitate the access to the primitive DCSs. The intermediate nodes outline the
space overhead for maintaining the XSD structure. Let N be the number of
primitive DCSs and n be the number of entries that can be accommodated in an
XSD node. The number of intermediate nodes is given by

N − n

n(n − 1)
(3)

Therefore the intermediate nodes constitute

N − n

n(N − 1)
100% (4)

of the total number of XSD nodes, if each leaf node contains n DCSs (given that
N = n(d+1) and the XSD tree is complete). This is depicted in Fig. 11. As the
number n of entries in an XSD node becomes smaller, we need more intermediate
nodes for the same N and the space overhead increases.



190 E. Kotsakis

0

5

10

15

20

25

30

10 30 60 10
0

16
0

24
0

32
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Primitive  DCSs

In
de

xi
ng

 o
ve

rh
ea

d 
%

n=4

n=8

n=16

Fig. 11. Indexing overhead as a function indicating the percentage of nodes used as intermediate
nodes in an XSD tree.

5.3. Query Evaluation Through XSD

An XML query is evaluated by searching for DCSs that match the query. The
matching of a query against a DCS is accomplished by using Algorithm 3.2.
Algorithm 5.1 is the Search algorithm for finding relevant primitive DCSs in the
repository and eventually all the XML documents that are derived from these
DCSs.

Algorithm 5.1. Search(T, Q)

Input: An XSD tree whose root is referenced by T and a path query Q.

Output: A set D of those XML documents, which are relevant to Q.

Method: Decomposes the search space and recursively search the XSD tree. More
than one subtree under a visited node may need to be searched.

SR1 Search non-leaf nodes: If T is not a leaf, then for each entry E of T check
whether the merger schema E.S matches Q by calling IsRelevant(E.S, Q). If
so, invoke Search(E.P , Q).

SR2 Search leaf nodes: If T is a leaf, for all entries E of T check whether E.S
is relevant to Q by calling IsRelevant(E.S, Q) and, if so, mark those XML
documents that are derived from those primitive E.S that match the query
Q and add them to the set D.

The Search algorithm starts from the root and moves towards the leaves by
checking whether the query is matched against any intermediate merger DCSs.
All the nodes from the root to the desired leaf primitive DCSs (those that match
the query) are visited and need to be searched. In that way, exhaustive matching is
avoided and eventually only relevant DCSs are searched. This limits the number
of searching steps and, on the other hand, returns exactly those XML documents
that are relevant to the query. As a consequence, no irrelevant document is
returned and all relevant documents are considered in the result set. Moreover,



XSD: A Hierarchical Access Method for Indexing XML Schemata 191

the searching space is reduced and eventually the relevant XML documents are
efficiently retrieved avoiding exhaustive searching.

Example 5.1. Query evaluation To illustrate the Search algorithm, let us consider
the query A and the XSD structure as shown in Fig. 12. The XSD tree in Fig.
12 consists of three nodes N1, N2 and N3, from which N2 and N3 are leaf nodes
containing primitive DCSs and N1 is an intermediate type node (in this case the
root of the tree) that contains merger DCSs. The objective is to identify those
XML documents in the repository which are relevant to the query A. This means
that the relevant XML documents should contain paths that match the query A.
The query A (expressed in XQL as ‘a/ ∗ /f’) consists of a single parameterized
path expression, which is matched against any path that starts with the label ‘a’,
ends with label ‘f ’ and has any label between ‘a’ and ‘f’. The Search algorithm
starts from the root and it checks first whether the query is relevant to M1 by
calling IsRelevant(M1, A). Since an instance of the parameterized path (‘a/b/f’) is
in M1, M1 is assumed to be relevant to the query. Doing the same with M2, we see
that M2 is not relevant to the query A (no instance of the query is in M2). So far,
the search space has been divided into two subspaces: one under M1 and another
under M2. Since only M1 is relevant to the query A, we visit the child of the root
node N1, which is pointed to by M1. Then we repeat the same checking with any
DCS in the child node N2, and we find eventually that only P2 is relevant to the
query A and therefore all the XML documents, which are derived from P2 (i.e.
D21, D22) are considered to be relevant to the query A. Query B is relevant to the
XML documents D31, D32, D41 and D42.

An interesting aspect of XSD is that it allows visiting DCSs that are close to
the one that matches the query. For example, P1 does not match the query A,
although it is close enough to matching the query A. It contains the path ‘a/b’,
which partially match the query. This feature may be used for ranking the output
according to a matching degree. In this example, D21 and D22 may be in the class
of 100% matching, while D11 and D12 are in the class of 66% (since 2/3 of the
query is matched against P1). Such metrics, which are based on the extent to
which a query is matched against a DCS, may be used to estimate approximate
matching. Another advantage of XSD is that it can facilitate browsing. One can
start from the root of an XSD tree and selectively visit child nodes by checking the
structures of the DCSs. Following the parent/child node links, one can identify
those XML documents that fit some preference criteria.

5.4. Search Performance

Usually, searching for a primitive DCS requires order logN, where N is the
number of primitive DCSs in the leaf nodes. Let d be the depth of the XSD
tree (root’s depth is zero). Let n be the number of entries in each XSD node. If
the XSD tree is complete, the number of leaf nodes is nd, and if each leaf node
contains n entries then

N = n(d+1) (5)

Each primitive DCS may be accessed by visiting (d + 1) nodes including the
root and the leaf node, which actually accommodates the primitive DCS. The
worst case is the one where the query is compared to all n entries in each XSD
node we visit as we descend the XSD tree. A comparison is realized by invoking



192 E. Kotsakis

Merger DCSs

e

a

b c

h

f g

a

b c

h e

f g

a

b c

2

2
12

1 1

1

n

q

a

p m

m n

k q

a

h p

2

1
21

1 1

2

n

a

h m

k

f

a

* m

a

Primitive DCSs

Intermediate node

Leaf node

Query A Query B

XML 
documents

N1

N3N2

M1 M2

P1 P2 P3 P4

D11 D21D12 D22 D31 D32 D41 D42
 

Fig. 12. XML query evaluation.

the procedure IsRelevant() discussed in Algorithm 3.2. The maximum number of
comparisons is n(d + 1), which is also given by

n

log n
(logN) (6)

Figure 13 shows the number of comparisons as a function of the number N of
the primitive DCS stored in an XSD tree. This figure shows how the number of
comparisons increases in terms of N (ranging from 10 to 1000) for three different
values of n. This clearly indicates that the XSD access method requires much
fewer comparisons than the exhausting search in order to identify those primitive
DCSs that are relevant to the query. For example, for n = 8 and N = 700, it
requires just 25 comparisons.

5.5. Primitive DCS Insertion

Before we proceed further in discussing the Insert algorithm, we examine the
metric which is used to measure the degree to which a merger DCS contains a
primitive DCS. The containment degree Cd(M,P ) is estimated by assessing the
amount to which the merger M will be extended if M and the primitive DCS
P are merged and the resulting DCS is assigned to M (i.e., M = Merge(M,P )).
Formally, Cd(M,P ) is defined as follows.

Definition 5.1. Let N be the number of nodes in primitive DCS P and L be the



XSD: A Hierarchical Access Method for Indexing XML Schemata 193

0

5

10

15

20

25

30

35

40

45

10 30 60 10
0

16
0

24
0

32
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Primitive DCSs

C
om

pa
ri

so
ns n=4

n=8

n=16

Fig. 13. Number of comparisons in terms of N (number of primitive DCSs).

number of nodes that will be added to M after merging it with the primitive P .
The containment degree of M with respect to P is defined as

Cd(M,P ) =
N − L

N
(7)

If N nodes are added after merging (i.e., L = N), then Cd(M,P ) = 0, which
means that no part of P is contained in M. If no node is added (i.e., L = 0),
then Cd(M,P ) = 1, which means that P is totally contained in M. In general
Cd(M,P ) is a real number between 0 and 1 inclusive that specifies the extent
to which the primitive DCS P is contained in the merger M. Let us consider
the DCSs in Fig. 14, where M1 is merged with Pn and it is transformed into
M∗

1 , (M∗
1 = Merge(M1, Pn)) and M2 is merged with Pn and it is transformed into

M∗
2 , (M∗

2 = Merge(M2, Pn)). The number of nodes in Pn is N = 6. In order to
accommodate the new primitive Pn, M1 is extended by adding just one node
(node k), thus L = 1 and Cd(M1, Pn) = 5/6. Doing the same with M2, M2 is
extended by three nodes (b, f, e), thus L = 3 and Cd(M2, Pn) = 1/2.

The containment degree metric Cd is mainly used by the Insert algorithm to
find where to place new primitive DCSs. The purpose of the Insert algorithm is
to add a new primitive DCS to the XSD structure.

Algorithm 5.2. Insert(T , Pn)

Input: An XSD tree whose root is referenced by the pointer T and a new
primitive DCS Pn.

Output: The XSD tree that results after the insertion of Pn.

Method: Finds recursively where to place the new entry containing the primitive
DCS Pn. It starts from the root and descends until a leaf is reached. It adds the
entry into the leaf node and adjusts the XSD tree accordingly by performing
any necessary node splitting.



194 E. Kotsakis

m n

k q

a

h p

3

2
21

2 1

2

M*
2

f

b1

1

e
1

h e

f g

a

b c

3

3
22

2 1

2

M*
1

k1

h e

f g

a

b c

2

2
12

1 1

1

M1

m n

k q

a

h p

2

1
21

1

2

M2e

f k

a

b h

Pn

 
1 1

1

1

11

1

Fig. 14. Containment degree. M∗
1 results from the merging of M1 and Pn. M

∗
2 results from the merging

of M2 and Pn. The containment degree of M1 and M2 with respect to Pn is 5/6 and 1/2 respectively.
This means that 5/6 of Pn is contained in M1 and 1/2 of Pn is contained in M2. Therefore M1

contains a larger portion of Pn than M2.

I1 Insert into non-leaf node. If T is not a leaf, then for all entries E in T ,
compute the containment degree Cd(E.S, Pn). Let D be the entry in T for
which the Cd(D.S, Pn) is maximum, then invoke Insert(D.P , Pn).

I2 Insert into leaf node. If T is a leaf, then check if there is a place where the new
entry containing the Pn can be accommodated. A node can accommodate
a new entry if the number of existing entries in the node is less than M
(maximum threshold).

I2.1 If there is room and the new entry can be placed in T , then add
the new entry in T and adjust the XSD tree by merging Pn with any
ascendant merger DCS in the non-leaf nodes from T up to the root.
That is, the new primitive DCS Pn is merged first with the DCS of the
parent entry of the leaf T , then with the DCS of the grandfather entry
of T and so on until the update reaches the root of XSD tree.

I2.2 Otherwise, if the number of existing entries is M and a new entry
cannot be placed in T , then the node T splits into two nodes containing
disjoint groups of entries by invoking SplitNode(T ). The new entry is
placed in one of the resulting nodes and the XSD is adjusted starting
from the new node towards the root by re-estimating all the ascending
merger schemata in the non-leaf nodes all the way up to the root.

To illustrate how the Insert algorithm works, let us consider the XSD as shown
in Fig. 15. Figure 15(a) shows the XSD before the insertion of the new primitive
DCS Pn, while Fig. 15(b) shows the XSD after the insertion of Pn. Figure 15
shows the same Pn, M1 and M2 as shown in Fig. 14. The Insert algorithm first
checks the containment degrees of the root entries Cd(M1, Pn) and Cd(M2, Pn) and
chooses that entry which yields the largest Cd (M1 in this case). This means that
the new entry Pn will be inserted in the subtree rooted by the node N2, which is
the child pointed to by M1. N2 is a leaf node and in this case the Insert algorithm



XSD: A Hierarchical Access Method for Indexing XML Schemata 195

e

a

b c

h

f g

a

b c

h e

f g

a

b c

2

2
12

1 1

1

n

q

a

p m

m n

k q

a

h p

2

1
21

1 1

2

n

a

h m

k

Intermediate
 node

Leaf node

M2M1

P1 P4P2 P3

XML 
documents

N1

N2 N3

(a)

e

f k

a

b h

e

a

b c

h

f g

a

b c n

q

a

p m

m n

k q

a

h p

2

1
21

1 1

2

n

a

h m

k

Intermediate
 node

Leaf node

XML 
documents

M2

P1 P4P2 P3

h e

f g

a

b c

3

3
22

2 1

2

M1

k1

Pn

N1

N2 N3

 

(b)

Fig. 15. Inserting a new primitive DCS. (a) XSD structure before the insertion of the primitive DCS
Pn in Fig. 14. (b) XSD structure after the insertion of Pn.

checks for available space in N2 to store the entry Pn. If there is no space a split
operation is performed and the entries in N2 are divided into two disjoint sets. In
our example Pn is stored in N2 and any ancestor of N2 is merged with Pn all the
way up to the root, so that eventually the XSD is updated to reflect the insertion
of the new entry (i.e., M1 is modified accordingly).

In case a node overflows (when the number of entries exceeds the maximum
threshold M) it is necessary to split the node into two disjoint sets in such a
way that makes it as unlikely as possible that both new nodes will need to be
examined on subsequent searches. The proposed node-splitting technique is based
on a clustering algorithm, which is used to create two tightly bound clusters of
DCSs (one for each node). For this purpose, the similarity distance discussed
in Section 4.5 is employed to define DCS proximity. In principle, any clustering
technique which is based on distance metrics can be used for this purpose. The
SplitNode procedure, described below, is based on an agglomerative clustering
algorithm (Jain et al., 1999).



196 E. Kotsakis

Algorithm 5.3. SplitNode(L)

Input: An XSD leaf node referenced by the pointer L.

Output: Two new nodes L1 and L2 containing two disjoint sets of entries.

Method: A leaf node split may cause consequent splitting to ascendant non-leaf
nodes and propagate node split upwards as far as the splitting in lower levels
makes nodes in the higher levels to overflow. A leaf node split can make the
XSD tree grow taller if the splitting is propagated up to the root.

SN1 Compute proximity. The method computes the proximity matrix containing
the distance between each pair of DCSs in the node. It treats each DCS as
a distinct cluster.

SN2 Reduce the total number of clusters. It finds the most similar pairs of DCSs
and merges them into a single DCS. It updates the proximity matrix to
reflect this merging.

SN3 Repeat. It repeats step SN2 until the number of clusters is two.

SN4 It finally assigns the two clusters to L1 and L2.

5.6. Insertion Performance

The primitive DCS to be inserted is checked against existing merger DCSs in
order to find where to place the new DCS. Each such comparison includes the
evaluation of the containment degree Cd of the merger entry with respect to the
new entry. The containment degree Cd determines to what extent the XSD merger
entry contains the new entry. The worst case is the one where the new entry is
compared to all of the entries in an XSD node. In this case, the number of such
comparisons is n ∗ d, where n is the number of entries in an XSD node and d
is the depth of the XSD tree. If there is no room for the new entry, then the
insertion cannot be completed and a node split must be performed in order to
make room for the new entry. Splitting is done to keep the XSD tree balanced.
However, if no split is performed, the cost for inserting a new primitive DCS is
equal to n ∗ d comparisons, where each comparison corresponds to an estimate
of the containment degree Cd. The SplitNode algorithm is based on a clustering
approach that begins with each DCS as if it was a distinct (singleton) cluster and
successively merges clusters together until the number of clusters becomes two.
Splitting may be propagated to other intermediate nodes upwards to the root.
It is difficult to estimate the number of splits, since node splitting is performed
in a dynamic fashion and depends on the number of entries n in the XSD node
as well as the degree of similarity between primitive DCSs. However, the cost of
a node split can be estimated as a number of pairwise comparisons among the
entries of an XSD node. Each such comparison requires the estimation of the
distance between every pair of entries in an XSD intermediate node. If an XSD
node has n entries, the total number of entries to be checked is n plus the new

one (i.e., n + 1) and the number of comparisons to be performed is n(n+1)
2

in the
first iteration. There are n− 1 iterations and the total number of comparisons for
completing clustering is given by

n−1∑
i=1

(
i + 2

2

)
(8)



XSD: A Hierarchical Access Method for Indexing XML Schemata 197

0

100

200

300

400

500

600

700

800

900

4 8 16
Number of entries per node

N
um

be
r 

of
 p

ai
rw

is
e 

co
m

pa
ri

so
ns

Fig. 16. Number of pairwise comparisons for performing the agglomerative clustering during a node
split.

Figure 16 shows how the number of pairwise comparisons increases with regard
to n (for n = 4, 8, 16) in the case of a node split. As we can see, the number of
pairwise comparisons increases exponentially. When n is small, the node splitting
is performed very efficiently but the XSD tree becomes deep and we visit more
intermediate nodes performing more comparisons during searching. On the other
hand, when the number of entries per node becomes large, the XSD tree becomes
flat and the search becomes less costly, while the split operation requires more
pairwise comparisons for accomplishing the agglomerative clustering. This is the
ultimate cost for obtaining good search performance.

5.7. Primitive DCS Deletion

The Delete operation is used to remove an existing primitive DCS Po from the
XSD structure whose root is T .

Algorithm 5.4. Delete(T , Po)

Input: An XSD tree whose root is referenced by the pointer T and a primitive
DCS Po to be removed from the XSD tree.

Output: The XSD tree that results after the deletion of Po.

Method: Deleting Po results in removing all XML documents which are derived
from the primitive DCS Po.

D1 Find the leaf node containing Po and remove Po from the node.

D2 Update all the ancestors X of Po by invoking Separate(X, Po).

D3 If the deletion of Po causes underflow, the under-full node may be merged
with any sibling node. The decision on what sibling node to choose may
be achieved by using the containment degree. The Cd measure dictates
choosing that sibling node whose merger DCS will be extended less if we
add to it all the DCS entries from the under-full node. In other words,
the sibling node to be chosen is the one whose merger DCS Mi yields the
largest Cd(Mi,Mr), where Mr is the merger of the DCSs in the under-full
node.

D4 If the root node has only one child, make this child the new root of XSD.



198 E. Kotsakis

For all the ancestors DCSs X of the primitive leaf DCS Po, the Delete algorithm
invokes Separate(X, Po). That is, the contribution of Po to merger DCSs all the
way up to the root is removed. This operation may cause underflow on the parent
node of the primitive DCS when the number of entries becomes less than m (the
minimum number of entries that can be accommodated in a node). In that case a
new Merge operation between parent node entries may be performed. In order to
make sure that the number of children of any merger DCS is between m and M,
merging due to deletion may propagate up to the root. If the root has only one
child, then this child becomes the new root of the XSD tree. Step D3 may cause
subsequent splitting due to merging. An easy implementation of this step is to
perform reinsertion of the under-full node DCS entries by invoking Insert(Ti, Dj),
where Ti is a pointer to an ancestor node and Dj is a DCS in the under-full node.

5.8. Deletion Performance

Deleting an existing primitive DCS requires two steps: (1) find the leaf node
containing the primitive DCS and (2) remove the DCS from this location. Finding
the leaf node containing the DCS is done by first comparing the DCS to the
entries of the root. The entry with containment degree equal to 1 is chosen (entry
completely contains the DCS in question). If such an entry does not exist, the
DCS is not accommodated in this XSD tree. Then, the node that descends from
this entry is visited and the DCS is compared to the entries of this node. The
entry with containment degree equal to 1 is again chosen and this goes on until
we reach the leaf node where the DCS resides. In the worst case we need to check
all entries of a node in order to find the one that fully contains the DCS. If n is
the number of entries in an XSD node, n ∗ (d+1) comparisons are needed, where
d is the depth of the XSD tree. Removing the DCS from the leaf node detaches
the DCS from all mergers toward the root and this causes d invocations of the
Separate procedure. Removing a DCS from a leaf node may cause underflow,
which may subsequently make sibling nodes merge. In this case, the cost of
merging two nodes is given as previously described by the Merge operation.

6. Conclusions

The XSD approach is proposed for organizing semi-structured schemata in a
hierarchical way and it may be viewed as a meta-schema organization. The XSD
approach is based on clustering XML schemata rather than on classifying semi-
structured sources such as XML documents. It generates meta-classes, which
are called DCSs, in a dynamic way from primitive DCSs. The XML documents
derived from primitive DCSs become members of these meta-classes (merger
DCSs). XSD serves two purposes: (1) it is an indexing structure that XML
queries may use to find the most relevant XML documents in a large XML
repository; (2) it is an organization for XML schemata which allows similar
schemata to be stored at the same place. A merger DCS may be viewed as a
generic schema that encompasses many primitive specialized DCSs.

The XSD access method efficiently maps a query path to a set of XML
documents by taking into account the structural proximity of documents and
stores structurally close documents at the same place. Document retrieval is
accomplished by matching the query paths against the document structure. Those



XSD: A Hierarchical Access Method for Indexing XML Schemata 199

documents that match the paths (i.e., the paths are embedded in the documents)
are considered relevant to the query and they are included in the result set. XSD is
not based on any model and there is no need to map XML-encoded information
into a data model in order to retrieve relevant documents.

In a filter-and-refine XML query execution, the XSD access method restricts
the search to a subset of XML documents, which is usually a subspace of the
entire corpus. Once the subset has been defined, the XML queries may be executed
on these documents. The rationale is to avoid excessive computation where the
data is likely not to satisfy the query. The advantages of the XSD structure are
summarized as follows: (1) there is no need to deal with documents that do not
match the XML query. This results in executing XML queries faster since the
search space is limited only to the relevant XML documents. (2) The accuracy
in answering XML queries is high. (3) Maintaining the XSD structure is not
difficult since new XML schemata may be added or old ones deleted without
performing time-consuming operations that require reorganization of the whole
XSD structure. (4) XSD may be used to facilitate browsing.

Acknowledgements. Part of this research was accomplished while the author was visiting
the Federal Institute of Technology (ETH), Zurich, Switzerland and the VTT Information
Technology, Helsinki, Finland within the framework of the fellowship program of the
European Research Consortium for Informatics and Mathematics (ERCIM).

References

Abiteboul S, Quass D, McHugh J, Widom J, Wiener JL (1997) The Lorel query language for
semistructured data. International Journal on Digital Libraries 1(1): 68–88

Adelberg B (1998) NoDoSE: A tool for semi-automatically extracting semistructured data from
text documents. In Haas LM, Tiwary A (eds) Proceedings of the ACM SIGMOD international
conference on management of data (SIGMOD 1998). ACM Press, Seattle, WA, pp 283–294

Atzeni P, Mecca G, Merialdo P (1997) To weave the web. In Jarke M, Carey MJ, Dittrich KR,
Lochovsky FH, Loucopoulos P, Jeusfeld MA (eds) Proceedings of 23rd international conference
on very large data bases (VLDB’97). Morgan Kaufmann, Athens, pp 206–215

Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval (ACM Press Series). Addison-
Wesley, Reading, MA

Beeri C, Tzaban Y (1999) SAL: an algebra for semistructured data and XML. In Cluet S, Milo
T (eds) Proceedings of the ACM SIGMOD workshop on the web and databases (WebDB’99),
Philadelphia, PA, pp 37–42

Bertino E, Guerrini G, Merlo I, Mesiti M (1999) An approach to classify semistructured objects. In
Guerraoui R (ed) Proceedings of the 13th European conference on object-oriented programming
(ECCOP’99). Lecture Notes in Computer Science, vol 1628. Springer, Lisbon, pp 416–440

Biron PV, Malhotra A (2000) XML schema part 2: datatypes. W3C working draft. Available at
http://www.w3.org/TR/2000/WD-xmlschema-2-20000407/

Blair B, Boyer J (1999) XFDL: creating electronic commerce transaction records using XML.
Computer Networks 31(11–16): 1611–1622

Bonifati A, Ceri S (2000) Comparative analysis of five XML query languages. ACM SIGMOD
Record 29(1): 68–79

Bosak J (1997) XML, Java, and the future of the web. World Wide Web Journal 2(4): 219–227
Bray T, Paoli J, Sperberg-McQueen C-M (1998) Extensible Markup Language (XML) 1.0. W3C

Recommendation. Available at http://www.w3.org/TR/1998/REC-xml-19980210
Buneman P (1997) Semistructured data. In Proceedings of the 16th ACM SIGACT-SIGMOD-

SIGART symposium on principles of database systems (PODS97). ACM Press, Tucson, AZ,
pp 117–121

Buneman P, Abiteboul S, Suciu D (1999) Data on the web: from relations to semistructured data and
XML. Morgan Kaufmann, San Mateo, CA

Ceri S, Fraternali P, Paraboschi S (2000) XML: current developments and future challenges for
the database community. In Zaniolo C, Lockemann PC, Scholl MH, Grust T (eds) Advances
in database technology: Proceedings of the 6th international conference on extending database



200 E. Kotsakis

technology (EDBT 2000). Lecture Notes in Computer Science, vol 1777, Springer, Konstanz,
pp 3–17

Christophides V, Cluet S, Simon J (2000) On wrapping query languages and efficient XML inte-
gration. In Chen W, Naughton JF, Bernstein PA (eds) Proceedings of the 2000 ACM SIGMOD
international conference on management of data. ACM Press, Dallas, TX, pp 141–152

Deutsch A, Fernandez MF, Florescu D, Levy AY, Maier D, Suciu D (1999) Querying XML data.
IEEE Data Engineering Bulletin 22(3): 10–18

Fallside DC (2000) XML schema part 0: primer. W3C working draft. Available at
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

Glushko RJ, Tenenbaum JM, Meltzer B (1999) An XML framework for agent-based E-commerce.
Communications of the ACM 42(3): 106–114

Goldman R, Widom J (1997) DataGuides: enabling query formulation and optimazation in semistruc-
tured databases. In Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld
MA (eds) Proceedings of the 23rd international conference on very large data bases (VLDB’97).
Morgan Kaufmann, Athens, pp 436–445

Goldman R, McHugh J, Widom J (1999) From semistructured data to XML: migrating the lore
data model and query language. In Cluet S, Milo T (eds) Proceedings of the ACM SIGMOD
workshop on the web and databases (WebDB’99), Philadelphia, PA, pp 25–30

Grossman DA, Frieder O (1998) Information retrieval: algorithms and heuristics. Kluwer Academic,
Dordrecht

Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading, MA

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Computing Surveys 31(3):
264–323

Kilpeläinen P, Mannila H (1995) Ordered and unordered tree inclusion. SIAM Journal on Computing
24(2): 340–356

Kruskal JB (1983) An overview of sequence comparison. In Sankoff D, Kruskal J-B (eds) Time warps,
string edits and macromolecules: the theory and practice of sequence comparison. Addison-Wesley,
Reading, MA, pp 1–44

McHugh J, Abiteboul S, Goldman R, Quass D, Widom J (1997) Lore: a database management system
for semistructured data. ACM SIGMOD Record 26(3): 54–66

McHugh J, Widom J, Abiteboul S, Luo Q, Rajaraman A (1998) Indexing semistructured data.
Technical Report, Computer Science Department, Stanford University

Meltzer B, Glushko RJ (1998) XML and electronic commerce: enabling the network economy. ACM
SIGMOD Record 27(4): 21–24

Mylopoulos J (2000) End-to-end E-commerce application development based on XML tools. IEEE
Data Engineering Bulletin 23(1): 29–36

Nestorov S, Abiteboul S, Motwani R (1998) Extracting schema from semistructured data, In Haas
LM, Tiwary A (eds) Proceedings of the ACM SIGMOD international conference on management
of data (SIGMOD 1998). ACM Press, Seattle, WA, pp 295–306

Papakonstantinou Y, Velikhov P (1999) Enhancing semistructured data mediators with document type
definitions. In Proceedings of the 15th international conference on data engineering (ICDE’99).
IEEE Computer Society Press, Sydney, pp 136–145

Papakonstantinou Y, Garcia-Molina H, Widom J (1995) Object exchange across heterogeneous
information sources. In Yu PS, Chen ALP (eds) Proceedings of the 11th international conference
on data engineering(ICDE’95). IEEE Computer Society Press, Taipei, Taiwan, pp 251–260

Robie J, Lapp J, Schach D (1998) XML Query Language (XQL). In Proceedings of the W3C Query
Languages workshop (QL’98), Boston, MA. Available at
http://www.w3.org/TandS/QL/QL98/pp/xql.html

Thompson HS, Beech D, Maloney M, Mendelsohn N (2000) XML schema part 1: structures. W3C
working draft. available at http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/

Wang JT-L, Wang X, Lin K-I, Shasha D, Shapiro BA, Zhang K (1999) Evaluating a class of distance-
mapping algorithms for data mining and clustering. In Proceedings of the fifth ACM SIGKDD
international conference on knowledge discovery and data mining. ACM Press, San Diego, CA,
pp 307–311

Widom J (1999) Data management for XML: research directions. IEEE Data Engineering Bulletin
22(3): 44–52

Zhang K (1995) Algorithms for the constrained editing distance between ordered labelled trees and
related problems. Pattern Recognition 28(3): 463–474

Zhang K, Shasha D (1989) Simple fast algorithms for the editing distance between trees and related
problems. SIAM Journal on Computing 18(6):1245–1262



XSD: A Hierarchical Access Method for Indexing XML Schemata 201

Author Biography

Evangelos Kotsakis received his B.Sc. degree in computer science from
the University of Athens, Greece in 1993, his M.Sc. and Ph.D degrees
in engineering from the University of Salford, England in 1994 and 1998
respectively. From 1998 to 1999, he worked on space applications in the
Joint Research Center, Ispra, Italy. From 1999 to 2000, he held visiting
posts in the Federal Institute of Technology (ETH), Zurich, Switzerland
and VTT Information Technology, Helsinki, Finland. He is currently a
research associate in the Joint Research Center at Ispra, Italy. His research
interests include Web data management, data warehousing, data mining
and mobile systems.

Correspondence and offprint requests to: Dr Evangelos Kotsakis, Joint Research Center (CCR), Via

Fermi 1, TP261, I-21020 Ispra (VA), Italy. Email: kotsakis@acm.org


