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Abstract
Convolutional neural networks (CNNs) have demonstrated impressive performance in fitting
data distribution. However, due to the complexity in learning intricate features from data,
networks usually experience overfitting during the training. To address this issue, many data
augmentation techniques have been proposed to expand the representation of the training
data, thereby improving the generalization ability of CNNs. Inspired by jigsaw puzzles,
we propose PatchMix, a novel mixup-based augmentation method that applies mixup to
patches within an image to extract abundant and varied information from it. At the input
level of CNNs, PatchMix can generate a multitude of reliable training samples through an
integrated and controllable approach that encompasses cropping, combining, blurring, and
more. Additionally, we propose PatchMix-R to enhance the robustness of the model against
perturbations byprocessing adjacent pixels. Easy to implement, ourmethods can be integrated
with most CNN-based classification models and combined with varying data augmentation
techniques. The experiments show that PatchMix and PatchMix-R consistently outperform
other state-of-the-art methods in terms of accuracy and robustness. Class activationmappings
of the trained model are also investigated to visualize the effectiveness of our approach.

Keywords Data augmentation · Mixup · Classification · Generalization ability · Robustness

1 Introduction

Recent years have witnessed a growing research and application of data augmentation in
various domains, such as image classification [1, 2], face recognition [3, 4], moving object
detection [5, 6] and text mining [7, 8]. While machine learning techniques excel in various
tasks, they often strugglewith variations in data distribution [9]. Furthermore, data acquisition
and labeling are manual and limited. Relying solely on raw images for training models, many
deep neural networks tend to memorize the data, hindering their ability to learn domain
invariance and ultimately leading to poor generalization.
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Fig. 1 A visual comparison of the patch-level methods. Left: Input and traditional patch-based methods.
Middle: Our proposed method PatchMix. The notation 2 × 2 represents dividing an image into 2 × 2 patches,
and each patch is undergone PatchMix. Auxiliary lines are added to the samples in the second column. Right:
PatchShuffle and our proposed method PatchMix-R. The notation 8 × 8 means that each non-overlapping
patch contains 8 × 8 pixels, and PatchMix-R is performed on each pixel within the patch. In the left column,
only half of patches are processed, while all patches in the images on the right are processed

To address above issues, a range of data augmentation techniques have been proposed. For
visual information, traditional data augmentations [1, 10–12] apply various affine transfor-
mations, such as horizontal translation, scaling, and squeezing, to enhance the accuracy and
robustness of models. In contrast to these global transformations, some patch-level methods
[13–15] primarily aim to remove or add noise to patches. However, these operations only
perform conservative processing, leaving much of the internal information unexplored. Fur-
thermore, in the field of visual research at the patch-level, there has been a growing trend to
consider images as collections of patches. Many visual models are trained directly on patches
as input and have demonstrated strong performance [16, 17], highlighting the feasibility of
using patches for data representation. Additionally, employing puzzle-like techniques to split
and reassemble patches for unsupervised feature learning have shown promising capabili-
ties in knowledge learning and transfer [18]. Therefore, investigating augmentation methods
specifically targeting patches holds great potential.

Recently, a line of research known as mixup [19] has been proposed. These methods [20–
25] focus on linear or nonlinear mixing of multiple images and labels, allowing the model to
better fit multicategory information from different images. Anchor data augmentation [26]
and C-mixup [27] have also been proposed to address regression problems. Nevertheless,
these derived works introduce additional computational effort and cannot be generalized to
unlabeled scenarios such as self-supervised learning [28] due to their strong coupling with
labels. Mixup provides a novel approach of linearly combining data, yet in existing research,
it has not been applied within an image to enrich the internal information.

In this work, we propose an innovative data augmentation approach called PatchMix.
Utilizing patches as the fundamental building blocks, PatchMix develops a blending strategy
inspired by mixup to reorganize the image data. As depicted in Fig. 1, PatchMix signifi-
cantly expands the diversity of the data representation within the domain while preserving
its fundamental characteristics. In comparison with existing methods, PatchMix significantly
enhances the relative positional information, combination and clarity through cropping, com-
bining and blurring. Label-free and plug-and-play, it can also be seamlessly integrated into
existing works and even extended to other domains such as self-supervised learning. To
enhance the robustness of the trained model, we extend PatchMix to PatchMix-R, which
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alleviates the limitations of PatchShuffle [29] by introducing reasonable perturbations to
adjacent pixels.

Our main contributions are three folds:

• We design a lightweight patch-level data augmentation PatchMix for images, which can
ensemble with other augmentation methods of varying complexities and visualized to
showcase the advantages of training with it.

• We apply PatchMix within patches and propose PatchMix-R. By moderately perturbing
the adjacent pixels of the patch, it visibly enhances the robustness of models to noisy
samples.

• In the experiments, PatchMix outperforms state-of-the-art methods on CIFAR-10/100
and Tiny-ImageNet. When combined with PatchMix-R, it also improves the robustness
of classifiers to noise attacks better than other methods.

2 Related work

2.1 Traditional data augmentation

Traditional data augmentation typically targets individual images, performing basic geomet-
ric transformations and color conversions [30].Based on the content of the augmented images,
the traditional approaches can be categorized into image-level and patch-level techniques.

Image-level Random flipping and random cropping, as the most common and effective
image-level data augmentation, empirically improve the generalization performance of the
neural networks on clean data. Moreover, methods such as sharpness, brightness and Gaus-
sian are also utilized for image augmentation in various works [1, 10, 11]. Subsequently,
attention has shifted toward combining different augmentation methods, leading to the pro-
posal of automatic data augmentations [2], such as AutoAugment [31], RandAugment [32],
and TrivialAugment [12].

Patch-level Patch-level data augmentation focuses more on the local information of the
image. Cutout [13] randomly masks a portion of the image to enhance the accuracy. To
achieve a balance between accuracy and robustness, Patch Gaussian [14] adds Gaussian
noise to a specific patch. Parameter learning free, Random erasing [15] generates varying
levels of occlusion in training images and is easily deployed.

Traditional data augmentation, although simple, does not considerably alter the represen-
tation of the data domain. The patch-level methods are specific to one or several patches,
conservatively preserving the rough structure of the image, which somewhat limits the
diversity of its feature representation.

2.2 Mixup

Linear mixingMixup [19] trains a neural network to linearly interpolate two training images
and their corresponding labels in a random ratio. This regularization-like method has been
experimentally shown to improve the accuracy of the model. Manifold Mixup [20] improves
upon the Mixup by introducing interpolation at the hidden layer to preserve the manifold
structure between input samples. To encourage fair and accurate decision boundaries for all
subgroups, Subgroup Mixup [21] develops a pairwise mixup scheme to augment training
data.
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Nonlinear mixing Instead of processing the entire image, CutMix [22] randomly crops
the image and fills the masked patch with another image patch, mixing the labels according
to the proportion of patches. PuzzleMix [23] and SaliencyMix [24] incorporate a saliency
signal, rendering the selection and mixing of patches non-random. The mixing proportion
of the labels is optimized to be determined by the ratio of salient regions. To reduce the loss
of saliency inference, AutoMix [25] adaptively generates mixed samples based on mixing
ratios and feature maps in an end-to-end manner.

Although many derivative works have improved the reliable and rich representation of
samples, the additional computational costs are usually not negligible. Simultaneously, the
mixingoperationbasedonmultiple samples poses a challengingproblem for label calculation.
It is worth noting that existing mixup methods are all based on multiple images, and there is
no mixup technique available for a single image yet.

3 Proposedmethod

In this section, we present the general procedure of the proposed method, PatchMix, and
examine the mechanisms for controlling the degree of mixing between patches. Moreover,
we extend PatchMix to enhance the robustness of the network by building upon the idea of
PatchShuffle [29].

3.1 PatchMix

At present, data augmentation techniques predominantly concentrate on operations that
involve merging or stitching multiple images [33, 34]. These methods frequently disregard
the diversity of feature representations within individual images, depending instead on basic
preprocessing steps such as horizontal flipping or random cropping.

In the context of jigsaw puzzle, an interesting observation is that a picture, when disas-
sembled and reassembled, can be orderly reconstructed due to its key features. Inspired by
this concept, PatchMix initially segments an image into distinct patches and applies ran-
dom shuffling. This approach overcomes the limitations associated with relative positional
constraints of patches, thereby creating opportunities for diverse information expression.
However, PatchMix does not merely substitute the original patch; instead, it utilizes the lin-
ear method of mixup to blend patches, mitigating the structural disruptions caused by the
shuffling. In this section, we provide a detailed explanation of PatchMix and how it works.

3.1.1 Formulations

Consider a matrix X of dimensions H ×W . Divide X into non-overlapping patches of h×w

elements, represented as

X =

⎛
⎜⎜⎜⎜⎜⎝

P1 P2 · · · PW
w

P(
W
w

)
+1

P(
W
w

)
+2

· · · P
2×

(
W
w

)

...
...

. . .
...

P(
H
h −1

)
×

(
W
w

)
+1

P(
H
h −1

)
×

(
W
w

)
+2

· · · P(
H
h

)
×

(
W
w

)

⎞
⎟⎟⎟⎟⎟⎠

, (1)

123



PatchMix: patch-level mixup for data augmentation... 3859

Fig. 2 An illustration of PatchMix on one image (H × W ) divided into four non-overlapping patches
((H/2) × (W/2)). The notation � indicates that the pixel values of each patch are multiplied by the cor-
responding weight values in the right column. The shuffled patches are independent of the original patches.
Note that there is a possibility that several patcheswill directly skip to the final, as illustrated in the bottom-most
patch

where Pi represents the i-th patch after being split. A random binary switch r determines
whether the matrix Pi undergoes the PatchMix transformation. Let the random variable r
follow a Bernoulli distribution, r ∼ Bernoulli(ε), such that r = 1 with probability ε and
r = 0 with probability 1 − ε. The resulting matrix P̃i can be expressed as

P̃i = (1 − r)Pi + rT (Pi ), (2)

where T (·) denotes the PatchMix transformation and is formulated as

T (Pi ) = λPi + (1 − λ)Pindex[i], (3)

where index is a randomly generated sequence number obtained by shuffling[
1, (H/h) × (W/w)

]
, and the mixing ratio λ is randomly sampled from a beta distribution.

3.1.2 PatchMix on images

In the process of visual perception, fragments of an object can supply valuable and sufficient
information for classification,without the need to consider the entire object or rely on absolute
positional relationships [35]. Similarly, in many computer vision tasks, input images can be
treated as matrices and subjected to the PatchMix transformation. As depicted in Fig. 2, The
image is divided into P1, P2, P3, P4 in accordance with Eq. (1). P4 retains the original patch
values, while P1, P2, P3 aremixed based on Eq. (3). Aftermixing, all patches are reassembled
into the image according to the original sequence. The specific processing details are provided
in Algorithm 1.

This paper simultaneously elucidates the benefits of our method in adjusting the classifi-
cation boundary. In Fig. 3, when the training data are limited, classification boundary is prone
to overfitting during the training. In such cases, test data are typically not well distinguished.
Traditional data augmentation methods (random flipping and random cropping) can to some
extent expand the input space of the data, thereby reducing the occurrence of overfitting.
PatchMix further expands the representation of image data by manipulating the information
through cropping, combining, blurring, etc. The generated data are typically more complex
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Algorithm 1 PatchMix Procedure
Input: Input image: I with spatial sizes H × W ; patch-mixed probability: p; Patch height: h, Patch width:
w; Parameters of beta distribution: α, β. (For simplicity, H and W can be divided by h and w, respectively.)
Output: Mixed image: I∗.

1: N ← (H/h) × (W/w)

2: Divide I into N non-overlapping h × w patches: P1, P2, · · · , PN
3: P∗

1 , P∗
2 , · · · , P∗

N ← P1, P2, · · · , PN
4: index ← Randperm (N )

5: for i ← 1 to N do
6: if Rand (0, 1) ≥ p then
7: P∗

i ← Pi
8: else
9: λ ← Beta (α, β)

10: P∗
i ← λ Pi + (1 − λ) Pindex[i]

11: end if
12: end for
13: I∗ ← P∗

1 , P∗
2 , · · · , P∗

N
14: return I∗

Fig. 3 Classification boundary adjustment by applying data augmentation. Left: Classification boundary
learned only by input data. Middle: Classification boundary adjusted by adding augmented data with tra-
ditional methods, random flipping (RF) and random cropping (RC). Right: Classification boundary adjusted
by adding augmented data with RF, RC and PatchMix. Partial augmentation processes are visualized in the
bottom

and diverse. Thus, the trained model is able to better fit the features of different classes of
data, thereby adjusting the classification boundary for improved discrimination.

3.1.3 Mixing control

In PatchMix, the blending of patches is controlled by associated hyperparameters, including
the patch-mixed probability p, the size of divided patch h×w and the parameters of the beta
distribution α, β. Modifying these parameters enables the control of the mixing ratio, size,
and degree, thus helping to mitigate the problem of excessive mixing.While PatchMix serves
to enhance the richness of image information, it frequently engenders heightened training
complexity for the network. Therefore, we believe that for complex datasets, such as those
sensitive to spatial information, it is often necessary to reduce the mixing ratio or degree
to ensure that augmentation remains within an appropriate range. In this paper conducts
experimental comparisons on different datasets, and the considerations for selecting hyper-
parameters were mentioned in the section of ablation study. In the following, we primarily
investigate the impact of the beta distribution with varying parameter values on the mixture.
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Fig. 4 The mixing effects of PatchMix under different beta distributions. In each subfigure, the left displays
the curve shape of the probability density function under different α and β, while the right shows the process
of mixing two patches after determining the mixing ratio. a α = 0.2, β = 0.2: the mixed patch leans toward
either the original patch or the shuffled patch; b α = 2.0, β = 2.0: the mixed patch leans toward a fusion of
the original patch and the shuffled patch; c α = 1.0, β = 0.2: the mixed patch leans toward the shuffled patch,
indicating the addition of significant perturbation; d α = 0.2, β = 1.0: the mixed patch leans toward the original
patch, signifying minimal perturbation

To ensure a wide-ranging set of training samples, it is crucial to strike a balance between
blending information from different patches and preserving the integrity of certain patches.
The beta distribution, a continuous probability distribution ranging from 0 to 1, serves as
a useful tool for this purpose. As illustrated in Fig. 4, the probability density function of
the beta distribution is governed by parameters α, β, which control the mixing proportion
between different patches. To generate differing training samples, an effective strategy is to
increase the perturbation of the original patch. In contrast, if preserving the overall structure
is of paramount importance, assigning a larger weight to the original patch may be more
appropriate. Consequently, the optimal values for α, β can be chosen based on the specific
augmentation task at hand.

3.2 PatchMix-R

In relation to data augmentation, robustness against perturbations is of particular importance
[36, 37]. PatchShuffle [29] has been demonstrated to be an effective method for enhancing
robustness by swapping the positions of adjacent pixels. Inspired by this idea, we consider
applying PatchMix within patches, replacing the original random replacement with a more
reasonable mixing method.

3.2.1 Formulations

PatchMix-R, similar to Eqs. (1–2), also carries out block operations initially. However, unlike
Eq. (3), it mixes nearby pixels within the patch. To accomplish this, each pixel in the patch
is sequentially numbered from 1 to h × w. Let pij represents the j-th pixel in patch Pi .
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Fig. 5 Examples of PatchShuffle (PS) and PatchMix-R (PM-R). The patch sizes are 2 × 2 pixels (left) and
4 × 4 pixels (right). Image selection was based on overall contrast (I, III), detail (IV, VI) and texture (II, V).
Images on the bottom row are zoomed-in regions

PatchMix-R can be expressed as follows,

p̃ij = λpij + (1 − λ)piindex[ j], (4)

where index is a randomly generated sequence number obtained by shuffling
[
1, h × w

]
, and

the mixing ratio λ is also sampled from a beta distribution.

3.2.2 PatchMix-R on images

Assuming the image and patch sizes are 224× 224 pixels and 4× 4 pixels, respectively, the
original image is divided into 56×56 patches. For each patch, PatchMix-R shuffles andmixes
16 pixels according to Eq. (4). Figure 5 illustrates the effects of PatchMix-R and PatchShuffle
on different patch sizes. In comparison with PatchShuffle, PatchMix-R enhances the image
through mixup, resulting in a more balanced and reasonable pixel transition. In terms of
preserving the overall structure, as well as the handling of details and textures, PatchMix-
R perturbs the image in a manner that better conforms to the original pixel distribution.
PatchMix-R has been proven in the experimental part to effectively improve the robustness.

4 Experiment

4.1 Implementation details

DatasetsSeveral open-source image classification datasets are used in our experiment, includ-
ing CIFAR-10/100 [38] and Tiny-ImageNet [39]. The CIFAR-10 dataset contains 6000
images with a resolution of 32 × 32, featuring different classes such as airplane, auto-
mobile, bird and more. The CIFAR-100 dataset expands the number of classes to 100, with
each class having 600 images. The Tiny-ImageNet, another popular dataset, consists of 200
classes, each with 500 training images, 50 validation images and 50 testing images. The
resolution of each sample is 64 × 64. Compared to the extensive and challenging dataset
ImageNet, Tiny-ImageNet serves as a smaller and more manageable version that is often
utilized for benchmarking and evaluating new machine learning methods.

Architectures and settings Four architectures are adopted on above datasets: PreActRes-
Net [40] (PreActResNet-18, PreActResNet-34, PreActResNet-50) and WideResNet [41]
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Table 1 Test errors (%) of PatchMix, randomflipping and random cropping onCIFAR-10with PreActResNet-
18

Random flipping [1] � � � �
Random cropping [1] � � � �
PatchMix (ours) � � � �
Test errors (%) 10.57 7.55 5.88 9.16 4.83 6.26 4.45 3.66

Bold value indicates the optimal results, represented by the smallest test errors (%)

(WideResNet-16-8, WideResNet-28-10), DenseNet [42] (DenseNet-100-BC), MobileNet
[43] (MobileNetV2). We follow the overall training protocol in [23]. Differently, this paper
trains PreActResNet and MobileNet for 300 epochs, WideResNet and DenseNet for 200
epochs. On CIFAR-10/100, initial data augmentations involve random flipping and random
cropping with 4-pixel padding for 32 × 32 resolution. The training settings include SGD
optimizer with a weight decay of 0.0001, momentum of 0.9, and batch size of 100. The
initial learning rate is 0.2, decaying by a factor of 0.1 at epochs 100 and 200 for PreActRes-
Net and MobileNet, 120 and 170 for WideResNet and DenseNet. On Tiny-ImageNet, basic
augmentations encompass random flipping and random cropping for 64× 64 resolution, and
we use the similar training ingredients as CIFAR.

Mix-related hyperparameters In PatchMix, patch size h and w are set to half of H and W .
Empirically, the patch-mixed probability p is set to 0.5 to preserve the original information
of patches. For the beta distribution, both α and β are set to 0.2. In PatchMix-R, We pri-
marily adopt the settings from PatchShuffle [29], where only 5% of the training data are
randomly augmented, and the patch size is set to 4 × 4 pixels. Similar to PatchMix, the
patch-mixed probability p is set to 0.5 and the mixing values are randomly selected from the
beta distribution with α = 0.2, β = 0.2.

4.2 Experimental results and analysis

4.2.1 Comparison with image-level methods

Random flipping (RF) and random cropping (RC). A comparison of our method with RF
and RC is presented in Table 1. When applied individually, RC outperforms the other two
methods with an error rate of 5.88%. Combining PatchMix with RF and RC reduces error
rates by 2.72% and 1.43%, respectively. Therefore, PatchMix can serve as a supplement to
existing regularization techniques. The ensemble of these three methods yields an error rate
of 3.66%, 6.91% improvement over the baseline without any augmentation. In subsequent
experiments, we adopt RF and RC as initial data transformations.

Automatic augmentation techniques. TrivialAugment [12], an automatic augmentation tech-
nique, integrates multiple data augmentation methods such as rotation, scaling, color
adjustment, and noise addition. Table 2 compares our method with TrivialAugment.
When applied alone, PatchMix outperforms TrivialAugment, reducing the error by 0.31%.
Evidently, PatchMix is more effective in enhancing accuracy compared to basic aug-
mentation techniques and their ensembles in TrivialAugment. Combining PatchMix and
TrivialAugment achieves a 3.35% error rate, 1.48% improvement over the baseline.
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Table 2 Test errors (%) of
PatchMix and TrivialAugment on
CIFAR-10 with PreActResNet-18

TrivialAugment [12] � �
PatchMix (ours) � �
Test errors (%) 4.83 3.94 3.66 3.35

Bold value indicates the optimal results, represented by the smallest test
errors (%)

4.2.2 Comparison with patch-level methods

Traditional patch-level methods [13–15] primarily focus on simple noise removal or addi-
tion to patches. In order to comprehensively compare the classification performance and
robustness, this paper further introduce PatchShuffle and PatchMix-R. PatchMix+PatchMix-
R refers to performing the PatchMix on the image first, followed by applying PatchMix-R.
As detailed in Table 3, PatchMix+PatchMix-R demonstrates superior performance across
all datasets and models, reducing the test error by 0.91–3.05% compared to the vanilla
method. Additionally, the individual performance of PatchMix surpasses of other traditional
patch-level methods.

4.2.3 Ensemble with mixup-based methods

Mixup-based methods combine or merge features from multiple images. This paper con-
ducts experimental research on the ensemble of PatchMix and various multi-image methods.
As shown in Table 4, even when applied to a single image, PatchMix (α = 0.2, β = 0.2)
surpasses many multi-image augmentation methods, such as Mixup, Manifold, and CutMix.
Additionally, when applying PatchMix (α = 1.0, β = 0.2) as the initial augmentation step
before mixup-based methods, the classification performance of the trained models improved
by 0.55–3.21%. Taking reference from Fig. 4, this paper infers that PatchMix, when used
alone or combined with simple data augmentation techniques, benefits from the richness and
diversity of patchmixing (refers to Fig. 4a). Differently, when ensembledwith complexmeth-
ods, aligning the patches closer to the original image and applying moderate perturbations
(refers to Fig. 4c), enables the synergistic advantages of different augmentationmethods to be
fully realized. Therefore, PatchMix can ensemble with various data augmentation methods
by simply controlling the beta distribution, thereby enhancing the performance of the model.

4.2.4 Performance on large-scale images

This paper also evaluates the performance of our method on large-scale images. In this
experiment, we primarily follow the training protocol outlined in [44] and select the VGG-
19 [10] and WideResNet-101-2 models, pre-trained on the ImageNet dataset. Three distinct
categories of large-scale datasets are chosen: Caltech-101 [45], which are relatively similar
to the source dataset; Describable Texture [46], which differs significantly from the source
dataset; and the commonly encountered fine-grained datasets, Stanford Cars [47] and Oxford
102 Flower [48]. Given that the images in the above datasets have large and varying sizes,
this paper performs the necessary processing for image resizing. During the training, we also
record the classification errors at different epochs. The experimental results are presented in
Table 5. Across different types of classification datasets, PatchMix performs best on large-
scale datasets and helps the pre-trained model quickly adapt to the new data domain.
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Table 6 Test errors (%) of KNN
classifier in the self-supervised
stage and test errors (%) of the
linear classifier in the
downstream classification task
when using the pre-trained
model.

CIFAR-10 CIFAR-100

KNN Linear KNN Linear

Baseline 12.64 8.15 48.22 34.56

Baseline + PatchMix 11.64 7.01 45.18 31.02

Bold values indicate the optimal results, represented by the smallest test
errors (%)
Baseline: default data augmentation methods in the Simsiam [28],
including random cropping, random flipping, color jitter, grayscale, etc.

4.2.5 Performance on self-supervised learning and transfer learning scenarios

Self-supervised learning aims to learn useful representations from scalable unlabeled data
without relying on human annotation. The Siamese network [28, 49–51] is one promis-
ing approach among many self-supervised learning approaches and outperforms supervised
counterparts across numerous visual benchmarks. The Simsiam [28], as a typical Siamese
network, aims to learn similar feature representations for different views of the same image,
enabling effective transfer to various downstream tasks. Data augmentation techniques in
Simsiam include random cropping, flipping, color jittering, etc., which are used as inputs
to the encoder. In this paper, we introduce PatchMix into the data augmentation process
of Simsiam, to further investigate its advantages in self-supervised learning and transfer
scenarios.

In the self-supervised learning phase, the Simsiam network is trained on the CIFAR
dataset using PreActResNet-18. We use the KNN [52] (k=1) classifier as a monitor of the
training progress. By comparing the predictions of the KNN classifier with ground-truth
labels, the performance of the model can be evaluated. In the downstream classification task,
this paper employs the pre-trained model with frozen weights to train a supervised linear
classifier on the corresponding CIFAR dataset. The classification performance is quantified
by the accuracy of the linear classifier. Importantly, it should be noted that data augmentation
is exclusively employed during the self-supervised learning phase. The specific results are
shown in Table 6. Evidently, PatchMix empowers the self-supervisedmodelwith better repre-
sentation capabilities, resulting in superior performance when transferred to the downstream
tasks.

4.3 Robustness against corruption

4.3.1 Performance on the CIFAR-C dataset

CIFAR-10-C and CIFAR-100-C [53] are two prevalent datasets for evaluating the robustness
of computer vision models. Both datasets consist of the original CIFAR test images that
poisoned by 15 distinct distortion types. Each distortion has five intensity levelswhen injected
into images. Comparing with different patch-level methods on various datasets and models,
this paper presents the experimental results in Table 7.Our proposed PatchMix-Routperforms
the previous approaches in terms of robustness against unseen corruptions, reducing the test
error by 8.79–13.92%. As for PatchMix, it exhibits better robustness than other methods.
Notably, the robustness of PatchMix-R decreases slightly by 0.19–1.59% after incorporating
PatchMix. One plausible interpretation is that the amalgamation of information from varying
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Fig. 6 The CIFAR-ORS dataset consists of 3 types of algorithmically generated corruptions from occlusions,
rotations and scale variations. Each type of corruption has five levels of severity, resulting in 15 distinct
corruptions

patches by PatchMix partially interferes with the intended perturbations of PatchMix-R.
Therefore, how to effectively integrate these two facets will be an intriguing research topic in
future work. Meanwhile, in order to demonstrate intuitively the advantages of our approach
in adversarial perturbation, this paper also presents the errors of different corruptions and
methods onCIFAR-10-C. InTable 8, ourmethod exhibits the best or second-best performance
in adversarial perturbation of various types. Specifically, PatchMix-R performs exceptionally
best in noise, weather, and digital perturbations.

4.3.2 Performance on proposed CIFAR-ORS dataset

Specifically for the common challenges such as occlusions, rotations, and scale variations,
this paper proposes a new perturbation dataset called CIFAR-ORS. Following the design
methodology in [53], we incorporate the above three types of perturbations into the test
sets of CIFAR-10 and CIFAR-100 through an algorithmic approach. Each perturbation is
also represented at five different severity levels, as shown in Fig. 6. After applying the 15
transformations to each image, this paper establishes the CIFAR-ORS dataset, including
CIFAR-10-ORS and CIFAR-100-ORS.

The performance of different patch-level methods on CIFAR-ORS is compared, which are
presented in Table 9. PatchMix achieves the optimal or near-optimal performance when deal-
ing with patch-level perturbations, such as occlusion or scale. In addition, PatchMix-R excels
in scenarios involving rotation. Based on previous experiments, we infer that PatchMix-R
focuses more on enhancing the positional relationships between adjacent pixels which can
effectively alleviate interference in terms of details. On the other hand, PatchMix enhances
interactions between patches, making it notably efficacious for patch-level perturbations.

4.4 Class activationmap (CAM) analysis

Class activationmap (CAM) [54] identifies the regions in an input imagewhere themodel con-
centrates its attention to recognize an object. In the experiments, this paper computes CAMs
for a vanilla WideResNet-28-10 model equipped with various patch-level and mixup-based
data augmentation methods on the small-scale dataset CIFAR-10. Figure7 demonstrates that
most existing state-of-the-art (SOTA) techniques, such as Cutout and PuzzleMix, often con-
centrate on specific representative parts of the content, such as the head of a bird, the wheels
of a car, or the legs of a horse. The proposed PatchMix effectively directs the model attention
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Fig. 7 CAM visualizations on images from CIFAR-10. The proposed data augmentation method guides the
model to precisely focus on target object

Fig. 8 CAM visualizations on large-scale images. The proposed data augmentation method has multiple
advantages in assisting model fine-tuning. Pre-trained (the second row): CAMs from the model pre-trained on
the ImageNet. Fine-tuned (the third and forth rows): CAMs from the pre-trained model after fine-tuning

toward the target object with higher precision compared to other methods, which indicates
that PatchMix enable the network to learn comprehensive information of the classes, rather
than merely memorizing key features.

Images from CIFAR-10 typically contain only one object. In order to explore the advan-
tages of PatchMix on large-scale datasets that may contain multiple objects, this paper also
visualizes the CAMs computed from the fine-tuned model from Table 5. We primarily utilize
the Caltech-101 dataset and the pre-trained WideResNet-101-2 model. Figure8 illustrates
the similar effect when searching for a specific object in a scene with multiple objects. In
Fig 8a, PatchMix captures comprehensive features of the target object, including the head
of the anchor, the bodies of the deer and the grand piano. In Fig 8b, PatchMix effectively
recognizes multiple target categories, e.g., scattered ibises and ants, overlapping elephants.
In Fig 8c, PatchMix enables the model to accurately identify the target chain and pole. Also,
the most representative feature regions of target are focused on, e.g., the significant areas in
recognizing the dolphin.
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Table 10 Test errors (%) with different patch size on CIFAR-10/100 and Tiny-ImageNet

Patch size CIFAR-10 (32 × 32) CIFAR-100 (32 × 32) Tiny-ImageNet (64 × 64)

64 × 64 – – 42.75

32 × 32 4.83 23.84 40.11

16 × 16 3.66 21.43 41.06

8 × 8 3.78 22.18 41.58

4 × 4 4.05 22.73 –

Bold values indicate the optimal results, represented by the smallest test errors (%)

4.5 Ablation study

When implementing PatchMix on CNN training, the evaluation of hyperparameters becomes
crucial. To demonstrate the impact of these hyperparameters on the model performance,
experiments are performed on the CIFAR-10/100 and Tiny-ImageNet datasets using the
PreActResNet-18 network under varying hyperparameter settings.

4.5.1 The effect of patch size

In this section, we verify the effect of patch size that determines the range of mixing. Referred
to [29, 55] for image chunking, non-overlapping square-shaped patches are adopted, as
opposed to irregular shapes or overlapping sampling. This approach is considered the sim-
plest yet most effective way to validate the feasibility of PatchMix. As illustrated in Table 10,
PatchMix exhibits optimal performance when the patch height (h) and width (w) are config-
ured to half of the image height (H ) and width (W ). However, when h and w are reduced to
1/4 and 1/8 of H andW , the test error gradually increases and the classification performance
of PatchMix weakens. The ablation results underscore the importance of patch size.

Analogous to the jigsaw puzzle, if the image is subdivided into a greater number of smaller
fragments, it will become increasingly challenging to establish correspondences, which leads
to the loss of vital information. Consequently, PatchMix adopts a straightforward strategy of
setting the patch size to half of the image size.

4.5.2 The effect of patch-mixed probability

The patch-mixed probability p determines the mixing ratio of internal information within
an image. The higher of p, the richer and more complex the information represented in the
augmented image. In this section, we further investigate the impact of p on the model’s
performance, as presented in Table 11. It can be observed that the performance improves in
the presence of patch mixing and the performance is generally optimal within the range of
0.4–0.7 for p. When the value of p is too low, it is posited that the advantages of PatchMix
may not be fully realized. Conversely, if all patches undergomixing operations, it may lead to
excessively high complexity in the combinations. Therefore, in our experiments, p is chosen
to be 0.5.
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4.5.3 The effect of beta distribution

In Mixup [19], both α and β in beta distribution are set to 0.2, yielding optimal experimental
outcomes. However, the specific reasons behind this choice remain scantily explained.Hence,
this section delves into this aspect in the context of PatchMix.

This study initially compares four typical beta distributions with distinct shapes shown
in Fig. 4. In each distribution, three pairs of values are taken to represent different levels of
intensity. From Table 12, the best outcome is achieved when setting α and β to the same
value within the range of 0–1, which is considered to be the optimal mixing range for the
image classification. Simply put, the beta distribution in Fig. 4c tends to retain the features of
original patches, providing stability, while the beta distribution in Fig. 4d increases regional
diversity. The aim of PatchMix is to balance these tendencies; hence, the parameters range
as demonstrated in Fig. 4a.

To further probe this particular distribution, different α and β within the range of 0–1 are
investigated. From Table 13, it can be concluded that the classification performance does not
differ significantly under this distribution and the optimal results are obtained with both α

and β set to around 0.2. Therefore, the parameters of the beta distribution in our experiment
are uniformly chosen as 0.2, excluding other complex values.

4.6 Discussion

Extensions and variations PatchMix offers several avenues for further exploration and
research. It is potential to investigate the impact of using patches with different or irreg-
ular sizes, as it may lead to more comprehensive representations. Similar to the concept of
Manifold Mixup [20], exploring the integration of PatchMix into intermediate layers of the
model would be valuable. Furthermore, previous studies have demonstrated the effective-
ness of replacing patches from pairs of images in improving network performance in visual
tasks [22, 56]. Building upon this foundation, the idea of mixing patches could potentially
be introduced to further enhance the feature extraction capabilities.

In weakly supervised object detection and segmentation tasks, many CAM-based pseudo-
label generation methods often suffer from the problem of focusing only on partial
discriminative foreground regions [57, 58]. PatchMix provides a promising solution by accu-
rately attending to the holistic characteristics of the classes and holds great potential for
application. In addition to CNNs, current research has also begun exploring image augmen-
tation techniques suitable for the vision transformer (ViT) architecture [59]. The investigation
of PatchMix, which based on rich relative positional relationships, is worth considering in
terms of its potential impact on encoding positional information.

Computational overhead The implementation of PatchMix itself is not inherently complex
and is not constrainedby thedataset or network architecture.This section focuses on analyzing
the computational overhead of PatchMix to evaluate its scalability. The experiments are con-
ducted on a server equipped with an Intel Xeon Silver 4216 CPU running at 2.10 GHz. Each
set of control experiments is performed exclusively on a same NVIDIA Tesla T4 graphics
card. We statistically measure and compare the average epoch durations of various methods
during training, and the findings are showcased in Table 14. PatchMix exhibits remarkable
efficiency compared to other data augmentation methods, with a mere 0.54-s computational
overhead per epoch. Additionally, the integration of PatchMix with other methods imposes
minimal overhead, requiring a mere 2% additional time investment. Consequently, within the
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Table 13 Test errors (%) with different α and β of beta distribution on CIFAR-10/100 and Tiny-ImageNet.

α = β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CIFAR-10 3.68 3.66 3.71 3.68 3.78 3.71 3.79 3.87 3.82

CIFAR-100 21.50 21.43 21.36 21.47 21.52 21.45 21.53 21.64 21.68

Tiny-ImageNet 40.15 40.11 40.34 40.26 40.28 40.36 40.33 40.61 40.53

Bold values indicate the optimal results, represented by the smallest test errors (%)
The values of α and β are equal and range between 0 and 1

Table 14 Epoch duration (s) with the incorporation of PatchMix for different methods in CIFAR10 with
PreActResNet18

Method Vanilla Mixup [19] Manifold [20] CutMix [22] SaliencyMix [24] PuzzleMix [23] AutoMix [25]

No PatchMix 41.57 42.12 42.75 44.56 46.51 102.38 189.86

+ PatchMix 42.11 (+0.54) 43.07 (+0.95) 43.21 (+0.46) 45.49 (+0.93) 47.13 (+0.62) 103.83 (+1.45) 191.64 (+1.78)

realm of expansive datasets and complex networks, PatchMix emerges as a versatile plug-
and-play data augmentation solution, offering the advantage of controllable computational
overhead.

5 Conclusion

In this paper, we propose two data augmentation techniques, PatchMix and PatchMix-R, with
the goal of improving the generalization and robustness of classification models. PatchMix
introduces mixup into traditional patch-level augmentation, generating a large amount of
new training data through a random but controllable processing approach. This method can
seamlessly integrate into other data augmentation methods of varying complexities under
different beta distribution. CAMs visualize the advantages of PatchMix when applied to both
small-scale and large-scale images. PatchMix-R is an extension of PatchMix thatmixes pixels
within each patch instead of across different patches. Thismodification significantly enhances
the ability of neural networks to resist adversarial perturbations. Extensive experiments on
the widely used classification datasets and networks are conducted to verify the feasibility
and effectiveness of our methods.
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