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Abstract
This work presents an approach for distributed and contextualized reasoning in multi-agent
systems, considering environments in which agents may have incomplete, uncertain and
inconsistent knowledge. Knowledge is represented by defeasible logic with mapping rules,
which model the capability of agents to acquire knowledge from other agents during rea-
soning. Based on such knowledge representation, an argumentation-based reasoning model
that enables distributed building of reusable argument structures to support conclusions is
proposed. Conflicts between arguments are resolved by an argument strength calculation that
considers the trust among agents and the degree of similarity between knowledge of different
agents, based on the intuition that greater similarity between knowledge defined by different
agents implies in less uncertainty about the validity of the built argument. Contextualized rea-
soning is supported through sharing of relevant knowledge by an agent when issuing queries
to other agents, which enable the cooperating agents to be aware of knowledge not known a
priori but that is important to reach a reasonable conclusion given the context of the agent that
issued the query. A distributed algorithm is presented and analytically and experimentally
evaluated asserting its computational feasibility. Finally, our approach is compared to related
work, highlighting the contributions presented, demonstrating its applicability in a broader
range of scenarios, and presenting perspectives for future work.
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1 Introduction

Distributed reasoning is a central aspect required by many applications proposed in the last
decades, including mobile and ubiquitous systems, smart spaces and ambient intelligence
systems [1–3]—and more recently the Internet of Things (IoT) [4, 5]—and the Semantic
Web [6]. In these types of systems, distributed entities, called agents, are able to capture
or receive information from their environment and from other agents, and are often able to
derive new knowledge or making decisions based on the available knowledge.

We consider multi-agent systems (MAS) in environments in which agents may have
imperfect knowledge, which may be incomplete, uncertain or inconsistent knowledge [7].
Incomplete knowledge concerns the possibility of an agent not having a complete knowledge
about the environment and thus may require knowledge defined by other agents in order to
reach conclusions. For example: assume a robot agent a that can feel the wind but is blind,
and that has knowledge expressed by the following rule: “I may conclude that it is going to
rain (conclusion) if it iswindy (premise 1) and cloudy (premise 2)”. Agent a cannot reach the
conclusion that it is going to rain by itself, because it cannot find the truth value of premise 2
by itself. But suppose there is another agent b. Then, a can ask b if it is cloudy. If b answers
positively, then a is able to conclude that it is going to rain.

An agent can also have uncertain and/or conflicting knowledge due to imperfect sensing
capabilities or badly intentioned or unreliable agents, which can lead to a global inconsistent
state of knowledge. For example, an agent c has a damaged visual sensor. If a asks c whether
it is cloudy or not, it is possible that c cannot inform correctly, thus returning an answer that
contradicts the answer from agent b. Therefore, a has to decide which agent to believe when
receiving both answers. Such decision could be based on a trust degree—or preference—an
agent has to another.

Another concern in distributed settings, especially open, dynamic and knowledge-
intensive ones, is seeking knowledge from arbitrary sources. For example, suppose d and e
entered the environment very recently, so that a does not know what kind of knowledge they
hold. Suppose again that a wants to know whether it is going to rain, but agents b and c,
which previously used to answer about whether it is cloudy or not, have left the system. Then,
the only way to know about it is asking the newcomer agents, d and e, even not knowing
whether they hold such knowledge or not.

Furthermore, in many settings, agents have to reason based on heterogeneous knowledge
with different degrees of certainty regarding the equivalence of pieces of information coming
from different sources. Suppose d answers that there are clouds in the sky but e answers that
it is overcast. Considering that the premise cloudy of a’s rule have a greater similarity to
overcast (a sky covered with clouds) than with simply having clouds in the sky, a could give
preference to e’s answer based on the similarity of the information. Another interesting and
easy to understand example: suppose a drone robot is in front of an open window, but it does
not know if he is able to pass through it only by its own knowledge. Than it asks other robots
in the environment, one of which is a terrestrial robot that knows one can pass through an
open door. Supposing the drone robot has learned beforehand that doors and windows are
quite similar, it can possibly use the other robot’s knowledge to conclude that it can pass
through that window.

Finally, a very important feature to have in distributed settings is enabling agents to share
relevant information about their current situation, location, activity or object of interest when
querying other agents. We call this kind of information focus. For example, suppose an agent
f in a city distant from where a is. It looks at the sky and sees the clouds, and is also able
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to feel the wind, but it does not know if this means it is going to rain (it does not have the
same rule as a). Thus, it asks other agents it knows. The only agent it is able to talk to at
the moment is a, so it sends a message to a asking if it is going to rain. However, a, living
in another city, is totally unaware of the weather conditions of f ’s location. Then, f must
send two rules without premises (i.e., facts) stating that there are clouds in the sky and it is
windy in the location f is in. Therefore, when a receives the query, it is able to conclude
that it is going to rain in f ’s location, answering it to f . This is, in fact, a kind of contextual
reasoning, as defined in classical work such as [8] and [9].

Structured argumentation is a prominent approach to formalize non-monotonic—or
defeasible—reasoning by means of the construction and comparison of arguments for and
against certain conclusions based on an underlying logic [10], enabling resolution of incon-
sistent knowledge between agents. Additionally, incomplete knowledge can be represented
by means of mapping rules [1, 11], which enables agents to acquire knowledge from other
agents in order to support a conclusion. However, there is no work based on argumentation
that enables agents to acquire knowledge from arbitrary agents based on the similarity of
different pieces of knowledge. Some related works, like the one presented by Bikakis et al.
[1], assume that agents always know the exact source of a given piece of knowledge and that
there is no possibility of knowledge being accepted based on its similarity. Furthermore, no
work was found that proposes a solution for the problem of reasoning with focus knowledge
not known a priori by the cooperating agents in a fully distributed setting. More details about
related work are discussed in Sect. 6.

This paper presents a distributed reasoning approach, including the formal model and an
operational algorithm that enable agents to build rule-based structured arguments for and
against some conclusion in an open and dynamic environment setting. The distributed algo-
rithm, its analytical and experimental evaluation, as well as further discussions compared to
related works, have not been previously published. The formal model in an earlier stage of
development was previously presented in [12], but this paper presents a revised version of
it that defines some parts in a more straightforward and flexible way, in addition to useful
definitions that enable a more natural connection with the presented algorithm. More specifi-
cally, the main differences regarding the formal model are the following: (i) the definitions of
localization of focus rules and instantiation of il-literals; (ii) the definition of arguments has
been simplified and now includes externally dependent arguments as external subarguments,
as well as properties that are later used in other definitions; and (iii) the strength calculation
formula now considers the concept of direct external subarguments and is based on aweighted
average instead of summation. In summary, the previous work focused on the argumentation
formalism and semantics, whereas the current work is focused on the operational and prac-
tical realization of distributed reasoning, by presenting a distributed algorithm, complexity
issues, optimizations, experimental evaluation and further discussions.

In the model presented in this paper, agents may receive a query about the validity of
a given piece of knowledge, but have incomplete knowledge, requiring them to issue new
queries to other agents in order to answer the query. Each agent builds arguments based
on its local available knowledge augmented with knowledge acquired from other agents,
and the strengths of the arguments are calculated based on the trust among agents and the
certainty regarding the similarity of the knowledge used to build them, enabling agents
to make conclusions based on the comparison of such arguments. This way, reasoning is
distributed among agents that concurrently build their arguments and then combine them to
support conclusions. We also propose knowledge sharing in the context of a query, which
enables agents to cooperate in reasoning about knowledge which is not known a priori by
them, but is relevant for the agent that issued the query, achieving a kind of contextual
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reasoning. We therefore demonstrate that our approach enables knowledge representation
and reasoning in scenarios that are not possible in related work.

Another relevant contribution regards the way the proposed algorithm builds self-
explanatory tree-like argumentation-based structures, which enables not only their use in
resolving conflicts and reaching conclusions, but also enables reusing them in other reason-
ing processes and possibly taking advantage of them for possible future features, such as
explaining and learning. Precise representation of reasoning in the form of arguments also
enables the use of a broader range of conflict resolution strategies, such as those that take
advantage of the tree-like structure of arguments.

We also empirically demonstrate that our model can be viewed as a generalization of the
proposal of Bikakis et al. [1] and that the conflict resolution strategy proposed in this work
enables contextual reasoning that is more efficient than some of the strategies proposed in
their approach [13].

Therefore, in summary, this paper presents four main contributions:

• Argumentation-based fully distributed reasoning model that takes advantage of knowl-
edge acquired from arbitrary sources, relating pieces of knowledge based on their
similarity, which enables its application in dynamic and open environments;

• Knowledge sharing in the scope of a query, enabling agents to be aware of relevant
contextual knowledge from the point of view of the agent that issued the initial query.

• Strategy for resolving conflicts between arguments that takes into account the point of
view of the agent that issued the query and the use of knowledge from indirectly queried
agents.

• Operational self-explanatory argumentation-based structure building,which enables stor-
ing and reusing arguments for reasoning and possibly other future features such as
explaining and learning.

Section 2 presents the formalization of our architecture, including agents and their knowl-
edge representation formalism, as well as the formalization of query focuses and of the
problem we are tackling. Section3 presents the argumentation-based model of reasoning.
Section4 presents the distributed query answering algorithm that operationally realizes this
reasoning model, as well as some properties of the algorithm and optimizations. Section5
presents some experimental evaluations. Section6 presents related work and discussion.
Finally, conclusions and future work are presented.

2 Architecture and problem formalization

Before presenting the argumentation-based model and algorithm, it is necessary to present
a concise multi-agent architecture—considering only the features that are relevant for this
work—together with the rule-based knowledge representation (Sect. 2.1) and the problem
formalization, including the proposed structures for queries and focus knowledge (Sect. 2.2).

2.1 Multi-agent architecture and rule-based knowledge representation

The following presents the definition of a MAS in our approach.

Definition 1 A distributed defeasible reasoning-based multi-agent system (DDRMAS) is
defined as a tuple S = (Ags, FQ), such that Ags = {a, b, c, . . .} is the set of agents at a
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given moment situated in the environment and FQ = {α, β, γ, . . .} is a set of query focuses
at a given moment.

�
The set of query focuses FQ is necessary to enable the system to have a registry about the

query focuses being considered at a given time. Query focuses will be detailed in Sect. 2.2.
The following presents the definition of an agent.

Definition 2 An agent a ∈ Ags is defined as a tuple of the form (K Ba, Pa,�a, sta), such
that:

• K Ba is the agent’s knowledge base;
• Pa : Ags → [0, 1] is a trust function, such that, given two agents b and c in Ags, if

Pa(b) > Pa(c), then a trusts b more than c. If Pa(b) = Pa(c), then they are equally
trustful.

• �a : V L × V L → [0, 1], such that V L is a vocabulary of literals, is a similarity function
that maps pairs of literals to a number representing how similar they are;

• sta : [0, 1] is a similarity threshold, used together with �a to decide whether two literals
are similar enough or not.

�
The trust function is used in the resolution of conflicts that may arise from the interaction

between agents, as detailed in Sect. 3, andmay result from various mechanisms, such as those
related to Trust Theory [14] and dynamic preferences [15]. Therefore, the actual definition
of such function is left open for the specific application developer.

The similarity function �a and the similarity threshold sta are required to enable the
matching of knowledge from different agents and will be formally defined in Definition 4.
The process through which this similarity function is determined in each agent is also out of
the scope of this work and may be defined by some learning process or expert knowledge.

As presented inDefinition 3, knowledge bases are sets of rules composed of labeled literals
(l-literals) p of the form 〈D(p), L(p)〉, where D(p) is called the definer of the l-literal p,
and L(p) is a literal. The literal L(p) represents atomic information (x) or the negation of
atomic information (¬x). For a literal x , its complementary literal is a literal corresponding
to the strong negation of x , which can be denoted as ∼ x . More precisely, ∼ x ≡ ¬x and
∼ (¬x) ≡ x . For any l-literal p = 〈D(p), x〉, the complementary l-literal is denoted as
∼ p = 〈D(∼ p),∼ x〉.

The definer D(p) can be either a direct reference to an agent a ∈ Ags (in which case the
l-literal is called a concrete labeled literal, or cl-literal) or a symbol @ meaning that any
known agent in Ags may define the l-literal (in which case the l-literal is called a schematic
labeled literal, or sl-literal).

Definition 3 A knowledge base K Ba is a set of rules of the form

rai : 〈a, x〉 ←↩ Body(rai )

where rai is the rule identifier, a ∈ Ags, i ∈ N
+, 〈a, x〉 is a cl-literal which is the head

of the rule, and Body(r) is a set of l-literals, also called body, representing a conjunction
of l-literals. The symbol ←↩ is a placeholder for either ←, indicating a strict rule, or ⇐,
indicating a defeasible rule.

�
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A rule with empty body, i.e., when |Body(r)| = 0, is called a factual rule throughout this
paper.

The set of l-literals in a K B is called its vocabulary, denoted V L = VCL ∪ V SL , where
VCL is the set of cl-literals and V SL is the set of sl-literals, such that VCL ∩ V SL = ∅. Such
sets are also closed under negation, i.e., when 〈D(p), x〉 ∈ V L , then 〈D(p),∼ x〉 ∈ V L .

A strict rule is a rule rai : 〈a, x〉 ← Body(rai ) such that for every l-literal 〈D(p), y〉 ∈
Body(rai ), D(p) = a, i.e., all l-literals are local cl-literals, since they are defined locally by
the very agent a. Similarly, a local defeasible rule is a rule rai : 〈a, x〉 ⇐ Body(rai ) such
that for every l-literal 〈D(p), y〉 ∈ Body(rai ), D(p) = a. The difference is that strict rules
cannot be defeated, i.e., they represent absolute truth in the system and are interpreted by
classical logic.

An important assumption is that the subset of strict rules in a K B cannot have cycles nor
inconsistencies. The maintenance of such consistency is left to a human specialist or by some
belief revision/update mechanism, which is out of the scope of this work. On the other hand,
defeasible rules have the interesting property of tolerating contradictory rules and chains
of rules that lead to infinite cycles or self-defeating lines of reasoning. The way DDRMAS
handle such cases is further explained in Sects. 3 and 4.

A mapping defeasible rule is a rule rai : 〈a, x〉 ⇐ Body(rai ) such that for every l-literal
〈D(p), y〉 ∈ Body(rai ), D(p) ∈ Ags and there exists at least one l-literal 〈D(p), y〉 ∈
Body(rai ) s.t. D(p) ∈ Ags\{a}, i.e., l-literals in the bodymayalso bedefinedbyother agents,
in which case they are called foreign cl-literals. This is what enables agents to function with
incomplete knowledge, requiring them to cooperate with other agents to reach conclusions.
The intuition of a mapping rule denoted by rai : 〈a, x〉 ⇐ 〈b, y〉 is the following: “If a knows
that agent b concludes y, then a considers it a valid premise to conclude x if there is not any
adequate contrary evidence”.

A schematic rule is a rule rai : 〈a, x〉 ⇐ Body(rai ) such that for every l-literal
〈D(p), y〉 ∈ Body(r), D(p) ∈ Ags∪{@}, and there exists at least one l-literal 〈D(p), y〉 ∈
Body(r) s.t. D(p) = @, i.e., l-literals may be defined by the own agent (local cl-literals),
other specific agents (foreign cl-literals) or by an arbitrary agent (sl-literal). The intuition
of a schematic rule denoted rai : 〈a, x〉 ⇐ 〈@, y〉, is the following: “If a knows that some
agent concludes a literal similar enough to y, then a considers it a valid premise to conclude
x if there is not any adequate contrary evidence”.

An sl-literal can be bound (or instantiated) to any cl-literal that is similar enough to it.
This enables to support a broad range of scenarios, especially those involving approximate
reasoning. For example, suppose a scenario in which knowledge is represented by means
of an OWL ontology [16]. In this case, a similarity function could be based on axioms that
use the owl:sameAs property. Other examples could include lexical similarity, such as
WordNet [17], which could be used in scenarios involving speech or text recognition, and
other syntactic and semantic matchmaking processes, such as Larks [18].

Therefore, we define a similarity function between l-literals, as well as the concepts of
similarity threshold, similar enough and similarity degree, which are all related.

Definition 4 A similarity function �a : V L × V L → [0, 1] is such that a greater similarity
between p andq results in a greater�a(p, q)value.Given a similarity threshold sta ∈ [0, 1],
two l-literals p and q are similar enough if �a(p, q) ≥ sta . Given two identical l-literals,
the similarity between them will always be 1, i.e., ∀p ∈ V L ,�(p, p) = 1.

�
The similarity function can be used to define the concept of instantiated l-literal (il-literal),

which includes the information of the similarity between two l-literals. The il-literals are
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Fig. 1 Agents’ definitions for Example1

particularly useful in the definition of arguments in Sect. 3, and are specially used to express
that an sl-literal can be instantiated to a given cl-literal based on the similarity of their inner
literal. Definition 5 defines an il-literal.

Definition 5 Given an l-literal q = 〈D(q), x〉, a cl-literal q ′ = 〈b, x ′〉, a similarity function
�a and a similarity threshold sta , where a, b ∈ Ags, such that �a(q, q ′) ≥ st (i.e., q and q ′
are similar enough), the function I nsta(q, q ′) defines an instantiated l-literal (il-literal) as:

I nsta(q, q ′) = 〈b, x ′,�a(q, q ′)〉
�

Example 1 This is inspired by an example given by Antonis Bikakis in his thesis [19]. Sup-
pose there are five mushroom hunters collecting mushrooms in a natural park, each one in
possession of a mobile device with a personal agent: Alice’s a, Barb’s b, Charles’s c, Dennis’
d and Eric’s e. The goal of mushroom hunting for every agent is to help their users to collect
edible mushrooms. The mental states, including the knowledge bases, and the trust function
of each of these agents are presented in Fig. 1.

Alice’s (a) has some knowledge about some species, such as the death cap, which it
knows is not edible (rule ra1). Suppose also that a and b share the same knowledge that, if
a mushroom is edible, then they can collect it, and if it is not edible, they cannot. They are
also willing to take into account the opinion of any known agent about the edibleness of a
mushroom, i.e., if any agent states that a mushroom is edible, then they are willing to accept
it to be true if there is no adequate contrary evidence. Such knowledge is thus presented both
in K Ba (rules ra2 and ra3) and in K Bb (rules rb2 and rb3). Barb’s (b) also believes that an
object is not edible if it has a volva (rule rb1).

Charles’ (c) believes that a mushroom is edible if it is an amanita velosa (rule rc1), but
it cannot describe a mushroom of this species. Therefore, it is willing to accept that the
mushroom is an amanita velosa if any other agent states that a mushroom is similar enough
to an amanita velosa.

Dennis’ (d) believes that an object is not edible if it is an amanita (rule rd1). However,
Dennis does not know anything about amanitas’ characteristics; thus, a sl-literal is also used
in the body of the rule.

Finally, Eric’s (e) believes that a mushroom is a springtime amanita if it has some prop-
erties, such as having a volva and a pale brownish cap (re1). Actually, springtime amanita
is the same as amanita velosa, but we assume the agents in the system are not so certain
about it. Therefore, the agents consider a similarity degree of 0.8 between them; thus, the
il-literal 〈e, spa(M), 0.8〉 can be instantiated based on 〈@, avl(M)〉 and 〈e, spa(M)〉. Sim-
ilarly, a springtime amanita is a type of amanita, and the agents consider a similarity degree
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of 0.4 between them. Therefore, the il-literal 〈e, spa(M), 0.4〉 can be instantiated based on
〈@, am(M)〉 and 〈e, spa(M)〉. The similarity degree between every l-literal with lexically
identical literals is defaulted to 1. Therefore, 〈c, ed(M), 1〉 can be instantiated based on
〈@, ed(M)〉 and 〈c, ed(M)〉, and in a similar way 〈d,¬ed(M), 1〉 can be instantiated based
on 〈@,¬ed(M)〉 and 〈d,¬ed(M)〉.

It is important to note that this example also considers that each agent has total trust in
itself; therefore Pa(a) = Pb(b) = Pc(c) = Pd(d) = Pe(e) = 1. There may be cases in
which this does not occur (i.e., there may be agents that do not fully trust in themselves), but
for the present example this will be the case for the sake of simplicity in the next steps.

2.2 Query, focus knowledge and problem formalization

An agent a0 ∈ A (which we call emitter agent) is able to issue queries to itself or to other
agents. When an agent emits an initial query, which results in subsequent queries to other
agents (which we call cooperating agents), it is necessary that every such agent becomes
aware of specific knowledge related to the focus of the initial query. This is a key feature
to enable effective contextual reasoning, because it nourishes the reasoning ability of the
cooperating agents with the possibility of considering relevant—and possibly not known a
priori by these agents—information in the context of the emitter agent, which may be related
to its current object of interest, activity, situation or location. The following defines what a
query focus is and introduces the concept of focus knowledge.

Definition 6 A query focus for an l-literal p is a tuple α = (p, a0, K BF
α ), such that α is

the unique identifier of the query, a is the agent that created the query and K BF
α is the focus

knowledge base of α.

�
Definition 7 A focus knowledge base K BF

α is a set of defeasible rules and focus rules of the
form rFαi : Head(rFαi ) ⇐ Body(rFαi ), s.t. ∃p ∈ {Head(rFαi )} ∪ Body(rFαi ) s.t. p = 〈F, x〉,
i.e., at least one of the l-literals of the rule is a focus labeled literal (fl-literal).

�
The idea of fl-literals in the format 〈F, x〉 is that such knowledge must be temporarily

interpreted by each cooperating agent as if it was a locally defined cl-literal, i.e., as if each
agent defined it. For example, if an agent b receives a query with the following rule rF1 :
〈F, y1〉 ⇐, it should interpret the rule as if it was 〈b, y1〉 ⇐. When the processing of the
query is ended, the rule is discarded if it does not originally belong to the knowledge base of
b. It is important to note that focus knowledge bases only have defeasible rules (which can
also be mapping rules and schematic rules). This is because focus strict rules would require
a mechanism to avoid introducing cycles and contradictions to the subset of strict rules of a
KB.

It is important to note the difference between an sl-literal and an fl-literal. The first one is
used to represent that an agent requires knowledge defined by an arbitrary external source,
which has to be found by querying other agents. The former is used to represent knowledge
that was shared with the agent in a way that the agent must consider it as a temporarily locally
defined knowledge in order to answer a question in a better informed way.

Therefore, it is useful to define a localization function for focus rules, which requires
defining the localization of fl-literals, as presented in definitions 8 and 9.
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Definition 8 (Localization of fl-literals) Given an fl-literal p = 〈F, x〉 and an agent a, the
localization function of p in agent a is denoted Loc(p, a) = 〈a, x〉.

�
Definition 9 (Localization of focus rules) Given a focus rule rF : Head(rF ) ⇐ Body(rF ),
a function Loc_Rule that defines a localized rule for a given agent a based on rF is defined
as:

Loc_Rule(rF , a) = rFa : Loc(Head(rF ), a) ⇐ {Loc(q, a) | q ∈ Body(rF )}
�

For convenience, it is useful to state some additional definitions. The local extended
knowledge base of an agent a, denoted K Baα = K Ba ∪ K BF

aα , where K BF
aα =

{Loc_Rule(rF , a) | rF ∈ K BF
α }, represents the local knowledge of a single agent aug-

mented with the focus knowledge of a query focus α. Therefore, the global extended
knowledge base given a current query focus α is defined as K BSα = ⋃Ags

a K Baα . Sim-
ilarly, V L

aα and V L
Sα , respectively, denote the local extended vocabulary of an agent a and the

global extended vocabulary.
Given these definitions, it is possible to formalize the problem we are solving: “Given an

agent a with a query focus α = (p, a0, K BF
α ) for an l-literal p in a system S, a wants to

know whether l-literal p is a logical consequence of K BSα or not”. This is a subproblem
of the following problem: “Given a system S considering a query focus α = (p, a0, K BF

α ),
which l-literals in K BSα are its logical consequences?”. In our approach, as further explained
in Sects. 3 and 4, it is possible that an l-literal p in K BSα may be a logical consequence
(K BSα |� p)—i.e., p has a true truth-value—ormaynot be a logical consequence (K BSα �|�
p)—i.e., p has a f alse truth-value. However, it may be not possible to assert that p is a
logical consequence or not, which happens specially when there are fallacious arguments
(like circular and self-defeating arguments). In these cases, an undec truth-value is assigned
to p, as presented in Sect. 4.

It is important to note that the definition of a global extended KB concerns only the
formalization of the model and the problem: in practice, it is not necessary for agents to
operationally perform a union of their KBs, as it would result in a centralized solution. The
operational solution presented in this paper (Sect. 4) consists of each agent collaborating to
construct arguments based on its own local extended KB, and then sending such arguments to
other agents in order to generate larger arguments that enable answering the query presented.

Example 1.1 Given the scenario previously presented, suppose that, at some moment, Alice
finds a mushroom m1 with the following characteristics: It has a volva and a pale brownish
cap. Thus, a asks itself a query, such that:

p = 〈a, col(m1)〉 α = (p, a, K BF
α ) K BF

α = {rFα1, rFα2}
rFα1 : 〈F, hv(m1)〉 ⇐ rFα2 : 〈F, pbc(m1)〉 ⇐ (1)

where α is a new query focuswhose focus knowledge base contains the rules that represent
the mushroom’s characteristics.

When receiving its own query, a cannot reach a conclusion based only on its own knowl-
edge. Thus, it has to query other agents. In each query to another agent, it includes the
same query focus α, in order to enable the agents to reason effectively about the mush-
room perceived. Therefore, each agent applies the function Loc_Rule for every focus rule
received. For example, when e receives the query, it temporarily defines internally the rules
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〈e, hv(m1) ⇐ and 〈e, pbc(m1) ⇐. Given this focus, a will conclude that Alice can collect
the mushroom m1 because of the argument generated from b with the help of e (see rc1 and
re1), though b alone (see rb1) and d with e (see rd1 and re1) state that it is not edible. The
reason for this decision is based on the strength calculation of the arguments generated by
each agent and is further discussed in Sect. 3.

Example 1.2 Suppose that, simultaneously to the query focus α from Example 1.1, Barb finds
a mushroom (m2) which she knows is a death cap, and wants to know if she should collect
it or not. Therefore, its agent emits to itself a query with the following query focus:

p : 〈b, col(m2)〉 β = (p, b, K BF
β ) K BF

β = {rFβ1}
rFβ1 : 〈F, dc(m2)〉 ⇐ (2)

In this case, a new focus rule, β, is originated from Barb. It is important to note that, in this
case, the focus knowledge from query focus α is not included. As presented in Sect. 3, Barb
will decide not to collect m2, since Alice’s agent will answer the query indicating that m2 is
not edible.

3 Argumentation-basedmodel

This section is divided into two subsections. Section3.1 presents the argumentation-based
structures built as part of the reasoning process. Section3.2 presents how different arguments
are compared in order to enable conflict resolution.

3.1 Argumentation-based structure

This section presents how arguments are derived from the local extended KB of each agent
given a query focus. An argument A ∈ ArgsSα , such that ArgsSα is the set of arguments that
can be generated from a knowledge base K BSα is an n-ary tree derived from the chaining
of rules of K BSα .

Definition 10 formally presents an argument, as well as a set of functions that capture its
elements and properties.

Definition 10 (Argument) Given a global extended knowledge base K BSα , an argument
A ∈ ArgsSα based on a rule r : p ←↩ Body(r) ∈ K BSα such that p = 〈a, x〉, with
a ∈ Ags, is a n-ary tree whose root node is labeled as p. Given n = |Body(r)|, if n = 0,
then the tree has an only child node labeled�, which is a leaf node. If n > 0, then the tree has
n child nodes, each one corresponding to an l-literal q = 〈D(q), y〉 such that q ∈ Body(r),
and each of the child nodes is either labeled as:

(I) q , if D(q) = a (i.e., q is a local cl-literal) and there exists a rule r ′ s.t. Head(r ′) = q ′ =
〈a, y〉, or

(II) I nsta(q, q ′), if D(q) �= a (i.e., it is either a foreign cl-literal or an sl-literal) and there
exists a rule r ′ s.t. Head(r ′) = q ′ = 〈D(q ′), y′〉, where D(q ′) ∈ Ags (i.e., q ′ is not an
sl-literal) and �(q, q ′) > st (i.e., q and q ′ are similar enough, or identical).

A node is additionally labeled with a “!” mark in case it introduces a fallacious
subargument—either a cyclic or self-defeating subargument. Therefore, given a poten-
tial node labeled q , the node is labeled q! if there exists an ancestral node qorig s.t.
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D(q) = D(qorig) and either: �(q, qorig) > st (cyclic argument), or �(q, ∼ qorig) > st
(self-defeating argument). A fallacious node is always a leaf node.

Each node not labeledwith “!” is the root of a subargument of A, which is another argument
defined recursively according to this definition.

Each tree edge is labeled with the identifier of the rule used to derive the argument, which
can also be referred by Rule(A).

�
Note that the definition avoids the existence of infinite trees or cyclic graphs by creating

fallacious leaf nodes when a cycle or self-defeat is detected. A cycle occurs when a literal
that is similar enough to a literal in an ancestral node in the tree is found. Cycles, if not
detected and interrupted, would lead to a cyclic graph instead of a finite tree. Furthermore,
marking a node as fallacious and making it a leaf node enables us to identify an argument that
is fallacious, such that it could not be used to justify a conclusion. A self-defeating argument
occurs when a literal that is similar enough to the complement of a literal in an ancestral
node in the tree is found. Such is another kind of fallacious argument that could not be used
to justify a conclusion, therefore it is convenient to also mark the node when it appears and
make it a leaf node of the argument.

For convenience, some functions that enable retrieving components and features of an
argument are presented as follows:

• Conc(A) refers to the conclusion of an argument A, which is the l-literal that labels its
root node.

• Subs(A) refers to the set of proper subarguments of an argument A. A proper subar-
gument of an argument A, denoted A′, is a proper subtree of the tree that represents the
argument A. Proper subarguments are simply called subarguments throughout the text.

• ExSubs(A) ⊆ Subs(A) refers to the set of external subarguments of an argument A,
i.e., the subarguments of Awhose conclusions are il-literals. Formally: B ∈ ExSubs(A)

iff B ∈ Subs(A) and Conc(B) = 〈b, x, θ〉, s.t. b ∈ Ags, x ∈ V and θ ∈ [0, 1].
• DExSubs(A) ⊆ ExSubs(A) refers to the set of direct external subarguments of an

argument A, which are the external subarguments of A that are not external subarguments
of another external subargument of A. Formally, B ∈ DExSubs(A) iff B ∈ ExSubs(A)

and �∃C ∈ ExSubs(A) s.t. B ∈ ExSubs(C).
• Prem(A) refers to the set of premises of an argument A, which are all the nodes of an

argument except its root and the nodes labeled with �.
If Prem(A) = ∅, then A is a base argument. The premises can be expressed as the
conclusions of the proper subarguments of an argument, i.e., Prem(A) = {q | q =
Conc(B), B ∈ Subs(A)}.

• Fall(A) ∈ {true, f alse} indicates whether an argument is fallacious (true) or not
( f alse). A not fallacious argument is called a valid argument. An argument is fallacious
if any of its l-literals is a fallacious leaf node. Formally, Fall(A) = true iff ∃q! ∈ A s.t
q ∈ V L

Sα .• T ype(A) ∈ {strict, de f easible} indicates whether an argument is strict or defeasible.
A strict argument is based on a strict rule, and each of its subarguments is also strict.
A defeasible argument is either based on a defeasible rule or at least one of its sub-
arguments is defeasible. Formally, T ype(A) = strict iff T ype(Rule(A)) = strict
and ∀B ∈ Subs(A), T ype(Rule(B)) = strict ; and T ype(A) = de f easible iff
T ype(Rule(A)) = de f easible or ∃B ∈ Subs(A) s.t. T ype(Rule(B)) = de f easible.

An argument is conventionally named based on the agent that defines it, and the query
focus is used in the name as a superscript, given the possibility of having multiple query
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Fig. 2 Set of arguments of Example 1.1 (a) and 1.2 (b)

focuses. For example, if the conclusion of an argument is defined by an agent a in a query
focus α, then the argument will be called Aα

i , with i ∈ N
+. If it is an argument defined by

an agent b in a query focus β, it will be called Bβ
i .

A graphical representation is given in the examples to follow (see Fig. 2). We opted to
represent the edges as if they were directed to the conclusion of the argument, so as to remind
the rules’ arrows. We also use doubled lines to represent edges from arguments based on
defeasible rules in order to differentiate them from arguments based on strict rules. The
inline representation follows a notation similar to tree parenthesis notation, but with a ↼

arrow indicating the separation between conclusion and premises. Therefore, an argument is
denoted (. . .). A base argument with conclusion p is (p↼�). An argument with conclusion
p with two subarguments is (p↼(. . .), (. . .)).

Continuation of Example 1.1 Figure2a shows the derived arguments that conclude 〈a,

col(m1)〉 and 〈a,¬col(m1)〉. In addition to these, arguments based on the rules rb2 e rb3
can also be derived, but they are omitted since they are almost identical to arguments Aα

1 , A
α
2

and Aα
3 . The labels of the edges were also omitted since it is easy to see which arguments

are derived from which rules (see Fig. 1 and Eq.1).
Some properties of the arguments are exemplified as follows: Conc(Aα

1 ) = 〈a, col(m1)〉;
Conc(Aα

2 ) = Conc(Aα
3 ) = 〈a,¬col(m1)〉; Conc(Cα

1 ) = 〈c, ed(m1), 1〉;
Subs(Aα

1 ) = ExSubs(Aα
1 ) = {Cα

1 , Eα
1 , Eα′

1 , Eα′′
1 }; DExSubs(Aα

1 ) = {Cα
1 };

Prem(Aα
1 ) = {〈c, ed(m1), 1〉, 〈e, spa(m1), 0.8〉, 〈e, hv(m1)〉, 〈e, pbc(m1)〉}; Fall(Aα

1 ) =
f alse; T ype(Aα

1 ) = de f easible.
Note that from schematic rule ra2 the argument Aα

1 is formed by instantiating the sl-literal
〈@, ed(m1)〉 with the conclusion of Cα

1 . Similarly, Aα
2 and Aα

3 are formed from the rule
ra3, having its sl-literals instantiated with the conclusions of the subarguments Bα

1 and Dα
1 ,

respectively. The arguments Bα
1 , E

α
1 and Eα

2 are simply originated from their local rules and
the localized focus rules.

Argument Cα
1 is based on rc1 and formed by instantiating the sl-literal 〈@, avl(m1)〉with

the head of re1, from which the subargument Eα
1 is created.

It is interesting to note that without sharing and localizing the focus knowledge of the
query focus α, none of these arguments could be derived, since b and e would not be aware
of the mushroom m1 and its characteristics. This demonstrates how a kind of contextualized
reasoning is allowed in DDRMAS. ��
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Continuation of Example 1.2 From query focus β, the arguments derived are shown in
Fig. 2b.

In this case, argument Bβ
1 is based on rb1 by instantiating the sl-literal 〈@,¬ed(m1)〉

with the conclusion of Aβ
1 , which is based on ra1. Once more, this is only possible because

rFβ1 is shared with the query focus β, making agent a aware of the fact thatm2 is a death cap.
It is interesting to note that this set of arguments is different from the arguments derived

with query focus α and that both the queries do not interfere with each other. ��
Example 2 This brief example presents a casewhere both cyclic and self-defeating arguments
occur. Suppose the following global KB:

ra1 : 〈a, x〉 ⇐ 〈@, y〉; ra2 : 〈a,¬x〉 ⇐ 〈@, z〉
rb1 : 〈b, y′〉 ⇐ 〈@, x〉; rc1 : 〈c, y′′〉 ⇐ 〈@,¬x〉; rb2 : 〈b, zz〉 ⇐ (3)

Suppose also the following �a function: �a(〈a, y〉, 〈b, y′〉) = �a(〈a, y〉, 〈c, y′′〉) = 0.9
and �a(〈a, z〉, 〈b, zz〉) = 0.6. All the agents have total trust in each other (i.e., Pa(b) =
Pa(c) = 1). Suppose also a query focus γ with K BF

γ = ∅. Then, the following arguments
can be generated.

Aγ
1 = (〈a, x〉↼(〈b, y′, 0.9〉↼〈a, x〉!))

Aγ
2 = (〈a, x〉↼(〈c, y′′, 0.9〉↼〈a,¬x〉!))

Aγ
3 = (〈a,¬x〉↼(〈b, zz, 0.6〉↼�))

(4)

Note that, in this case, Fall(Aγ
1 ) = true and Fall(Aγ

2 ) = true, since both arguments
are fallacious.

3.2 Comparison of arguments and conflict resolution

To resolve conflicts between arguments with contradictory conclusions, we use argumenta-
tion semantics. In this work, we use an adapted version of the argumentation semantic for
Defeasible Logic (DL) proposed by [20] and extended by [1]. A defeat relation between argu-
ments is proposed, from which the notions of acceptable, justified and rejected arguments
are derived. This work extends the mentioned semantic specifically by defining an argument
strength calculation which is used in the defeat relation. All other definitions remain true to
the original ones and are only briefly presented in Sect. 4.

Definitions 11 and 12 present the attack and defeat relations:

Definition 11 (Attack) An argument Ai attacks a (local or distributed) defeasible argument
A j , denoted AiAA j , iff their conclusions are complementary. Formally, letA ⊂ Args×Args
be the relation. Then AiAA j iff Conc(Ai ) = p and Conc(A j ) =∼ p.

�
Definition 12 (Defeat) An argument Ai defeats an argument A j , denoted AiDA j , iff Ai

attacks A j , and A j is not stronger than Ai . Formally, let D ⊂ Args × Args be the relation
and St Arg : Args → [0, 1] be an argument strength function. Then, AiDA j iff AiAA j and
St Arg(Ai ) ≥ St Arg(A j ).

�
Definition 13 presents the definition of the strength of an il-literal, which is then used in

the definition of strength of an argument (Definition 14).
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Definition 13 (Strength of an il-literal) The strength of an il-literal qinst = (b, x, θ) from
the point of view of an agent a is St I L(qinst , a) = Pa(b) × θ .

�
Definition 14 (Argument Strength) St Arg : Args → [0, 1] is a function on an argument
A to values between 0 and 1, where 0 is the smallest possible strength value and 1 is the
greatest possible strength value, defined as follows:

St Arg(A)

=

⎧
⎪⎪⎨

⎪⎪⎩

P[D(Conc(A))](D(Conc(A))) if DExSubs(A) = ∅∑

A′∈DExSubs(A)

St I L(Conc(A′), D(Conc(A))) × St Arg(A′)

|DExSubs(A)| if DExSubs(A) �= ∅
(5)

�
The base case of the argument strength formula occurs when there are no external sub-

arguments. In this case, the strength is simply given by the trust the agent that defines the
conclusion of the argument (D(Conc(A))) has in itself. For example, if D(Conc(A)) = a,
and Pa(a) = 1, then St Arg(A) = 1.

The strength of an il-literal defines the basic element to calculate the strength of an
argument. Intuitively, it can be said that the strengths of the il-literals represent the strengths
of the bindings between the chained arguments coming from different agents, which are
represented by external subarguments (see Definition 10 and Example 1.1). This strength
considers not only the similarity degree (θ ) between the knowledge defined by each different
agent, but also the trust an agent has in each other (Pa(b)).

Considering that, the strength of an argument consists of a weighted average, by means
of summing the strengths of its direct external subarguments multiplied by the strength of
the il-literals that bind the argument to each direct external subargument, all divided by the
amount of direct external subarguments. This way, the strength of an argument is a function
of the strengths of its direct external subarguments, which are arguments derived by other
agents (see Definition 10). In other words, the similarity between knowledge from different
agents and the trust between the agents is what defines the strength of an argument.

An interesting feature of this formula is that it “weakens” an argument when there is
indirect trust between agents, which makes agents more skeptical to “third-party” arguments,
i.e., arguments that are external subarguments, but not direct external subarguments. This is
because the calculus recursively depends on the strength of the direct external subarguments
of the argument A (DExSubs(A)), inducing the multiplication of the strengths of the il-
literals that are the conclusions of these subarguments. Since the range of the il-literals and
argument strength function is [0, 1], it then follows that the strength values corresponding
to these indirect dependencies, when multiplied, result in reduced values when they are less
than 1. This characteristic is formalized in Corolary 1 and demonstrated through the example
that follows.

Corollary 1 (The strength of arguments based on indirect trust tends to be lower than the
strength of arguments based on direct trust) Let a, b and c be three agents, such that
0 < Pa(b) < 1, Pa(b) = Pa(c) = Pb(c) and Pa(a) = Pb(b) = Pc(c) = 1. Let
A1 = (〈a, x〉↼C1), C1 = (〈c, z, 1〉↼�), A2 = (〈a, x〉↼B1), B1 = (〈b, y, 1〉↼C1) be
four arguments. Notice that A1 is based only on a direct trust between a and c, whereas A2
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is based on an indirect trust from a to b, then from b to c. The strength of A1 will be greater
than the strength of A2, i.e., St Arg(A1) > St Arg(A2).

Proof St Arg(A1) = St I L(〈c, z, 1〉, a) × St Arg(C1) = Pa(c) × 1 × 1 = Pa(c) and
St Arg(A2) = St I L(〈b, y, 1〉, a) × St Arg(B1) = Pa(b) × 1 × St I L(〈c, z, 1〉, b) ×
St Arg(C1) = Pa(b) × Pb(c) × 1 × 1 = Pa(b) × Pb(c) = Pa(b)2. As Pa(c) = Pa(b),
then St Arg(A1) = Pa(b). Finally, as 0 < Pa(b) < 1, then it follows that Pa(b)2 < Pa(b),
thus St Arg(A2) < St Arg(A1). ��
Continuation of Example 1.1 As illustrated in Fig. 2, there are some defeasible arguments
with contradictory conclusions: Aα

1 vs. Aα
2 and Aα

3 . That means they attack each other: Aα
1

attacks Aα
2 and Aα

3 and vice versa.One can therefore calculate the strengths of these arguments
and conclude that Aα

1 is stronger than Aα
2 and Aα

3 , thus defeating both, while Aα
2 and Aα

3 do
not defeat Aα

1 .

St Arg(Aα
1 ) = St I L(〈c, ed(m1), 1〉, a) × St Arg(Cα

1 )

1

= Pa(c) × 1 × St I L(〈e, spa(m1), 0.8〉, c) × St Arg(Eα
1 )

1
= 0.6 × Pc(e) × 0.8 × Pe(e) = 0.6 × 1 × 0.8 × 1 = 0.48

St Arg(Aα
2 ) = St I L(〈b,¬ed(m1), 1〉, a) × St Arg(Bα

1 )

1
= Pa(b) × 1 × Pb(b) = 0.4 × 1 = 0.4

St Arg(Aα
3 ) = St I L(〈d,¬ed(m1), 1〉, a) × St Arg(Dα

1 )

1

= Pa(d) × 1 × St I L(〈e, spa(m1), 0.4〉, d) × St Arg(Eα
1 )

1
= 0.2 × Pd(e) × 0.4 × Pe(e) = 0.2 × 1 × 0.4 × 1 = 0.08

It is interesting to note, in this case, that although Aα
1 was calculated as stronger, it still

had a relatively low strength value due to the indirect dependence of Aα
1 to Eα

1 , as it was
necessary to multiply the trust of Alice in Charles (0.6) to the similarity of 0.8 between
springtime amanita (spa(m1)) and amanita velosa (avl(m1). Charles’ perfect trust in Eric
(1) kept the strength from going even lower. In contrast, in the case of Aα

2 , although Alice’s
trust in Barb is less than 0.4, the argument has not much less strength than Aα

1 , since it only
depends directly on a subargument defined by another agent.

Therefore, in this case, Aα
1DAα

2 and Aα
1DAα

3 , but A
α
2�DAα

1 and Aα
3�DAα

1 . ��

4 Distributed query answering algorithm

This section presents a distributed algorithm for evaluating queries between agents based on
the proposed knowledge representation and argumentation-based model.

This algorithm produces results based on the ambiguity-blocking semantics for defeasible
logic (DL) proposed by [20] and extended by [1]. The reader is referred to these papers in
order to have a deeper understanding of such semantics, but it is important to briefly define
the concepts of “justified”, “supported”, “undercut” and “rejected” arguments. The set of
justified arguments is incrementally and monotonically built, starting with strict arguments,
then arguments that are not defeated or are defended by the already justified arguments, and
so on until no further arguments can be justified. An argument A is justified if it is strict, or
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if: (1) it is not fallacious, (2) it is supported by a set of already justified arguments J , and
(3) every argument that defeats A is undercut by the set of justified arguments J (i.e., A is
defended by J ). An argument A is supported by a set of arguments J if every subargument
of A is in J . An argument A is undercut by a set of arguments J if there is an argument B
which is supported by J that defeats a subargument of A. Finally, an argument A is rejected
if it is not strict and either a subargument of A is already rejected, or A is defeated by an
argument supported by the set of justified arguments.

The specific reasoning problem that is solved by the algorithm is stated as follows: Given
a DDRMAS S and a query focus α for an l-literal p sent to agent a, compute the truth
value of p based on whether justified arguments exist for some l-literal similar enough
to p or not. The algorithm produces an answer with three components: (i) a truth-value
tvp ∈ {true, f alse, undec} for the l-literal p queried; (ii) a set of arguments that conclude
l-literals similar enough to p; and (iii) a set of arguments that conclude l-literals similar
enough to ∼ p. This way, the agent that receives an answer also receives the arguments that
support and refute p, so that it can perform conflict resolution from its own point of view.

The truth-value true implies that there exists an argument for a l-literal p′ similar enough
to p which is justified in K BSα (the global extended knowledge from system S with focus
knowledge from the query α), f alse implies that all arguments for every p′ similar enough
to p are rejected in K BSα , and undec implies that there are not any argument for any p′
similar enough to p that is justified, but there are arguments for some p′ similar enough to p
that are neither justified nor rejected in K BSα . This last case occurs when there are fallacious
arguments involved.

The arguments in the algorithm have the same structure as the arguments presented in
Sect. 3, having, in addition, three Boolean labels: J , indicating that the argument has already
been identified as justified; R, indicating that the argument has already been identified as
rejected; and SuppJ , indicating that the argument is supported by a set of justified arguments.
These three properties play a fundamental role in comparing the sets of arguments for and
against p, in order to correctly implement the DL semantics [1, 20]. In fact, such labels (or
flags) enable the implementation of the DL semantics in a labeling-based fashion, similar to
[21], which proposes labeling semantics for abstract argumentation frameworks. In summary,
instead of incrementally building the sets of justified and rejected arguments, this labeling-
based approach traverses an argument in a post-order fashion labeling each argument as
SuppJ , J or R. When all arguments are labeled, we gather the set of J -labeled arguments as
the justified arguments, and the set of R-labeled arguments as the set of rejected arguments.

It is also assumed that each argument has a numeric property St , referring to the strength
of the argument, whose default value is 0, but that is modified throughout the execution of
the algorithm by calculating the strength of the argument using the St Arg function.

The presentation of the algorithm will be divided into two sections. Section4.1 presents
the main procedure Query, and Sect. 4.2 presents the auxiliary function Find_Def _Args,
which corresponds to a good part of the algorithm as a whole, and therefore is presented
separately in order to facilitate reading and understanding. Finally, Sect. 4.3 presents some
analytical evaluation of the algorithm as well an approach to optimize it.

4.1 ProcedureQuery

Each agent implements the samealgorithm,which also defines a basicmessagingprotocol that
allows them to collaborate effectively. Themain procedure, Query, presented in Algorithm 1
in Appendix A, is called when an agent a receives a message of the form Query(p, α, histp)
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Fig. 3 Activity diagram for the Query algorithm

from an agent a0. This can be considered an “Ask” speech act emitted by a0, where: p is the
l-literal queried; α = (p, a′, K BF

α ) is the query focus; and histp is a list of l-literals already
evaluated during the query processing, which allows to avoid infinite loops by detecting the
occurrence of fallacious arguments. The query result is returned to a0 as a message in the
format Ans(p, α, tvp, Argsp, Args∼p), where: tvp is the truth value of p; Argsp is a set of
arguments that support the conclusion p; and Args∼p is a set of arguments that support the
conclusion ∼ p.

The algorithm can be divided into 6 (six) main steps:

1. Extended local KB creation given query focus α (line 3)
2. Search for l-literals p′ similar to p in the extended local KB (lines 4 and 5)
3. Checking and handling of cycles and self-destructive rule chains (lines 6 and 7)
4. Local strict answer search for each similar l-literal q ′ (lines 8 to 15)
5. Local or distributed defeasible answer search for each similar l-literal q ′ (lines 16 to 22)
6. Comparison between arguments and calculation of the truth-value based on the strengths

of defeasible sets of arguments for and against the conclusion of each similar l-literal q ′
(lines 23 to 26)

Figure3 presents an activity diagram that illustrates the execution of these steps.
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Step 1 defines the local extended KB, K Baα , as defined in Sect. 2. This enables the agent
to consider not only its own knowledge, but also an augmented knowledge considering the
focus knowledge received in the query.

Step 2 iterates over K Baα searching for any rule with head p′ such that p and p′ are
similar enough. This enables to consider literals by similarity, as described earlier.

Step 3 verifies whether p′ or ∼ p′ are not in histp . If any of these is the case, then a cycle
or self-defeat is detected. The algorithm then creates a fallacious argument consisting of a
unique leaf node labeled p′!.

Steps 4 to 6 are executed iteratively or in parallel, for each p′. It is interesting that it can
be made in parallel because it mainly consists in querying other agents asynchronously.

Step 4 tries to build local strict arguments based on strict rules of the agent. This stepworks
as a depth first algorithm traversing the strict rules of the agent trying to activate each rule in
the chain of rules, as a classic logic proof finder. A pseudocode is presented in Algorithm 2
in Appendix A.

Step 5 tries to build defeasible arguments, both for p′ and ∼ p′. This is done by means
of a helper function called Find_Def _Args, which is responsible for sending queries to
other agents for each literal in the body of the rules with head p′. It is also responsible for
incrementally building distributed arguments (arguments that have external subarguments).
Section4.2 details it a bit further. Furthermore, in step 5 it is verified whether local strict
answers have been found (lines 19 to 22). If this is the case, every opposite argument ismarked
as rejected, since a strict argument defeats every opposite argument and is not defeated by
them.

Step 6 takes all the defeasible arguments generated for and against p′ and compares
them. Its pseudocode is presented in the Compare_Def _Args function in Algorithm 3,
Appendix A. This step implements most part of the DL semantics by checking the Boolean
flag SuppJ and R and setting J and R accordingly, and, based on these flags, decide the
truth-value tvp′ . At this point, i.e., after Find_Def _Args was called, SuppJ—and also R
for the case in which some subargument is marked as rejected, which means the argument
has been undercut—have already been previously set in the Find_Def _Args (step 4), when
arguments are built and every subargument are checked whether they are justified or rejected,
as explained in Sect. 4.2, step 4.

Abrief explanation of step 6 is given as follows. The variable tvp′ is set as undec as default.
Then, a set of not undercut (already rejected by the existence of rejected subarguments)
arguments for both p′ and ∼ p′ is defined (line 3). This is done because undercut arguments
cannot be used to prevent an argument from being justified: even if an undercut argument
defeats another argument, this last one has already been defended by the argument that
defeated the first one. Next, for each not undercut argument A:

(i) if A is supported by justified arguments and there does not exist any not undercut argument
B that defeats A, then A is marked as justified (J ) and the truth value is set to true, since
a single justified argument for p′ is sufficient for accepting such conclusion.

(ii) if there exists an opposite argument B ∈ Args∼p′ that is supported by justified arguments
and defeats A, then A is marked as rejected (R).

Finally, if none of the arguments in Argsp′ have been found as justified and all of them
have been rejected (or Argsp′ is empty, which simply means there is no argument for p′),
then tvp′ is set to false. However, it is possible that there are arguments that are not justified
nor rejected, in which case tvp′ remains undec (this happens specifically when the argument
is fallacious and is not defeated by an argument supported by the justified arguments).
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Continuation of Example 1.1 Below is a brief simulation of the processing of Query for
〈a, col(m1)〉.
• Agent a emits the query Query(p = 〈a, col(m1)〉, α = (p, a, {rFα1, rFα2}), histp = [])

to a

– Expected result: Ans(〈a, col(m1)〉, α, true, {Aα
1 }, {Aα

2 , Aα
3 })

– Explanation:
• Step 1: K Baα is created by localizing the focus rules rFα1 and rFα2, therefore

including the rules rFαa1 : 〈a, hv(m1)〉 ⇐ and rFαa2 : 〈a, pbc(m1)〉 ⇐.
• Step 2: Only one similar l-literals is found: p′ = 〈a, col(m1)〉.
• Step 3: Neither p′ nor ∼ p′ is in histp .
• Step 4: No local strict argument can be built for p′, since there are no strict rules

with head p′.
• Step 5:

· Find_Def _Args(p′, . . .) returns Argsp′ = {Aα
1 }. Aα

1 and all of its subar-
guments are marked as SuppJ (supported by justified arguments).

· Find_Def _Args(∼ p′, . . .) returns Args∼p′ = {Aα
2 , Aα

3 }. All arguments
are marked as SuppJ . The process for this call to Find_Def _Args is
detailed in Sect. 4.2.

• Step 6:As Aα
1 ismarked as SuppJ and no other argument defeats it (i.e., Aα

2�DAα
1

and Aα
3�DAα

1 ), then Aα
1 is marked as J (justified), and, as Aα

1DAα
2 and Aα

1DAα
3 ,

then both Aα
2 and Aα

3 are marked as R (rejected). Also tvp = true is returned
(see Algorithm 3 in Appendix A for details).

��
Continuation of Example 2 Below is a brief simulation of the processing of Query for 〈a, x〉.
• Agent a emits the query Query(p = 〈a, x〉, γ = (p, a, {}), histp = []) to a

– Expected result: Ans(〈a, x〉, γ, undec, {Aγ
1 , Aγ

2 }, {Aγ
3 })

– Explanation:
• Step 1: K Baγ is created, but there are no focus rules, thus there are no changes

in the agent’s KB.
• Step 2: Only one similar l-literals is found: p′ = 〈a, x〉.
• Step 3: Neither p′ nor ∼ p′ is in histp .
• Step 4: No local strict argument can be built for p′, since there are no strict rules

with head p′.
• Step 5:

· Find_Def _Args(p′, . . .) returns Argsp′ = {Aγ
1 , Aγ

2 }. None of the argu-
ments have been marked as SuppJ , as they are fallacious (their fallacious
leaf arguments are created at line 6 of Query, Algorithm 1, Appendix A).
They are also not marked as R (rejected), because their subarguments are
not defeated. The process for this call to Find_Def _Args is detailed in
Sect. 4.2.

· Find_Def _Args(∼ p′, . . .) returns Args∼p′ = {Aγ
3 }. All arguments are

marked as SuppJ .
• Step 6: Both Aγ

1 and Aγ
2 are not defeated by Aγ

3 (i.e., Aγ
3�D Aγ

1 and Aγ
3�D

Aγ
2 ) because their strength is greater (note the similarity degrees of their il-

literals, and remember that the trust is 1 for every pair of agents in this example).
However, both are not marked as SuppJ , since they are fallacious, thus they
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cannot be marked as J (justified). They are also not marked as R, since they are
not defeated. Therefore, tvp = undec (undecided) (see Algorithms 1 and 3 in
Appendix A for details).

��

4.2 Function Find_Def_Args

The function Find_Def _Args is presented in Algorithm 4 in Appendix A. It receives a
literal p′, the extended knowledge base K Baα created in the Query procedure, the query
context α and the history histp .

The procedure is split in 4 (four) steps:

1. Update histp by adding p′ to it (line 3)
2. Send queries for every l-literal q that exists in the body of each r with head p′ (lines 4

to 10)
3. Filter the results received for eachq for the queries and add themas possible subarguments

for an argument for p′ (lines 11 to 16)
4. Build argument for p′ based on the possible subarguments, for each different rule for p′

(lines 17 to 28)

Figure4 presents an activity diagram that illustrates these steps.
Step 1 is self-explanatory.
Step 2 consists of iterating over each rule r with head p′ in K Baα , and for each rule r ,

iterate over each l-literal q in the body of r in order to send new queries, aiming to try to
build argument for each q . This iteration can also be done in parallel, which is interesting
since the query messages are sent asynchronously. In this step, when an sl-literal is found,
the query is sent in a broadcast manner to every agent in the system. Otherwise, if a cl-literal
is found, the query is sent only to the agent D(q). The code for querying agents is illustrated
in Algorithm 5, Appendix A.

Step 3 is executed when answers are received. If no arguments are found for q , the
algorithm goes to the next rule and discards all the results for the current rule (lines 11 and
12). This is because an argument for p′ based on a rule r cannot be built if one of its body
members cannot be activated. Next, the arguments received are filtered in order to avoid an
“explosion” of subarguments. This is done by eliminating fallacious arguments if valid ones
were found (lines 13 and 14) and then getting the argument that has the greatest strength
multiplied by the strength of the il-literal in its conclusion from the point of view of the
current agent (a)—which is part of the argument strength calculation (line 15). This way,
only the subargument that will contribute with the greatest strength possible is considered.
This is reasonable when considering that the goal is to find the best arguments to support
a conclusion, thereby avoiding the generation of a lot of irrelevant arguments that could
impose unnecessary overhead over the MAS. This can also be viewed as a kind of pruning
of irrelevant arguments: fallacious subarguments are irrelevant when valid ones exist, and
multiple subarguments for the same conclusion can be pruned by leaving only the one that
provides the most benefit.

Step 4 is executed after the answers for each q in the body of a given rule r is received. It
takes the possible subarguments and builds arguments for p′ based on them. It is actually in
this step that an sl-literal is instantiated to an il-literal (see lines 20 and 21). Also, for each
argument Ap′ built, if every subargument is marked as justified (J ), then Ap′ is marked as
supported by justified arguments (SuppJ , lines 14 and 15). On the other hand, if there exists
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Fig. 4 Activity diagram for the Find_Def _Args algorithm

any subargument which is marked as rejected (R), then Ap′ is also marked as rejected (lines
16 and 17). This also means Ap′ is considered as undercut, i.e., it cannot be used to prevent
another argument from being justified, even if it defeats the other argument, as explained
in Sect. 4.1, step 6. Finally, is in this step that the strength of the argument is calculated by
means of St Arg (Sect. 3), in line 18.

Continuation of Example 1.1 Below is a brief simulation of the processing of the call
Find_Def _Args(p′ = 〈a,¬col(m1)〉, K Baα, α, histp = [])
• Expected result: Argsp′ = {Aα

2 , Aα
3 }

• Explanation:

– Step 1: A new list histp′ is created by adding p′ to histp . Thus histp′ = [p′].
– Step 2: A single rule ra3 (see Fig. 1) is found with head p′. This rule has a single body

memberq = 〈@,¬ed(m1)〉. Therefore, queries forq are sent to every agent (a, b, c, d
and e). The query has the form Query(〈@,¬ed(m1)〉, α, histp = [〈a,¬col(m1)〉]).
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– Step 3: The queries for b and d return tvp = true, and, respectively, the arguments
Bα
1 and Dα

1 with their subarguments (see Fig. 2), all of them marked as J (justified),
since they are not defeated. The same query is also sent to a, c and e, but they return
tvp = f alse and no arguments, since there are no rules with head p′ in these agents’
KBs. Therefore Bα

1 and Dα
1 are stored as possible subarguments for arguments for

p′.
– Step 4: The argument Aα

2 is created with subargument Bα
1 and the argument Aα

3 is
created with subargument Dα

1 . As both subarguments are marked as J (justified),
then both new arguments are marked as SuppJ (supported by justified). Finally,
both arguments for p′ = 〈a,¬col(m1)〉 are returned. For details, see Algorithm 4 in
Appendix A.

��
Continuation of Example 2 Below is a brief simulation of the processing of the call
Find_Def _Args(p′ = 〈a, x〉, K Baγ , γ, histp = [])
• Expected result: Argsp′ = {Aγ

1 , Aγ
2 }

• Explanation:

– Step 1: A new list histp′ is created by adding p′ to histp . Thus histp′ = [〈a, x〉].
– Step 2: A single rule ra1 is found with head p′. This rule has a single body member

q = 〈@, y〉. Therefore, queries for q are sent to every agent (a, b and c). The query
has the form Query(〈@, y〉, γ, histp = [〈a, x〉]).

– Step 3: The queries sent to b and c return tvp = undec. In summary, when b and
c receive the query, the rules rb1 and rc1 are found to have similar enough literals
as heads. However, when traversing the bodies of these rules, the literal x is found,
which is in histp . Therefore, the fallacious leaf arguments given in the example are
created, and then they are used as subarguments to build Aγ

1 and Aγ
2 . The respective

possible subarguments Bγ
1 (with conclusion 〈b, y′, 0.9〉) and Cγ

1 (with conclusion
〈c, y′′, 0.9〉) are then created and stored (see the rules and arguments in Example 2).

– Step 4: The arguments Aγ
1 and Aγ

2 are created with the subarguments Bγ
1 and

Cγ
1 , respectively. As both subarguments are neither marked as J (justified) nor R

(rejected), then both new arguments are not marked with any of these labels as well.
For details, see Algorithm 4 in Appendix A.

��

4.3 Complexity issues and optimization

It is important to note that the algorithm as presented thus far would have exponential com-
plexity in the worst case. Suppose the following global KB:

ra1 : 〈a, x1〉 ⇐ 〈@, x2〉, 〈@, x3〉, 〈@, x4〉; rb1 : 〈b, x2〉 ⇐ 〈@, x3〉, 〈@, x4〉
rc1 : 〈c, x3〉 ⇐ 〈@, x4〉; rd1 : 〈d, x4〉 ⇐

Figure5 presents a call tree, considering only the queries that reach the Find_Def _Args
stage (step 5 of the Query algorithm), which leads to recursive calls to the procedure Query.
Cases in which the queries do not reach this stage do not induce recursion on the agents’
knowledge base rules, namely: when the queried agent does not have any similar l-literal
in its knowledge base, or when the l-literal which was queried or its complement is in the
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Fig. 5 Call tree for the worst case when n = 3

history histp . For simplicity, therefore, the complexity analysis criterion used is the number
of calls to Query that reach the Find_Def _Args stage.

Each edge of the call tree presented in Fig. 5 is labeled in the form 〈a〉 → 〈b〉 : 〈p〉, where
〈a〉 is the agent that submitted the query, 〈b〉 is the agent that received the query, and 〈p〉 is
the l-literal being queried. Each vertex is labeled as the l-literal 〈p〉′ that was found to be
similar enough to p, and for which an answer will be sought.

It is easy to see that the il-literals 〈b, x2, 1〉, 〈c, x3, 1〉 and 〈d, x4, 1〉will be generated from
this setup, constituting the set of premises of the arguments. Therefore, it is possible to induce
that the number of queries that reach the stage of Find_Def _Args for an arbitrary number of
premises n in the arguments is asymptotically O(2n). The demonstration is straightforward
and will not be presented for the sake of space and convenience.

As to the number of messages, complexity is even greater considering the number of
messages that each agent sends for each sl-literal and to each known agent. This is because,
in each of the queries, represented by the edges in the call tree, as shown in Fig. 5, one must
consider that the agent actually sends query messages to each known agent.

Therefore, the number ofmessages exchanged has an asymptotic complexity ofO(|Ags|×
2n) in the worst case.

Therefore, it is clear that the algorithmas presented thus far is not computationally feasible.
However, we present an optimization strategy that enables it to achieve polynomial time
complexity: a cachememory that allows storing and reusing arguments previously generated
in the context of the same query focus. This memory, referred as Cα[p′], is individual and
local to each agent, and mapped to each specific query focus α and by each l-literal p′ that
is similar enough to a queried l-literal p.

A record Cα[p′] in agent a can store a null value (⊥), a future (as explained below), or
the actual set of arguments for and against p built in a previous query. Each time an agent a
reaches steps 4 and 5 of the Query algorithm, it first checks whether p′ (the l-literal which
was found to be similar enough to the l-literal queried) has not been previously received in
the same query focus by checking the value of Cα[p′]. If this is the case and the answer has
already been returned, it proceeds to use that answer. If the argument is still not found—that
is, the agent is still in the middle of processing to build it—the thread gets waiting until an
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Fig. 6 Call tree for the worst case scenario when n = 3 with the caching mechanism

answer is received. This is achieved through the concept of future (or promise) [22]. In simple
terms, a future is an object that acts as a proxy for an initially unknown result because the
calculation of its value has not yet been completed. Many parallel threadsmay wait until the
value of this object is set. When this happens, they are notified, so they are able to capture
the value and resume their execution.

The benefits of this simple caching mechanism are made clearer when observing what
would happen in the case presented when using this caching mechanism. Figure6 shows
what would be the call tree for this case with the optimization presented.

Note that only n+1 = 4 queries make it to the Find_Def _Args stage in this case, since
there is no need to repeat the same query processing for 〈@, x3〉 and 〈@, x4〉, as in the version
without cache. Therefore, it can be induced that the number of calls to Query that get to the
Find_Def _Args stage is now proportional to the number of premises, reducing the time
complexity to O(n). It is easy to think of the intuition for it: there will be as many queries
as there are l-literals to query about as the algorithm traverses the agents’ rules, similar to a
depth-first tree traversal.

As to the number of messages, it is also reduced. For the worst case scenario with n = 3,
only 3×3 = 9 messages are sent by a to each of the agents b, c and d (|Ags|−1 = 3) about
each of the sl-literals in the rule body ra1 (n = 3). Then there will be 2 × 3 = 6 messages,
corresponding to the two sl-literals in the body of rb1, which must also be sent to the 3 other
agents. Then there will be 1×3 = 3 messages sent by c, corresponding to the single sl-literal
in the body of rc1 sent to the 3 other agents. Therefore, (3× (3+ 2+ 1))× 2 = 36 messages
are exchanged, including the query and reply messages. Generally speaking, the number of
messages m = [(|Ags| − 1) × ∑n

i=1 i)] × 2 = [(|Ags| − 1) × (n × (1 + n)/2)] × 2 =
(|Ags| − 1) × (n2 + n). Therefore, the number of messages exchanged with optimization
based on cache is O(|Ags| × n2).

In an average case, however, the number of messages tends to be less. Let m be the
number of sl-literals and k the number of foreign cl-literals. Assuming that each sl-literal
occurs only once in the entire extended knowledge base—unlike the worst case, where they
are repeated—then for each sl-literal, (|Ags|−1)×2 messages are sent, counting query and
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reply messages. Furthermore, for each foreign cl-literal, 2 messages are sent, one query and
one reply. Therefore, the total number of messages sent is M = m× (|Ags|−1)×2+ k×2.
Therefore, the asymptotic complexity for the number of messages in this average case is
O(|Ags| × m + k).

As to the total size of arguments generated, the cache mechanism enables it to be reduced,
given that arguments already generated in memory can be just reused by reference. In fact,
the maximum total size of arguments ends up being proportional to the amount of rules in
the system combined with the similarity rate between literals, i.e., the amount of sl-literal
in the body of the rules that are similar enough to the head of other rules. In other words,
the more rules with premises that are similar enough to conclusions of other rules, the more
arguments will be built, but no argument is built more than once.

Another point of interest of this caching mechanism is that it illustrates how DDRMAS
allows reusing previously generated arguments. In this case, it was used to enable a better
performance. However, the same arguments could be stored and reused in other features,
such as those related to explanation and learning.

5 Experimental evaluation

In order to ensure the computational feasibility and performance, as well as emphasize
DDRMAS’s potential for real applications, an implementation of the model was developed,
as well as some testing scripts. The implementation was done using the Python programming
language.1 All the experimentswere run using the Python 3.10.9 interpreter in anAMDRyzen
3 5400u® in Ubuntu 22.04.2 LTS. A simple class diagram is presented in Fig. 7.

Three testing scripts were developed: (i) a script that creates and performs queries in
randomized systems; (ii) a script that implements the worst case presented in Sect. 4.3; and
(iii) a script that implements the worst case presented for the contextual defeasible logic
(CDL) model [13], in order to enable some comparison with DDRMAS.

The randomized script creates a random system taking the following parameters:

• Number of agents (|Ags|);
• Total number of distinct literals (|LS |);
• Total number of distinct rules (|K BS |);
• Maximum size of rules’ body (MaxB);
• Number of focus rules (FK BSize);
• Percentage of sl-literals throughout the rules (Per SL);
• Percentage of pairs of literals with high similarity (Per Sim);
• Whether the system has cycles or not (AllowsCycles);

The rules are generated based on random l-literals for their head and body. All rules are
defeasible. Each rule has a body of size varying between and including 0 and MaxB, evenly
distributed. The generated rules are randomly and uniformly distributed among the agents.
Redundant or self-conflicting rules are discarded, since they do not add any new information,
and such kinds of rules can be easily filtered on a real scenario. For example, rules like
B ⇐ A, A, or B ⇐ A,∼ A are removed; and when a rule B ⇐ A exists, then B ⇐ A,C is
not relevant, therefore discarded. This does not impose any new assumption on theDDRMAS
system, because mechanisms to remove such redundant rules can be executed in parallel and
independently of the DDRMAS query system.

1 The code is available at https://github.com/helioh2/ddrmas-python.
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Fig. 7 Class diagram for the implemented system

The intuition for this random script is getting statistical data that possibly gives insights
about features and weaknesses of DDRMAS. Therefore, different settings were run by a
number T imesRun and the following data was captured from these executions: (i) total of
arguments generated (|ArgsSα|); (ii) total of messages exchanged (|Msgs|); (iii) sizes of
messages exchanged (SizesMsgs); and (iv) times of execution (T ).

Table 1 presents some results. Only the cases in which at least one argument was generated
are accounted (note the WithArgs line), in order to consider only the cases in which rules
have been activated during reasoning.

It is interesting to note that the number of arguments, number of messages and sizes of
messages are quite reasonable when compared to the amount of agents, literals and rules.
Only the number of messages tends to be a little greater when there are more agents, but
this is expected, as discussed in Sect. 4.3. It would be necessary to find out the impact of
the number of messages in real world applications in order to have further insights on the
necessity of optimizing it and how it could be mitigated.
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Table 1 Results of the experiments with the randomized system generator

Parameters TimesRun 2000 2000 2000 2000 2000 2000

|Ags| 5 5 20 20 20 20

|LS | 5 5 20 20 20 20

|K BS | 10 10 50 50 50 50

Per SL 100% 100% 100% 100% 0% 0%

Per Sim 10% 10% 10% 10% – –

AllowsCycles Yes No Yes No Yes No

FK BSize 1 1 3 3 3 3

MaxB 2 2 3 3 3 3

Outputs WithArgs 579 581 727 707 671 613

|ArgsSα | - Avg 2.41 1.85 12.49 3.35 1.28 1.22

|ArgsSα | - Max 12 12 60 40 7 6

|Msgs| - Avg 9.76 5.39 418.15 74.76 0.68 0.64

|Msgs|- Max 72 56 2470 1444 12 12

SizesMsgs - Avg 0.91 1 0.60 0.32 2 3

SizesMsgs - Max 7 6 20 10 5 4

T (ms) - Avg 0.69 0.48 17.23 2.06 0.20 0.43

T (ms) - Max 2.60 2.15 75.35 30.56 1.80 1.79

It is also evident that the allowance of cycles increases the amount of arguments generated,
even with the existence of the mechanism that avoids infinite loops by creating fallacious
arguments that behave as leaf nodes. This happens because, when the script is run with
AllowsCycles = False, it discards rules that would introduce fallacious arguments. If
there are no fallacious arguments, when trying to build some arguments, the algorithm ends
up not reaching neither a fallacious leaf node nor a factual rule, thus many arguments are
never really built.

As for the script that implements the worst-case scenario presented in Section 4.3,
it was executed with the following inputs and obtained the following results: |Ags| =
|LS | = 20 → |ArgsSα| = 20; |Msgs| = 7220; T = 143.96 ms; Max(SizesMsgs) =
19; Avg(SizesMsgs) = 0.36. These results confirm the analytical complexity analysis pre-
sented in Sect. 4.3.

In order to enable a comparison with the most similar related work, we modeled CDL’s
worst case presented in [13] in DDRMAS. This was done by considering the absence of
sl-literals, i.e., all body members of rules are concrete l-literals. This setting consists of n+1
agents {a0, a1, . . . , an}, such that a0 has the following rules:

ra01 : 〈a0, x0〉 ⇐ 〈a2, x2〉, 〈a3, x3〉, . . . , 〈an, xn〉
ra02 : 〈a0, x0〉 ⇐ 〈a1, x1〉, 〈a3, x3〉, . . . , 〈an, xn〉

. . .

ra0[n/2] : 〈a0, x0〉 ⇐ 〈a1, x1〉, . . . , 〈an/2−1, xn/2−1〉, 〈an/2+1, xn/2+1〉, . . . , 〈an, xn〉
ra0[n/2+1] : 〈a0,¬x0〉 ⇐ 〈a1, x1〉, . . . , 〈an/2, xn/2〉, 〈an/2+2, xn/2+2〉, . . . , 〈an, xn〉

. . .

ra0n : 〈a0,¬x0〉 ⇐ 〈a1, x1〉, 〈a2, x2〉, . . . , 〈an−1, xn−1〉
(6)
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The other agents all have a single factual rule each. For example,a1 has the rule 〈a1, x1〉 ⇐,
a2 has 〈a2, x2〉 ⇐, and so on.

The results for |Ags| = |LS | = 100 are the following: |ArgsSα| = 198; |Msgs| =
19404; T = 721.68 ms; Max(SizesMsgs) = Max(SizesMsgs) = 1. The number 100 for
the agents/literals was chosen because 100 is the maximum amount of agents that Bikakis
et al. tested with in their experiment [13]. It is interesting to note that, in their case, they
could not run their most complex strategy for conflict resolution (Complex Mapping Sets)—
which uses all the context information possible—formore than 40 agents because it exceeded
memory usage in their setup, and for 40 agents their experiment took 207828 ms to execute.
This shows that our approach for conflict resolution enables an efficient context reasoning,
with the addition of considering some nuances related to the indirect dependencies among
agents, as explained in Sect. 3.2.

This also demonstrates that CDL systems can bemodeled onDDRMAS—by simply using
only cl-literals, and not sl-literals or focus rules—but not the otherway around—for example,
the mushroom hunt scenario, which requires considering knowledge from arbitrary sources
and contextual/focus rules, which are features not provided in CDL. Therefore, DDRMAS
can be seen as a kind of generalization of CDL. The main differences between CDL and
DDRMAS are further detailed and discussed in Sect. 6.

6 Related work

This section presents some related work. The ones that are most similar are those based
on defeasible logic (DL) and multi-context systems (MCS). Governatori et al. [20] present
an argumentation-based semantics for DL, enabling reasoning in the presence of possibly
conflicting defeasible rules in a knowledge base. Bikakis et al. [1] extends this model, calling
it contextual defeasible logic (CDL), including the possibility of distributed knowledge bases
with a querying algorithm to enable multiple agents to discover the truth-value of a literal.
However, they do not propose ways to enable agents to use knowledge from arbitrary agents,
i.e., it is assumed that all agents know which agent defines each knowledge, which is not
realistic in many scenarios (the mushroom hunting scenario being an example, since it cannot
be modeled in CDL). There is also no proposal for handling knowledge from different agents
based on similarity, assuming that all agents share the same vocabulary, which also assumes
there is a centralized entity that standardizes such vocabulary. Therefore, the defeat relation,
which is the base for conflict resolution between arguments, is defined only in terms of
preferences (trust) among agents. Furthermore, sharing contextual knowledge in queries,
which is also a requirement for scenarios like the mushroom hunting one, is not proposed in
their work.

Furthermore, we empirically observed in Sect. 5 that DDRMAS can be seen as a kind of
generalization of CDL in the sense that CDL systems can be modeled on DDRMAS, but not
the other way around. The mushroom hunters scenario, for example, requires the existence of
sl-literals and similarity-based matching of literals to model knowledge coming from arbi-
trary sources, and the existence of shared focus rules to model a kind of contextual reasoning
that requires temporary knowledge sharing between agents. Therefore, such scenario is not
possible in CDL, given that it does not propose features to model these requirements.

In [13], Bikakis et al. propose different strategies for CDL in order to take advantage of
the trust that multiple agents have in each other, which enables achieving similar results to
the strength calculation proposed in this work. However, such strategies are not proposed
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using tree-like structures for arguments, therefore lacking the flexibility of proposing forms
of conflict resolution based on the structure of arguments—for example, by means of a
formula, as is done in DDRMAS. The most complete strategy proposed by them, called
Complex Mapping Sets (CS), uses the trust among all the agents involved on achieving
a given conclusion, but does not penalize indirect trust between them, as is done in the
argument strength formula used inDDRMAS,which takes advantage of the tree-like structure
of arguments. Furthermore, it was demonstrated in Sect. 5 that the worst case presented in
[13] is feasible and efficient in DDRMAS for a great number of literals and agents. This is a
relevant contribution, given that DDRMAS’s default conflict resolution approach also uses
all context information and relations between agents—except the irrelevant arguments which
are discarded in step 3 of the Find_Def _Args algorithm, as explained in Sect. 4.2—which
are materialized in the arguments built during reasoning.

An approach with goals related to this work is presented in [23], proposing multi-agent
argumentation-based reasoningwith argument strength determined by the credibility of infor-
mation sources. One notable capability is that the strength of an argument is not absolute but
may vary from one context to another through special rules known as backing and detracting
rules. These rules enable reasoning about the strength of arguments. For instance, a detracting
rule could cast doubt on an agent’s credibility in a specific context, allowing the agent to
dismiss information even if it comes from a more credible source. However, the approach
does not consider strength calculation in the same way as in the present work (i.e., as a
formula that considers the tree-like structure of arguments) neither provides ways to share
contextual knowledge between agents in the context of an isolated query. The idea of backing
and detracting rules is nonetheless appealing in the context of the present work and may be
considered for future works.

Other relevant work in the field are the structured argumentation approaches DeLP
(defeasible logic programming) [24] and ASPIC+ [25]. None of them proposes distributed
knowledge baseswith a query algorithm in the same fashion as proposed in thiswork. Further-
more, there is no solution to deal with knowledge coming from arbitrary agents and matched
by similarity. In [26], DeLP presents a similar idea to the query focus, called contextualized
query, which is a query that includes knowledge relevant to help answering it. Such query
must be issued to a node called DeLP-Server. However, such approach is restricted to a
client–server query answering fashion, and does not propose a form of distributed reason-
ing with interrelated knowledge from different agents in a peer-to-peer manner as proposed
in this work. As to ASPIC+, it proposes a framework for DL that can take advantage of
extension-based semantics, like those proposed by Dung [27], but also does not propose an
architecture for multi-agent reasoning.

The argumentation-based multi-agent system (ArgMAS) [28] presents a DeLP-based
framework that supports collaboration between agents, which allows combining the knowl-
edge bases of different agents in order to produce arguments. Therefore, this approach
presents a way of reasoning with interrelated knowledge bases, although it does not use
the concept of bridge/mapping rules. Instead, agents in an agent alliance construct partial
arguments that contain sets of free literals, that is, sets of literals that are not yet supported
by other arguments. From there, a meta-agent runs a backward-chaining algorithm trying to
construct a complete argument based on the partial arguments. However, this proposal has
some relevant differences compared to the present work: (i) Collaboration between agents is
restricted to a predefined set of agents belonging to the same alliance, while in DDRMAS
an agent can collaborate with any other agent, without the need of an alliance being created;
(ii) an agent can only participate in one alliance at a time, while our work allows an agent
to participate in the reasoning of multiple query focuses simultaneously; (iii) the complete
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arguments are generated by a meta-agent, which centralizes a good part of the reasoning, and
not by the individual agents in a totally distributed manner, as proposed in DDRMAS; and
(iv) the correspondence between the literals of different agents is defined only by the exact
correspondence, that is, a partial argument with a free literal x is chained to a literal that
exactly concludes the value x , not being made a matching based on similarity. In addition,
the work does not present ways of sharing focus in queries.

Similar work is also found in the field ofMCS,which is a kind of formalization for systems
composed of multiple knowledge bases that are interrelated by means of their vocabularies.
However, no work was found that solved all the problems mentioned in the present work, and
only one is based on argumentation-based semantics [1]. Furthermore,most of the approaches
on MCS propose a conflict resolution based on the concept of repair [29], which modifies
the knowledge bases to maintain a conflict-free global state. The present work, on the other
hand, proposes conflict resolution at query time, i.e., conflicts are detected when arguments
are built and then confronted to each other, which also does not necessarily imply in updating
the knowledge bases, but only in giving the most reasonable answer given some criteria (in
our case, trust among agents and knowledge similarity). Therefore, different from repairing,
DDRMAS proposes maintaining a possibly inconsistent global state, resolving them when
conflicting knowledge is used, with the benefit of allowing agents to maintain different views
about the environment and to be able tomore faithfully execute a type of contextual reasoning
in which there are conclusions that are valid in certain contexts but not in others.

Dao-Tran et al. [30] proposes the dynamic distributed multi-context system (DDMCS),
which includes the use of schematic bridge (mapping) rules with a similarity function, and a
backtracking algorithm to enumerate all possible substitutions (instantiations) of schematic
bridge atoms (similar to the sl-literals of this work) in a distributed environment, in order to
instantiate a concrete SMC, from which equilibria—possible sets of admissible beliefs—can
be calculated. Therefore, DDMCS theoretically requires the pre-instantiation of a concrete
SMC for each new change in the system, which may involve each existing knowledge base,
as there are dependencies between them. This could result in unnecessary overhead in highly
dynamic environments. Furthermore, some sort of centralized entity would be needed to
instantiate and assign these “instantiated knowledge bases” to each agent. The approach of
the present work (DDRMAS), on the other hand, does not require any centralized action
in response to changes. When an agent needs to query other agents about an sl-literal, it
simply sends a message in broadcast to the other agents, without even needing to know each
existing agent in the system specifically. Agents arriving at the environment can simply send
a broadcast message to introduce themselves. Agents leaving the environment can also send
this type of message to let other agents know of their absence. In cases in which this is not
possible (for example, an agent abruptly removed from the system), when such an agent
is queried by another agent, some communication service or broker could simply return a
communication error. Changes in agents’ knowledge also do not require any intervention in
DDRMAS. When an agent with updated knowledge is queried, it will simply use its current
knowledge.
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Conclusions and FutureWork

A comprehensive and flexible model, which allows modeling and implementing scenarios
with distributed agents, with the possibility of incomplete and conflicting knowledge bases,
as well as a form of contextualized reasoning, was presented. A formalization of knowledge
bases and queries, as well as the formalization of arguments that can be generated from them,
is presented. It is also proposed a distributed algorithm that allows the processing of queries
according to the underlying argumentation semantics. It was analytically and experimentally
demonstrated that the model is computational feasible and that it presents contributions and
advantages when compared to related work.

Future work includes proposing models for explanation and learning based on the argu-
ment structures generated in the reasoning process. This way, agents could explain the
decisions they made, as well as adapt their rules based on the arguments received from
other agents.

Alternative forms of argument strength calculation can also be proposed and tested. Some
ideas in this respect include: (i) joint argument strength for a given literal, i.e., considering
the sum of strengths of all the arguments for and against a given literal; (ii) a naiver strength
calculation that considers all arguments, including external subarguments of subarguments,
equal to direct external subarguments; (iii) a more arrogant strength calculation that does not
take into account the strength calculation using the trust function of the agent that generates
the argument, but only the trust function of the argument that issued the query; and (iv)
a more skeptical strength calculation, that uses the min operation instead of summation,
such that only the strength of the weaker subargument is used to derive the strength of an
argument. More details about these different strength calculations, as well as comparisons
and properties, will be presented in future work.

Further investigation on the relation of DDRMAS to existing argumentation models could
also be realized. In fact, it is possible to prove that a DDRMAS system can be transformed
to a Governatori’s DL system, but not the other way around, demonstrating that DDRMAS
inherits DL properties, but also extends it. This demonstration was not included in this
paper on account of its already considerable length. Furthermore, it could also be fruitful to
compare DDRMAS to other models, such as DeLP and ASPIC+, and investigating whether it
is possible to adapt DDRMAS to use different argumentation semantics. New kinds of rules,
such as the detracting and backing rules proposed by [23], which enable reasoning about the
strength of arguments, could also be studied and integrated to our approach.

Another interesting line of future work would be to implement applications based on
DDRMAS in order to demonstrate its usefulness in real world scenarios, as well as soft-
ware frameworks in different programming languages to facilitate the development of such
applications.
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Appendix A Algorithm pseudocodes

1 when a receives message Query(p, α = (p, a′, K BF
α ), histp) from a0

2 thread-safe vars: tvp ← f alse; Argsp ← ∅; Args∼p ← ∅
3 K Baα ← K Ba ∪ {Loc_Rule(rF , a) | rF ∈ K BF

α };
4 rli ts ← Find_Similar_RLs(p, K Baα)

5 if rli ts = ∅ then send Ans(p, α, f alse, ∅, ∅) to a0 and terminate
6 Argsp ← {p′! | p′ ∈ rli ts, {p′, ∼ p′} ∩ histp �= ∅}
7 if Argsp �= ∅ then tvp ← undec
8 executing in parallel for each p′ ∈ rli ts s.t. {p′, ∼ p′} ∩ histp = ∅
9 has_strict_answerp′ ← f alse

10 if Local_Strict_Ans(p′) = (true, Ap′ ) then
11 Argsp ← Argsp ∪ {Ap′ }
12 tvp ← true; has_strict_answerp′ ← true

13 else if Local_Strict_Ans(∼ p′) = (true, A∼p′ ) then
14 Args∼p ← Args∼p ∪ {A∼p′ }
15 tvp ← f alse; has_strict_answerp′ ← true

16 executing commands in parallel and waiting for all to finish
17 Argsp′ ← Find_Def _Args(p′, K Baα, α, histp)

18 Args∼p′ ← Find_Def _Args(∼ p′, K Baα, α, histp)

19 if has_strict_answerp′ = true and tvp = f alse then
20 for Ap′ ∈ Argsp′ do Ap′ .R ← true

21 else if has_strict_answerp′ = true and tvp = true then
22 for A∼p′ ∈ Args∼p′ do A∼p′ .R ← true

23 else
24 tvp′ ← Compare_Def _Args(Argsp′ , Args∼p′ )
25 if tvp′ = true then tvp = true

26 else if tvp′ = undec and tvp �= true then tvp ← undec

27 Argsp ← Argsp ∪ Argsp′
28 Args∼p ← Args∼p ∪ Args∼p′
29 send Ans(p, α, tvp, Argsp, Args∼p) to a0 and terminate

Algorithm 1: Pseudocode for the Query procedure.

1 function Local_Strict_Ans(p′):
2 for r ∈ K Bs

a and Head(r) = p′ do
3 Ap′ ← New_Arg(p′, [], strict, J = true, St = 1 ∗ �(p, p′))
4 for q ∈ Body(r) do
5 (tvq , Aq ) ← Local_Strict_Ans(q)

6 if tvq = f alse then stop and go to next rule
7 Add_Sub_Arg(Ap′ , Aq )

8 return (true, Ap′ )
9 return ( f alse, ⊥)

Algorithm 2: Pseudocode for the Local_Strict_Ans function.
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1 function Compare_Def _Args(Argsp′ , Args∼p′):
2 tvp′ ← undec

3 Args∼U ← {A | A ∈ Argsp′ ∪ Args∼p′ , A.R = f alse}
4 executing in parallel for each A ∈ Args∼U

5 if A.SuppJ = true and �B ∈ Args∼U s.t . BDA then
6 A.J ← true
7 if Conc(A) = p′ then tvp′ ← true

8 else if ∃B ∈ Args∼U s.t . BDA and B.SuppJ = true then
9 A.R ← true

10 if tvp′ �= true and (Argsp′ = ∅ or ∀Ap′ ∈ Argsp′ , Ap′ .R = true) then
11 tvp′ ← f alse

12 return tvp′

Algorithm 3: Pseudocode for the Compare_Def _Args function.

1 function Find_Def _Args(p′, K Baα, α, histp):
2 thread-safe var: Argsp′ ← ∅
3 histp′ ← [histp |p′]
4 executing in parallel for each r ∈ K Baα s.t. Head(r) = p′
5 thread-safe var: possible_subargsr ← ∅
6 executing in parallel for each q ∈ Body(r)
7 if D(q) = @ then
8 Argsq ′ ← Query_Agents(Ags, q, α, histp′ )
9 else if D(q) ∈ Ags then

10 Argsq ′ ← Query_Agents({D(q)}, q, α, histp′ )
11 if Argsq ′ = ∅ then
12 stop and discard all processing for rule r
13 if ∃A ∈ Argsq ′ s.t. Fall(A) = f alse then
14 Argsq ′ ← {A ∈ Argsq ′ | Fall(A) = f alse}
15 Aq ′ ← argmaxA∈Argsq′ (A.St ∗ St I L(Conc(A), a)) //– getting the argument for q which

has the greatest strength multiplied by the strength of its conclusion from the point of view
of the current agent (see formula for St Arg)

16 possible_subargsr ← possible_subargsr ∪ {(q, Aq ′ )}
17 Ap′ ← New_Arg(p′, [], de f easible)
18 for (q, Aq ′ ) ∈ possible_subargsr do
19 q ′ ← Conc(Aq ′ )
20 if D(q) = @ or �(q, q ′) < 1 then
21 Conc(Aq ′ ) ← I nsta(q, q ′) //– instantiating l-literal and setting it into the

conclusion of the argument
22 Add_Sub_Arg(Ap′ , Aq ′ )
23 if ∀Aq ′ ∈ Subs(Ap′ ), Aq ′ .J = true then
24 Ap′ .SuppJ ← true

25 else if ∃Aq ′ ∈ Subs(Ap′ ) s.t. Aq ′ .R = true then
26 Ap′ .R ← true //– this also means that Ap′ is undercut, because some of its

subarguments are rejected (defeated by arguments supported by justified ones)
27 Ap′ .St ← St Arg(Ap′ )
28 Argsp′ ← Argsp′ ∪ {Ap′ }
29 return Argsp′

Algorithm 4: Pseudocode for the Find_Def _Args function.
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1 function Query_Agents(agents, q, α, histq):
2 thread-safe var: Argsq ← ∅
3 executing in parallel for each a ∈ agents do
4 send to a: Query(q, α, histq ) and wait for answer: Ans(q, α, tv′

q , Args′q , Args′∼q ), else if
timeout reached then discard

5 Argsq ← Argsq ∪ Args′q
6 return Argsq

Algorithm 5: Pseudocode for the Query_Agents procedure.
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