
Knowledge and Information Systems (2000) 2: 161–184
c© 2000 Springer-Verlag London Ltd.

An Index Structure for Data Mining and
Clustering

Xiong Wang1, Jason T. L. Wang1∗, King-Ip Lin2, Dennis Shasha3,

Bruce A. Shapiro4 and Kaizhong Zhang5

1Department of Computer and Information Science, New Jersey Institute of Technology,

Newark, NJ, USA
2Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
3Courant Institute of Mathematical Sciences, New York University, New York, USA
4Laboratory of Experimental and Computational Biology, National Cancer Institute,

Frederick, MD, USA
5Department of Computer Science, The University of Western Ontario, London, Ontario, Canada

Abstract. In this paper we present an index structure, called MetricMap, that takes a set
of objects and a distance metric and then maps those objects to a k-dimensional space
in such a way that the distances among objects are approximately preserved. The index
structure is a useful tool for clustering and visualization in data-intensive applications,
because it replaces expensive distance calculations by sum-of-square calculations. This can
make clustering in large databases with expensive distance metrics practical. We compare
the index structure with another data mining index structure, FastMap, recently proposed
by Faloutsos and Lin, according to two criteria: relative error and clustering accuracy. For
relative error, we show that (i) FastMap gives a lower relative error than MetricMap for
Euclidean distances, (ii) MetricMap gives a lower relative error than FastMap for non-
Euclidean distances (i.e., general distance metrics), and (iii) combining the two reduces the
error yet further. A similar result is obtained when comparing the accuracy of clustering.
These results hold for different data sizes. The main qualitative conclusion is that these two
index structures capture complementary information about distance metrics and therefore
can be used together to great benefit. The net effect is that multi-day computations can
be done in minutes.

Keywords: Biomedical applications; Data engineering; Distance metrics; Knowledge dis-
covery; Visualization

∗ Part of the work of this author was done while visiting Courant Institute of Mathematical Sciences,
New York University.
Received February 1998
Revised July 1999
Accepted September 1999

162 X. Wang et al

1. Introduction

Faloutsos and Lin (1995) proposed an index structure, called FastMap, for knowl-
edge discovery, visualization, and clustering in data-intensive applications. The
index structure takes a set of objects and a distance metric and maps the ob-
jects to points in a k-dimensional target space in such a way that the distances
between objects are approximately preserved. One can then perform data min-
ing and clustering operations on the k-dimensional points in the target space.
Empirical studies indicated that FastMap works well for Euclidean distances
(Faloutsos, 1996; Faloutsos and Lin, 1995). In a later paper, the inventors showed
that a modification to FastMap could also help detect patterns using the time-
warping distance (which is not even a metric, i.e., it doesn’t satisfy the triangle
inequality) (Yi et al, 1998).

In this paper we present an index structure, called MetricMap, that works in a
similar way to FastMap. We conduct experiments to compare the performance of
FastMap and MetricMap based on both Euclidean distance and general distance
metrics. A general distance metric is a function δ that takes pairs of objects
into real numbers, satisfying the following properties: for any objects x, y, z,
δ(x, x) = 0 and δ(x, y) > 0, x 6= y (nonnegative definiteness); δ(x, y) = δ(y, x)
(symmetry); δ(x, y) 6 δ(x, z) + δ(z, y) (triangle inequality). Euclidean distance
satisfies these properties. On the other hand, many general distance metrics of
interest are not Euclidean, e.g. string edit distance as used in biology (Sankoff
and Kruskal, 1983), document comparison (Wang et al, 1997) and the UNIX diff
operator. Neither FastMap nor MetricMap (nor any other index structure that
we know of) gives guaranteed performance for general distance metrics. For this
reason, an experimental analysis is worthwhile.

Section 2 surveys related work. Section 3 discusses the basic properties of
FastMap and MetricMap. Section 4 compares the performance of the two index
structures. Section 5 evaluates their performance in data clustering applications.
Section 6 presents a further analysis of the index structures, addressing some
trade-off issues. Section 7 concludes the paper.

2. Related Work

Clustering is an important operation in data mining (Agrawal et al, 1998, Ester et
al, 1996, Wang et al, 1997, 1999). Clustering algorithms can be broadly classified
into two categories: partitional and hierarchical (Jain and Dubes, 1988; Kaufman
and Rousseeuw, 1990). A partitional algorithm partitions the objects into a
collection of a user-specified number of clusters. A hierarchical algorithm is an
iterative process, which either merges small clusters into larger ones, starting
with atomic clusters containing single objects, or divides the set of objects into
subunits, until some termination condition is met. These algorithms have been
studied extensively by researchers in different communities, including statistics
(Fukunaga, 1990), pattern recognition (Duda and Hart, 1973; Jain and Dubes,
1988), machine learning (Michalski and Stepp, 1983), and databases. In particular,
data intensive clustering algorithms include CLARANS (Ng and Han, 1994),
BIRCH (Zhang et al, 1996), DBSCAN (Ester et al, 1996), STING (Wang et
al, 1997), WaveCluster (Sheikholeslami et al, 1998), CURE (Guha et al, 1998),
CLIQUE (Agrawal et al, 1998), etc.

For example, the recently published CURE algorithm (Guha et al, 1998)

An Index Structure for Data Mining and Clustering 163

utilizes multiple representatives for each cluster. The representatives are generated
by selecting well-scattered points from the cluster and then shrinking them toward
the center of the cluster by a specified fraction. This enables the algorithm to adjust
well to a geometry of clusters having nonspherical shapes and wide variances in
size. CURE is designed to handle points (vectors) in k-dimensional (k-d) space
only, not for general distance metric spaces, and therefore is considered as a
vector-based clustering algorithm. It employs a combination of random sampling
and partitioning to handle large datasets. The algorithm is a typical hierarchical
one, which starts with each input point as a separate cluster, and at each successive
step merges the closest pair of clusters.

By contrast, the popular K-means and K-medoid methods are partitional
algorithms. The methods determine K cluster representatives and assign each
object to the cluster with its representative closest to the object such that the
sum of the distances squared between the objects and their representatives is
minimized. The methods work for both Euclidean distance and general distance
metrics, and therefore are considered as distance-based clustering algorithms.
Kaufman and Rousseeuw (1990), Ng and Han (1994), Zhang et al (1996) presented
extensions of the partitional methods for large and spatial databases, some of
which are vector-based and some are distance-based.

In contrast to the above work, FastMap and MetricMap employ the approach
of mapping objects to points in a k-d target space Rk and then cluster the
points in Rk . The main benefit provided by this approach is that it saves time
in distance computation. Calculating the actual distances among the objects is
much more expensive than measuring the dissimilarities among the points in
Rk .1 This is particularly true for new, emerging applications in multimedia and
scientific computing. As an example, comparing two RNA secondary structures
may require a dynamic programming algorithm (Shapiro and Zhang, 1990) or a
genetic algorithm (Shapiro and Navetta, 1994) that runs in seconds or minutes
on current workstations. The presented mapping approach is useful not only
for data mining and clustering, but also for visualization and retrieval in large
datasets (Faloutsos, 1996; Faloutsos and Lin, 1995).

3. FastMap and MetricMap: A Brief Comparison

Consider a set of objects D = {O0, O1, . . . , ON−1} and a distance function d where
for any two objects Oi, Oj ∈ D, d(Oi, Oj) (or di,j for short) represents the distance
between Oi and Oj . The function d can be Euclidean or a general distance metric.
Both FastMap and MetricMap take the set of objects, some inter-object distances
and embed the objects in a k-d space Rk (k is user-defined), such that the distances
among the objects are approximately preserved. The k-d point Pi corresponding
to the object Oi is called the image of Oi. The k-d space containing the images is
called target space.

The differences between the two index structures lie in the algorithm they use
for embedding and the target space they choose. FastMap embeds the objects
in a Euclidean space, whereas MetricMap embeds them in a pseudo-Euclidean
space (Greub, 1975; Lax, 1997). Below we describe the two index structures and

1 We use ‘dissimilarity’, rather than ‘distance’, in the paper since there may be a negative dissimilarity
value between two points in the target space.

164 X. Wang et al

Fig. 1. Illustration of the projection method used in FastMap.

their properties; detailed proofs can be found in (Faloutsos and Lin, 1995; Yang
et al, 1998).

3.1. The FastMap Algorithm

The basic idea of this algorithm is to project objects on a line (Oa, Ob) in an
n-dimensional (n-d) space Rn for some unknown n, n > k. The line is formed by
two pivot objects Oa, Ob, chosen as follows. First, arbitrarily choose one object
and let it be the second pivot object, Ob. Let Oa be the object that is farthest
apart from Ob. Then update Ob to be the object that is farthest apart from Oa.
The two resulting objects Oa, Ob are pivots.

Consider an object Oi and the triangle formed by Oi, Oa and Ob (Fig. 1). From
the cosine law, one can get

d2
b,i = d2

a,i + d2
a,b − 2xida,b (1)

Thus, the first coordinate xi of object Oi with respect to the line (Oa, Ob) is

xi =
d2
a,i + d2

a,b − d2
b,i

2da,b
(2)

Now we can extend the above projection method to embed objects in the target
space Rk as follows. Pretending that the given objects are indeed points in Rn, we
consider an (n − 1)-d hyper-plane H that is perpendicular to the line (Oa, Ob),
where Oa and Ob are two pivot objects. We then project all the objects onto this
hyper-plane. Let Oi, Oj be two objects and let O

′
i , O

′
j be their projections on the

hyper-plane H. It can be shown that the dissimilarity d′ between O
′
i , O

′
j is

(d′(O′
i , O

′
j))

2 = (d(Oi, Oj))
2 − (xi − xj)

2, i, j = 0, . . . , N − 1 (3)

Being able to compute d′ allows one to project on a second line, lying on the
hyper-plane H, and therefore orthogonal to the first line (Oa, Ob). We repeat the
steps recursively, k times, thus mapping all objects to points in Rk .

The discussion thus far assumes that the objects are indeed points in Rn. If
the assumption doesn’t hold, (d(Oi, Oj))

2 − (xi − xj)
2 may become negative. For

this case, (3) is modified as follows:

d′(O′
i , O

′
j) = −

√
(xi − xj)2 − (d(Oi, Oj))2 (4)

Let Oi, Oj be two objects in D and let Pi = (x1
i , . . . , x

k
i), Pj = (x1

j , . . . , x
k
j) be

An Index Structure for Data Mining and Clustering 165

their images in the target space Rk . The dissimilarity between Pi and Pj , denoted
df(Pi, Pj), is calculated as

df(Pi, Pj) =

√√√√ k∑
l=1

(xli − xlj)
2 (5)

Note that if the objects are indeed points in Rn, n > k, and the distance function
d is Euclidean, then from (3) FastMap guarantees a lower bound on inter-object
distances. That is,

Proposition 3.1. df(Pi, Pj) 6 d(Oi, Oj).

Let Costfastmap denote the total number of distance calculations required by
FastMap. From (2) and (3) and the way the pivot objects are chosen, we have

Costfastmap = 3Nk (6)

where N is the size of the dataset and k is the dimensionality of the target space.

3.2. The MetricMap Algorithm

The algorithm works by first choosing a small sample A of 2k objects from the
dataset. In choosing the sample, one can either pick it up randomly, or use the 2k
pivot objects found by FastMap. The algorithm calculates the pairwise distances
among the sampling objects and uses these distances to establish the target space
Rk . The algorithm then maps all objects in the dataset to points in Rk .

Specifically, assume, without loss of generality, that A = {O0, . . . , O2k−1}. We
define a mapping α as follows: α : A → R2k−1 such that α(O0) = a0 = (0, . . . , 0),
α(Oi) = ai = (0, . . . , 1(i), . . . , 0), 1 6 i 6 2k − 1 (see Fig. 2a). Intuitively we map O0

to the origin and map the other sampling objects to vectors (points) {ai}16i62k−1

in R2k−1 so that each of the objects corresponds to a base vector in R2k−1.
Let

M(ψ<a>) = (mi,j)16i,j62k−1 (7)

where

mi,j =
d2
i,0 + d2

j,0 − d2
i,j

2
, 1 6 i, j 6 2k − 1 (8)

Define the function ψ as follows: ψ : R2k−1 × R2k−1 → R such that

ψ(x, y) = xTM(ψ<a>)y (9)

where xT is the transpose of vector x. Notice that ψ(ai, aj) = mi,j , 1 6 i, j 6 2k−1.

The function ψ is called a symmetric bilinear form of R2k−1 (Greub, 1975).M(ψ<a>)
is the matrix of ψ with respect to the basis {ai}16i62k−1. The vector space R2k−1

equipped with the symmetric bilinear form ψ is called a pseudo-Euclidean space.
For any two points (vectors) x, y ∈ R2k−1, ψ(x, y) is called the inner product of x
and y. The squared distance between x and y, denoted ‖x− y‖2, is defined as

‖x− y‖2 = ψ(x− y, x− y) (10)

This squared distance is used to measure the dissimilarity of two points in the
pseudo-Euclidean space.

166 X. Wang et al

Fig. 2. Illustration of the MetricMap algorithm (k = 2).

Since the matrix M(ψ<a>) is real symmetric, there is an orthogonal matrix Q
= (qi,j)16i,j62k−1 and a diagonal matrix D = diag(λi)16i62k−1 such that

QTM(ψ<a>)Q = D (11)

where QT is the transpose of Q, λis are eigenvalues of M(ψ<a>) arranged in

An Index Structure for Data Mining and Clustering 167

some order, and columns of Q are the corresponding eigenvectors (Golub and
Van Loan, 1996). Note that if the matrix M(ψ<a>) has negative eigenvalues,
the squared distance between two points in the pseudo-Euclidean space may be
negative. That’s why we never say the ‘distance’ between points in a pseudo-
Euclidean space.

Now we find a ψ-orthogonal basis of R2k−1, {ei}16i62k−1, where

(e1, . . . , e2k−1) = (a1, . . . , a2k−1)Q (12)

or equivalently

(a1, . . . , a2k−1) = (e1, . . . , e2k−1)Q
T (13)

Each vector ai, 1 6 i 6 2k−1, can be represented as a vector in the space spanned
by {ei}16i62k−1 and the coordinate of aj with respect to {ei}16i62k−1 is the jth row
of Q (see Fig. 2b). Each ei corresponds to an eigenvector.

Suppose the eigenvalues are sorted in descending order by their absolute
values, followed by the zero eigenvalues. The MetricMap algorithm reduces the
dimensionality of R2k−1 to obtain the subspace Rk by removing the k − 1 di-
mensions along which the eigenvalues λis of M(ψ<a>) are zero or their absolute
values are smallest (see Fig. 2c). Notice that among the remaining k-dimensions,
some may have negative eigenvalues. The algorithm then chooses k + 1 objects,
called the reference objects, that span Rk .

Once the target space Rk is established, the algorithm maps each object O∗
in the dataset to a point (vector) P∗ in the target space by comparing the object
with the reference objects. The coordinate of P∗ is calculated through matrix
multiplication. Here is how.

Assume, without loss of generality, that the reference objects are O0, O1, . . . , Ok .
Let

b = (n∗,j)16j6k (14)

where

n∗,j =
d2∗,0 + d2

j,0 − d2∗,j
2

, 1 6 j 6 k (15)

Define

sign(λi) =

{
1 if λi > 0
0 if λi = 0
−1 if λi < 0

(16)

That is, sign(λi) is the sign of the ith eigenvalue λi. Let J = diag(sign(λi))16i62k−1

and C = diag(ci)16i62k−1 where

ci =

{ |λi| if λi 6= 0
1 otherwise

(17)

Let J[k] be the kth leading principal submatrix of the matrix J , i.e. J[k] =
diag(sign(λi))16i6k . Let C[k] be the kth leading principal submatrix of the matrix
C , i.e. C[k] = diag(|λi|)16i6k . Let Q[kk] be the kth leading principal submatrix of the

orthogonal matrix Q, i.e. Q[kk] = (qi,j)16i,j6k . The coordinate of P∗ in Rk , denoted
Coor(P∗), can be approximated as follows:

Coor(P∗) ≈ J[k]C
−1/2
[k] Q−1

[kk]b (18)

168 X. Wang et al

Let Oi, Oj be two objects in D and let Pi = (x1
i , . . . , x

k
i), Pj = (x1

j , . . . , x
k
j) be their

images in Rk . Let

∆(Pi, Pj) =

k∑
l=1

sign(λl)(x
l
i − xlj)

2 (19)

The dissimilarity between Pi and Pj , denoted dm(Pi, Pj), is approximated by

dm(Pi, Pj) ≈
{ √

∆(Pi, Pj) if ∆(Pi, Pj) > 0

−√−∆(Pi, Pj) otherwise
(20)

Note that if the objects are points in Rn, n > k, and the distance function
d is Euclidean, then as in FastMap, MetricMap guarantees a lower bound on
inter-object distances. That is,

Proposition 3.2. dm(Pi, Pj) 6 d(Oi, Oj).

To see this, note that in the Euclidean spaces the bilinear form ψ is positive
definite, because for any nonzero vector x, xTM(ψ<a>)x is positive (Ortega, 1987).
This implies that all the nonzero eigenvalues are positive. When projecting the
points from Rn onto Rk , the images have fewer coordinates. From (19) and (20),
we conclude that the dissimilarity between two images is less than or equal to the
distance between the corresponding objects.

Let Costmetricmap denote the total number of distance calculations required by
MetricMap. From (7), (8) and (11), we see that to calculate the eigenvalues of
M(ψ<a>), one needs to calculate the pairwise distances di,j , 0 6 i, j 6 2k− 1. This

requires (2k)2 = 4k2 distance calculations. From Equations (14), (15) and (18),
we see that to embed each object O∗ in Rk , one needs to calculate the distances
from O∗ to the k + 1 reference objects. Notice that if O∗ is a sampling object, its
distances to the reference objects need not be recalculated, since they are part of
the distances di,j , 0 6 i, j 6 2k − 1 that are already computed. Totally there are
N objects in the dataset, and therefore

Costmetricmap = 4k2 + (N − 2k)(k + 1) (21)

Comparing (6) and (21), since N > k, Costmetricmap 6 Costfastmap.

4. Precision of Embedding

We conducted a series of experiments to evaluate the precision of embedding
by calculating the errors induced by the index structures. The index structures
were implemented in C and C++ under the UNIX operating system run on a
SPARC 20. Four sets of distances were generated: synthetic Euclidean, synthetic
non-Euclidean, protein and RNA. The last three were general distance metrics,
so satisfied the triangle inequality, but were not Euclidean.

4.1. Data

In creating synthetic Euclidean distances, we generated N n-dimensional vectors.
Each vector was generated by choosing n real numbers randomly and uniformly
from the interval [LowBound..HighBound]. We then calculated the pairwise dis-
tances among the vectors. In creating synthetic non-Euclidean distances, we

An Index Structure for Data Mining and Clustering 169

Table 1. Parameters and base values used in the experiments for evaluating the precision of embedding

Parameter Value Description

k 15 Dimensionality of the target space
N 3000 Number of objects in the dataset
n 20 Dimensionality of synthetic vectors in Euclidean space
LowBound 0 Smallest possible value for each coordinate of the synthetic vectors
HighBound 100 Largest possible value for each coordinate of the synthetic vectors
MinDistance 1 Minimum distance between objects for the synthetic non-Euclidean data
MaxDistance 100 Maximum distance between objects for the synthetic non-Euclidean data

generated the pairwise distances among N objects randomly and uniformly in
the interval [MinDistance..MaxDistance], keeping only those objects that satisfied
the triangle inequality as in Shasha and Wang (1990). Table 1 summarizes the
parameters and base values used in the experiments.

In generating protein distances, we selected a set of 230 kinase sequences
obtained from the protein database in the Cold Spring Harbor Laboratory. We
used the string edit distance to measure the dissimilarity of two proteins (Sankoff
and Kruskal, 1983). The inter-protein distances were in the interval (1..2573).

In generating RNA distances, we used 200 RNA secondary structures obtained
from the virus database in the National Cancer Institute. The RNA secondary
structures were created by first choosing two phylogenetically related mRNA
sequences, rhino 14 and cox5, from GenBank (Burks et al, 1991) pertaining to the
human rhinovirus and coxsackievirus. The 5′ noncoding region of each sequence
was folded and 100 secondary structures of that sequence were collected. The
structures were then transformed into trees and their pairwise distances were
calculated as described in Shapiro and Zhang (1990) and Wang et al (1994). The
trees had between 70 and 180 nodes. The distances for rhino 14’s trees and cox5’s
trees were in the interval (1..75) and (1..60), respectively. The distances between
rhino 14’s trees and cox5’s trees were in the interval (43..94). The secondary
structures (trees) for each sequence roughly formed a cluster.

4.2. Experimental Results

Let Oi, Oj be two objects in D and let Pi, Pj be their images in Rk . The
dissimilarity between Pi, Pj embedded by FastMap, denoted df(Pi, Pj), was as in
(5). The dissimilarity between Pi, Pj embedded by MetricMap, denoted dm(Pi, Pj),
was as in (20). To understand whether the index structures might complement
each other, we considered three combinations of the index structures: AvgMap,
MinMap and MaxMap, with the dissimilarities da, dn, dx defined as follows:

da(Pi, Pj) =
df(Pi, Pj) + dm(Pi, Pj)

2
(22)

dn(Pi, Pj) = min{df(Pi, Pj), dm(Pi, Pj)} (23)

dx(Pi, Pj) = max{df(Pi, Pj), dm(Pi, Pj)} (24)

We collectively refer to all these index structures as mappers. In building the
mappers, we used random sampling objects for MetricMap to establish the target
space (cf. Section 3.2). Note here that the mappers have the same cost O(Nk)
asymptotically, cf. (6) and (21).

170 X. Wang et al

Fig. 3. Average relative errors of the mappers as a function of the dimensionality of the target space
for synthetic Euclidean data.

The measure used for evaluating the precision of embedding was the average
relative error (Errr), defined as

Errr =

∑
Oi,Oj∈D |d(Oi, Oj) − |ds(Pi, Pj)||∑

Oi,Oj∈D d(Oi, Oj)
× 100% (25)

where s = f, m, a, n, x, respectively. One would like this percentage to be as low
as possible. The lower Errr is, the better performance the corresponding mapper
has.

Figure 3 graphs Errr as a function of the dimensionality of the target space, k,
for the synthetic Euclidean data. The parameters have the values shown in Table
1. We see that for all the mappers, Errr drops as k increases. Errr approaches 0
when k = 19. FastMap performs better than MetricMap, but MaxMap dominates
in all situations. From Propositions 3.1 and 3.2, both FastMap and MetricMap
underestimate inter-object distances, so MaxMap gives the lowest average relative
error among all the mappers.

We next examined the scalability of the results. Figure 4 compares FastMap,
MetricMap and MaxMap for varying N, Fig. 5 compares the three mappers for
varying n, and Fig. 6 plots Errr as a function of (HighBound/LowBound) for
the three mappers. In each figure, only one parameter is tuned and the other
parameters have the values shown in Table 1. The LowBound in Fig. 6 is fixed
at 1. It can be seen that Errr depends on the dimensionality of vectors n, but is
independent of the dataset size N and coordinate ranges of the vectors. MaxMap
consistently beats the other two mappers in all these figures.

We then compared the relative performance of the mappers using the synthetic
non-Euclidean data. Figure 7 graphs Errr as a function of the dimensionality of
the target space k. The parameters have the values shown in Table 1. The
figure shows that MetricMap outperforms FastMap, while AvgMap is superior
to both of them. As k increases, the performance of MetricMap improves while
the performance of FastMap degrades. The larger the k, the more negative
dissimilarity values FastMap produces, cf. (4). As a consequence, the more biased

An Index Structure for Data Mining and Clustering 171

Fig. 4. Effect of dataset size for synthetic Euclidean data.

Fig. 5. Average relative errors of the mappers as a function of the dimensionality of vectors for
synthetic Euclidean data.

projections it creates. Note that MetricMap also produces negative dissimilarity
values during the projection. It has a better performance probably because the
images’ coordinates are calculated by matrix multiplication through a single
projection, rather than through a series of projections as done in FastMap, and
hence the effect incurred by these negative dissimilarity values is reduced.

The next two figures show the scalability of the results. Figure 8 compares
the relative performance of FastMap, MetricMap, and AvgMap for varying N
and Fig. 9 plots Errr as a function of ln(MaxDistance/MinDistance) for the three
mappers. The k value in both figures is fixed at 1000 and the MinDistance in
Fig. 9 is fixed at 10. The other parameters have the values shown in Table 1. It
can be seen that Errr depends on the dataset size N, but is independent of the
distance ranges. Clearly, AvgMap is the best for all the non-Euclidean data. Both

172 X. Wang et al

Fig. 6. Effect of coordinate ranges for synthetic Euclidean data.

Fig. 7. Average relative errors of the mappers as a function of the dimensionality of the target space
for synthetic non-Euclidean data.

FastMap and MetricMap may overestimate or underestimate some inter-object
distances. The fact that AvgMap outperforms either one individually is a good
indication of the complementarity of the two index structures.

The trends observed from protein and RNA data are similar to those from
the synthetic data. We omit the results for protein and only present those for
RNA secondary structures (Fig. 10). In sum, MaxMap is best for Euclidean data;
its performance depends on the dimensionality of vectors n, but is independent of
the size of datasets N. AvgMap is best for non-Euclidean data; its performance
depends on the dataset size. Both mappers’ performance improves as the di-
mensionality of the target space k increases. For Euclidean data, MaxMap’s Errr
drops to 0 as k approaches n. For non-Euclidean data, AvgMap’s Errr approaches

An Index Structure for Data Mining and Clustering 173

Fig. 8. Effect of dataset size for synthetic non-Euclidean data.

Fig. 9. Effect of distance ranges for synthetic non-Euclidean data.

0 when k = N/2, i.e. when all the 2k = N data objects are used in the sample to
establish the target space.

The last set of experiments examined the feasibility of retrieval with MaxMap
and AvgMap. Let ds, s = a, x, represent the dissimilarity measures for the two
mappers, cf. (22) and (24). We randomly picked an object Oc and considered the
sphere G1 with Oc as the centroid and a properly chosen ε as the radius, i.e. G1

contained all the objects O where d(O,Oc) 6 ε. Let Pc be the image of Oc. G2

represented the sphere in the target space that contained all the images P where
|ds(P , Pc)| 6 ε. Let Oi be an object and let Pi be its image. We say Oi is a false
positive if Pi ∈ G2 whereas Oi 6∈ G1. Oi is a false negative if Pi 6∈ G2 but Oi ∈ G1.
The performance measure used was the accuracy (Accu), defined as

Accu =
|G1| + |G2| − (Np +Nn)

|G1| + |G2| × 100% (26)

174 X. Wang et al

Fig. 10. Average relative errors of the mappers as a function of the dimensionality of the target space
for RNA secondary structures.

Fig. 11. Accuracy of MaxMap for synthetic Euclidean data.

where |Gi|, i = 1, 2, was the size of Gi, Np was the number of false positives, and
Nn was the number of false negatives. One would like this percentage to be as
high as possible. The higher Accu is, the fewer false positives and negatives there
are, and therefore the better performance a mapper has.

Figure 11 illustrates MaxMap’s performance for the synthetic Euclidean data
and Fig. 12 illustrates AvgMap’s performance for the synthetic non-Euclidean
data. The four curves represent four different dataset sizes (N = 1000, 10,000,
100,000, 1,000,000, respectively, in Fig. 11, and N = 2000, 3000, 4000, 5000,
respectively, in Fig. 12). The four points on each curve correspond to four different
k values. The Accu plotted in the figures is the average value over all the N spheres
where each sphere uses a different object as the centroid. The radius of a sphere
is fixed at 50, i.e. ε = 50. The X-axis shows the CPU time spent in embedding the

An Index Structure for Data Mining and Clustering 175

Fig. 12. Accuracy of AvgMap for synthetic non-Euclidean data.

objects. From the figures we see that as the dimensionality of the target space, k,
increases, both the time and accuracy increase. For the Euclidean data with 20-
dimensional vectors, Accu approaches 100% when k = 18. For the non-Euclidean
data, Accu approaches 100% when k = 1000. These results indicate that with the
two best mappers, one can conduct the range search (Faloutsos, 1996; Faloutsos
and Lin, 1995) on the k-dimensional points by embedding the query object in the
target space and then considering the sphere with the query object as the centroid
in the target space. Embedding the data objects can be performed in the off-line
stage, thus reducing the search time significantly.

5. Clustering

In this section we evaluate the accuracy of clustering in the presence of imprecise
embedding. The purpose is twofold. First, this study shows the feasibility of
clustering without performing expensive distance calculations. Second, through
the study, one can understand how imprecision in the embedding may affect the
accuracy of clustering.

5.1. Data

The data used in the experiments included the RNA secondary structures de-
scribed in Section 4.1, because they roughly formed two clusters, each corre-
sponding to an mRNA sequence. RNA distance is non-Euclidean. In addition,
we generated Euclidean clusters as follows: we built p = q2 clusters as in Zhang
et al (1996). Specifically, we generated q groups of n-dimensional vectors from an
n-dimensional hypercube. The vectors were generated as described in Section 4.1.
Each group had C vectors.

Initially the groups (clusters) might overlap. We considered all the q groups
as sitting on the same line and moved them apart along the line by adding a
constant (i × c), 1 6 i 6 q, to the first coordinate of all the vectors in the ith

176 X. Wang et al

Table 2. Parameters and base values used in the experiments for
evaluating the accuracy of clustering Euclidean vectors

Parameter Value Description

k 10 Dimensionality of the target space
p 4 Number of clusters
n 20 Dimensionality of synthetic vectors
C 100 Number of vectors in a cluster

group; c was a tunable parameter. We used CURE (Guha et al, 1998) to adjust
the clusters so that they were not too far apart. Specifically, c was chosen to be
the minimum value, by which CURE can just separate the q clusters. In our case,
c = 1.15. Once the first q clusters were generated, we moved to the second line,
which was parallel to the first line, and generated another q clusters along the
second line. This step was repeated until all the q lines were generated, each line
comprising q clusters. Again we used CURE to adjust the distance between the
lines so that they were not too far apart. Table 2 summarizes the parameters and
base values used in the experiments.

5.2. Experimental Results

The clustering algorithm used in our experiments was the well-known average-
group method (Kaufman and Rousseeuw, 1990), which works as follows. Initially,
every object is a cluster. The algorithm merges two nearest clusters to form a
new cluster, until there are only K clusters left, where K is p for the Euclidean
clusters and 2 for the RNA data. The distance between two clusters C1 and C2 is
given as

1

|C1||C2|
∑

Op∈C1 ,Oq∈C2

|d(Op, Oq)| (27)

where |Ci|, i = 1, 2, is the size of cluster Ci. The algorithm requires O(N2) distance
calculations, where N is the total number of objects in the dataset.

An object O is said to be mis-clustered if O is in a cluster C created by the
average-group method, but its image is not in C ’s corresponding cluster, which is
also created by the average-group method, in the target space. The performance
measure we used was the mis-clustering rate (Errc), defined as

Errc =
Nc

N
× 100% (28)

where Nc was the number of mis-clustered objects.
Figure 13 graphs Errc as a function of the dimensionality of the target space,

k, for the Euclidean clusters and Fig. 14 shows the results for the RNA data.
The parameters have the values shown in Table 2. For the Euclidean data, the
average-group method successfully found the four clusters in the dataset. For the
RNA data, the average-group method missed five objects in the dataset (i.e., the
five RNA secondary structures were not detected to belong to their corresponding
sequence’s cluster). The images of these five objects were also missed in the target
space; they were excluded when calculating Errc.

An Index Structure for Data Mining and Clustering 177

Fig. 13. Mis-clustering rates of the mappers as a function of the dimensionality of the target space
for synthetic Euclidean data.

Fig. 14. Mis-clustering rates of the mappers as a function of the dimensionality of the target space
for RNA data.

As in Section 4.2, the clustering performance improves as the dimensionality of
the target space increases, because the embedding becomes more precise. Figure
13 shows that the Errcs of all the mappers approach 0 when k = 9. Figure
14 shows that MetricMap outperforms FastMap; its Errc approaches 0 when
k = 80. Overall, MaxMap is best for the Euclidean data and AvgMap is best
for the non-Euclidean RNA data. The results indicate that with the two best
mappers one can perform clustering on the k-dimensional points. Embedding the
data objects can be performed in the off-line stage, thus reducing the clustering
time significantly.

It is worth pointing out that one may achieve an accurate clustering even with
an imprecise embedding. For example, in Fig. 13, the clustering accuracy is over
90% when k = 2, though the relative errors for the k = 2 case are over 50% (cf.

178 X. Wang et al

Fig. 15. Impact of the number of clusters.

Fig. 16. Impact of the size of clusters.

Fig. 3). This happens because after the embedding is performed, those objects
that are close to each other in the original space remain close in the target space,
though the distances are underestimated significantly.

We next examined the scalability of the results using Euclidean clusters. Figure
15 compares FastMap, MetricMap, and MaxMap for varying numbers of clusters,
Fig. 16 compares them for varying sizes of clusters, and Fig. 17 compares the
mappers for varying dimensionalities of the vectors in each cluster. With higher-
dimensional vectors (e.g., 60 dimensions) and more clusters, the average-group
method missed several objects in the dataset. However, MaxMap consistently
gives the lowest mis-clustering rate in all the figures.

To see how different clustering techniques might affect the performance, we
have also conducted experiments using some other clustering algorithms, e.g. the
single-linkage and complete-linkage methods (Kaufman and Rousseeuw, 1990).

An Index Structure for Data Mining and Clustering 179

Fig. 17. Effect of the dimensionality of vectors in a cluster.

The two methods work in a similar way to the average-group method. The
differences lie in the way they calculate the distance between two clusters. In the
single-linkage algorithm, the distance between two clusters C1 and C2 is given as

min
Op∈C1 ,Oq∈C2

|d(Op, Oq)| (29)

In the complete-linkage algorithm, the distance is given as

max
Op∈C1 ,Oq∈C2

|d(Op, Oq)| (30)

The results were slightly worse. The reason is that these two methods use the
distance between a specific pair of objects, as opposed to the average distance
between the objects in the two clusters. The errors incurred from measuring the
distance between the specific pair of objects may affect the clustering accuracy
seriously.

Finally we conducted experiments by replacing the random sampling objects
used by MetricMap with the 2k pivot objects found by FastMap. The perfor-
mance of MetricMap improves for the Euclidean data, but degrades for the
non-Euclidean data. MaxMap and AvgMap remain the best, as in the random
sampling case.

6. Discussion

Since MaxMap and AvgMap are educed from both FastMap and MetricMap,
their cost is approximately the sum of the costs of FastMap and MetricMap.
Figure 3 shows that when the dimensionality of the target space, k, increases,
the relative errors of the mappers decrease. On the other hand, increasing k
also increases the embedding cost (cf. Fig. 11). One may wonder whether using
MaxMap and AvgMap with a smaller k is better than using FastMap and
MetricMap with a bigger k when they all have approximately the same cost. We
have conducted experiments to answer this question.

Figures 18 and 19 depict the running times of the mappers as a function

180 X. Wang et al

Fig. 18. Running times of the mappers as a function of the dimensionality of the target space for
synthetic Euclidean data.

Fig. 19. Running times of the mappers as a function of the dimensionality of the target space for
synthetic non-Euclidean data.

of k for synthetic Euclidean and non-Euclidean data, respectively. The dataset
size N was 5000 for the Euclidean data and 3000 for the non-Euclidean data.
It can be seen from the figures that the costs of the mappers are proportional
to the dimensionality of the target space k. The cost of MaxMap and AvgMap
with a k-dimensional target space is approximately the same as the cost of
FastMap with a 2k-dimensional target space. Comparing with Fig. 3, we see
that using FastMap or MetricMap with a 2k-dimensional target space yields a
smaller relative error than using MaxMap with a k-dimensional target space for
the synthetic Euclidean data. On the other hand, comparing with Fig. 7, we see
that using AvgMap with a k-dimensional target space achieves a more precise
embedding than using FastMap or MetricMap with a 2k-dimensional target space
for the synthetic non-Euclidean data.

An Index Structure for Data Mining and Clustering 181

In general, there is a trade-off between the embedding cost and the embedding
precision. Recall that the asymptotic cost of all the mappers is O(Nk), where N
is the size of the dataset. In the case of Euclidean data, k is independent of
N. One can achieve a very precise embedding when k approaches the original
dimensionality n of the vectors. Thus for a very large dataset of N Euclidean
vectors, we can build a precise mapper (e.g., MaxMap) with a relatively low,
asymptotically O(N), cost. On the other hand, for the non-Euclidean data, the
precision of the embedding depends on N. In order to build a precise mapper (e.g.,
AvgMap), k should be close to N/2, which leads to an O(N2) cost asymptotically.

We have experimented with different distance functions in the paper. Our
approach can also be applied to nominal values when a proper metric is defined
for these values. Nominal values are identified by their names and do not
have numeric values. The colors of eyes (Kaufman and Rousseeuw, 1990) are an
example. Colors are represented by hexadecimal numbers in the SRGB (Standard
Red Green Blue) model as used for web pages. SRGB is a default color space
for the Internet proposed by Hewlett-Packard and Microsoft, and accepted by
the W3 organization as a standard. Each color corresponds to six hexadecimal
digits, which are decomposed to three pairs. Each pair corresponds to a primary
color. One can define the distance between two different colors as the sum
of the differences between the corresponding components. Specifically, let c1 =
x11 x12 x13 and c2 = x21 x22 x23 be two colors, where xij , i = 1, 2, j = 1, 2, 3,
denotes two hexadecimal digits. We define the distance between c1 and c2, denoted
d(c1, c2), as

d(c1, c2) =

3∑
j=1

|x1j − x2j | (31)

For example, suppose the color ‘blue’ corresponds to 00 00 FF , the color ‘black’
corresponds to 00 00 00, and the color ‘green’ corresponds to 00 80 00. The
distance between black eyes and blue eyes is |00−00|+ |00−00|+ |FF−00| = FF
in hexadecimal number or 255 in decimal number. Similarly, the distance between
green eyes and blue eyes is |00−00|+ |00−80|+ |FF−00| = 01 7F in hexadecimal
number or 383 in decimal number. Clearly, for any three colors c1, c2 and
c3, we have d(c1, c2) > 0, c1 6= c2 and d(c1, c1) = 0, d(c1, c2) = d(c2, c1) and
d(c1, c2) 6 d(c1, c3) + d(c3, c2). Thus d is a metric and our approach is applicable.

7. Conclusion

In this paper we have presented an index structure, MetricMap, and compared it
with the previously published index structure FastMap (Faloutsos and Lin, 1995).
The two index structures take a set of N objects, a distance metric d and embed
those objects in a target space Rk , k 6 N, in such a way that the distances among
objects are approximately preserved. FastMap considers Rk to be Euclidean;
MetricMap considers Rk to be pseudo-Euclidean. Both index structures perform
the embedding at an asymptotic cost O(Nk).

We have conducted experiments to evaluate the accuracy of the embedding
and the accuracy of clustering for the two index structures. The experiments
were based on synthetic data as well as protein and virus datasets obtained from
the Cold Spring Harbor Laboratory and National Cancer Institute. Our results
showed that MetricMap complements FastMap. In every case, combining the

182 X. Wang et al

two index structures performs better than using either one alone. Specifically,
FastMap is more accurate than MetricMap for Euclidean distances, but taking
the maximum of the distances (we use the term dissimilarities because some
of these values can be negative) gives the best accuracy of all. MetricMap is
more accurate than FastMap for non-Euclidean distances, but the average of the
dissimilarities is best of all.

Besides the four datasets mentioned here, we have confirmed these results on
three other datasets taken from dictionary words and other protein sequences.
The practical significance of this work is that the proper use of these index
structures can reduce the computation time substantially, thus achieving high
efficiency for data mining and clustering applications.

Acknowledgements

We thank the anonymous reviewers and the executive editor, Dr Xindong Wu,
for their thoughtful comments and suggestions that helped to improve the paper.
We also thank Dr Tom Marr and Wojcieok Kasprzak for providing the protein
and RNA data used in the experiments.

This work was supported in part by the National Science Foundation under
grant numbers IRI-9531548 and IRI-9531554, and by the Natural Sciences and
Engineering Research Council of Canada under grant number OGP0046373.
A preliminary version of this paper was presented in the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining held in San
Diego, California in August 1999.

References

Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high
dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD
international conference on management of data, Seattle, WA, 1998, pp 94–105

Burks C, Cassidy M, Cinkosky MJ, Cumella KE, Gilna P, Hayden JE-D, Keen GM, Kelley TA, Kelly
M, Kristofferson D, Ryals J (1991) GenBank, Nucleic Acids Research 19:2221–2225

Duda RO, Hart PE (1973) Pattern classification and scene analysis Wiley, New York
Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters

in large spatial databases with noise. In Proceedings of the 2nd international conference on
knowledge discovery and data mining, Portland, OR, pp 226–231

Faloutsos C (1996) Searching multimedia databases by content. Kluwer, Norwell, MA
Faloutsos C, Lin K-I (1995) FastMap: a fast algorithm for indexing, data-mining and visualization

of traditional and multimedia datasets. In Proceedings of the 1995 ACM SIGMOD international
conference on management of data, San Jose, CA, pp 163–174

Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, San Diego, CA
Golub GH, Van Loan CF (1996) Matrix computations, Johns Hopkins University Press, Baltimore,

MD
Greub W (1975) Linear algebra. Springer, New York
Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases.

In Proceedings of the 1998 ACM SIGMOD international conference on management of data,
Seattle, WA, pp 73–84

Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs, NJ
Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley,

New York
Lax PD (1997) Linear algebra. Wiley, New York
Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In Michalski RS,

Carbonell JG, Mitchell TM (eds). Machine learning: an artificial intelligence approach, vol I.
Morgan Kaufmann, San Francisco, CA, pp 331–363

An Index Structure for Data Mining and Clustering 183

Ng RT, Han J (1994) Efficient and effective clustering methods for spatial data mining. In Proceedings
of the 20th international conference on very large data bases, Santiago, Chile, pp 144–155

Ortega JM (1987) Matrix theory. Plenum Press, New York
Sankoff D, Kruskal JB (eds) (1983) Time warps, string edits, and macromolecules: the theory and

practice of sequence comparison. Addison-Wesley, Reading, MA
Shapiro BA, Navetta J (1994) A massively parallel genetic algorithm for RNA secondary structure

prediction, Journal of Supercomputing 8:195–207
Shapiro BA, Zhang K (1990) Comparing multiple RNA secondary structures using tree comparisons,

Computer applications in the biosciences 6(4):309–318
Shasha D, Wang TL (1990) New techniques for best-match retrieval. ACM transactions on information

systems 8(2):140–158
Sheikholeslami G, Chatterjee S, Zhang A (1998) WaveCluster: a multi-resolution clustering approach

for very large spatial databases. In Proceedings of the 24th international conference on very large
data bases, New York, pp 428–439

Wang JTL, Shapiro BA, Shasha D (eds) (1999) Pattern discovery in biomolecular data: tools,
techniques and applications. Oxford University Press, New York

Wang JTL, Shasha D, Chang G, Relihan L, Zhang K, Patel G (1997) Structural matching and
discovery in document databases. In Proceedings of the 1997 ACM SIGMOD international
conference on management of data, Tucson, AZ, pp 560–563

Wang JTL, Zhang K, Jeong K, Shasha D (1994) A system for approximate tree matching, IEEE
transactions on knowledge and data engineering 6(4):559–571

Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data
mining. In Proceedings of the 23rd international conference on very large data bases. Athens,
Greece, pp 186–195

Yang Y, Zhang K, Wang X, Wang JTL, Shasha D (1998) An approximate oracle for distance in metric
spaces. In Farach-Colton M (ed). Combinatorial pattern matching. Lecture notes in computer
science 1448, Springer, Berlin, pp 104–117

Yi B-K, Jagadish HV, Faloutsos C (1998) Efficient retrieval of similar time sequences under time
warping. In Proceedings of the international conference on data engineering, Orlando, FL, pp
201–208

Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An efficient data clustering method for very large
databases. In Proceedings of the 1996 ACM SIGMOD international conference on management
of data, Montreal, Canada, pp 103–114

Author Biographies

Xiong Wang received his M.S. degree in computer science from Fudan Uni-
versity, Shanghai, People’s Republic of China, and a Ph.D. degree in com-
puter science from the New Jersey Institute of Technology. He is currently
a special lecturer in the Computer and Information Science Department
at the New Jersey Institute of Technology. His research interests include
scientific databases, knowledge bases, information retrieval, and mining in
high-dimensional databases. He is a member of ACM and IEEE.

Jason T. L. Wang received the Ph.D. degree in computer science from the
Courant Institute of Mathematical Sciences, New York University. He is
currently an associate professor at NJIT’s Computer and Information Sci-
ence Department. His research interests include data mining and databases,
pattern recognition, and computational biology. He has published 80 tech-
nical papers and is an editor and author of the book Pattern Discovery in
Biomolecular Data (Oxford University Press, 1999).

184 X. Wang et al

King-Ip (David) Lin received a Ph.D. degree in computer science from the University of Maryland,
College Park, USA. He is currently an assistant professor in the Department of Mathematical Sciences,
University of Memphis, Tennessee. His research interests include databases, index structures, and data
mining.

Dennis Shasha received degrees from Yale (BS), Syracuse (Master’s), and Harvard (Ph.D.). He is
currently a professor of Computer Science at New York University’s Courant Institute of Mathematical
Sciences. His three principal research projects concern computational biology, navigation of unfamiliar
databases, and data mining. He also writes books and a column about mathematical puzzles.

Bruce A. Shapiro received a B.S. degree from Brooklyn College and a Ph.D. degree from the University
of Maryland, College Park, USA. He is a principal investigator for the Laboratory of Experimental
and Computational Biology, National Cancer Institute, Frederick, Maryland. He does research in
nucleic structure, developing algorithms and computational systems for determining structure/function
relationships of nucleic acids. He is an editor and author of the book Pattern Discovery in Biomolecular
Data (Oxford University Press, 1999).

Kaizhong Zhang received an M.S. degree in mathematics from Beijing University, Beijing, People’s
Republic of China, in 1981, and M.S. and Ph.D. degrees in computer science from the Courant Institute
of Mathematical Sciences, New York University, New York, USA, in 1986 and 1989, respectively.
Currently, he is an associate professor in the Department of Computer Science, University of Western
Ontario, London, Ontario, Canada. His research interests include pattern recognition, computational
biology, and sequential and parallel algorithms.

Correspondence and offprint requests to: Xiong Wang, Department of Computer and Information

Science, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA. Email:

xiong@cis.njit.edu.

