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Abstract
The main aim of traditional multi-view clustering is to categorize data into separate clus-
ters under the assumption that all views are fully available. However, practical scenarios
often arise where not all aspects of the data are accessible, which hampers the efficacy
of conventional multi-view clustering techniques. Recent advancements have made signifi-
cant progress in addressing the incompleteness in multi-view data clustering. Still, current
incomplete multi-view clustering methods overlooked a number of important factors, such
as providing a consensus representation across the kernel space, dealing with over-fitting
issue from different views, and looking at how these multiple views relate to each other at
the same time. To deal these challenges, we introduced an innovative multi-view cluster-
ing algorithm to manage incomplete data from multiple perspectives. Additionally, we have
introduced a novel objective function incorporating a weighted concept factorization tech-
nique to tackle the absence of data instances within each incomplete viewpoint. We used
a co-regularization constraint to learn a common shared structure from different points of
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view and a smooth regularization term to prevent view over-fitting. It is noteworthy that the
proposed objective function is inherently non-convex, presenting optimization challenges.
To obtain the optimal solution, we have implemented an iterative optimization approach to
converge the local minima for our method. To underscore the effectiveness and validation of
our approach, we conducted experiments using real-world datasets against state-of-the-art
methods for comparative evaluation.

Keywords Clustering · Incomplete multi-view data · Concept factorization ·
Complementary information

1 Introduction

Multi-view learning is becoming increasingly popular as multi-view data finds applications
across various real-world scenarios [1, 2]. The goal of this strategy is to utilize consistent and
complementary information from several points of view. All the tasks in multi-view learning,
multi-view clustering (MVC) is one of the most notable. MVC groups unlabeled data from
several perspectives into clusters in order to produce reliable clustering results from all sides
by utilizing a variety of perspectives. Many approaches have been developed in the field of
multi-view clustering over the last ten years, as the literature [3–5] documents. Multi-view
non-negative matrix factorization, or MultiNMF, is one such method [6]. This method incor-
porates a consensus constraint—which is essential for preserving consistent clustering results
from many viewpoints—with a non-negative matrix factorization (NMF) process. Spectral
clustering is used by another class of methods, such as centroid-based co-regularization and
pairwise co-regularization [7], to produce clustering outcomes for every view. These tech-
niques make use of a variety of procedures in order to align the clustering results from several
viewpoints, guaranteeing consistency in the clustering results from multiple views.

The approaches for MVC discussed earlier presuppose that each of the examples’ views
is complete. However, circumstances where some viewpoints are absent are common in real-
world scenario. When examining a web page, text and photographs, for instance, might be
viewed as two distinct perspectives; nevertheless, someweb sitesmay include neither text nor
image data at all. Similar to this, a news story can be viewed fromavariety of angles by reading
news reports from numerousmedia sources, even though some outletsmight not have covered
the particular subject.Whenmulti-view data are incomplete, traditionalmulti-view clustering
methods fall short. In response to this challenge, a number of strategies have surfaced recently
[8–10]. A crucial element of many clustering strategies, matrix factorization has been shown
to be effective in a wide range of applications [11, 12]. These techniques aim to uncover
latent representations of incomplete multi-view data by combining matrix factorization and
regularization algorithms. The preservation of these representations was improved by Zhao
et al. [13] with the addition of a graph Laplacian term to their optimization procedure.

Furthermore, the absence of information in missing views is the primary cause of
incomplete multi-view clustering (IMC) shortcomings. IMC techniques can be split into
non-inference and inference approaches, each of which uses a different strategy, to address
this problem. Non-inference IMC [18–21] aims to achieve clustering with incomplete multi-
view data while mitigating the effects of information loss. Wen et al. [22], for instance,
used the samples that were accessible from each view to create an incomplete similarity
graph, filling in the missing elements with zeros. Next, k-means clustering is used to a shared
spectral embedding obtained from completed similarity graphs. Additionally, the local graph
preservation approach was used by Wen et al. [23] to obtain a common representation from
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incomplete views. In order to efficiently fuse partial similarity graphs, Liang et al. [24] applied
sample-level adaptive weights on the similarity graphs of all views that were available. Hu et
al. [25] presented amatrix factorization-basedmethod that aligns view-specific basismatrices
to learn a shared representation from imperfect data. Next, k-means is utilized to cluster this
shared representation. IMC techniques focus on organizing the reconstructed viewpoints and
retrieving missing ones in order to prevent information loss [26–34]. Achieving high-quality
retrieval of missing data is the primary goal. A straightforward method is to create unavail-
able samples by averaging characteristics. Zhou et al. [35], for instance, reduced the impact
of missing cases by introducing a weighting method and adding average features for each
view. But because all recovered samples from this method have the same properties, they
are unable to provide enough useful information and may cause alignment issues between
views. To mutually reinforce each other, integrating the inference and clustering processes is
a more rational method [36–40]. Pairwise dimension graph preservation was used by Wen et
al. [41] to recover the missing instances, and reverse graph regularization was used to guide
finished views.

Concurrently, the various data perspectives show complementary and consensus behavior.
Each view is important for computing clustering performance because it allows explicit
information to be explored from incomplete multi-view data. The primary motivation of
proposed study is the vital problem of completely using the data included in individual
incomplete views for the analysis of the consensus structure of the heterogeneous perspective
on the kernel space [7, 47, 48]. In order to achieve this objective, a new method called
weighted concept factorization is introduced for clustering incomplete multi-view data. The
proposed method seeks to reveal hidden structures, or clusters. First, each view of the data
is normalized and missing data is imputed using the algorithm. Subsequently, three matrices
are repeatedly refined: an association matrix that captures the relationships between data
and clusters, a projection matrix that assigns a value to each feature within each view, and a
consensus matrix that represents a single view that is shared by all data viewpoints. Using
the correlation aspect, the disagreement factor is extracted. To further prevent the over-fitting
of the view, the Frobenius norm is also used to pair up the projection matrix. This procedure
is repeated until convergence is achieved or the maximum number of iterations is completed.
The key aspects of the proposed algorithm are summarized as follows:

1. The missing issues in multi-view data are effectively handled by the proposed approach.
In our suggested objective function, we employ the weighted concept factorization
approach. For each incomplete view, a weight matrix is built so that the missing instances
in each view have a lower weight than the examples that are provided.

2. To drive the latent featurematrix toward a consensus,we use the co-regularized technique.
In order to avoid the view’s over-fitting problem, andmaintain the consistent information,
the projectionmatrix, and the associatedmatrix are conjugated using the Frobenius norm.
During the optimization process, each view’s weight is automatically determined. To
handle the related optimization problem efficiently and effectively, a new updating rule
is created.

3. The outcomes of the carrying experiments on real-world datasets are displayed in terms
of F-score, ACC, and NMI. According to the experimental study, the suggested approach
outperforms other existing techniques in clustering.

We give a summary of the incomplete multi-view clustering methods that are currently in
use in Sect. 2. Section3 provides a detailed explanation of our suggested methodology. An
examination of the experiments carried out using benchmark datasets is covered in Sect. 4.
Our final remarks are presented in Sect. 5.
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2 Related works

An overview of related work in incomplete multi-view clustering is given in this section.

2.1 Multi-incomplete view clustering (MIC)

The MIC method, as described in reference [14], is an IMC approach that utilizes weighted
NMF. Its objective function can be formulated in the following manner:

min
U f ,V f ,V ∗≥0

F∑

f =1

{∥∥(X f −U f V f
)
W f

∥∥2
F

}
+

F∑

f =1

{
α
∥∥(V f − V ∗)W f

∥∥2
F + β

∥∥V f
∥∥
2,1

}

(1)

where α and β serve as the corresponding parameters for the respective terms. F denotes the
total views, and the expression ‖ • ‖2,1 encompass the L2,1-norm. The matrix X f ∈ Rm×n

includes both present and missing values from the f th view, with the absent data filled by
averaging corresponding viewpoints. U f ∈ Rm×c and V f ∈ Rc×n designated as the basis
and coefficient matrices for the f th view. The dimensions are outlined as follows:m signifies
the original space dimension in the f th view, c denotes the latent space dimension, and n
represents the overall dataset size. V ∗ defines the common representation matrix, while W f

serves as the diagonal weighting matrix for the f th view. If the i th instance of the f th view is
available, Wii

f = zv/n, where zv denotes the number of available instances in the f th view.
This technique undergoes iterative optimization.

2.2 Doubly aligned incomplete multi-view clustering (DAIMC)

A DAIMC is an incomplete clustering method for multi-view data based on weighted semi-
NMF [25], and to express DAIMC’s cost function:

min
V≥0

F∑

f =1

{∥∥(X f −U f V
)
W f

∥∥2
F + α

(∥∥∥BT
f W f − I

∥∥∥
2

F

)
+ β

∥∥B f
∥∥
2,1

}
(2)

where α and β defined as the trade-off parameters for the respective terms. The inputmatrix is
represented by X f ∈ Rm×n , the common coefficient matrix is V , and the diagonal weighting
matrix for the f th view is W f . B f is a regression coefficient matrix for the f th view. Wii

f

equals 1 if the i th instance of the f th view is accessible, and Wii
f equals 0 otherwise. By

looking at Eq. (2), we can see that DAIMC aims to align several partial perspectives for V
and U f . This approach undergoes iterative optimization.

2.3 Incomplete multi-view clusteringmethods

This work addresses the incomplete multi-view clustering issue. Over the course of the last
ten years, a variety of incomplete multi-view clustering approaches have been suggested.

In this regard, Yin et al. [42] presented incomplete multi-view clustering with cosine sim-
ilarity. Enhancing the preservation of the data’s manifold structure, this method computes
cosine similarity directly in the original multi-view space. The need to includemore variables
is eliminated. Coherent method is achieved by merging the manifold structure preservation
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utilizing cosine similarity term with the matrix factorization component in the objective
function. Chao et al. [43] offered a two-stage method to handle multi-view clustering in the
event of any value missing that involved multiple imputation and ensemble clustering. The
problem of missing values is addressed by multiple imputation, and multi-view clustering is
implemented through the use of weighted ensemble clustering. Zhang et al. [44] introduced
a novel approach that merges completed graphs into a single graph after filling in the gaps
in the incomplete graphs based on agreement between various points of view. Further, the
innovative method proposed by Xia et al. [45] involves information fusion in partition space
to counteract consistency degradation, and adaptive weighting of all perspectives to repre-
sent their different contributions to clustering tasks. To create a desired similarity graph,
the cluster structure information is used into the similarity learning process. In order to
capture both the global and local structure of the data, Zhang et al. [46] suggested a novel
incomplete multi-view clustering algorithm. By adding a distance regularization term to the
model and applying a weighted fusion process, the suggested approach creates compact and
discriminating representations from partial data.

3 Proposedmethod

This section provides a thorough explanation of the optimization step as well as a novel
incomplete multi-view clustering technique that makes use of the CF approach. Additionally,
we demonstrate the approach’s convergent proof and establish the method’s time complexity.

3.1 Concept factorization

CF serves as a potentmethod formatrix decomposition, particularly adept at handling datasets
with negative values. Moreover, it demonstrates adaptability to altered data through kernel
methodologies. Considering a data matrix X = [

x1, x2, ..., x f
] ∈ �m×n , where each x f is

denoted by an f -dimensional feature vector, CF views every data point as an estimated linear
formulation of all fundamental concepts. This approach provides a succinct representation
of the data in the following manner:

x f ≈
∑

g
wgv f g (3)

In this context, v f g represents the projection matrix of x f onto the basis matrix u f . Conse-
quently, each basis matrix ug is established through a linear combination involving all these
data points. This concept is summarized as follows:

wg ≈
∑

f
x f u f g (4)

In the mathematical representation provided by Eq. (3) and (4), w f g represents a positive
association weight. This leads us to the subsequent mathematical formulation:

X f ≈ X f U f
(
V f

)T (5)

where U f and V f belong to the set of matrices with dimensions n × c, the CF employs the
Frobenius norm to approximate the data representation. This norm is utilized in minimizing
the cost function through the subsequent objective function:

min
U f ,V f

: OCF =
∥∥∥X f − X f U f (V f )

T
∥∥∥
2

F
s.t .U f , V f ≥ 0. (6)
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Following optimization, the variables adhere to the multiplicative update rule outlined
below:

U f ← U f
(K f V f )(

K f U f V f (V f )
T
)

V f ← V f
(K f U f )(

V f (U f )
T K f U f

)

⎫
⎪⎪⎬

⎪⎪⎭
(7)

where K f = (X f )
T X f calculates the inner product within the initial data space.

3.2 Missing data completion

Givendatamatrix X f with f -views,where eachview is facing the problemof incompleteness.
Since the missing instances could cause information to be incorrect for each view, we are
unable to apply the clustering algorithm directly to partial data. In such a way, we introduce
a weighted diagonal matrix for each incomplete view, which is filled through the following
assumption:

Ws
f =

{
1, if the sth instances in f th view
0, otherwise

(8)

3.3 Proposed objective function

In the input matrix X = {X1, X2, ..., XF } ∈ �m×n , each row denotes a unique feature
dimension, and each column represents an individual data instance, thereby defining the
dataset with F views. CF satisfies the conditions for achieving the approximation through
the three matrices, denoted as X ≈ XUV T . This is because V ∈ �n×c acts as the projection
matrix, displaying the projected values that correlate to the concepts, and U ∈ �n×c acts as
the association matrix, validating the relationship of data points to concepts. The following
is the formulation of the objective function:

OWCF IMC =
F∑

f =1

⎧
⎨

⎩

∥∥∥W f

(
X f − X f U f V T

f

)∥∥∥
2

F
+ αω f

∥∥W f
(
V f − V ∗)∥∥2

F

+β
∥∥U f

∥∥2
F + γ

∥∥V f
∥∥2
F + η

∥∥ω f
∥∥2

(9)

s.t . U f ≥ 0, V f ≥ 0, ω f ≥ 0,
F∑
f =1

ω f = 1.

–
∥∥∥W f

(
X f − X f U f V T

f

)∥∥∥
2

F
is the mathematical representation of the concept factoriza-

tion with weighted diagonal matrix.
–

∥∥W f
(
V f − V ∗)∥∥2

F represents the correlation between the coefficient matrix and con-
sensus matrix.

–
∥∥U f

∥∥2
F is used to represents the maintain the consistent information across the multiple

views.
–

∥∥V f
∥∥2
F defines to avoid the over-fitting issue among the views.
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where α, β, γ and η are the trade-off parameters. We denote Q f = WT
f W f and Eq. (9)

is rewritten as:

O2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q f

(
tr

((
X f − X f U f V T

f

)T (
X f − X f U f V T

f

)))

+αω f Q f

(
tr

((
V f − V ∗)T (

V f − V ∗)
))

+ βtr
(
U f UT

f

)

+γ tr
(
V f V T

f

)
+ η

∥∥ω f
∥∥2

(10)

Defining the standard kernel matrix K = XT X , which is used to calculate the data space’s
inner product. Next, we rewrite Eq. (10) in this way:

O3 =
{
Q
(
tr (K ) − 2tr

(
VUT K

) + tr
(
VUT KUV T

))

+αωQ
(
tr(V − V ∗)T (V − V ∗)

)
+ +βtr

(
U f UT

f

)
+ γ tr

(
V f V T

f

)
+ η‖ω‖2

(11)

To put it succinctly, the CIWCFMvC modifies the optimization approach to get the con-
ventional comprehensive solution. Through the use of ω, each view is stated as follows: ω

as 1/M . The k-means algorithm returns W , V , and V ∗ primary values.

3.4 Optimization of the proposed function

Lagrange’s multiplier (LM) is integrated during the optimization process to ascertain the
most optimal local solution, which is accomplished through the use of the iterative updating
technique. Karush–Kuhn–Tucker (KKT) criteria are then taken into consideration for the
analysis of the final amended rules.

3.4.1 Optimization of U

For the restrictions Ua,b ≥ 0, assume the LM φa,b. In order to assess the function’s optimal
outcome in light of the limitations, the LM is applied. In the end, the formulation of the
Lagrange’s function L1 is L1 = O − tr(φU ). We address the relevant phrase up to U .

L1 = Q
(
−2tr

(
VUT K

)
+ tr

(
VUT KUV T

))
+ βtr

(
UUT

)
− tr (φU ) (12)

By applying the partial derivative of L1 w.r.t U :

∂L1

∂U
= Q

(
−2KV + 2KUVV T

)
+ 2βU − φ (13)

Using the KKT condition φikUik = 0, the following optimize rule for U is:

Ui k = Ui k
(QKV )ik(

QKUV T V + βU
)
ik

(14)

3.4.2 Optimization of V

For the constraints Va,b ≥ 0, consider the LM ψa,b. Then, L2 = O − tr(ψV ) is the
reformed Lagrange’s function. We take into account only the required element of V .

L2 = Q
(
−2tr

(
VUT K

)
+ tr

(
VUT KUV T

))
+ αωQ

(
tr
(
V − V ∗)T (

V − V ∗))

+γ tr
(
VV T

)
− tr(ψV ) (15)
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By applying the partial derivative of L2 w.r.t V :

∂L2

∂V
= Q

(
−2KU + 2VUT KU

)
+ Q

(
2αω

(
V − V ∗)) + 2γ V − ψ (16)

Using the KKT condition ψi,kVi,k = 0, the following optimize rule for H is:

Vi,k = Vi,k
QKU + αωQV ∗

VUT QKU + αωQV + γ V
(17)

It is important to highlight that in order to avoidU f from reaching excessively high values
(which could result in extremely low values of V f ), it’s typical to impose a constraints on
each associate matrix U f . However, the updated U f might not satisfy the given constraints.
Therefore, normalization is applied to matrices U and V in order to obtain the consistency
constraint by the following scenario:

V ← V (N )
−1
2 ,U ← U (N )

1
2 (18)

While a diagonal matrix is implied by N and is expressed as:

N = diag
(∑

z
(V )z,1,

∑
z
(V )z,2,...,

∑
z
(V )z,c

)
(19)

3.4.3 Optimization V∗

Assuming ζa,b as the LM, let V ∗
a,b ≥ 0 be the constraints. Then, L3 = O − tr(ζV ∗) is the

transformed Lagrange’s function. We focus on terms that contain only V ∗, and we use the
partial derivation of Eq. (13) with respect to V ∗.

L3 = αωQ
(
tr

((
V − V ∗)T (

V − V ∗))) (20)

The above equation is solved, and the update rule for V ∗ is then drawn:

V ∗ =
∑M

j=1 ω j QVj
∑M

j=1 ω j Q
(21)

3.4.4 Optimization!

The weights for distinct views are automatically computed based on the disagreement factor
between eachV , andV ∗. Subsequently, the objective function is reformulated in the following
manner:

O(ω) =
J∑

j=1

ω
∥∥V − V ∗∥∥2

F + η ‖ω‖22 (22)

where π ‖ω‖22 is used to control the smoothen the weight distribution among the multi-
ple views to avoid the futile solution. Equation (22) is effectively solved by the quadratic
programing Matlab function, i.e., quadprog.
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Algorithm 1: The CIWCFMvC Algorithm
Input:
The multi-view data X f ; Cluster number: c;
Initialize the view’s weight ω = 1

/
F for individual view;

The values of the parameters α, β, γ , and η.
Output:
Final association matrix U f ;
Final projection matrix V f ;
Consensus matrix V ∗.
Initialization:
Use the average feature values to fill in the missing instances in each incomplete view;
Normalized each view of X f such that ‖X f ‖ = 1;
Initialize the values of U f , and V f ;
repeat

for i = 1 to F do
Fix V ∗, V f , optimize U f by Eq. (14) ;
Fix V ∗, U f , optimize V f by Eq. (17);
Normalize U f and V f by Eq. (18)

Fix U f , V f , optimize V ∗ by Eq. (21);
Optimize weight ω by Eq. (22);

until convergence or maximum iteration achived.;

3.5 Computational complexity

We examine the complexity of the proposed method in this section. The kernel’s computa-
tional complexity is O(mn2). The related cost for the multiplicative updating case is O(tmn)

if we assume that the multiplicative update ends after t iterations. Thus, O(mn2 + tmn) can
be used to represent the overall computational complexity of the suggested approach.

4 Experiments and analysis

This section presents a comparison of seven state-of-the-art approaches on seven benchmark
datasets with the proposed CIWCFMvCmethod. The normalizedmutual information (NMI),
F-score, and accuracy (ACC) are used to evaluate the clustering performances. The whole
cases are arranged in these datasets. Next, in order to render the data as incomplete, we
arbitrarily eliminate some representations from each view. In particular, the interval of 20%
represents the ratio of incomplete occurrences, which ranges from 10 to 50%.

4.1 Dataset

To assess the efficacy of the recommended method, we conduct analysis on widely
employed benchmark datasets, i.e., 3Sources,1 NGs,2 Wikipedia Articles,3 BBCSport4,

1 http://mlg.ucd.ie/datasets/3sources.html.
2 http://lig-membres.imag.fr/grimal/data.html.
3 http://www.svcl.ucsd.edu/projects/crossmodal/.
4 http://mlg.ucd.ie/datasets/segment.html.
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Table 1 Important statistics of the benchmark datasets

Dataset Size # view # cluster #dimension

3Sources 169 3 6 {3560, 3631, 3068}
NGs 500 3 5 {2000, 2000, 2000}
Wikipedia Articles 693 2 10 {128, 10}
BBCSport 544 2 5 {3183, 3203}
BBC 685 4 5 {4659, 4633, 4665, 4684}
WebKB 203 3 4 {500, 500, 500}
Citeseer 3312 2 6 {3312, 3703}
Reuters 1200 5 6 {2000, 2000, 2000, 2000, 2000}

BBC,5 WebKB,6 Citeseer,7 and Reuters.8. The description of the datasets is illustrated in
Table 1.

– 3Sources dataset is compiled from three reliable online news sources, each of which
offers a distinct viewpoint. A selection of 169 distinct news stories has been made from
these sources.

– NGs dataset is the subsets of the 20 newsgroup NGs dataset, which contains archives
from a variety of newsgroups. Extracts of reports from various news groups have been
used, with each group represented as an independent point of view.

– Wikipedia Articles dataset is made up of carefully picked parts of Wikipedia’s featured
articles that have been put together in reports. Since it was compiled in October 2009,
2,669 articles from 29 different categories have been included. The most popular ten
categories are highlighted, including articles that have several sections and photographs.

– BBCSport is extracted from BCSport website which contains 544 records. A manual
classification into one of five subject groups has been performed on each record, which
has been divided into two sections.

– BBC website maintains a collection of articles that are organized into five primary cate-
gories: business, entertainment, politics, sports, and technology. These articles cover the
years 2004 to 2005. Six hundred and eighty-five stories were selected from four different
sources.

– WebKB dataset comprises 203 web pages organized into four divisions. The content of
each webpage, including the title text and hyperlinks, define it.

– Citeeer are 3312 papers in this collection, linked by 4732 citations. Each of these pub-
lications is annotated using six different labels: DB, IR, ML, Agents, AI, and HC.

– Reuters is a compilation of English documents translated into four additional languages:
Italian, French, Spanish, and German.

4.2 Evaluation indices

1. ACC: It determines which data point has the highest rate of accurate assignment to the
correct cluster. Given that fi represents the dataset xi ’s actual label and gi represents the

5 http://mlg.ucd.ie/datasets/bbc.html.
6 https://linqs.soe.ucsc.edu/data.
7 http://lig-membres.imag.fr/grimal/data.html.
8 http://ligmembres.imag.fr/grimal/data.html.
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algorithm’s label, the ACC can be computed as follows:

ACC =

n∑
i=1

ρ( fi ,map(gi ))

nd
(23)

If the indicator function is defined by ρ(x, y), the total number of points is nd , and the
mapping function map(gi ) is used to assess the clustering label in order to establish true
labels.

2. NMI: It employ for collaborative analysis comparing the truth label of the dataset with
the label generated by the proposed method.
Given the actual label set  = {S1, S2, ..., Sc} and the clustering’s label ′ =
{S′

1, S
′
2, ..., S

′
k}, let mi and m′

i represent the data points in clusters Si and S′
i , respec-

tively, and mxy denotes the data points in the intersection of clusters Sx and Sy , the NMI
between  and ′ is computed as follows:

NMI =

c∑
x=1

k∑
y=1

log
(
mmxy
mxm′

y

)

√√√√
(

c∑
x=1

mx log
mx
m

)(
k∑

y=1
m′

t log
m′
t

m

) (24)

3. F-score: The harmonic mean of the recall and precision is used to get the F-score. The
definition of the calculation equation is:

F−score = 2 × Pn × Rl

Pn + Rl
(25)

where Pn defines as precision and Rl defines as recall.

4.3 Baselinemethods

We evaluate the CIWCFMvC against the existing techniques. Below is a summary of the
techniques that have been compared in detail.

– MIC [14]: For each incomplete view, the average feature values are filled in to address
missing occurrences using the MIC approach. It then tackles this problem by applying
L2,1-Norm regularization and weighted NMF.

– DAIMC [25]: Considering both basis matrix alignment and instances aligned, DAIMC
aims to obtain a common latent feature matrix for all perspectives. It presents a corre-
sponding weight matrix for every incomplete view, giving each view’s supplied instances
one weight and its missing instances zero.

– OMVC [15]: OMVC enforces sparsity in the acquired latent feature matrices through
lasso regularization, thereby enhancing resilience to noise and outliers. Noteworthy is
OMVC’s memory efficiency, as it circumvents the need to store the entire data matrix,
resulting in reduced space complexity. The method processes data incrementally, simul-
taneously learning latent features and updating the basis matrix.

– OPIMC [16]: OPIMC tackles the challenge of large-scale incomplete multi-view clus-
tering by incorporating information aboutmissing instances throughweighted andmatrix
factorization. It introduces two global statistics that facilitate direct clustering outcomes
and effectively determine the conclusion of the iteration process.
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– CFTIMC [17]: The common local graph is learned from the completed multiple views
by CFTIMC, which models the inter-view alignment relation to infer the missing sam-
ples. Lastly, CFTIMC generates the spectral embedding for k-means clustering using the
common local graph.

– GIMC-FLSD [24]:With the help of local graph regularization, GIMC-FLSD determines
the common representation from imperfect data and gives each view a learnable weight.

– UEAF [41]: By using dimension graph regularization, UEAF assures that missing data
are recovered, treating them as errors. Through the use of reserve graph constraints, it
additionally guarantees the consensus structure of completed views. The multi-view data
that UEAF generates are then used to extract a common representation.

– IMC-LRAGR [46]: To build graphs that capture both global and local data structures,
the suggested approach combines non-negative restrictions with distance regularization
terms inside low-rank representations. The low-dimensional representation of the graph
is then obtained by using spectral clustering.

– EEOMVC [47]: This method creates low-dimensional latent features, makes a single
partition representation, and breaks down larger similarity graphs from anchor graphs
for every view. The binary indicator matrix is directly generated via a label discretization
process. Clustering results are improved by the method by combining latent information
fusion and clustering into a unified framework.

– EERIMVC [49]: This technique presents a regularization technique to enhance the
effectiveness of clustering in spite of missing data. The technique generates a single
clustering result by combining data from all accessible views, even if some views are
lacking.

– UOMvSC [50]: In this method, the unified graph is produced by utilizing the relationship
between the graph and the inner product of the embeddingmatrix. Information from every
view is combined into one single graph. It is a one-step technique where the clustering
labels are obtained directly from this unified network.

4.4 Parameter study

This section analyses the sensitivity of the manually adjusted parameters α, β (=γ ), and η

under average clustering performance. The parameter α is chosen as
{
1e−1, 1e−2, 1e−3,

1e − 4, 1e − 5
}
, β is selected as {10, 20, 30, 40, 50}, and η from {0.01, 0.1, 1, 10, 100}.

The performance evaluation on variable values of η and α is shown in Fig. 1 and for β is
discussed in Fig. 2. These figures clearly show that the proposed methodmaintains consistent
performance across a diverse set of parameters. These experiments provide strong evidence
for the robustness of the proposed methods against parameter variations.

4.5 Convergence study

The objective functionmeets the convergence for amissing rate of 0.1, 0.3, and 0.5 in Fig.3. It
is noteworthy to emphasize that the method optimizes the given function while continuously
meeting the convergence requirements. Our method finds the most optimized values for the
variables through iterative updates. The function’s values steadily decline as the number of
repetition rises, finally attaining convergence after 30 iterations, according to analysis of
Fig. 3.
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Fig. 1 Parameter sensitivity on the compared datasets

Fig. 2 Parameter sensitivity on the compared datasets

Fig. 3 Convergence rate of the benchmark datasets on 0.1, 0.3, 0.5 missing rates
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4.6 Experiment results

The proposed approach’s clustering performancewill be assessed using commonly employed
metrics such as F-score, ACC, and NMI. The corresponding results are presented in Tables
2, 3, and 4, with bold numbers highlighting the top performances. Drawing conclusions from
the evaluated performance, we arrive at the following findings:

To replace missing values in each data view with the matching average value, MIC used
a weighted NMF method. It did not, however, outperform the recommended technique,
demonstrating the superiority and efficacy of our suggested approach in improving perfor-
mance.DAIMCoutperformedother techniqueswhen it came to clustering performance on the
Wikipedia dataset. Likewise, our suggested approach produced better assessment outcomes
on other datasets, verifying the efficacy of our technique.

Even though OMVC handled missing multi-view data, on average it performed the worst
out of all the algorithms that were compared. On the other hand, our suggested approach
demonstrated better clustering performance and handled incompleteness in multi-view data,
achieving over 70% performance on datasets like BBCSport, NGs, and BBC.

Using NMF and Frobenius norm, OPIMC obtained the second-best results for all metrics.
Alternatively, our approach demonstrated the best clustering performance when compared
to other methods by utilizing weighted idea factorization and a co-regularization expression
to create the common consensus matrix.

Average clustering performance was achieved by CFTIMC by combining the NMF
approach with common latent subspace and manifold learning. On the other hand, our
weighted idea factorization-based approach demonstrated better clustering performance in
all of the datasets that were evaluated.While GIMC_FLSD improved over IMG in addressing
missing instances, it was not able to outperform our suggested approach, which outperformed
other state-of-the-art methods by achieving over 45% average performance across all criteria.

Similar to our approach, UEAF sought to remedy missing instances; however, it did not
outperform it. Comparing our approach to other state-of-the-art techniques, it showed an
average performance of over 50% across all parameters, demonstrating its efficacy in filling
missing instances. IMC_LRAGR produced average clustering performance by combining
the NMF approach with common latent subspace and manifold learning. By using weighted
idea factorization, on the other hand, our suggested approach showed better clustering per-
formance on all of the comparable datasets.

For themajority of datasets, theEEOMVC,EERIMVC, andUOMvSCalgorithms perform
better when clusteringmulti-view data. However, across all datasets, our suggested algorithm
outperforms the competition and shows the best results..

In summary, our approach performs better than the currentmethods on real-world datasets,
as shown by the comparison between Tables 2, 3 and 4. This highlights the superior perfor-
mance of our method, which leverages a smooth regularization term to reduce over-fitting
problems between views and a co-regularization term to reveal the shared consensus structure
in the data.

5 Conclusion

In this study,we explore the challenge of dealingwith incomplete views inmulti-view cluster-
ing, where each view is affected by the absence of certain instances. By using the weighted
concept factorization theory, which reduces disagreement between many viewpoints and
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a common consensus matrix in addition to utilizing matrix factorization, the CIWCFMvC
model is proposed.Moreover, the weight of the view is automatically adjusted throughout the
optimization process. Lastly, the innovative iterative technique is used to maximize the sug-
gested objective function of the CIWCFMvC. Comprehensive tests on benchmark datasets
confirm that the CIWCFMvC is better than the current methods.
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