Knowledge and Information Systems (2024) 66:4549-4572
https://doi.org/10.1007/510115-024-02097-4

REGULAR PAPER

®

Check for
updates

Deep graph clustering via mutual information maximization
and mixture model

Maedeh Ahmadi' - Mehran Safayani' - Abdolreza Mirzaei'

Received: 4 December 2022 / Revised: 12 December 2023 / Accepted: 6 March 2024 /
Published online: 10 April 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract

Attributed graph clustering or community detection which learns to cluster the nodes of
a graph is a challenging task in graph analysis. Recently contrastive learning has shown
significant results in various unsupervised graph learning tasks. In spite of the success of
graph contrastive learning methods in self-supervised graph learning, using them for graph
clustering is not well explored. In this paper, we introduce a contrastive learning framework
for learning clustering-friendly node embedding. We propose Gaussian mixture information
maximization which utilizes a mutual information maximization approach for node embed-
ding. Meanwhile, in order to have a clustering-friendly embedding space, it imposes a mixture
of Gaussians distribution on this space. The parameters of the contrastive node embedding
model and the mixture distribution are optimized jointly in a unified framework. Experiments
show that our clustering-directed embedding space can enhance clustering performance in
comparison with the case where community structure of the graph is ignored during node
representation learning. The results on real-world datasets demonstrate the effectiveness of
our method in community detection.

Keywords Graph neural network - Graph representation learning - Graph clustering -
Contrastive learning

1 Introduction

Graphs provide a way of representing a wide-variety of complex data in real-world systems.

Several graph analysis approaches have emerged to extract useful information hidden in
graphs. Community detection as an essential tool for graph analysis has been applied to

B Mehran Safayani
safayani @iut.ac.ir

Maedeh Ahmadi
m.ahmadi@ec.iut.ac.ir

Abdolreza Mirzaei
mirzaei @iut.ac.ir

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan
84156-83111, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-024-02097-4&domain=pdf

4550 M. Ahmadi et al.

many real-world problems like social networks [1], citation networks [2], brain networks [3]
and protein—protein interaction (PPI) network [4]. Many community detection algorithms
have been proposed, from shallow approaches [5, 6] to deep ones [7, 8]. Several recent
deep methods utilize graph convolutional network (GCN) [9] to extract features from graphs
[10, 11]. Many of these methods rely on local graph information (e.g., adjacency matrix
reconstruction) which is not appropriate for graph clustering [8].

Recently, contrastive approaches have demonstrated significant results in graph analysis
tasks. These self-supervised methods mainly discriminate between positive and negative
sample pairs from node or graph level representations [12—15]. Despite the high performance
of contrastive methods in node representation learning, they have not received sufficient
attention for community detection. Several contrastive approaches for node clustering have
been proposed in the literature, but most of them isolate the node embedding step from
the clustering task [16]. When community structure of the graph is ignored during node
representation learning process, the resulted embedding space is suboptimal for the clustering
task because the representation learning step is unaware of the downstream clustering task
and is performed independent of it. Therefore, it is beneficial to define a clustering-oriented
contrastive objective function to achieve better clustering performance.

To address this, we propose to learn a novel clustering-friendly node embedding framework
which utilizes a contrastive method for node representation learning, and meanwhile, it con-
siders the community structure of the graph for optimizing node representations. Therefore,
the proposed method not only employs the great potential of contrastive node embedding,
but also explores the cluster information of the embedding space. As the embedding method,
we utilize a contrastive approach which relies on mutual information maximization to learn
representations. In order to have a clustering-friendly node embedding space, our approach is
to impose a Gaussian mixture distribution on the representation space. Combining Gaussian
mixture embedding and deep models is not a straight-forward task. Several approaches have
been introduced to do so. Jiang et al. [17], Ugur et al. [18] use variational approaches to
have a mixture model in their latent space. Makhzani et al. [19] utilize an adversarial training
procedure to make the latent space of their model follow a mixture of Gaussians distribu-
tion. Our approach is to assume that the learnt node embedding space follows a mixture of
Gaussians (MoG) distribution and learn the parameters of this mixture distribution along
with the parameters of the contrastive model in a unified framework by taking iterative single
(or limited) steps of expectation—maximization (EM) and gradient descent. Moreover, since
many message passing algorithms are restricted to local messages, it is beneficial to employ
a method which goes beyond direct neighbors to capture higher order information in the
graph. To do so, we employ graph diffusion convolution (GDC) [20] which may help with
the task of clustering by providing a global view of the graph. However, since GDC does
not perform well for some complicated graphs, we employ a clustering quality measure, the
modularity [21], to decide whether to utilize GDC for clustering a given graph or not. Our
code is available on https://github.com/MaedehAhmadi/GMIM.

Contributions of our method are summarized as follows:

1. We propose a clustering-oriented contrastive learning-based method, Gaussian mixture
information maximization (GMIM), for learning node embedding. Different from other
simple contrastive methods, which ignore the community structure of the graph during
node embedding, GMIM learns a clustering-friendly node representation which cares
about the downstream clustering task.

2. We utilize graph diffusion to benefit from the global view of the graph in the clustering
task in cases it is beneficial. Diffusion makes it possible to surpass the limited information

@ Springer

https://github.com/MaedehAhmadi/GMIM

Deep graph clustering via mutual information maximization... 4551

of direct neighbors in message passing process and provides the proceeding contrastive
learning algorithm with the global view of the graph.

3. Extensive experiments on six real-world datasets demonstrates the effectiveness of our
method in comparison with the state-of-the-art deep graph clustering methods.

The rest of the paper is organized as follows. We review the related work of graph embedding
and graph clustering in Sect. 2. Section 3 introduces a detailed description of the proposed
method. Experimental results on six real-world datasets are presented in Sect. 4. The con-
clusions are given in Sect. 5.

2 Related works

2.1 Graph embedding

Recently, approaches based on deep learning have made great progress in many fields of graph
learning specially graph embedding. Early deep learning based researches were mostly rely
on random walk objectives [22, 23]. These methods take random walks along nodes and
utilize neural language models (like SkipGram [24]) for node embedding. They assume that
close nodes in the input graph, which co-occur in the same random sequence, should also be
close in the embedding space.

Graph neural networks (GNNs) [25-27] have demonstrated strong representation power
for attributed graph learning tasks. GNN-based methods follow a message passing mechanism
to capture structural information of graph data. For unsupervised graph embedding, graph
autoencoder-based methods [7, 9, 10] mainly try to reconstruct adjacency matrix so they
impose closeness of fist-order neighbor nodes in the embedding space. Both of random walks
and graph autoencoders-based methods over-emphasize the local proximity information [13].

Recently, contrastive approaches have achieved state-of-the-art results in graph data anal-
ysis [13, 14, 28]. They contrast samples from a desired distribution and another undesired one.
Motivated by the excellent results of contrastive learning in visual representation learning [29,
30], graph contrastive algorithms propose to retain local and global structural information of
graphs [13, 14].

2.2 Community detection

Many methods for detecting communities have been proposed. Early methods employ shal-
low approaches to community detection, mostly focusing on the information of network
topology. Non-negative matrix factorization (NMF) [5, 6] and Laplacian eigenmaps [31] are
two widely used approaches in this area. Stochastic block model-based methods [32] are
also well explored. Modularity maximization is a popular goal to extract communities [33].
To exploit both of content and structural information, several extended algorithms based on
topic models [34] and NMF [35, 36] are proposed.

As graph analysis problems and graph data get more complicated, deep learning-based
methods have demonstrated great performance in graph analysis tasks including community
detection. As baseline methods among deep approaches, applying well-known clustering
algorithms on embedding results of GAE and VGAE [9] have better performance than many
shallow algorithms. Some works present enhanced graph autoencoder-based methods with
boosted results in graph clustering [7, 10, 11].

@ Springer

4552 M. Ahmadi et al.

While some methods perform graph embedding and clustering in two independent stages,
some other methods try to combine clustering and graph embedding goals. Wang et al. [8]
co-optimize a graph attention-based reconstruction loss and the clustering loss of [37]. Tsit-
sulin et al. [38] maximize modularity on the embedding space of a GCN. A probabilistic
generative model which learns node embedding and community assignment jointly is pro-
posed in [39]. In [40], GCN is integrated with Bernoulli-Poisson probabilistic model [6]
for overlapping community detection. Zhang et al. [41] train a graph autoencoder to find
an appropriate embedding space for relaxed Kmeans. A variational framework for learning
clustering and node embedding is introduced in [42].

There exist some contrastive approaches for graph clustering in the literature. SCGC [16]
presents a contrastive approach for node clustering. But unlike our method, it performs node
embedding and clustering in two independent steps. Therefore, the second step is totally
unaware of the first one. Moreover, since it defines a neighbor-oriented contrastive objective
function, it over-emphasizes on the limited local information of direct neighbors. CCGC [43]
is a node-by-node contrastive learning method which utilizes the clustering result of each
iteration for selecting positive and negative pairs of nodes in the next iteration. It defines
a loss function to minimize the similarity of cross-view different high-confidence cluster
centers. CONVERT [44] is also a contrastive approach with a label-matching module which
aligns the pseudo-labels selected via clustering and semantic labels obtained from applying
softmax on node embeddings.

3 Method
3.1 Problem formalization and method overview

We consider community detection in attributed networks in this paper. The input is a graph
G = (V,E, X), where V. = (v, v2,...,vy) is the set of N nodes and E = {e;;} is the
edge set. X = {x1; x2; ...; xn} are the attribute values where x; € R¥ is the feature vector
of node v;. An adjacency matrix A € RV*" encodes the structural connectivity of nodes
where A; ; = 1if (v;, v;) € E; otherwise, A; ; = 0.

The purpose of attributed community detection is to divide the nodes into K communities
(or clusters) based on the attributes and structural information.

Our proposed method considers the clustering and node embedding tasks in a joint manner.
To achieve this goal, we assume that the node embedding space flows a mixture of Gaussians
distribution. We learn the parameters of the MoG and the contrastive method jointly. This
results in a more cluster-friendly representation space which is more appropriate for Kmeans
clustering algorithm to be applied to.

The proposed method includes two main parts: (1) node embedding part which utilizes
contrastive learning for extracting embedding vectors of the nodes and (2) clustering part
that tries to impose a Gaussian mixture distribution on the learned latent representation. The
overall framework of our proposed method is shown in Fig. 1.

3.2 Node embedding
Our proposed framework for clustering-friendly node representation learning is not limited to

a specific type of contrastive node embedding approach. contrasting representation vectors
can be done in node versus node level [45] or node versus graph level [13, 14]. In this

@ Springer

Deep graph clustering via mutual information maximization... 4553

\/

R P
& i 2
B -
'S
o R g Backprop
X.R k] -
Initialization <+
.
X, A & Graph .
Structure i
Selection i i)
hved koo
l Diffuse Corrupt l Encoder H = prop
€ — Y
! U
XS : .
T » J
X,R C__hy]
H

Fig.1 Our GMIM framework. Given X and A as the input, we select our input graph structure according to the
clustering quality of two initialized embedding spaces. The resulted graph and its corrupted version are fed in
to a shared encoder. The output features construct information maximization embedding objective (bottom).
The clustering module (top) aims to enforce this representation to follow a MoG distribution. The embedding
and clustering modules are trained jointly

paper, we use the contrastive framework of [13] for learning node embedding on attributed
networks. We maximize the mutual information between node representation vectors and a
global graph summary vector. The objective is to train an encoder £ such that £(X, A) =
H = {h,hy,...,hy} € RNXF/ represent node representations h; €]RF/ for each node
i. We generate a negative graph G by a corruption function G = C(G) that shuffles the
rows of X. The same encoder £ is applied to the positive and negative graphs to obtain
H and H representation matrices. Summary vector s is obtained by the readout function
s =R(H)=0(/N ZlNzl h;), with logistic sigmoid nonlinearity o. Given representation
vector h and s, The following discriminator D distinguishes between representations from
positive and negative graphs by assigning higher probabilities to representation vectors that
the summary contains them:

D, s) =ohT W), (1)

where W is a learnable scoring matrix. To maximize the mutual information between /4; and
the summery vector s, the following cross-entropy loss is minimized:

N
1
Ly = “IN (; Ex,a)[logD(h;, s)]

N 2)
+ 3 E g s llogl — DGij, s))]).

j=1

The encoder is the following single-layer GNC:

@ Springer

4554 M. Ahmadi et al.

Ea(X, A) = PReLU(D 2 AD 2 X ®), 3)

where A = A+ 1 n 1s the adjacency matrix with self-connections and ﬁi i= j Ai j s the
corresponding degree matrix. & is a learnable transformation matrix and PReLU represents
parametric rectified linear unit function.

3.3 Graph diffusion

Message passing neural networks pass messages between immediate nodes of the graph.
Although they try to aggregate the messages from higher-order neighbors in deep layers,
most of them achieve their best performance with 2-layer networks because of over-smoothing
phenomenon [46]. Limiting the messages of each layer to one-hop neighbors is restrictive,
and some methods try to capture higher-order information in the graph. One of the successful
methods in this regard is graph diffusion convolution (GDC) [20]. It replaces the adjacency
matrix with a diffusion matrix which is formulated as:

o
S=Y 6Tk)
k=0

with generalized transition matrix 7 and weighting coefficients 6. One popular example of
graph diffusion is Personalized PageRank (PPR) [47]. Given adjacency matrix A and related
degree matrix D;; = Zj Ajj, (PPR) chooses T' = AD 'and 6, = a(1 — a)k with teleport
probability « € [0, 1]. The closed-form solution for PPR diffusion is as below:

—1
SPPR :a(z,, —a —a)D—%AD—%) . 5)

This diffusion matrix provides global view of a graph, acts as a low-pass filter and smooths
out the neighborhood over the graph [20]. GDC can be integrated with any kind of graph-
based model. We can utilize it as the input of our model instead of adjacency matrix. But for
complicated datasets, GDC may not perform well for clustering. In order to make decision
about using diffusion or adjacency matrices as our input graph structure, we utilize the
modularity measure [21]. This score measures the clustering quality without regarding label
information. To do so, we train two encoders using (2) as the loss function. Adjacency matrix
is fed to one encoder and diffusion matrix is fed to the other. We then apply Kmeans clustering
on the resulted representations from two encoders. The higher value of modularity indicates
the better clustering quality. In GMIM framework of Fig. 1, we utilize the winner matrix
and the winner encoder as the matrix R and the encoder &, respectively. Also, the selected
trained encoder is utilized for initialization as will be stated in Sect. 3.6. Note that we use the
following GCN encoder in case of using diffusion matrix as the input structure:

Eppr(X, STPRY = PReLU(SP PR X @), (6)
where @ is a learnable transformation matrix.
3.4 Gaussian mixture modeling for community detection
Assume we have calculated a node embedding /; for every node v; of the graph by a node
embedding model with parameters W. We consider each node is generated from a multivariate

Gaussian distribution. Then, the likelihood for all the nodes of the graph is a Gaussian mixture
distribution:

@ Springer

Deep graph clustering via mutual information maximization... 4555

VI K

pV) =[] plai = pile =k ¥, .,), 7

i=1k=1

here ¢; denotes the soft community assignment of node i and p(c; = k) indicates the prob-
ability of node i being assigned to community k. p(vi|c; = k; W, ug, Xi) is a multivariate
Gaussian distribution as follows:

pilei = k; W, i, Bk) = N(hilpe, Z). @)
For simplicity of notations, we denote p(c; = k) as r; where Z,{;l 1, = 1.Sothe parameters
of the Gaussian mixture are ® = {I1 = {7y}, M = {ux} and > = {Z¢}} fori =1, ..., |V|
and k = 1,..., K. We assume covariance matrices ¥y are diagonal.

3.5 Clustering-friendly node embedding

We propose a clustering-promoting objective which outputs a latent space that is suitable for
clustering. We assume that the learnt latent space follows a MoG distribution. Our defined
objective function has two parts: embedding and clustering. The embedding part utilizes the
self-learning objective of £y, for node representation learning and the clustering module
tries to enforce this representation to follow a MoG distribution. The later goal is achieved
by minimizing the negative log-likelihood (NLL) under MoG distribution:

V| K
Lypp=—Y logy mN(hiluk, Zh).)
i=1 k=1
Our total loss function is defined as:
L=wlyr+PBLNLL, (10)

where L7 and £y, are the mutual information loss and the negative log-likelihood (NLL),
respectively. The weighs w and B balance between two terms of the objective function. After
optimizing our objective, we have a Kmeans-friendly latent space on which we apply Kmeans
algorithm to obtain the final clusters of nodes.

3.6 Inference

The total loss function of (10) consists of two sets of parameters: node embedding parameters
(V) and MoG parameters ® = {I1, M and X}. To optimize these parameters, we use an
iterative approach by fixing one set and optimizing the other. We initialize the ¥ parameters
by training the model using (2) as the loss function. To initialize MoG parameters, we apply
Kmeans algorithm on the achieved embedding from W initialization. We initialize (IT, M, ¥)
using the hard assignment results of Kmeans algorithm. The details of this iterative approach
are described below.

Fixing ¥ Parameters and Optimizing ©® = {I1, M, X}

Fixing deep network parameters, we use expectation—maximization algorithm [48] to opti-
mize (I1, M, X¥). The following equations are used iteratively to update these parameters:

Ny

==, 11
v (11)

Tk

@ Springer

4556 M. Ahmadi et al.

VI

1
Mk Ni ; ik ()
L v
T = sz"”‘(’“ — i) (hi — i)’ (13)
i=1
where
N (hi |k, k)
Vit = —¢ Sa , (14)
D k=1 ”i,k’/\/ (hi“‘k“ Ek’)
and
14
Nk:Zv,»k 1<k<K. (15)

i=1
More precisely, we update V;; in E-step and (IT, M, ¥) in the M-step of the EM algorithm.
Note that we perform a limited steps of £ and M in each iteration not until the convergence
of EM. More details about the derivation of updating formulas are provided in Appendix A.
Fixing ® = {II, M, ¥} and Updating ¥ Parameters
Fixing MoG parameters, we optimize the total loss function of (10) with respect to W
parameters using gradient descent (GD):

oL v oL VO]
V=g @I Ly ()+ﬂ NLL() !
ow ow

(16)

where 7 is the learning rate. Parameters W are updated via PyTorch auto-grad. Green arrows
in Fig. 1 denote the backpropagation process. W consists of the learnable scoring matrix
W of (1), encoder parameters ¢ and PReLU parameters of (3). Our proposed method is
summarized in Algorithm 1.

3.7 Computational complexity

In this section, we analyze the computational complexity of GMIM with N nodes, | E| edges,
K clusters, attribute and embedding dimensions of F and F’ and 7; and T epochs for
initialization and main optimization, respectively. Our algorithm consists of three main com-
ponents: computing diffusion, initialization and Gaussian mixture modeling. We calculate
the diffusion using Eq. 5 whose time complexity is O(N?). In the initialization phase, we
optimize Ly for T; epochs. In each epoch, encoder and discriminator constitute the main
parts of Lys;. The encoder can be implemented through sparse or dense multiplication with
time complexities of O(N FF'+ |E|F’) or O(N*>F’ + N F F'), respectively. The complexity
of computing the discriminator is O(N F’?). The time complexity of calculating £y;; is the
sum of complexities of the encoder and discriminator. Gaussian mixture modeling phase con-
sists of T epochs. In each epoch, £/ should be calculated with the complexity mentioned
above and the parameters of MoG are updated once with the complexity of O(N K F’). Since
K is usually much smaller than F, we can ignore it and since we set 7; and T at the same
order, we assume the same value of 7 for both.

To sum up, by combining these three components, the overall time complexity of our
model is O(N3 + N FF'T + | E|F'T) for sparse multiplication implementation and O(N3 +
N2F'T + NFF'T) for dense one. It is worth noting that we can utilize an approximation
(using Andersen algorithm [49]) with a linear runtime O(N) for calculating diffusion. In this

@ Springer

Deep graph clustering via mutual information maximization... 4557

Algorithm 1 Gaussian Mixture Information Maximization.

Require: G = (V, E, X), number of clusters K, weight w, PPR parameter « and hidden dimension.
Ensure: Node embedding H, final community assignments.

: initialize Hy = £4(X, A) by optimizing (2)

: Calculate S PR vy (5)

: Replace A by SPPR i1 (2)

: Initialize Hppg = Eppr(X, ST PR) by optimizing (2)

: Apply Kmeans on Hy and Hppg

 If Modularity g pmeans(Hppr) = Modularity g eqns (Ha) then
R=SPPR & —¢tppp

: else

R=AE=E&4

10: Initialize MoG parameters by the previously applied Kmeans on H
11: fort =0to T do

12: fort; =0to T} do

13: Update IT, M, ¥ by equations (11), (12) and (13)

14: end for

15 fort, =0to 7, do

16: Calculate mutual information loss by (2) using R and £
17: Calculate negative log-likelihood loss by (9)

18: Update W parameters by GD on (10)

19: end for

20: end for

21: Get the final community assignments by applying Kmeans on H.

case, the time complexity will be reduced to O(NFF'T + |E|F'T). We leave this task for
our future work.

4 Experiments
4.1 Benchmark datasets

We conduct attributed graph community detection experiments on six standard widely used
network datasets (Cora [50], PubMed [50], Wiki [51], ACM [52], Flickr [53] and Coauthor-
Phys [54]). Cora and PubMed are two citation networks. Their nodes represent papers and
edges correspond to citations. Wiki is a webpage network dataset in which nodes and edges are
related to webpages and links between them, respectively. In both cases nodes are represented
by bag-of-words vestors. Features of Cora are binary vectors while PubMed and Wiki are
represented by tf-idf weights. ACM is a paper network in which nodes represent papers and
two papers are connected by an edge if they are written by the same author. Node features
representing papers are bag-of-words of keywords. Flickr is a social network in which users
play as nodes and edges indicate friendship connection between users. The labels of nodes
are user interest groups. Features of each node is a list of tags specified by the users to indicate
their interests. Coauthor-Phys is a co-authorship network in which nodes are authors. Two
nodes are connected if their corresponding authors have co-authored a paper. Node features
are defined based on the set of keywords of author’s papers. Class labels correspond to the
field of research. Table 1 summarizes the detailed statistics of datasets.

@ Springer

4558 M. Ahmadi et al.

Table 1 Datasets statistics

Dataset #Nodes #Edges #Features #Classes
Cora 2708 5429 1433 7
PubMed 19,717 44,338 500 3
Wiki 2405 17,981 4973 17
Acm 3025 13,128 1870 3
Flickr 7575 239,738 12,047 9
Coauthor-Phys 34,493 247,962 8415 5

4.2 Compared methods

We compare GMIM with the following methods. These approaches are categorized into three
groups:

1. Methods which use node features only: Kmeans and spectral clustering [55] are two
common clustering methods. Spectral-F is a spectral clustering method which considers
the cosine similarity between node features as the similarity matrix.

2. Methods which use graph structure only: Spectral-G considers the adjacency matrix as
the similarity matrix. DeepWalk [22] generates random paths along a graph and use
them to train SkipGram language model to learn node embedding. GraphEncoder [56]
trains a stacked sparse autoencoder to obtain node embedding. DNGR [57] uses stacked
denoising autoencoders to learn each node representation. Kmeans in applied to the learnt
latent space of the three later methods. vGraph [39] is a probabilistic generative model
which performs graph clustering and node embedding jointly.

3. Methods which use both node features and graph structure: TADW [58] adds node fea-
tures to DeepWalk framework. GAE and VGAE [9] integrate (variational) autoencoder
and graph neural networks for node embedding. ARGA and ARVGA [7] use an adver-
sarial training scheme to impose a prior distribution on latent space of GAE and VGAE.
DGVAE [59] presents a graph variational generative model which uses the Dirichlet distri-
butions as priors on the latent variables. AGC [11] designs a high-order graph convolution
to take smooth node features for enhancing clustering results. CommDGI [60] incorpo-
rates contrastive learning to learn cluster assignment of the nodes. DAEGC [8] optimizes
graph reconstruction loss and a clustering loss jointly. SENet [61] uses a spectral clus-
tering loss to learn node embeddings. GC-VGE [42] introduces a joint framework for
clustering and representation learning by utilizing a variational graph embedding mech-
anism. DBGAN [62] introduces an adversarial framework to learn node embeddings.
SCGC [16] is a contrastive method for node clustering which perform node embed-
ding and clustering tasks in two isolated steps. it defines an adjacency-oriented loss
function to contrast between views. CCGC [43] proposes a cluster-guided contrastive
learning method which uses high-confidence clustering information for selecting dis-
criminative positive and reliable negative samples for contrastive learning. CONVERT
[44] is a contrastive approach which guides the node embedding procedure via matching
the pseudo-labels obtained from clustering and the semantic labels.

@ Springer

Deep graph clustering via mutual information maximization... 4559

4.3 Evaluations metrics and experimental settings

We report three evaluation metrics to measure the performance of graph clustering: clustering
accuracy (ACC), normalized mutual information (NMI), adjusted rand index (ARI). The
higher values of all these metrics indicates the better results. We run our algorithm 10 times
on each dataset and report the average and standard deviation of the obtained metrics.

For the encoder, we set the size of hidden dimension to 512 for Cora, Wiki and ACM
and 256 for Flickr and PubMed and Coauthor-Phys. The weight w is set to Cora:25,000,
Wiki: 15,000, PubMed: 1000, ACM:15,000, Coauthor-Phys:10 and Flickr:2000, to balance
two terms of objective function. At the start of training we set 8 to zero and as training
progresses, we gradually increase it to reach one. We use the Adam GD optimizer with
learning rate of 0.001 in both initialization and training phases for all datasets except the
ACM dataset for which we use learning rate of 0.0001 in the training phase. T; and 715 are
set to one for all datasets. We train the model for 200 epochs on Cora, Wiki, ACM and
Coauthor-Phys, 400 epochs on Flickr and 1000 epochs on PubMed.

We set @ = 0.2 for PPR diffusion on Cora, PubMed and ACM. We have not used diffusion
for Wiki, Flickr and Coauthor-Phys since the decision process specifies the adjacency matrix
as the appropriate input structure for these datasets.

4.4 Experimental results

Our experimental results are summarized in Tables 2, 3, 4, 5 and 6. F, G and F&G indicate
the methods which use only node features, graph structure or both of features and structure
information, respectively. Boldface indicates the best metric value in each column. According
to these tables, we obtain the following observations:

1. Methods using both feature and structure generally outperform the methods using only
one source of information. This indicates the importance of these information for the
clustering task.

2. Our method significantly outperforms classic GNN-based methods GAE, VGAE, ARGA
and ARVGA. These are two-stage methods perform node embedding and clustering stage
independently. In addition, they basically try to reconstruct adjacency matrix.

3. Some methods (like SENet, CCGC and Convert) exploit clustering information of nodes
in node embedding. Also, some competitors (including DAEGC, DGVAE, GC-CGE
and CommDGI) present unified frameworks for clustering and representation learning.
But, overall, they have inferior results compared to ours. The reason of this matter is
different for various methods. For instance, DAEGC, DGVAE and GC-CGE mainly
rely on adjacency matrix reconstruction which focuses too much on local proximity
information and is not appropriate for the graph clustering goal.

4. Compared with some recent contrastive based methods like SCGC, CONVERT and
CCGC, our method achieves significant performance improvements in all cases except
ACC on Wiki which is comparable to GMIM. This confirms the positive effect of our
clustering-oriented contrastive loss function.

5. GMIM consistently surpasses all of its competitors w.r.t to all metrics on Cora and ACM
datasets. On other cases, it can be seen that in few cases that a competitor method has a
higher performance than GMIM w.r.t a specific metric on one dataset, it is consistently
outperformed by GMIM w.r.t. other metrics on that dataset and also, w.r.t. all metrics
on all other datasets. To be more precise, On PubMed: GMIM absolutely outperforms
all methods w.r.t. all metrics, excluding CommDGI which has higher NMI than ours.

@ Springer

4560 M. Ahmadi et al.

Table 2 Clustering results on Cora dataset

Method Info ACC NMI ARI
Kmeans F 49.2 32.1 23.0
Spectral-F F 34.7 14.7 7.1
Spectral-G G 31.46 9.69 0.35
DeepWalk G 56.20 39.87 32.18
GraphEncoder G 325 10.9 0.6
DNGR G 44.39 33.31 15.86
vGraph G 28.7 34.5 31.2
TADW F&G 55.00 36.59 26.40
GAE F&G 60.34 44.85 36.73
VGAE F&G 63.56 4745 39.42
ARGA F&G 60.84 4221 36.88
ARVGA F&G 62.83 45.93 38.00
DGVAE F&G 64.42 47.64 38.42
AGC F&G 68.92 53.68 48.6
CommDGI F&G 69.8 579 50.2
DAEGC F&G 70.4 52.8 49.6
SENet F&G 71.92 55.08 48.96
GC-VGE F&G 70.67 53.57 48.15
DBGAN F&G 74.8 56.0 54.0
CONVERT F&G 73.99 55.50 50.49
SCGC F&G 73.31 55.74 51.08
CCGC F&G 73.88 56.45 52.51
GMIM F&G 75.61 £ 0.86 60.19 £ 0.68 54.74 £ 1.37

This method is outperformed by GMIM in terms of other metrics on this dataset and
also w.r.t. all metrics on other datasets. On Flickr: GMIM again consistently surpasses
all methods w.r.t. all metrics, except GC-VGE with higher NMI value than ours. This
method is outperformed by GMIM in terms of other metrics on this dataset and also w.r.t.
all metrics on other datasets. On Wiki: GMIM exceeds all of the baselines in terms of
NMI (1.93% higher than the best baseline). It also outperforms all of the methods with
respect to ACC, excluding SCGC which is slightly better (0.25%) than ours on Wiki
dataset in terms of ACC. However, GMIM significantly surpasses SCGC on all datasets
(averagely by 7.57%, 8.98% and 9.28% in terms of ACC, NMI and ARI, respectively).
In terms of ARI, ACG and DAEGC have higher results than GMIM, while both of these
methods are outperformed by GMIM with respect to ACC and NMI. Moreover, GMIM
exceeds both of the methods on all other datasets w.r.t. all metrics.

4.5 Ablation study
To evaluate the effectiveness of our unified framework for learning clustering-friendly node

embedding, we have performed an ablation study which is shown in Table 7. We train the
model using only the mutual information loss (Ls7). We then apply Kmeans and Gaussian

@ Springer

Deep graph clustering via mutual information maximization... 4561

Table 3 Clustering results on PubMed dataset

Method Info ACC NMI ARI
Kmeans F 55.59 24.34 21.54
Spectral-F F 60.20 30.90 27.7
Spectral-G G 37.98 10.30 26.67
DeepWalk G 64.98 26.44 27.42
GraphEncoder G 53.1 20.9 18.4
DNGR G 25.53 20.11 8.29
vGraph G 26.00 22.40 18.50
TADW F&G 46.82 9.47 5.78
GAE F&G 64.43 24.85 23.57
VGAE F&G 64.67 23.94 2341
ARGA F&G 65.07 29.23 26.79
ARVGA F&G 62.01 26.62 22.46
DGVAE F&G 67.56 28.72 24.92
AGC F&G 69.78 31.59 31.19
CommDGI F&G 69.90 35.70 29.2
DAEGC F&G 67.10 26.60 27.8
SENet F&G 67.59 30.61 29.66
GC-VGE F&G 68.18 29.70 29.76
DBGAN F&G 69.40 32.40 32.7
CONVERT F&G 67.97 31.54 30.33
SCGC F&G 41.96 2.88 0.73
CCGC F&G 62.42 28.30 26.00
GMIM F&G 71.11 £ 0.8 3357+ 1.3 3444+13

mixture model (GMM) on the learnt embedding, and the average result of 10 runs is reported
in Table 7 as MI+Kmeans/GMM. Best results are shown in bold. The fact that GMIM out-
performs MI+Kmeans/GMM confirms the effectiveness of jointly optimizing MI and NLL
objectives.

4.6 Effect of embedding dimension

In this section, we investigate the influence of the embedding dimension on clustering per-
formance. Figure2 shows the clustering results of five datasets for different embedding
dimensions. It is worth noting that all other hyper-parameters except embedding size are
fixed according to Sect. 4.3. We have verified the embedding dimensions of [64, 128, 256,
512] for Cora, Wiki, ACM and Flickr and [16, 32, 64, 128, 256] for PubMed.

According to Fig. 2, the clustering results have small variations using different embedding
dimensions. Mostly, the larger embedding dimension results in higher performance.

@ Springer

4562 M. Ahmadi et al.
Table 4 Clustering results on Wiki dataset
Method Info ACC NMI ARI
Kmeans F 40.43 4291 15.03
Spectral-F F 49.1 46.4 25.4
Spectral-G G 22.04 18.17 1.46
DeepWalk G 38.46 32.38 17.03
GraphEncoder G 20.67 12.07 0.49
DNGR G 37.54 35.85 17.97
TADW F&G 30.96 27.13 4.54
GAE F&G 32.85 29.02 7.80
VGAE F&G 45.09 46.76 26.34
ARGA F&G 38.05 34.45 11.22
ARVGA F&G 38.67 33.88 10.69
DGVAE F&G 38.25 36.55 15.83
AGC F&G 47.65 45.28 343
DAEGC F&G 48.2 44.8 33.1
GC-VGE F&G 48.81 47.58 28.40
CONVERT F&G 46.67 43.064 26.75
SCGC F&G 50.42 46.71 28.24
CCGC F&G 49.25 43.04 25.63
GMIM F&G 50.17 £ 1.34 49.51 £ 0.4 30.80 £0.8
Laé’]'; zagl‘elfteri“g results on Method Info ACC NMI ARI
Kmeans F 67.31 32.44 30.60
DeepWalk G 73.04 35.58 33.97
GAE F&G 84.52 55.38 59.46
VGAE F&G 84.13 53.20 57.72
ARGA F&G 86.29 56.21 63.37
ARVGA F&G 83.89 51.88 57.717
DAEGC F&G 86.94 56.18 59.35
CONVERT F&G 84.64 55.55 60.06
SCGC F&G 89.81 66.63 72.4
CCGC F&G 88.75 64.27 69.86
GMIM F&G 90.61 £ 0.1 69.33 + 0.4 74.46 £ 0.4

4.7 Influence of hyper-parameter @

In this section, we focus on the impact of weight @ which balances between two terms of our
total loss function. The value of this hyper-parameter is proportional to the ratio of Ly to
Ly for each dataset. For obtaining best results, this value is selected such that both of £
and Ly 1, decrease at the end of training with respect to their initial value.

Figure 3 depicts the clustering results for different values of on five datasets. The size of
hidden dimension is set to 128 for PubMed and to the same values as stated in Sect. 4.3 for

@ Springer

Deep graph clustering via mutual information maximization... 4563

;Tig';rﬁdags“;‘e““g results on Method Info ACC NMI ARI
Kmeans F 11.96 0.66 0.001
Spectral-G G 11.79 0.43 0.001
DeepWalk G 28.56 17.45 9.11
TADW F&G 13.01 1.48 0.09
GAE F&G 14.20 1.91 1.22
VGAE F&G 24.74 13.95 7.31
ARGA F&G 26.64 15.86 8.27
ARVGA F&G 28.47 17.25 9.59
DGVAE F&G 19.35 10.02 4.06
GC-VGE F&G 29.38 18.27 10.70
CONVERT F&G 23.62 12.13 6.53
SCGC F&G 24.35 13.19 7.08
CCGC F&G 20.01 9.19 4.08
GMIM F&G 30.19 + 3.6 17.36 £2.6 11.51 £ 2.6

Table7 Ablation study Method Cora Pubmed Wiki

ACC NMI ACC NMI ACC NMI

MI+Kmeans 72.15 56.50 67.49 29.15 48.82 4945
MI+GMM 67.69 5352 6525 2754 47.82 4881
GMIM 7561 60.19 7111 3357 5017 49.51

e : * /—"’#_'

= —— o /\/'—R °

) . /v"‘ o

12 6
Embeddina dimension

(a) Cora

100

si2

16

k- 128
Embeddina dimension

26

(b) Pubmed

12 56
Embeddina dimension

(c) Wiki

0

)

T —

121 6
Embeddina dimension

512

(d) ACM

Fig. 2 Effect of different embedding dimensions on node clustering

)

121 56
Embeddina dimension

(e) Flickr

B

512

@ Springer

4564 M. Ahmadi et al.

@ ® @
n n
0
@ @
©
0 w0
@ @ 0
0 0
2
» 2
- AC N
10 - N 10
- W
o 3 3
1 2 % 2000 5000 10000 15000 2000 25600 T 1 2 0 &0 0 1000 1200 1500 5700 1 % % 40 %0 900 1500019000 2300029000
w w w
100 S
0
®
>
o 2
o 15
10
2
s
0 0
T 1 2 100 600 15000 19600 25000 30600 1 2 6 % 300 60 90 1500 2000 2400 3000 4700
w w

Fig.3 Effect of different values of @ on node clustering

other datasets. All other hyper-parameters except w are fixed. As is shown in this figure, the
clustering performance is robust within a wide range of w. However, for very large or small
values of w, one of the terms of the total loss function dominates the other, and consequently
the performance degrades.

4.8 Influence of full covariance matrices

As stated in Sect. 3.4, we have used diagonal covariance matrices for Gaussian mixture
modeling. Theoretically, even if the elements of feature vectors are not independent, the
linear combination of diagonal covariance Gaussians can equally describe the correlations
among features modeled by at least one full covariance matrix Gaussian [63]. To verify the
effect of using full covariance Gaussians, we examined GMIM with full covariance matrices
on Cora dataset. We obtained 75.67%, 60.36% and 54.75% in terms of ACC, NMI and ARI,
respectively. Comparing these results with the diagonal covariance case shows that using
full covariance Gaussians does not enhance the performance significantly, whereas diagonal
covariance matrices result in simplified computations and need less memory.

4.9 Running time analysis

The running time of our model (the required time to train the model and generate the embed-
dings) on five datasets is shown in Fig. 4. To analyze the efficiency of GMIM, we performed
clustering on a larger dataset, namely Coauthor-Phys. The statistics of this dataset is pre-
sented in Table 1. We evaluated the clustering results of GMIM and several baseline methods
(including GAE, VGAE, ARGA, ARVGA and also SCGC, CCGC and CONVERT as three
recent contrastive graph clustering methods) on this dataset. The running times versus clus-
tering accuracy results are depicted in Fig. 5. The running time is in log-scale.

As shown in this figure, our method significantly outperforms all the competitors in terms
of accuracy, while the running times of CCGC, SCGC and CONVERT are considerably

@ Springer

Deep graph clustering via mutual information maximization... 4565

140 - 133.9

120 A

100 -

80 1

Running Time (s)

20 4

Cora ACM Wiki Flickr Pubmed
Datasets

Fig.4 Running time of GMIM on five datasets

90
GMIM
2

80

>
CCGC
§ *
SCGC
3
[]
S 701
<
o
£ GAE ARVGA
(=, L] *
8 60
%)
3
(@]
ARGA
50 VGAE > CONVERT
<4 4
102 103

Running Time (s)

Fig.5 Clustering accuracy versus running time on Coauthor-Phys dataset

greater than ours. Although our running time is greater than GAE, VGAE, ARGA and
ARVGA, GMIM achieves more than 20-30% improvements in terms of ACC against these
methods.

@ Springer

4566

M. Ahmadi et al.

Fig.6 2D visualization of node
embeddings on five datasets.
(Left) the raw features and (right)
the learnt node representations.
Different classes are shown by
different colors

@ Springer

Deep graph clustering via mutual information maximization... 4567

4.10 Visualization

To show the effectiveness of learnt node embedding, we visualize the node representations
of five datasets in two-dimensional space using t-SNE [64] in Fig. 6. As illustrated in this
figure, comparing raw features with the node representations in 2D space shows that the
learnt representations are cluster-friendly and appropriate for Kmeans to be applied to.

5 Conclusions

In this paper, we introduce a clustering-promoting objective for node embedding. Our pro-
posed method utilizes contrastive learning to produce a clustering-friendly latent space by
assuming that the learnt representation follows a mixture of Gaussians distribution. The
embedding and clustering-related objectives are optimized in a unified framework to ben-
efit each other. Our experiments show that incorporating the clustering-directed objective
function can enhance the clustering ability of graph contrastive learning. We evaluated the
proposed method on six real-world datasets. Empirical results demonstrate the effectiveness
of our method compared with state-of-the-art methods.

Author Contributions Maedeh Ahmadi wrote the main manuscript text and prepared all figures. All authors
reviewed the manuscript.

Funding The authors did not receive support from any organization for the submitted work.

Data Availability The datasets analyzed during this study are available in the following public resources:
https://github.com/thunlp/TADW; https://github.com/tkipf/gcn/tree/master/gen; https://github.com/zhumei
qiBUPT/AM-GCN/tree/master/data.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Appendix A

In this appendix, we give the derivation of the formulas of expectation—maximization update
rules in Eqs. 11-15. Suppose we have N datapoints H = {h1, ha, ..., hy}. We consider each
hy is generated from a GMM with parameters ® = {[[= {7}, M = {ux} and DY = {Z¢}
fork =1, ..., K} and the hidden variables Z = {z1, ..., zy} such that p(z,) =]_[,le n,f"",
in which z,; = 1 indicates that component k is selected for generating data point n. The joint
likelihood is formulated as:

P(H,Z|®)=p(h1,h2,...,hN,21,22,...,2N|®)

N N
=] 1 P(nlzn, ©) | | P(20]®)
nljl }:[1 (A1)
N

N K K
=[TTING | ez T] [7

n=1k=1 n=1k=1

@ Springer

https://github.com/thunlp/TADW
https://github.com/tkipf/gcn/tree/master/gcn
https://github.com/zhumeiqiBUPT/AM-GCN/tree/master/data
https://github.com/zhumeiqiBUPT/AM-GCN/tree/master/data

4568 M. Ahmadi et al.

therefore:
N K

In p(H.,Z|©®) =Y " zuln N(h|pk. k) + In . (A2)
n=1 k=1

It can be shown that E ,(z 7 e)[In p(H, Z|®)] is the lower bound of log likelihood(®) =
log(p(H; ®)). So we maximize this lower bound in order to maximize the likelihood(®).
By applying the operator Ep, , o, toIn p(H, Z|®), we have:

G©) =Epzin,0lln p(H, Z | 0)]

= Z ZEp(Z\H,G)[an]{ln N (hplpk, Zi) + In),
—1

k=1

in which:

Epzim.e)lznd =Y Y zup(Z|H, 07
21 N

=" 2 p@alhn, ©°4)
Zn
_ ZZn Znk 1_[11(:1 N (hy |, Ek)z"kn’]f"k
> TS N Graliag, Zo)onkr
N (hp L1k, i)

= = Vnk.
S K NG, =)

where ©°¢ is the values of ® in the previous iteration. According to the above equation,
G (®) can be rewritten as:

(A4)

N K
1 _ 1
G(®) = ZkX;vnk {—E(hn —)T B —) — 5 (FIn 27 +1n| % |) + In nk} ,
n=I k=

K
s.t. an =1. (A5)
k=1

To maximize G (®), we take the derivatives and set them to O:

dGO) & .
=Y V@)= e —) =0
o ; @) Zg " (= i)
Y n Vi) hn
= =, (A6)
‘ Z;lqul V(znk)
dG(©) .
=N V@) hy — i) (hy — — =0
TS ; G (e = i) (=)T = i)
N _ _ T
5 = 2 V@ U =) 1) a7
Zn=1 V(znk)
and
dL(®) -0 _ E,I,vzlv(an) (AS)

Ay L T N

@ Springer

Deep graph clustering via mutual information maximization... 4569

References

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: 2013
IEEE 13th international conference on data mining. IEEE, pp 1151-1156

Chen P, Redner S (2010) Community structure of the physical review citation network. J Informetr
4(3):278-290

Nicolini C, Bordier C, Bifone A (2017) Community detection in weighted brain connectivity networks
beyond the resolution limit. Neuroimage 146:28-39

Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network.
Bioinformatics 22(18):2283-2290

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving network embedding. In:
Thirty-first AAAI conference on artificial intelligence

Yang J, Leskovec J (2013) Overlapping community detection at scale: a nonnegative matrix factorization
approach. In: Proceedings of the sixth ACM international conference on web search and data mining, pp
587-596

Pan S, Hu R, Fung S-F, Long G, Jiang J, Zhang C (2019) Learning graph embedding with adversarial
training methods. IEEE Trans Cybern 50(6):2475-2487

Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019) Attributed graph clustering: a deep attentional
embedding approach. In: Proceedings of the 28th international joint conference on artificial intelligence,
pp 3670-3676

Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv:1611.07308

. Wang C,Pan S, Long G, Zhu X, Jiang J (2017) Mgae: marginalized graph autoencoder for graph clustering.

In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 889—-898

. Zhang X, Liu H, Li Q, Wu X-M (2019) Attributed graph clustering via adaptive graph convolution. In:

Proceedings of the 28th international joint conference on artificial intelligence, pp 4327-4333

Sun F-Y, Hoffman J, Verma V, Tang J (2020) Infograph: unsupervised and semi-supervised graph-level
representation learning via mutual information maximization. In: International conference on learning
representations

Velickovic P, Fedus W, Hamilton WL, Lio P, Bengio Y, Hjelm RD (2019) Deep graph infomax. ICLR
(Poster) 2(3):4

Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning on graphs. In: Inter-
national conference on machine learning. PMLR, pp 4116-4126

Jiao Y, Xiong Y, Zhang J, Zhang Y, Zhang T, Zhu Y (2022) Scalable self-supervised graph representation
learning via enhancing and contrasting subgraphs. Knowl Inf Syst 64(1):235-260

Liu Y, Yang X, Zhou S, Liu X, Wang S, Liang K, Tu W, Li L (2023) Simple contrastive graph clustering.
IEEE Trans Neural Netw Learn Syst

Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: An unsupervised and
generative approach to clustering. arXiv:1611.05148

Ugur Y, Arvanitakis G, Zaidi A (2020) Variational information bottleneck for unsupervised clustering:
deep gaussian mixture embedding. Entropy 22(2):213

Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv:1511.05644
Klicpera J, Weilenberger S, Giinnemann S (2019) Diffusion improves graph learning. In: Proceedings of
the 33rd international conference on neural information processing systems, pp 13366-13378

Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E
69(2):026113

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceed-
ings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp
701-710

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855-864
Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International con-
ference on machine learning. PMLR, pp 1188-1196

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907

Velickovié P, Cucurull G, Casanova A, Romero A, Lid P, Bengio Y (2018) Graph attention networks. In:
International conference on learning representations

Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: International
conference on learning representations

You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y (2020) Graph contrastive learning with augmentations.
Adv Neural Inf Process Syst 33:5812-5823

@ Springer

http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.05148
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1609.02907

4570 M. Ahmadi et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.

55.

56.

57.

Bachman P, Hjelm RD, Buchwalter W (2019) Learning representations by maximizing mutual information
across views. Adv Neural Inf Process Syst 32

Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual
representations. In: International conference on machine learning. PMLR, pp 1597-1607

Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys
Rev E Stat Nonlinear Soft Matter Phys 74. https://doi.org/10.1103/PhysRevE.74.036104

Karrer B, Newman MEJ (2011) Stochastic blockmodels and community structure in networks. Phys Rev
E Stat Nonlinear Soft Matter Phys 83. https://doi.org/10.1103/PhysRevE.83.016107

Zhang P, Moore C (2014) Scalable detection of statistically significant communities and hierarchies, using
message passing for modularity. Proc Natl Acad Sci USA 111. https://doi.org/10.1073/pnas.1409770111
Chang J, Blei D (2009) Relational topic models for document networks. In: Artificial intelligence and
statistics. PMLR, pp 81-88

Pei Y, Chakraborty N, Sycara K (2015) Nonnegative matrix tri-factorization with graph regularization
for community detection in social networks. In: Twenty-fourth international joint conference on artificial
intelligence

Wang X, Jin D, Cao X, Yang L, Zhang W (2016) Semantic community identification in large attribute
networks. In: Proceedings of the AAAI conference on artificial intelligence 30

XieJ, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International
conference on machine learning. PMLR, pp 478—487

Tsitsulin A, Palowitch J, Perozzi B, Miiller E (2020) Graph clustering with graph neural networks.
arXiv:2006.16904

Sun F-Y, Qu M, Hoffmann J, Huang C-W, Tang J (2019) vgraph: A generative model for joint community
detection and node representation learning. Adv Neural Inf Process Syst 32

Shchur O, Giinnemann S (2019) Overlapping community detection with graph neural networks.
arXiv:1909.12201

Zhang H, Li P, Zhang R, Li X (2022) Embedding graph auto-encoder for graph clustering. IEEE Trans
Neural Netw Learn Syst

Guo L, Dai Q (2022) Graph clustering via variational graph embedding. Pattern Recognit 122:108334
Yang X, Liu Y, Zhou S, Wang S, Tu W, Zheng Q, Liu X, Fang L, Zhu E (2023) Cluster-guided contrastive
graph clustering network. In: Proceedings of the AAAI conference on artificial intelligence, 37

Yang X, Tan C, Liu Y, Liang K, Wang S, Zhou S, Xia J, Li SZ, Liu X, Zhu E (2023) Convert: contrastive
graph clustering with reliable augmentation. In: Proceedings of the 31th ACM international conference
on multimedia

Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L (2020) Deep graph contrastive representation learning.
arXiv:2006.04131

Li Q, Han Z, Wu X-M (2018) Deeper insights into graph convolutional networks for semi-supervised
learning. In: Thirty-second AAAI conference on artificial intelligence

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web.
Technical report, Stanford InfoLab

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. J R Stat Soc: Ser B (Methodol) 39(1):1-22

Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: 2006 47th
annual IEEE symposium on foundations of computer science (FOCS’06). IEEE, pp 475-486

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in
network data. Al Mag 29(3):93-93

Yang C,LiuZ,Zhao D, Sun M, Chang E (2015) Network representation learning with rich text information.
In: Twenty-fourth international joint conference on artificial intelligence

Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The
world wide web conference, pp 2022-2032

LiJ,Hu X, TangJ, Liu H (2015) Unsupervised streaming feature selection in social media. In: Proceedings
of the 24th ACM international on conference on information and knowledge management, pp 1041-1050
Shchur O, Mumme M, Bojchevski A, Giinnemann S (2018) Pitfalls of graph neural network evaluation.
arXiv:1811.05868

Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf
Process Syst 14

Tian F, Gao B, Cui Q, Chen E, Liu T-Y (2014) Learning deep representations for graph clustering. In:
Proceedings of the AAAI conference on artificial intelligence 28

Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Proceedings of
the AAAI conference on artificial intelligence 30

@ Springer

https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1073/pnas.1409770111
http://arxiv.org/abs/2006.16904
http://arxiv.org/abs/1909.12201
http://arxiv.org/abs/2006.04131
http://arxiv.org/abs/1811.05868

Deep graph clustering via mutual information maximization... 4571

58. YangC,LiuZ,ZhaoD, Sun M, Chang E (2015) Network representation learning with rich text information.
In: Twenty-fourth international joint conference on artificial intelligence

59. LiJ, Yu J, Li J, Zhang H, Zhao K, Rong Y, Cheng H, Huang J (2020) Dirichlet graph variational
autoencoder. Adv Neural Inf Process Syst 33:5274-5283

60. Zhang T, Xiong Y, Zhang J, Zhang Y, Jiao Y, Zhu Y (2020) CommDGI: community detection oriented deep
graph infomax. In: Proceedings of the 29th ACM international conference on information and knowledge
management, pp 1843-1852

61. Zhang X, Liu H, Wu X-M, Zhang X, Liu X (2021) Spectral embedding network for attributed graph
clustering. Neural Netw 142:388-396

62. Zheng S, Zhu Z, Zhang X, Liu Z, Cheng J, Zhao Y (2020) Distribution-induced bidirectional generative
adversarial network for graph representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp 7224-7233

63. Reynolds DA (2009) Gaussian mixture models. Encycl Biom 741:659-663

64. Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15(1):3221—
3245

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Maedeh Ahmadi received her B.Sc. degree in computer hardware from
Isfahan University, Isfahan, Iran, and her M.Sc. degree in artificial
intelligence from Isfahan University of Technology, Isfahan, Iran. She
is currently a Ph.D. student in artificial intelligence at Isfahan Uni-
versity of Technology, Isfahan, Iran. Her research interests include
machine learning and pattern recognition.

@ Springer

4572

M. Ahmadi et al.

@ Springer

Mehran Safayani received his B.S. degree in computer engineering
from Isfahan University, Isfahan, Iran, in 2002. Then, he received
the M.Sc. and Ph.D. degrees from Sharif University of Technology,
Tehran, Iran, in computer architecture and artificial intelligence in 2006
and 2011, respectively. Since 2012, he is an associate professor of
electrical and computer engineering department at Isfahan University
of Technology. His research interests include machine leaning, deep
learning and large language model.

Abdolreza Mirzaei was born in Isfahan, Iran. He received the B.Sc.
(first-class honors) degree in computer engineering from Isfahan Uni-
versity, in 2001, the M.Sc. degree in artificial intelligence from Iran
University of Science and Technology, Tehran, Iran, in 2003, and
the Ph.D. degree in artificial intelligence from Amirkabir University
of Technology, Tehran, in 2009, respectively. He is currently in the
department of electrical and computer engineering, Isfahan University
of Technology. His research interests include statistical and structural
classification methods, digital image processing, computer vision, mul-
tiple classifier systems and learning methods.

	Deep graph clustering via mutual information maximization and mixture model
	Abstract
	1 Introduction
	2 Related works
	2.1 Graph embedding
	2.2 Community detection

	3 Method
	3.1 Problem formalization and method overview
	3.2 Node embedding
	3.3 Graph diffusion
	3.4 Gaussian mixture modeling for community detection
	3.5 Clustering-friendly node embedding
	3.6 Inference
	3.7 Computational complexity

	4 Experiments
	4.1 Benchmark datasets
	4.2 Compared methods
	4.3 Evaluations metrics and experimental settings
	4.4 Experimental results
	4.5 Ablation study
	4.6 Effect of embedding dimension
	4.7 Influence of hyper-parameter ω
	4.8 Influence of full covariance matrices
	4.9 Running time analysis
	4.10 Visualization

	5 Conclusions
	Appendix A
	References

