
Knowledge and Information Systems (2000) 2: 33–52
c© 2000 Springer-Verlag London Ltd.

Nesting and Defoliation of Index Expressions for
Information Retrieval

Bernd Wondergem, Patrick van Bommel, Theo van der Weide
Computing Science Institute, University of Nijmegen, The Netherlands

Abstract. In this article, a formalisation of index expressions is presented. Index expres-
sions are more expressive than keywords while maintaining a comprehensible complexity.
Index expressions are well-known in Information Retrieval (IR), where they are used for
characterising document contents, formulation of user interests, and matching mechanisms.
In addition, index expressions have found both practical and theoretical applicability in
2-level hypermedia systems for IR. In these applications, properties of (the structure of)
index expressions are heavily relied upon. However, the presupposed mathematical formal-
isation of index expressions and their properties still lacks. Our formalism is based on the
structural notation of index expressions. It is complete in the sense that several notions
of subexpressions and defoliation of index expressions are also formalised. Defoliation,
which plays an important role in defining properties of index expressions, is provided as
a recursively defined operator. Finally, two other representational formalisms for index
expressions are compared to ours.

Keywords: Defoliation; Index Expressions; Information Retrieval; Nesting

1. Introduction

Index expressions were defined by Bruza (1990, 1993) as structured descriptor
language for Information Retrieval (IR) (Rijsbergen, 1979). Index expressions
are constructed from terms (e.g. keywords, concept names, or denotations of
attribute values) and connectors, representing relations between terms in the
form of prepositions and gerunds. The language of index expressions is thus more
powerful than that of keywords. In addition, index expressions form reasonable
approximations of noun-phrases, which are seen as basic units of thought (Craven,
1978; Winograd, 1983).

Index expressions capture some of the linguistic structure of natural languages.

Received 9 Jul 1998
Revised 20 Apr 1999
Accepted 28 May 1999

34 B. Wondergem et al

Fig. 1. Example lithoid.

In addition, the semantics of index expressions follows readily from their structure,
which, however, is not too complex to harm fast parsing. Index expressions have
found many applications in IR which vary from IR fundamentals as document
indexing, query formulation, and matching, to the construction and usage of
several stratified hypermedia models including corresponding logical models.
Section 2 elaborates on applications of index expressions in IR.

The mentioned usages of index expressions hinge on properties of index
expressions. In particular, subexpression relations on index expressions are often
exploited. For instance, the construction of the stratified hypermedia models
makes heavy use of the direct subexpression relation. In addition, the logical
applications presuppose a clear and detailed definition of the syntax and semantics
of index expressions. However, a correct and complete mathematical formalisation
of index expressions and their defoliation (subexpressions) has not yet been given.

This lack is lifted in this article. We provide a representational formalism for
index expressions as well as sound definitions for several important relations on
index expressions. Furthermore, a number of properties of index expressions and
relations on them are stated.

The structure of this article is as follows. Section 2 illustrates the many usages
of index expressions in Information Retrieval as well as the need for a sound
formalisation. Section 3 formally defines (the language of) index expressions and
their defoliation. A number of subexpression relations and their properties are
provided in Section 4. Section 5 provides two other representational formalisms
and compares these to the structural notation. In particular, it is shown that these
other formalisms generate the same language.

2. Index Expressions in Information Retrieval

This section provides an overview of applications of index expressions in Infor-
mation Retrieval.

Characterising document contents with index expressions allows the construc-
tion of navigational overview structures. These navigational overview structures
are called lithoids (Bruza, 1990) because of their crystalline structure. Lithoids can
be seen as graphs as illustrated in Fig. 1 which shows the lithoid for pollution of
water by metals. The nodes of the lithoid consist of the initial index expression
plus all its subexpressions. The expression ε denotes the empty index expression.
The edges connect nodes with their direct subexpressions. Combining lithoids for
several index expressions by node sharing allows the construction of navigational

Nesting and Defoliation of Index Expressions for Information Retrieval 35

overview structures for collections of documents. Although the notions of (direct)
subexpressions may be intuitively clear, they have not been defined properly yet.

Applications of index expressions that are based on lithoids, and thus hinge
on subexpression relations, suffer from the same problem. A number of ways in
which lithoids are exploited is presented next.

Lithoids that are constructed from document characterisations serve as hy-
perindex in 2-level hypermedia representations (see e.g. Bruza and van der Weide,
1990, 1992). In this way, stratified hypermedia representations of information
retrieval systems are obtained.

Lithoids support navigational query formulation by a process coined Query
by Navigation (QBN) (see e.g. Bruza and van der Weide, 1990). In QBN, one
starts at some node (index expression) in the lithoid and then navigates through
the lithoid by iteratively selecting an adjacent link that leads to a different index
expressions. In each step, a refinement or an enlargement can be selected. QBN
ends when a node is arrived at that properly describes the user’s information
need. Refinements coincide with direct superexpressions and enlargements with
direct subexpressions. This again illustrates the need for a proper definition of
subexpressions. In addition, the design of algorithms for computing refinements
and enlargements is best based on a thorough analysis of these phenomena. The
defoliation operator, as provided in Section 3.2, may be exploited for constructing
such as algorithm for enlargements.

QBN has been implemented in a number of information systems. As IR
system that supports QBN on the Internet is described in Iannella et al (1995).
An implemented retrieval engine based on QBN for the disclosure of a slides
library is described in Bosman et al (1991). Furthermore, QBN still receives
attention in ongoing research. For instance, mechanisms for navigational support
during QBN are described in Berger et al (1996), Berger and van Bommel (1997)
and Berger (1998). The support, which is based on a probabilistic model of QBN
search paths, aims at estimating the final node and helps the user by suggesting
short cuts.

Logical frameworks for QBN search paths have been developed. Preferential
Models for IR, capable of reasoning with user preferences, are described in Won-
dergem (1996) and Bruza and van Linder (1997). QBN results in a search path,
i.e. a series of user preferences, from which a Preferential Model is constructed.
Matching in Preferential Models is a process of inference. Which inference rules
are valid in Preferential Models depends on properties of the user preferences.
Since these are specified in terms of index expressions, the availability of proper-
ties of index expressions is important. Based on the inferences, the matching can
be explained to and personalised by the user, as described in Wondergem et al
(1998a).

In addition, a form of strict inference based on enlargements is provided
in Bruza and van der Weide (1991). An implementation of these inference is
facilitated if procedures for computing enlargements are made available. Again,
such procedures may be readily devised based on our defoliation operator.

Combination structures for lithoids, called association indices (see Wondergem
et al, 1998b,c), are also defined using properties of index expressions and relations
between them. Association indices serve as topmost layer in a 3-level hypermedia
architecture, coined the Association Index Architecture (AIA). The lower levels
consist of a combined lithoid for the document base and a combined lithoid that
describes user interests. The AIA, which strongly exploits the structured nature
of index expressions, is exploited for mediated IR.

36 B. Wondergem et al

Other practical use of index expressions within IR is for matching user
interests with document contents. Matching can be done with, for instance, be-
lief networks (see Bruza and Ijdens, 1994; Bruza and van der Gaag, 1994).
To construct belief networks for index expressions, it is necessary that index
expressions can be broken down into their constituents. The arrows in belief
networks are instances of the direct subexpression relation. In addition, match-
ing can be done by (numerical) similarity functions on index expressions. In
Wondergem et al (2000) several such similarity measures are provided which
preserve properties of index expressions. Two of these properties are embedding,
a non-contiguous notion of subexpressions, and the order of subexpressions.
Clearly, a correct definition of these properties requires a solid definition of index
expressions.

Finally, a Boolean augmentation of index expressions is presented in Won-
dergem et al (1998d). The language of index expressions is extended with logical
operators for conjunction, disjunction, and negation. The logical operators can
occur in the head of index expressions as well as nested in subexpressions.
This leads to a compact representation of logical combinations of index expres-
sions. The augmented language of Boolean index expressions is exploited for the
construction and representation of user profiles in the Profile system for infor-
mation filtering (see e.g. Wondergem et al, 1997). In order for Boolean index
expressions to be soundly defined, index expressions themselves must be precisely
defined.

To conclude, many different applications of index expressions in IR exist.
These applications presuppose a correct definition of index expressions, several
notions of subexpressions, and properties of both. Although the intution of these
issues may be clear, sound formal ground has not been developed yet. The main
part of the remainder of this article is devoted to lifting this lack. In addition, our
investigation supports the design of algorithms for computing enlargements and
refinements. In particular, our defoliation operator can be directly implemented
in order to obtain an algorithm for (direct) enlargements.

3. Formalizing Index Expressions

In this section, the language of index expressions is defined. Section 3.1 introduces
index expressions based on the nesting operator and provides a number of
properties of index expressions. Section 3.2 elaborates the defoliation of index
expressions, i.e., the removal of their leaves.

This work does not aim at opening doors for new applications. Rather, next
to providing a proper answer to the presumptions on which the applications of
index expressions are based, it will enhance insights in the process of defoliating
index expressions and derived notions of subexpressions.

3.1. Index Expressions

We make an explicit distinction between the empty index expression and nonempty
index expressions. There is a principal difference between descriptors that carry
information and descriptors that represent the absence of information. Further-
more, the distinction eases the structural definition of index expressions as well
as the defoliation of index expressions.

Nesting and Defoliation of Index Expressions for Information Retrieval 37

The empty index expression is denoted by ε, which is a special symbol. This
means that the symbol ε cannot appear in the set of terms or connectors on
which the index expressions are based.

Definition 1. Empty Index Expression

I = ε

Nonempty index expressions can incorporate a number of subexpressions.
These subexpressions are nonempty index expressions themselves, allowing a
nice recursive structure. Before defining the exact nature of nonempty index
expressions, we first focus on subexpressions, also called nested index expressions.

The nesting operator for index expressions which is defined below is used
to construct nonempty index expressions in Definition 3. The nesting operator
provides a notational shorthand for denoting the subexpressions of index ex-
pressions. It defines a series of nested subexpressions, just like the summation
operator defines a series of numbers (which are to be added), by concatenating
subexpressions from a left border up to a right border.

Definition 2. Nesting Operator for Index Expressions For given left border k and
right border l, such that 1 6 k 6 l, let Ii be nonempty index expressions and ci
be connectors (k 6 i 6 l). The index expression nesting operator, denoted by ⊗,
is defined as follows:

l⊗
i=k

ci(Ii) =def

{
ck(Ik) k = l

⊗l−1
i=kci(Ii)cl(Il) k < l

Note that the order in which subexpressions are defined by the nesting
operator is relevant. Furthermore, note that the constructor operator only defines
nonempty series of subexpressions. This is a deliberate property since nonempty
index expressions may not contain the empty index expression. This conforms to
the original definition of index expressions as given in Bruza (1990, 1993). We
will omit brackets if they are clear from the context.

Example 1. Nesting Operator. For k = 1 and l = 2 we have

2⊗
i=1

ci(Ii) =

1⊗
i=1

ci(Ii)c2(I2) = c1(I1)c2(I2)

An instantiation of this is obtained for c1 = by, I1 = industry, c2 = of, and
I2 = water:

by (industry) of (water)

Nonempty index expressions consist of a head, also called the lead term, and,
possibly, a number of nonempty nested index expressions.

Definition 3. Language of Non-empty Index Expressions Let T be a set of terms
and C be a set of connectors, such that T ∩ C = ∅, the empty index expression
ε 6∈ T ∪ C , and the null-connector ◦ ∈ C . The language of non-empty index
expressions based on T and C , denoted by L+

(T ,C), is defined as the smallest

superset of T for which

− if h ∈ T and for some right border l > 1 we have c1, . . . , cl ∈ C and

I1, . . . , Il ∈ L+
(T ,C), then also h ⊗l

i=1 ci(Ii) ∈ L+
(T ,C).

38 B. Wondergem et al

Here, the term h is called the head or lead term. If T and C are clear, we write
L+ for short.

Note that terms and connectors may appear more than once in an index
expression. Furthermore, note that the left border of nonempty index expressions
is set to one. This is our convention for the left border. It does not cause a loss
of generality since the nested subexpressions can always be renumbered easily.
However, note that left borders which are not equal to one are used in the
defoliation of index expressions (see case (5) of Definition 6).

Example 2. Nonempty Index Expressions. Since the language of nonempty index
expressions is a superset of the set of terms, i.e., T ⊆ L(T ,C), all terms are
nonempty index expressions. An example nonempty index expression is

E1 = industry

Furthermore, using water as head, and as connector, and the term air as nonempty
subexpression, the following nonempty index expression is constructed:

E2 = h ⊗1
i=1 ci(Ii) = hc1(I1) = water and (air)

In a similar way, the following index expression is constructed:

E3 = rural ◦ (areas)

Now, using h = pollution as head, connectors c1 = by, c2 = of, and c3 = in, and
nonempty subexpressions I1 = E1, I2 = E2, and I3 = E3, we obtain

E4 = h ⊗3
i=1 ci(Ii) = hc1(E1)c2(E2)c3(E3)

= pollution by (industry) of (water and (air)) in (rural ◦ (areas))

Nonempty index expression may not contain the empty index expression. A
definition of index expressions that does allow for this is given in Berger (1998).
There, the empty index expression is an example of a universal descriptor: it may
represent any element of the language. The more general definition, however,
allows for intuitively unclear descriptors. For example, pollution by ε and ε
in ε are valid (generalised) index expressions. Our approach concentrates on
intuitively clear index expressions only. In accordance with the original definition,
there is only one use of the empty index expression. In addition, although using
the generalised definition of index expressions may also lead to a more general
definition of defoliation, it will also introduce additional difficulties. For example,
the use of the empty index expression within nonempty ones introduces the need
for normalisation in order to identify semantically equivalent index expressions.

The language of index expressions is now defined as the language of nonempty
index expressions united with the empty index expression.

Definition 4. Language of Index Expressions The language of index expressions
is based on a set of terms T and a set of connectors C , denoted by L(T ,C), and
is defined as

L(T ,C) = L+
(T ,C) ∪ {ε}

If T and C are clear, we write L for short.
The size of an index expression, denoted by |I | for index expression I , is defined

as the number of terms in it. It should be remarked that multiple occurrences
of terms are counted. The empty index expression has size 0 since it does not

Nesting and Defoliation of Index Expressions for Information Retrieval 39

contain any terms. In the size of a nonempty index expression, the head as well
as the sizes of the subexpressions are counted.

A leaf is a non-empty index expression without subexpressions. Therefore,
the empty index expression is no leaf. Non-empty index expressions which have
subexpressions are also no leaves. This is captured in the Boolean function
IsLeaf. For all index expressions t ∈ T , we have IsLeaf(t).

3.2. Defoliation of Index Expressions

In this section, we consider the defoliation of index expressions. Defoliation,
meaning the removal of leaves, is an important concept in IR. For instance, the
subexpression relations, which are given in the next section, are defined in terms
of defoliation. Subexpressions can be obtained from the original index expression
by removing a number of leaves. Thus, computing subexpressions for constructing
lithoids also involves repeated defoliations.

Furthermore, in full-text searches, defoliation is exploited to form broader
search terms. An example of this is the construction of so called enlargements,
as described in Wondergem et al (1996) and Iannella et al (1995). In addition,
defoliation can be used to define a measure of distance between index expressions,
which can be used in the matching process of Information Retrieval. Finally, a
strict form of inference is driven by defoliation, as described in Bruza and van
der Weide (1991).

In defoliation, a designated leaf of an index expression is removed. If possible,
it also allows the removal of the head of the index expression. This case may
occur if the index expression has exactly one subexpression. In the remainder of
this article, we implicitly include this case when referring to leaves.

Pointing Sequences. The designated leaf is identified by a so called pointing
sequence. Leaves can be identified by describing a downward path from the
lead term. The downward path is described by a nonempty sequence of natural
numbers, the elements of which iteratively specify the subexpression in which the
leaf resides. For instance, in index expression E4, the sequence [2, 1] denotes the
leaf air since this term is obtained by first selecting the second subexpression, i.e.,
I2 = water and (air), and therein the first subexpression. The pointing sequence
[0] denotes the head of an index expression, which in the case of E4 is pollution.
Since nonempty sequences of natural numbers can identify leaves, we call them
pointing sequences.

Definition 5. Nonempty Sequences of Natural Numbers Let N denote the natural
numbers, i.e., 0, 1, 2, . . . Furthermore, let N denote the set of nonempty sequences
over the natural numbers. We denote a sequence consisting of a single element
x ∈ N by [x] and a sequence with at least two elements with [x, xs] where x is the
first element of the sequence and [xs] denotes the nonempty tail of the sequence.

Example 3. Pointing Sequence. Figure 2 shows index expression E4 equipped with
pointing sequences for all its terms. For example, the sequence [0] points to the
head pollution. The sequence [2, 1] points to the term air, which is a leaf. Pointing
sequence [3] specifies term rural, which is not the head nor a leaf.

Pointing sequences and natural numbers do not add expressive power to the
definitions in this article because index expressions, in particular the sizes of their
subexpressions, can serve the same purpose.

40 B. Wondergem et al

Fig. 2. Example index expressions with pointing sequences for all terms.

Fig. 3. (a) Pointing Sequence models Index Expression. (b) Mapping Index Expressions to Pointing
Sequences.

Each leaf can be identified as the righmost leaf in the subexpression that covers
the part of the original index expression left of the upward path from that leaf to
the head. This is illustrated in Fig. 3(a), where the grey area models the indicated
subexpression. So, for the sake of identifying leaves, pointing sequences are not
strictly necessary. They do provide, however, an easy and intuitive notation.

Thus, the downward path identifying a leaf can be described by an index
expression I . That is, pointing sequences here serve as a simplification of index
expressions. We now provide a direct mapping from index expressions to pointing
sequences, showing that pointing sequences can be expressed by index expressions.
In this mapping, the sizes of the subexpressions of I are mapped to elements
of a pointing sequence. The mapping is illustrated in Fig. 3(b). In this way, the
subexpressions define the downward path in the same way as pointing sequences
do, i.e., by specifying which subexpressions to select. When used for this purpose,
the index expression I = h ⊗l

i=1 ci(Ii) is equivalent to the sequence [xs] for which
the size of subexpression Ii gives the (value of the) i-th element of [xs]. Note that
l equals the number of elements in [xs] and that the actual values of terms and
connectors are of no importance.

Thus, for identifying leaves of index expressions, sequences of natural numbers
do not significantly augment our theory since they can alternatively be expressed

Nesting and Defoliation of Index Expressions for Information Retrieval 41

by index expressions. We can thus include (sequences of) natural numbers in our
theory without relying on additional power or properties that were not catered
for by index expressions themselves. The notation for nonempty sequences of
natural numbers is defined below.

Defoliation Operator. The defoliation operator ∆ removes a leaf which is indi-
cated by a given pointing sequence. The elements of the sequence denote which
subexpressions to visit in order to reach the leaf. For an index expression I and
a nonempty sequence of natural numbers [xs], the expression ∆(I, [xs]) denotes
the index expression obtained from I by removing the leaf denoted by pointing
sequence [xs].

Definition 6. Defoliation of Index Expressions The defoliation operator ∆ has an
index expression and a non-empty sequence of natural numbers as arguments
and delivers an index expression:

∆ : L × N 7→ L
The definition of the defoliation operator is given by (1)–(5) below by exam-

ining the different cases that may occur.
The defoliation operator is inductively defined, using the structure of index

expressions. This leads to four cases, one of which is recursive. The three non-
recursive cases are handled first. The first non-recursive case consists of defoliating
an index expression that consists of a head h ∈ T only, and therefore is a leaf.
The only position a term can be defoliated at is 0, which identifies the term itself.
Removing its only leaf, the index expression becomes empty:

∆(h, [0]) = ε (1)

The second non-recursive case deals with an index expression that has exactly
one subexpression. If the head of this index expression is removed, by defoliating
it at position 0, only the subexpression remains:

∆(hc1(I1), [0]) = I1 (2)

The last non-recursive case handles non-trival applications of defoliation.
These applications remove the non-head leaf which comprises subexpression Ix.
This results in the conditions l > 1, saying there is at least one subexpression,
1 6 x 6 l, meaning that an existing subexpression is selected, and IsLeaf(Ix),
ensuring that a single leaf is removed. To obtain the resulting index expression, a
copy is made of the original one without subexpression Ix:

∆

(
h

l⊗
i=1

ci(Ii), [x]

)
= h

l,i 6=x⊗
i=1

ci(Ii) (3)

Example 4. Non-recursive Cases of Defoliation. This example illustrates case (1),
(2), and (3), respectively.

Defoliating a term results in the empty index expression:

∆(industry, [0]) = ε

When an index expression with only one subexpression is defoliated at the
head, the subexpression remains. For instance,

∆(rural ◦ (areas), [0]) = areas

42 B. Wondergem et al

Fig. 4. Schematic description of recursive defoliation.

Subexpressions that consist of a single term, i.e., leafs, can be deleted by
defoliation. For instance,

∆(water and (air), [1]) = water

∆(pollution of (water) by (industry), [1]) = pollution by (industry)

∆(pollution of (water) by (industry), [2]) = pollution of (water)

Consider index expression, E4 from example 2:

∆(E4, [1]) = pollution of (water and (air)) in (rural ◦ (areas))

The recursive case for defoliation is first illustrated in example 5. Then, the
definition is followed by an example providing a number of practical illustrations
of the recursive case of defoliation.

Example 5. Recursive Defoliation (Schematic). Figure 4 gives a schematic descrip-
tion of the recursive case of defoliation. The defoliation ∆(h ⊗l

i=1 ci(Ii), [x, xs])
is to remove the designated leaf, specified by pointing sequence [x, xs], in index
expression h ⊗l

i=1 ci(Ii). The designated leaf resides in subexpression Ix since x is
the first element of the pointing sequence. The designated leaf is denoted locally
in Ix by the remaining pointing sequence [xs].

The resulting index expression has the same head h as the original index
expression. Furthermore, the subexpressions left (I1 . . . Ix−1) and right (Ix+1 . . . Il)
of Ix are not altered. They are shown in Figure 4 by the left and right triangles.
Subtree Ix, depicted by the large triangle, hosts the rest of the defoliation. The
call that effectuates this, ∆(Ix, [xs]), will recursively remove the designated leaf.
In this process, a downward path in Ix is followed, as shown by the line in Ix.
This line depicts other recursive calls and one, i.e., the last, non-recursive call that
actually removes the designated leaf.

Now, the definition of the recursive case of defoliation is elaborated on. Con-
sider index expression h ⊗l

i=1 ci(Ii) and pointing sequence [x, xs] which identifies
the leaf to be removed. A number of conditions are required for the defoliation
∆(h⊗l

i=1 ci(Ii), [x, xs]) to be correctly defined. The index expression should at least
contain one subexpression: l > 1. Furthermore, the defoliation must take place in
an existing subexpression. Therefore, the first element x of the pointing sequence
should fall between the left and right border: 1 6 x 6 l. Finally, as the selected

Nesting and Defoliation of Index Expressions for Information Retrieval 43

subexpression Ix may not become empty after defoliation, Ix may not consist of
a single leaf: not IsLeaf(Ix).

The defoliated index expression is obtained as follows. First, all subexpressions
left of the selected subexpression Ix(⊗x−1

i=1 ci(Ii)) are copied. Connector cx, that
connects the head to the selected subexpression, is copied as well. Then, defoliation
proceeds by the recursive call ∆(Ix, [xs]) which removes the leaf that is denoted
relatively in subexpression Ix by [xs]. The result of the recursive call ∆(Ix, [xs]) is
inserted in the correct position, i.e., after connector cx. Finally, the subexpression
right of Ix(⊗l

i=x+1ci(Ii)) are copied:

∆(h ⊗l
i=1 ci(Ii), [x, xs]) =def h ⊗x−1

i=1 ci(Ii)︸ ︷︷ ︸
left subs

cx(∆(Ix, [xs])) ⊗l
i=x+1ci(Ii)︸ ︷︷ ︸
right subs

(4)

If Ix were to be a leaf, the recursive application of the defoliation operator
could later result in leaving an empty descriptor ε in the index expression, which
is not allowed in valid index expressions (see Definition 4). The not IsLeaf(Ix)
is thus necessary to prevent the use of ε as subexpression. This is guaranteed by
preventing a recursively initiated application of ∆(h, [0]). For example, without
this last condition ∆(hc1(t1), [1, 0]) would lead via hc1(∆(t1, [0])) to hc1(ε).

The recursive case of the defoliation operator is stated as a generic case
for four subcases. Special instantiations of case (4) occur if there is only one
subexpression or if defoliation is to proceed in the first or last subexpression.
This is because the nesting constructor ⊗ always renders a non-empty result. In
the case defoliation is to proceed in the first subexpression, the part ⊗x−1

i=1 ci(Ii) is

skipped. In the case of proceeding in the last subexpression, the part ⊗l
i=x+1ci(Ii)

is left out. In the case of a single subexpression, both parts are left out.

Example 6. Applications of Recursive Defoliation. Again, consider E4 = pollution
by (industry) of (water and (air)) in (rural◦(areas)). Suppose we want to remove
the leaf air from E4. This leaf is denoted by pointing sequence [2, 1] (see also Fig.
2).

The first call,

∆(pollution by (industry) of (water and (air)) in (rural ◦ (areas)), [2, 1])

is covered by the recursive case. The recursive call that results from applying
this case, ∆(I2, [1]), proceeds in subexpression I2 = water and (air). In I2, leaf air
is denoted by the pointing sequence [1]. The left subexpressions, here only
I1 = industry, and the right, here I3 = rural ◦ (areas) are not altered. Thus, after
this first step we have

pollution by (industry) of (∆(water and (air), [1])) in (rural ◦ (areas))

The second application of the defoliation operator, ∆(water and (air), [1]), was
illustrated in example 4 that showed that the result of this is the single term
water. The final result therefore becomes

pollution by (industry) of (water) in (rural ◦ (areas))

All other cases of defoliation explicitly render the value undefined:

∆(I, x) =def undefined, otherwise (5)

Example 7. Undefined Cases of Defoliation. Undefined defoliation occur in three
ways. First, defoliating the empty descriptor is invalid. Second, pointing sequences

44 B. Wondergem et al

that go beyond the depth of the index expression cannot be used. Finally, selecting
a subexpression that is out of range is also invalid.

First of all, the empty descriptor cannot be defoliated, since it contains no
leaves. The following is thus an example of an undefined defoliation

∆(ε, [1])

Second, pointing sequences that are too long, i.e., go beyond the depth of
an index expression, cannot be used for defoliation. If the elements of the
pointing sequence specify existing subexpressions, the largest prefix of the pointing
sequence is processed correctly. In the end, however, defoliation can no longer
proceed and, for some term t ∈ T and pointing sequence with at least two
elements [x, xs] results in

∆(t, [x, xs])

Finally, an example of selecting a subexpression that is out of range is given
below. Here, the third subexpression is selected by the first element of the pointing
sequence. However, the index expression has only two subexpressions.

∆(hc1(I1)c2(I2), [3, xs])

We say that ∆(I, x) is defined iff it can be computed by the above rules using
only the defined cases. Unless stated otherwise, we will only consider defined
applications of ∆ in the remainder of this article.

Properties of Defoliation. In this subsection, a number of properties of defoliation
are considered. First, the fact that defoliation actually renders an index expression
with one leaf less is stated. Then, termination of the defoliation process is
examined.

Since the defoliation operator removes exactly one leaf and the size of a leaf
is 1, the lemma below is valid.

Lemma 7. One Term Less. For every nonempty index expression I ∈ L+ and every
pointing sequence x such that ∆(I, x) is defined, we have |∆(I, x)| = |I | − 1.

Proof of lemma. Suppose the defoliation is defined. Defoliation terminates in case
(1), (2), or (3). In all these cases, the resulting index expression has one term less
than the original index expression. q

Termination of defoliation can be viewed from two points. First, of all, we
consider the termination of a single defoliation, i.e. the removal of a single leaf.
If the defoliation is undefined, case (5) is applied, after which the computation
terminates. If the defoliation is defined, case (5) does not occur. In the recursive
case (4), the defoliation operator is applied to a smaller index expression in the
recursive call. This means that, in the end, defoliation terminates in one of the
non-recursive cases, i.e., case (1), (2), or (3).

The second view on termination is as a repeated process eventually resulting
in the empty index expression. Every index expression can be transformed to the
empty index expression by defoliating it repeatedly. The number of defoliations
needed is equal to the size of the index expression. This property ensures that every
index expression can ultimately be broken down to the empty index expression. It
shows that the empty descriptor appears in every lithoid, since it is a subexpression
of every index expression.

Nesting and Defoliation of Index Expressions for Information Retrieval 45

4. Subexpressions

Subexpressions of index expressions play an important role in many applica-
tions of index expressions in IR. For instance, the construction of lithoids and
association indices is based on properties of subexpressions. This also holds for
navigational actions in these structures. In addition, the mapping of, for instance,
navigational behaviour to formal models hinges on properties of the notion of
subexpressions. Finally, subexpressions allow the definition of matching functions.

In the following subsections, three subexpression relations are given. In each
subsection, the subexpression relation at hand is defined followed by a lemma
stating its properties. The subexpression relations have different properties which
makes them suitable for different applications. In matching, for instance, the
general subexpression has to be used if exact matches are to be found. Then,
proper applications and additional properties are stated.

4.1. Direct Subexpressions

The defoliation operator is now used to construct the direct subexpression relation
≺d ⊆ L for index expressions. Direct subexpressions of index expressions are
obtained by removing exactly one leaf.

Definition 8. Direct Subexpression Relation

I ≺d J =def ∃x ∈ N: ∆(J, x) = I

The following lemma holds for the direct subexpression relation:

Lemma 9. ≺d is asymmetric.

Proof of lemma. Suppose ≺d is not asymmetric, that is, not(I ≺d J ⇒ J 6≺d I).
Let I and J be such that I ≺d J and J ≺d I . Then, applying Lemma 7 results in
|I | = |J| − 1 and |J| = |I | − 1, which is a contradiction. q

A consequence of this lemma is that the direct subexpression relation is
irreflexive.

The fact that direct subexpressions differ exactly one leaf, allows fine-grained
navigation in Query by Navigation. So called one-step (direct) refinements, as
proposed in Wondergem (1996), coincide with instances of the direct subexpres-
sion relation. In QBN, the set of choices at each focus then consists of one-step
refinements and enlargement, i.e. direct refinements and enlargements, since the
edges in lithoids coincide with the direct subexpression relation (see Bruza and
van der Weide, 1992). This property is exploited in so called hyperindex browsers
(for an example, see Iannella et al, 1995) which allow step-wise reformulation of
a user query based on intermediately retrieved documents.

Search paths that are constructed during navigation in lithoids can nicely be
given semantics. An example of this is described in Wondergem (1996), where
search paths impose a ranked clustering of the documents underlying the lithoid.
Another example, as described in Bruza and van Linder (1997) and Wondergem
et al (1996), constructs Preferential Models out of search paths. Preferential
Models, which are capable of capturing (non-monotonic) user preferences, are
augmented with domain knowledge in Wondergem et al (1998a).

In addition, the direct subexpression relation serves as the basis for defining
the edges of more complicated navigational structures such as association indices

46 B. Wondergem et al

(Wondergem et al, 1998b,c). The fine-grained nature of the subexpressions are ex-
ploited here as well. The navigational actions that can be performed in association
indices are also defined on the basis of the direct subexpression relation.

4.2. Strict Subexpressions

The strict subexpression relation for index expression ≺ ⊆ L2 is defined as the
transitive closure of the direct subexpression relation. The transitive closure of a
relation R is denoted by R∗.

Definition 10. Strict Subexpression Relation

≺ =def ≺∗
d

The following lemma is now clear:

Lemma 11. ≺ is asymmetric, and transitive.

Proof of lemma. Asymmetry (I ≺ J ⇒ J 6≺ I) follows directly from Lemma 9
and Definition 10: only transitive instances are added to ≺d.

Transitivity (I ≺ J and J ≺ K ⇒ I ≺ K) follows from Definition 10: ≺ is the
transitive closure of ≺d. q

As a consequence, the strict subexpression relation is also irreflexive. Transi-
tivity and irreflexivity of ≺ imply that the strict subexpression relation is a quasi
order on L.

The strict subexpression relation can be exploited for personalising search
paths in QBN (Berger, 1998). This means that, for instance, short cuts can be
provided to minimize navigation time. The reason for this is that it not only
includes one-step refinements and enlargements. In particular, the source and
destination of search paths that consist of series of refinements or enlargement
belong to the strict subexpression relation. Therefore, these search paths can be
replaced by a single pair of index expressions. This means that, when this pair is
offered to the user as an extra option, shortcuts are created making navigation
more efficient.

4.3. General Subexpressions

The third relation on index expressions defined in this article is the (general)
subexpression relation � ⊆ L2 for index expressions. An index expression I is a
(general) subexpression of another index expression J iff I is a strict subexpression
of or equal to J . Therefore, the general subexpression relation contains the strict
subexpression relation and reflexive tuples of index expressions.

Definition 12. Subexpression Relation

� =def ≺ ∪{(I, I) | I ∈ L}
The following lemma holds for general subexpressions:

Lemma 13. � is reflexive, antisymmetric, and transitive.

Proof of lemma. Reflexivity follows from Definition 12 and Lemma 11.
To prove antisymmetry (I � J and J � I ⇒ I = J), assume I � J and J � I .

Nesting and Defoliation of Index Expressions for Information Retrieval 47

Assume I 6= J for the sake of contradiction. Now, I � J and I 6= J imply I ≺ J .
This means J 6≺ I (by Lemma 11) which, again with I 6= J , forbids J � I . Thus,
I = J .

Transitivity follows from Definition 12 and Lemma 11. q

In other words, � is a partial order for the language of index expressions.
This means that 〈L,�〉 is a poset. In Wondergem (1996), 〈L,�〉 is therefore
called a structured descriptor language.

The general subexpression relation can be used to further augment the possible
choices in QBN. The reflexiveness of the subexpression relation guarantees that
the set of choices constructed from a certain focus include that focus itself. This
is necessary for some enhanced navigational query formulation mechanisms, such
as Berry Picking (Bates, 1989).

In addition, the general subexpression relation can be used to define the set of
relevant documents with respect to an index expression query (Wondergem, 1996).
Every document that contains an index expression such that the query is a general
subexpression of that, is deemed relevant. This includes documents that exactly
match the query and documents that contain more specific index expressions.

We have defined three relations that consider the structural composition
of index expressions and illustrated their possible use. We obtained the direct
subexpression relation by using defoliation, and then derived the other two
relations. Other approaches may first obtain one of these other two relations.
This is only a practical difference, however, since from any of the three relations,
the other two can be derived. For each application or use, the most suitable
relation can be chosen.

5. Other Representations for Index Expressions

In section 3.1, we introduced the structural notation of index expressions, which
is based on the nesting operator. This section shows two additional representation
formalisms for index expressions: the grammar representation and the broaden-
based representation. It is shown that these formalisms generate exactly the same
language of index expressions L(T ,C) from Definition 4.

5.1. Grammar Representation

As stated in the introduction, one of the uses of index expressions in IR systems
is for characterising documents. This means that the document content has to
be parsed to obtain index expressions. Parsers exploit grammars that describe the
structure of the language to be parsed. Therefore, many IR systems exploit a
grammar for index expressions. Definition 14 provides a grammar representation
for index expressions. This grammar can also be used to derive the semantics of
index expressions.

Definition 14. Grammar Representation of Index Expressions Given sets T of
terms and C of connectors as before, the language of index expressions can
be described by the following grammar which is denoted in extended BNF
format:

48 B. Wondergem et al

Expr → ε | NExpr

NExpr → Term {Connector (NExpr)}∗

Term → t, t ∈ T

Connector → c, c ∈ C

The grammar representation is also called the abstract syntax representation.
In this definition, Expr stands for index expression and NExpr for non-empty
index expression.

Theorem 15. Grammar Representation ≡ Structural Representation. The grammar
representation for index expressions generates the same language as the structural
representation of index expressions.

Proof of theorem.

1. Every index expression generated by the grammar representation can also be
described by the structural representation.
Take a random well-formed parse tree from the abstract syntax for index
expressions. At this moment, there are two possibilities. First, the parse tree is
Expr → ε describing the empty index expression ε which is also in the structural
representation.
Second, the parse tree starts with Expr → NExpr. This case is treated with
induction to the number of the NExpr nonterminal in the parse tree.
Basis step: A single occurrence. In this case, the parse tree is Expr → NExpr →
Term → t, where t is a term. Terms belong to the language of index expressions.
The induction hypothesis is that all parse trees starting with Expr → NExpr
which contain at most n occurrences of the NExpr nonterminal generate an
index expression that is also part of the structural representation.
Induction step: consider a parse tree with n + 1 occurrences of the NExpr
non-terminal. This parse tree starts with Expr → NExpr → Term
{Connector NExpr}l for some l > 0. By the induction hypothesis, all NExpri(1 6
i 6 l) are the root of a parse tree that contains at most n occurrences of the
NExpr non-terminal and thus yield valid index expressions Ii. These are cov-
ered by the nested index expressions Ii in index expression I = h ⊗l

i=1 ci(Ii)
which corresponds to the complete parse tree. In I , h ∈ T corresponds to
non-terminal Term, which is covered by the basis step of the induction, and
the Connector non-terminals, which are mapped to connectors in the fourth
rule of the grammar, are covered by the ci ∈ C of the structural representation.

2. Every index expression generated by the structural representation is also gen-
erated by the abstract syntax.

This case can be proven with induction to the number of occurrences of the
nesting operator ⊗ in the structural representation of the index expression.

5.2. Broaden-based Representation

The broaden-based representation is defined in terms of the binary constructor
operator broaden: L+ × C × L+ 7→ L+. This operator broadens an index
expression I with a connector c and an index expression J , and results in a larger
index expression broaden(I, c, J). The broaden operator, see Fig. 5, is used in the
parsing mechanism described in Bruza (1993).

Nesting and Defoliation of Index Expressions for Information Retrieval 49

Fig. 5. Broadening an index expression; broaden(I, c, J).

An advantage of this representation lies in the fact that the constructor
operator is binary in the sense that among its arguments are exactly two index
expressions. The advantage of this is that induction on the structure of index
expressions then only has to consider binary cases as well. Furthermore, the actual
structure of index expressions, i.e., lead term plus a number of subexpressions,
is less clearly depicted than in the structural representation. In the structural
representation, it is directly clear which subexpressions occur at the same depth.
This property is exploited in, for instance, matching if all subexpressions of a
certain depth are to be processed at the same time or in the same manner
(Wondergem et al, 2000).

Definition 16. Broaden-based Non-Empty Index Expressions The language of non-
empty index expressions, denoted by L+, is defined as the smallest superset of T
such that if I and J are non-empty index expressions and c ∈ C is a connector,
then broaden(I, c, J) is also an index expression.

Definition 17. Broaden-based Language of Index Expressions

L =def L+ ∪ {ε}
The structural and the broaden-based representation can be transformed into

oneanother as sketched by the scheme below.

h

l⊗
i=1

ci(Ii) ⇔ broaden(. . . broaden(broaden(h, c1, J1), c2, J2) . . . , cl , Jl)

This scheme represents the same principle of transforming a tree into a binary
tree, or vice versa. It will be exploited in the proof of the following theorem.

Theorem 18. Broaden-based ≡ Structural Representation

Proof of theorem.

1. Every index expression generated by the broaden-based representation can also
be described by the structural representation.
This case can be proven similar to the first case of Theorem 15. That is,
by induction to the number of occurrences of the broaden operator in index
expressions.

2. Every index expression generated by the structural representation can also be
described by the broaden-based representation.

This case is proven by induction on the number of occurrences of the nesting
operator in index expressions.
Consider an index expression I generated by the structural representation. Basis
step: No occurrences of the nesting operator. This case has two possibilities: the
empty index expression and single terms. For both types of index expressions,
the property is directly obvious from Definition 17.

50 B. Wondergem et al

The induction hypothesis is that every index expression with at most n oc-
currences of the nesting operator can also be described by the broaden-based
representation.
Induction step: consider an index expression I = h ⊗l

i=1 ci(Ii) containing n +
1 occurrences of the nesting operator which is generated by the structural
representation. Since the subexpressions Ii contain at most n occurrences of
the nesting operator, the induction hypothesis states that they can also be
described by the broaden-based representation. For subexpression Ii, let Ji
denote its broaden-based representation. Index expression I then is equivalent
to the broaden-based representation:

broaden(. . . broaden(broaden(h, c1, J1), c2, J2) . . . , cl , Jl)

Lemma 19. Broaden-based ≡ Abstract Syntax. Direct consequence of Theorems
15 and 18.

6. Conclusions

In this article, we discussed issues concerning the structural representation of index
expressions. This representation exploits the nesting operator for subexpressions.
We provided a defoliation operator for index expressions. This operator was
used to define three subexpression relations for index expressions. We indicated
a number of applications for the particular subexpression relations. Several
properties of index expressions and the subexpression relations were provided.
Finally, our formalism was compared to two other often used representations of
index expressions.

In Information Retrieval, index expressions are used for characterising doc-
uments, query formulation, and matching. Furthermore, stratified architectures
which allow navigational mechanisms are based on index expressions. The claims
about index expressions these applications make have now been validated. This
means that the many applications of index expressions that exploit their properties
now have a well-defined theoretical basis. For example, lithoids and association
indices can now be properly defined.

Further research can be conducted into normalisations and similarity of index
expressions as aimed at in Berger (1998). In addition, the relation with noun-
phrases can be further investigated. A result of such research could be an extended
form of index expressions.

References

Bates MJ (1989) The design of browsing and berrypicking techniques for the on-line search interface.
Online Review, 13(5):407–431

Berger FC (1998) Navigational Query Construction in a Hypertext Environment. PhD thesis, Depart-
ment of Computer Science, University of Nijmegen, September

Berger FC, van Bommel P (1997) Augmenting a characterization network with semantical information.
Information Processing & Management, 33(4):453–479

Berger FC, ter Hofstede AHM, van der Weide Th.P (1996) Supporting query by navigation. In
R. Leon, ed., Information retrieval: New systems and current research, Proceedings of the 16th
Research Colloquium of the British Computer Society Information Retrieval Specialists Group,
pp 26–46, Drymen, Scotland, Taylor Graham

Bosman R, Bouwman, R, Bruza, PD (1991) The Effectiveness of Navigable Information Disclosure

Nesting and Defoliation of Index Expressions for Information Retrieval 51

Systems. In G. A. M. Kempen, ed., Proceedings of the Informatiewetenschap 1991 conference,
Nijmegen, The Netherlands

Bruza PD (1990) Hyperindices: A Novel Aid for Searching in Hypermedia. In A. Rizk, N. Streitz and
J. Andre, editors, Proceedings of the European Conference on Hypertext – ECHT 90, pp. 109–122,
Cambridge, UK, Cambridge University Press.

Bruza PD (1993) Stratified Information Disclosure: A Synthesis between Information Retrieval and
Hypermedia. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands

Bruza PD, van der Gaag, LC (1994) Index Expression Belief Networks for Information Disclosure.
International Journal of Expert Systems, 7(2):107–138

Bruza PD, Ijdens, JJ (1994) Efficient probabilistic inference through index expression belief networks.
In Proceedings of the Seventh Australian Joint Conference on Artificial Intelligence (AI94),
pp 592–599. World Scientific

Bruza, PD, van Linder, B (1997) Preferential models of refinment paths. In Proceedings of the
IJCAI-97 Workshop on AI and Digital Libraries

Bruza PD, van der Weide Th.P. Two level hypermedia – an improved architecture for hypertext. In
A.M. Tjoa and R. Wagner, eds, Proceedings of the Data Base and Expert System Applications
Conference (DEXA 90), pp 76–83, Vienna, Austria. Springer-Verlag

Bruza PD, van der Weide Th.P. (1991) The modelling and retrieval of documents using index
expressions. ACM SIGIR FORUM (Refereed Section), 25(2)

Bruza PD, van der Weide Th.P. (1992) Stratified hypermedia structures for information disclosure.
The Computer Journal, 35(3): 208–220

Craven T. (1978) Linked phrase indexing. Information Processing & Management, 14(6): 469–476
Iannella R, Ward N, Wood A, Sue H, Bruza P (1995) The open information locator project.

Technical report, Resource Discovery Unit, Resource Data Network, Cooperative Research Centre,
University of Queensland, Brisbane, Australia

van Rijsbergen CJ (1979) Information Retrieval. Butterworths, London, UK, 2nd edition
Winograd W (1983) Language as a Cognitive Process. Addison-Wesley Pub. Co., Reading, MA, USA
Wondergem BCM (1996) Preferential structures for information retrieval. Master’s Thesis INF-SCR-

96-21, Department of Computer Science, Utrecht University, Utrecht, The Netherlands, August
Wondergem BCM, van Bommel P, Huibers TWC, van der Weide Th.P (1998a) Domain knowledge in

preferential models. In Janis Barzdins, ed., Proceedings of the Third Baltic Workshop DB& IS98,
volume 1, pp 126–138, Riga, Latvia, April

Wondergem BCM, van Bommel P, van der Weide Th.P (1998b) Association index architecture for
information brokers. Technical Report CSI-R9820, Computing Science Institute, University of
Nijmegen, Nijmegen, The Netherlands, July

Wondergem BCM, van Bommel P, van der Weide Th.P (1998c) Construction and applications of the
association index architecture. In Proceedings of CIW’98, the Conferentie Informatiewetenschappen
1998, Antwerp, Belgium, December

Wondergem BCM, van Bommel P, van der Weide Th.P (1998d) Boolean index expressions for
information retrieval. Technical Report: CSI-R9827, University of Nijmegen, Nijmegen, The
Netherlands, December

Wondergem BCM, van Bommel P, van der Weide Th.P (2000) Matching index expressions for
information retrieval. Information Retrieval Journal. To appear

Wondergem BCM, van der Hoek W, Huibers TWC, Witteveen C (1996) Preferential semantics for
query by navigation. In K van der Meer, ed., Informatiewetenschap 1996, pp 153–168, Delft, The
Netherlands, December

Wondergem BCM, Simons J, Arampatzis AT, Mackowiak J, Tarenskeen D., Huibers TWC (1997)
Profile information filtering project – overall project plan. Technical Note CSI-N9707, Computing
Science Institute, University of Nijmegen, Nijmegen, The Netherlands, September

52 B. Wondergem et al

Author Biographies

Bernd Wondergem received his masters degree in Computer Science in 1996
from Utrecht University, the Netherlands. He is currently a PhD student at
the University of Nijmegen, the Netherlands.

His main research interests include information retrieval and filtering
and knowledge-based systems. Major issues within these fields include ex-
pressive but tractable descriptor languages and logical models for retrieval.
His PhD research is done within the Profile project (Wondergem et al, 1997),
which aims at developing a proactive information filter for the WWW.

P. van Bommel received his masters degree in Computer Science in 1990,
and the degree of PhD in Mathematics and Computer Science, from the
University of Nijmegen, the Netherlands in 1995. He is currently assistant
professor at the University of Nijmegen, the Netherlands.

His main research interests include information modelling and informa-
tion retrieval. In information modelling, he particularly deals with equiv-
alence and mapping of data models, the transformation of (conceptual)
data models into efficient (internal) representations, and the correspond-
ing transformation of database populations, operations and constraints.
In information retrieval his main research interests include WWW-based
retrieval/filtering, and document characterisation languages.

Ir. Th. P. van der Weide received his masters degree from the Technical
University Eindhoven, the Netherlands in 1975, and the degree of PhD in
Mathematics and Physics from the University of Leiden, the Netherlands
in 1980.

He is currently associate professor at the University of Nijmegen,
the Netherlands. His main research interests include information systems,
information retrieval, hypertext and knowledge-based systems.

Correspondence and offprint requests to: Bernd Wondergem, Computing Science Institute, University

of Nijmegen Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands.

