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Abstract
We propose a model that forecasts market correlation structure from link- and node-based
financial network features using machine learning. For such, market structure is modeled as
a dynamic asset network by quantifying time-dependent co-movement of asset price returns
across company constituents of major global market indices. We provide empirical evi-
dence using three different network filtering methods to estimate market structure, namely
Dynamic Asset Graph, DynamicMinimal Spanning Tree and Dynamic Threshold Networks.
Experimental results show that the proposed model can forecast market structure with high
predictive performance with up to 40% improvement over a time-invariant correlation-based
benchmark.Non-pair-wise correlation features showed to be important compared to tradition-
ally used pair-wise correlation measures for all markets studied, particularly in the long-term
forecasting of stock market structure. Evidence is provided for stock constituents of the
DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market
indices. Findings can be useful to improve portfolio selection and risk management methods,
which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.
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1 Introduction

Multi-asset financial analyses, particularly optimal portfolio selection and portfolio riskman-
agement, traditionally rely on the usage of a covariance matrix representative of market
structure, which is commonly assumed to be time invariant. Under this assumption, however,
non-stationarity [1, 2] and long-range memory [3] can lead to misleading conclusions and
spoil the ability to explain future market structure dynamics.

Empirical analyses of networks in finance have been used successfully to study market
structure dynamics, particularly to explainmarket interconnectedness from high-dimensional
data [4–7]. Under this approach, market structure is modeled as a networkwhose nodes repre-
sent different financial assets and edges represent one or many types of relevant relationships
among those assets. There is a vast literature applying financial networks to descriptive
analysis of market and portfolio dynamics, includingmarket stability [8], information extrac-
tion [9], asset allocation [10, 11] and dependency structure [4, 12–15]. However, there
is little research on the application of financial networks in market structure forecasting.
Recent research on market structure inference makes use of information filtering networks
to produce a robust estimate of the global sparse inverse covariance matrix [16], achieving
computationally efficient results. In a later study [17], the authors forecast market structure
based on a model that uses a principle of link formation by triadic closure in stock market
networks. Spelta [18] proposed a method to predict abrupt market changes, inferring the
future dynamics of stock prices by predicting future distances between them, using a tensor
decomposition technique. Musmeci et al. [19] proposed a new tool to predict future market
volatility using correlation-based stock networks, meta-correlation and logistic regression.
Park et al. [20] analyzed the evolution of Granger causality network of global currencies and
proposed a link prediction method incorporating the squared eta of the causality directions
of two nodes as the weight of future edges. To build the causality network, they used the
effective exchange rate of 61 countries and showed that the predictive capacity of their model
outperforms other static methods for predicting links. Other related work [21] proposed a
model for predicting links in weighted financial networks, used to define input variables for
the portfolio management problem, increasing the financial return of the investment.

In this article, financial market structure forecasting is formulated as a link prediction
problem where we estimate the probability of adding or removing links in future networks.
To tackle this problem, we developed a machine learning-based model that uses node- and
link-specific financial network features to forecast stock to stock links based on past market
structure. Applying machine learning algorithms in the decision-making process on stock
markets is not a recent task [22].An increasing number of applications have been created using
machine learning-based models to predict the behavior of price time series [23], volatility
forecasting [24], sentiment analysis for investment [25] and automatic trading rules [26].
This paper provides a set of empirical experiments designed to address the following research
questions:

1. To what extent can dynamic financial networks help forecast stock market correlation
structure?

2. How do financial network topology features perform relative to traditionally used pair-
wise correlation data to forecast stock market structure?

3. How does the predictability of market structure vary across multiple financial markets
for the proposed models?

Findings can be particularly useful to improve portfolio selection and risk management,
which commonly rely on a backward-looking correlation matrix to estimate portfolio risk. To
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the best of our knowledge, this is the first study that combines financial network features and
machine learning to forecast stock market structure. The remainder of this paper is organized
as follows: Sect. 3 describes the Materials and Methods used to provide the experiments;
Sect. 4, which is the Results and Discussion, presents a descriptive analysis of the temporal
stock networks and predictive analysis of market structure forecasting, and Sect. 5 draws the
Conclusions.

2 Stockmarket structure and network prediction

We addressed the problem of market structure prediction as a link prediction problem. In
order to do this, previously known network informationwas used to find connections thatmay
appear or disappear in the future. This predictive task was investigated in many real prob-
lems, mainly involving social networks [27, 28]. Mantegna et al. [4] introduced a method
to perform structure and topological analysis of financial markets, where nodes represent
assets and edges represent the relationship between them. This method was adopted in sev-
eral studies [29–34]. Wang et al. [35] presented a literature review to predict links in social
networks. The paper proposed an arrangement of the methods for link prediction in two high-
level groups: similarity based and learning based. In addition to this arrangement, the authors
described techniques for similarity-based link prediction, which used information from nodes
and topology to calculate the similarity between pairs of nodes, and learning-based meth-
ods, whose features are derived from node information, network, network topology and
non-topological information. Al Hasan et al. [36] studied link prediction as a supervised
machine learning problem. They proposed using of three input sets for the machine learning
model: proximity features, which described the proximity between two nodes; aggregated
features, which aggregated attributes related to nodes; and topological features, related to
the network topology. In addition, the authors made a comparison between some supervised
machine learning algorithms and analyzed the most important features for link prediction.
Lichtenwalter et al. [37] examined important factors for link prediction using a supervised
approach. The authors presented a link prediction algorithm that uses supervised learning and
proposed a set of features based on path-information, random walk and node neighborhood
(called unsupervised methods). Comparative results showed significant improvement in the
results of the two databases compared with baseline algorithms. Aouay et al. [38] studied
link prediction as a supervised learning task, combining several features as input data for
classification. To improve the accuracy, the authors applied a feature selection algorithm.
Experiments were performed on two co-authored data sets and the results showed that Ran-
dom Forest, k-NN and PCA produced the best performances. Fire et al. [39, 40] proposed a
set of structural features at the node and link level to identify missed links using supervised
machine learning algorithm. Zhu et al. [41] proposed a method to estimate the probability
of a link using supervised machine learning. They proposed a method that combines infor-
mation from the network structure and user-generated content as input to machine learning
algorithms. They performed the comparison between three different machine learning algo-
rithms and compared them with thirteen baseline methods. Tan et al. [42] investigated the
importance of network topology in link prediction using information theory. In addition to the
analysis, the authors proposed a general method for predicting links based on mutual infor-
mation from the network topology, which represents the reduction in prediction uncertainty
due to another variable. The proposed method presented better results in ten databases when
compared to six baseline methods used in the literature. Malhotra et al. [43] propose three
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different link prediction algorithms based on different structural features of networks com-
bined with information theory analyses. The proposed methods presented better and more
robust performances in general cases. Bu et al. [44] analyzed the link prediction in temporal
networks through a semi-supervised machine learning method. The method uses a sequence
of adjacency matrices (time sequence) and the Cox Proportional Hazard Model (Cox PHM)
to study the relative risk associated with each link to estimate the coefficients of covariates,
which are defined as a set of neighborhoods based on proximity characteristics. Furthermore,
the authors proposed a bidirectional selectionmechanism based on game theory to predict the
future topology of the network. Ma et al. [45] evaluated the performance of similarity-based
methods for link prediction and showed that the performance of these methods is not always
good in all cases, as each network has its structural characteristics. They analyzed different
real networks and showed that these structural features are remarkably different (even in the
same network). Thus, the authors proposed to apply several features and similarity indices as
input to the proposed method, called adaptive fusion, which combines these features using a
logistic function. The performance of this model is better than many similarity indices.

Considering stock networks, Yao et al. [46] analyzed the 180 most important stocks on the
Shanghai Stock Exchange (SSE) through stock networks using the log-return of the closing
price of these stocks. Networks were created with different thresholds. According to different
networks under different thresholds, they found the actions with the greatest potential for
influence based on local structural centrality. Finally, they analyzed the link prediction in
stock networks using different similarity and path-based indices and showed that there are
better similarity indices to predict the probability of node connections in different stock
networks.

The link prediction problem is also applied to other research areas. Lu et al. [47] investi-
gated the prediction of Drug–Target Interaction (DTI), which is the discovery of new uses for
existing drugs through network-based prediction. In this work, the authors proposed a new
method for DTI prediction that uses only network topology information. Wang et al. [48]
proposed a method for predicting Drug-Protein Interactions (DPIs), important for drug repo-
sitioning, drug discovery and clinical medicine, by predicting bipartite links and networks.
The method uses node similarity approaches to extract information from the network struc-
ture in order to predict hidden links. Lim et al.[49] presented an analysis of link prediction
in criminal networks using Deep Reinforcement learning and a set of features based on
node similarity. To do this, the authors developed a network model for link prediction by
reconstructing a corrupted criminal network database.

3 Materials andmethods

In this section, we describe themain steps of the proposedmethod to forecast market structure
from financial network features using machine learning. Figure1 presents the methodology.

Initially, we calculate the pairwise correlation matrix based on daily closing price series of
assets. Given the correlationmatrix, the market structure is modeled as a financial network by
calculating the assets’ distancematrix and applying a network filteringmethod. In this article,
we evaluated three different network filtering methods to model financial market structure,
described in Sect. 3.1.We then extract a set of network features, used as input attributes for the
machine learning model, by calculating node- and link-level network features, as described
in Sect. 3.2.1. Finally, we applied amachine learningmodel, described in Sect. 3.2, to forecast
financial networks using network information itself as input.
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Fig. 1 Main steps of the methodology used in this work. Based on daily asset closing prices of stocks con-
stituents of a target stockmarket index, we calculate a pairwise correlation matrix and create a filtered financial
network using three different network filtering algorithms. Given the financial network, we create a graph
embedding by extracting network derived features at node and link levels. These features are used as input for
a machine learning algorithm to forecast future financial networks

3.1 Dynamic financial networks

There are many methods in the literature to model financial market structure. Some of the
most commonly used methods include correlation based networks and network filtering
methods [7]. Network filtering methods allow prompt and temporal analysis of the market
structure by exploring market data snapshots to model financial networks that represent the
topology and the structure of the market. Using a rolling window approach, we can take
snapshots in each time window of arbitrary length, allowing to explore temporal analysis of
themarket evolution [13], also called as dynamic or temporal networks. Some examples of the
most common methods include Minimal Spanning Tree approach [4], the Planar Maximally
Filtered Graph [50], the Directed Bubble Hierarchical Tree [14], asset graphs [51] and other
approaches based on the threshold networks [52].

In this study, we investigate three different network filtering methods to estimate financial
market structure: (i) Dynamic Asset Graph; (ii) Dynamic Threshold Networks; and (iii)
Dynamic Minimal Spanning Tree. We explore these three methods due to their importance
for financial analysis, considering that there is a vast literature [30, 51–56] that uses these
methods to study different characteristics of the structure of financial networks.

These methods estimate an asset distance matrix through co-movement metrics of daily
return prices. Let P(t) be the closing price of an asset at day t . We consider assets’ daily
log-returns R(t) = log P(t) − log P(t − 1) that are calculated at time t . First, we calculate
a distance matrix that measures the co-movement of daily log-returns [4], defined as

Di, j (t) = √
2(1 − ρt (i, j)), (1)

where ρt (i, j) is the Pearson’s correlation coefficient between the time series of log-returns
of assets i and j at time t , ∀i, j ∈ V , where V is the set of assets. The distance matrix is
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constructed by dividing the returns time-series R(t) into rolling windows of size L trading
days with δT trading days between two consecutive windows (time-step). The choice of
window width L and window time-step δT is arbitrary, and it is a trade-off between having
an analysis that is either too dynamic or too smooth [57]. The smaller the window width
and the larger the window steps, the more dynamic the data are. We report results for L ∈
{126, 252, 504} and δT = 5 trading days. A dynamic financial network is defined as a
temporal network

W = 〈V , E1, . . . , ET : Et ⊆ V × V , ∀t ∈ {1, . . . , T }〉, (2)

where vertices i ∈ V correspond to assets of interest. For every pair 〈i, j〉 at time-window
t , ∀i, j ∈ V | i �= j , there is a corresponding edge (i, j)t ∈ Et and every edge has a weight
wi, j (t) = Di, j (t). Considering the distance matrix Di, j (t) previously defined, we can apply
a network filtering method in order to create dynamic networks. The three evaluated methods
in this work are described in the next sections.

3.1.1 Dynamic Asset Graph (DAG)

A Dynamic Asset Graph [51] is a type of filtered financial network modeled by first
ranking edges in ascending order of weights w1(t), w2(t), ..., wN (N−1)/2(t). The result-
ing graph is obtained by selecting the edges with the strongest connections. The number
of edges are, of course, arbitrary. Here, we select edges with weights in the top quartile,
i.e., w1(t), w2(t), ..., w�N (N−1)/8	(t), as proposed in Souza et al. [17]. The main idea of this
method is to identify the smallest distances in the stock market.

3.1.2 Dynamic Threshold Networks (DTN)

Considering the distance matrix D(t) defined in Equation (1), we create a filtered adjacency
matrix A to construct the financial network using the following rules [52, 56]:

Ai, j (t) =
{
1, |Di, j (t)| ≥ rc
0, |Di, j (t)| < rc

(3)

where assets i, j ∈ V and ∀(i, j)t ∈ Et . The critical value rc converts the matrix D into
an undirected network, whereby Ai j (t) = 1 and Ai j (t) = 0 represents the existence and
absence of edges between i and j at time window t , respectively.We fixed the rc value in 0.65
because for rc ≤ 0.65 the network characteristics are submerged in large fluctuations [56].
It is important to observe that the DTN method can produce disconnected graphs and the
number of edges is dynamic. In general, the main goal of this method is to identify pairs
of assets that are highly correlated and above the threshold rc. This is different from DAG,
where pairs with a correlation value lower than rc can be added to the network.

3.1.3 Dynamic Minimal Spanning Tree (DMST)

We create a Dynamic Minimal Spanning Tree [4] based on the smallest asset distance in
the previous defined matrix D(t). We use the Kruskal’s Algorithm to identify the Minimal
Spanning Tree (MST) in the fully connected graph D at time t . The number of edges is fixed
and calculated as N −1, where N is the number of assets. This method provides the smallest
distance to interconnect the market, producing the minimal market structure to connect all
assets.
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3.2 Machine learning-based approach

In this section, we describe the proposed machine learning based approach to forecast stock
market structure for a given market index. In this study, we address market structure fore-
casting as a network link prediction problem. Given snapshots of financial networks up to
time t , we want to accurately predict the edges that will be present in the network at a given
future time t ′. We choose three times t0 < t < t ′ and provide an algorithm that accesses
W [t0, t] = 〈V , Et0 , . . . , Et 〉 to estimate the likelihood of edges to be present inW [t ′], where
t ′ = t + h and h = {1, 2, . . . , 20} trading weeks.

Similarity-based methods and classifier-based methods are two of the most common
approaches for link prediction [58]. In similarity-based methods [59], the algorithm assigns a
connection weight score(x, y) to pairs of nodes 〈x, y〉, based on the input graph G, and then
produces a ranked list in decreasing order of score(x, y). These algorithms can be viewed as
computing a measure of proximity or “similarity” between nodes x and y. Common Neigh-
bors, JaccardCoefficient, PreferentialAttachment,AdamicAdar andResourceAllocation are
among the most popular local indices (node-based). Katz, Leicht–Holme–Newman, Average
Commute Time, Random Walk and Local Path represent global indices (path based). While
the local indices are simple in computation, the global indices may provide more accurate
predictions.

In classifier-based methods, the link prediction is defined as a binary classification prob-
lem. Here, a feature vector is extracted for each pair of nodes and a 1/0 label should be
assigned based on the existence/not existence of that link in the network.Any similarity-based
method could form the required feature vector for a supervised learning method [36]. After-
ward, any conventional supervised learning algorithm might be applied to train a supervised
link predictor. In this article, we applied a classifier-based method to forecast the financial
market structure. Our approach uses financial network features as input to a machine learning
model in order to create a link prediction method, as presented in Fig. 2.

Figure 2 presents the process used to create the machine learning database. Assuming i
and j as two arbitrary nodes ranging from 1 to N and t as the current time, an instance of
the dataset used in the machine learning algorithm has the following predictive attributes: (a)
i node-level features; (b) j node-level features; (c) (i, j) link-level features. As previously
described, the target of the supervised machine learning model is to forecast the existence
of links in a network G(t + h), where h = 1, 2, . . . , 20 trading weeks. Figure2 presents
an illustration of how we build instances to the machine learning model, exemplified as the
snapshot at time t .

We split the dataset between train and test sets taking into account the temporal sequence
of the data. The train set includes data produced in the period from 1 March 2005 to 30 May
2007, and the test set has data from 30 May 2007 to 18 December 2019. Figure3 presents
an illustration explaining how we created the train and test sets. Machine learning models
were trained and tested using a rolling window approach. Considering L as the size of the
log-return time series, t as current time and t − k < t < t + h, we create the train set using
network features from G(t − k), where k = 1, 2, . . . , 30. The test set contains data from
the current network G(t), in which G(t + h) is the target, where h = 1, 2, . . . , 20 trading
weeks. After training the machine learning model and testing it, we move the rolling window
forward taking into account the time-step δT = 5 trading days (1 trading week) between two
consecutive executions (see Supplementary Material, Section S.1 for further details).

To assess the information rate that a machine learning model can extract from the features
set, we applied the XGboost [60] algorithm. In this experiment, the algorithm induces a
predictive model for stock market structure forecasting. XGboost is a fast, highly effective,
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Fig. 2 Building the machine learning dataset. We calculate features for each node ranging from 1 to N , where
N is the number of assets. We applied a pairwise concatenation of node and link features as input variables
for the link prediction, while edges on the network at time t + h are used as the target variable, where h is the
number of trading weeks

Fig. 3 Train and test sets used to induce the machine learning model. Machine learning models were trained
and tested using a rolling window approach. Considering L as the size of the log-return time series and t as
current time, we create the train set using data from t − k to t − 1 and the test set using data from t . The target
of the supervised learning is the network G(t +h), where h is the number of trading weeks. After training and
testing the machine learning model, the time-step δT is used to move the rolling window forward, in order to
restart the process and re-train the machine learning model. The train set includes data from 1 March 2005 to
30 May 2007 and the test set has data from 30 May 2007 to 18 December 2019
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interpretable and widely used machine learning model. Further information regarding the
experimental setup is described in the Supplementary Material, Section S.2.

3.2.1 Network features

As previously mentioned, we proposed an approach for market structure forecasting based on
supervised machine learning. In order to provide information to train this supervised method,
we extracted a set of network features at node and link level. These features are used as input
to the machine learning model. We summarized the network features as follows:

• Node-Level Features assess the position of a node within the overall structure of a given
graph G(V , E) [61]. Table 1 presents a set of node-level features related to node/stock
i ∈ V used as input to the machine learning model.

• Link-Level Features examine both the contents and patterns of relationships in a given
graphG(V , E) andmeasure the implications of these relationships [61]. Table 2 presents
a set link-level features related to link (i, j) ∈ E used as input to the machine learning
model.

Researchers in finance, particularly in portfolio management, commonly use asset cor-
relation in important use cases, such as risk management. Given the importance of this
information in financial analyses, we also explore them as input feature for market structure
forecasting. However, we are interested in analyzing how topological information helps to
forecast the market structure itself. For this reason, we separated the feature set into two

Table 1 Node-level features: Features were calculated to node i , ∀ i ∈ V for a given graph G(V , E)

Name Definition

Node Degree deg(i) = |i |
Weighted Node Degree degw(i) = ∑

j∈Ni w<i, j>,

where w<i, j> is the weight of the edge e(i, j)

Average Neighbor Degree avg(i) =
∑

j∈Ni | j |
|i |

Propensity of i to Increase its Degree γ (i) = |i |
degw(i)

Node Betweenness b(v) = ∑
i, j∈V \v

σi j (v)

σi j
,

where σi j (v) is the number of shortest paths between i
and j passing through node v and σi j the total number of
shortest paths from i to j

Node Closeness nc(i) = n−1∑
j∈V \i d(i, j) ,

where d(i, j) represents the distance between i and j and
n is the number of nodes in the graph

Node Eigenvector ne(i) = xi
1
λ

∑n
j=1 di j x j ,

where di j represents an entry of the adjacency matrix
D (0 or 1), λ denotes the largest eigenvalue, xi and x j
denotes the centrality of node i and j , respectively

Node Clustering Coefficient cc(i) = 2|e jk |
|i |∗(|i |−1) : j, k ∈ Ni , e jk ∈ E

Consider Ni as the set of adjacent vertices (neighborhood) of node i . This set contains only non-pair-wise
correlation features

123



4506 D. Castilho et al.

Table 2 Link-level features: Features were calculated between nodes i and j , ∀ (i, j) ∈ E for a given graph
G(V , E)

Name Definition

Link Existence in G(t) (∗) E(i, j) =
{
1 exists link
0 not exists link.

Correlation Value (∗) C(i, j) = ρi j ,

where ρi, j is the Pearson’s correlation coefficient
between time series of log-returns of assets i and j

Common neighbors CN (i, j) = |Ni ∩ N j |
Jaccard Coefficient JC(i, j) = |Ni∩N j |

|Ni∪N j |
Adamic-Adar Coefficient AA(i, j) = ∑

k∈Ni∩N j
1

log |Nk | ,
where Nk is the set of adjacent vertices of node k

Sorenson-Dice Coefficient SDC(i, j) = 2∗|Ni∩N j |
|i |+| j |

Edge Betweenness B(i, j) = ∑
i, j∈V

σi j (e)
σi j

,

where σi j (e) is the number of shortest paths between i
and j crossing the edge e and σi, j is the total number of
shortest paths from i to j

Same Community [62] SC(i, j) =
{
1 if i and j ∈ same community
0 if i and j /∈ same community.

Preferential Attachment PA(i, j) = |i | ∗ | j |,
where |i | and | j | represent the node degree of vertex i
and j

Pair-wise correlation features are marked with (∗), while the remaining are features based on non pair-wise
correlation. Consider Ni and N j as the set of adjacent vertices of node i and j , respectively

distinct subsets. We labeled the two subsets according to their source of information: (i)
pair-wise correlation features, which are attributes based on asset correlation and not derived
from any other network information, and (ii) non-pair-wise correlation features, which are
attributes derived from the network topology. While pair-wise correlation features are tra-
ditionally used in financial analysis, the importance of non-pair-wise correlation features
to forecast market structure is a research question investigated in this work. Thus, we can
compare their information gain in market structure forecasting. In Table 1, all features are
non-pair-wise correlation attributes. In Table 2, the pair-wise correlation features are marked
with (∗).

3.2.2 Model evaluation

We calculate the Area Under the ROC curve (AUC) to evaluate the predictive performance of
the link prediction methods. This metric is largely applied in binary classification and unbal-
anced problems and ranges from 0.5 to 1, where 0.5 represents a random naive algorithm and
1 represents the highest result. The AUCmeasure gives a summary metric for the algorithm’s
overall performance with different prediction set sizes, while a detailed look into the shape
of the ROC curve reveals the predictive performance of the algorithm at each prediction set
size [63].
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To verify the performance of the proposed method, we compared it against seven baseline
methods, organized into two distinct groups: (i) Naive Method, which represents the com-
mon approach used in financial market analysis, and (ii) Similarity-Based Method, which
represents how several works in the literature solve the link prediction problem [59]. The
baseline methods are described below:

1. Naive Method—assumes that the snapshot used for decision-making is static, through
the use of a non-forward looking of the correlation matrix. The method in this group is
described in the following:

• Time Invariant (TI): This algorithm uses the link occurrence in graph G(t) as the
prediction of link occurrence in graph G(t + h), assuming that market structure is
time invariant. This assumption is traditionally used in risk management algorithms,
which commonly rely on a backward-looking covariance matrix to estimate portfolio
risk [17, 64].

2. Similarity-Based Methods—methods commonly used in literature for link prediction, as
the problem addressed in this work [65]. The methods in this group are described in the
following:

• Common Neighbors [59] (CN): This is a simple and effective link prediction method
based on common neighbors shared by two nodes. Pairs of nodes with high number
of common neighbors tend to establish a link;

• Preferential Attachment [66] (PA): This method defines that new links are formed
between nodes with higher degrees rather than nodes with lower degrees;

• JaccardCoefficient [65] (JC): Thismethod is based on similarity Jaccard’s coefficient,
taking into account the number of common neighbors shared by two nodes, but
normalized by the total number of neighbors of both nodes;

• Adamic-Adar [67] (AA): This method is also based on common neighbors shared by
two nodes. Instead of using the raw number of common neighbors as CN, it is defined
using the sum of the inverse of the logarithmic degree of each shared neighbor.

• Local Path Index [68] (LP): Similar to CN, this method uses information from the
next 2 and 3 nearest neighbors instead of using only information of the neighbors
shared by two nodes.

• Random Walk with Restart [69] (RW): Based on Random Walk, it is a special case
of following the Markov chain, starting from a given node and randomly reaching a
selected neighbor. The restart looks for the probability of a random walker starting
from node x visits node y and comes back to the initial state node x [65].

3.3 Market data

In this study, we used data from six different stockmarket indices spread across theAmerican,
European and Asian markets. The stock indices were chosen to measure the performance of
the proposed approach in different scenarios, given the diversity of the stock markets. More-
over, it is important to mention that they represent the stock market of the region or country
where they are listed. We considered the following indices and associated countries/regions:

• DAX30 (Germany): This is a stock market index that consists of the 30 largest and most
liquid German companies trading on the Frankfurt Stock Exchange.
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• EUROSTOXX50 (Eurozone): This is a list of the 50 companies that are leaders in their
respective sectors from eleven Eurozone countries, including Austria, Belgium, Finland,
France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain.

• FTSE100 (UK): This is an index listed in the London Stock Exchange. The Financial
Times Stock Exchange Index (FTSE) is Britain’s main asset indicator, managed by the
independent organization and calculated based on the 100 largest companies in the UK.

• HANGSENG50 (Hong Kong): This is an index listed in the Stock Exchange of Hong
Kong. This stock market index has the 50 constituent companies with the highest market
capitalization. It is the main indicator of the market performance in Hong Kong.

• NASDAQ100 (USA): This is an index composed of the 100 non-financial largest com-
panies listed in NASDAQ.

• NIFTY50 (India): This is a stock market index listed in the National Stock Exchange of
India based on the 50 largest Indian companies.

Each financial index has a daily price time series for each one of its constituent stocks.
Price time series are constructed using daily closing prices collected from Thomson Reuters.
The list of company constituents of each stock market index is not static and may change
over time. In this article, we only consider companies that were part of the underlying indices
across the entire period analyzed, as commonly used in other studies, when node prediction
is out of scope [17, 70]. We consider prices ranging from 1 March 2005 to 18 December
2019.

4 Results and discussion

In this section, we present the experimental results for financial market structure forecasting.
Initially, we present a set of descriptive analyses on evolution of financial networks and
a brief discussion about the impact of different network filtering methods in the financial
market structure. Afterward, we present a set of predictive analyses related to the machine
learning approach and the benchmark methods. Finally, we present a discussion about the
interpretability of the machine learning models.

4.1 Descriptive analysis

Wepresent a set of descriptive analyses of temporal financial networks created across different
market indices. The following sections present a set of analyzes that allow us to understand
the characteristics of databases and temporal financial networks.

4.1.1 Financial network persistence

The first descriptive analysis describes financial network persistence, considering L = 252
trading days to create each graph (results regarding L ∈ {126, 504} trading days can be
found in Supplementary Material, Section S.3). This analysis allows us to measure how the
financial networks change their structure over time. We estimate the network persistence by
calculating pair-wise network similarity between G(t) and G(t ′) using the Jaccard Distance,
defined as follows:

sim(G(t),G(t ′)) = |G(t) ∩ G(t ′)|
|G(t) ∪ G(t)| , (4)

where t and t ′ range from 12 May 2006 to 18 December 2019.
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Fig. 4 DAG—Cross-similarity matrix for each market index. We calculate the pair-wise Jaccard Distance
across all financial networks G(t) and G(t ′) ranging from 12 May 2006 to 18 December 2019, related to
a given market index. For each market index figure, the first network on 12 May 2006 is represented in the
top-left and the last network on 18 December 2019 in the bottom-right corner of each individual figure

Figures 4, 5 and 6 present the cross-similarity analysis for DAG, DTN and DMST of each
stock market index, respectively. In the individual figure of each stock market index, the
first network is represented in the top-left and the last network is represented in the bottom-
right, where the first network is 12 May 2006 and the last network is 18 December 2019. In
general, we can observe that the structure consistently changes over time, which emphasizes
the importance of tools to forecast market structure.

DAG results in Fig. 4 show network structure changes considerably throughout the time
in all stock market indices. Figure5 presents results from the DTN network filtering method.
We can observe the similarity among networks tends to be noisier than the previous DAG
method. In some periods, the similarity among the networks ismaximum,while at other times
it reaches zero, as can be seen in NASDAQ100 and NIFTY50. The DTN network filtering
method can produce disconnected or even empty graphs, which may cause these similarity
oscillations. DMST results are shown in Fig. 6. This figure shows that there is low similarity
for long-range comparisons among trees created by the DMST filteringmethod for all market
indices, suggesting low stability as reported by other authors [71, 72].

After analyzing the persistence of financial networks,we present an analysis of the distance
amongallmatrices tomeasure howsimilar is the evolutionof the persistence betweenmarkets.
Given the cross-similarity matrices of each market, we calculate the distance among all
matrices to measure the market similarity in terms of network evolution. This analysis allows
us to identify which markets have similar behavior considering the persistence of networks.
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Fig. 5 DTN—Cross-similarity matrix for each market index. We calculate the pair-wise Jaccard Distance
across all financial networks G(t) and G(t ′) ranging from 12 May 2006 to 18 December 2019, related to
a given market index. For each market index figure, the first network on 12 May 2006 is represented in the
top-left and the last network on 18 December 2019 in the bottom right of each individual figure

To do this, we use the cosine similarity, calculated using the following formula:

cosine_sim(a, b) =
√∑

(a − b)2
√∑

a2 ∗ √∑
b2

, (5)

where a and b are two nonzero numeric vectors and represents the upper triangle of two
distinct cross-similarity matrices. This metric ranges from 0 to 1 and it is defined as the
angular distance from two vectors.

Table 3 presents the pairwise cosine similarity for DAG, DTN and DMST. As we
have the commutativity property in cosine similarity, where cosine_sim(a, b) is equal to
cosine_sim(b, a), we show the possible combinations among allmarket indices. It is possible
to notice that all similarity analyses among allmarket indices are presented in Table 3(DAX30
vs. EUROSTOXX50, DAX30 vs. FTSE100 and so on). DAX30 and EUROSTOXX50 have
the highest cosine similarity for DAG and DTN. For DMST, the highest value is between
FTSE100 and EUROSTOXX50. This analysis demonstrates that the network persistence
among markets from Europe are higher than markets from other regions of the world, given
the three network filtering methods.

4.1.2 Financial network evolution

The second descriptive analysis is the similarity between the current financial network G(t)
and the future network G(t + h), where h is the time lag, ∀ h ∈ {1, 5, 10, 15, 20} trading
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Fig. 6 DMST—Cross-similarity matrix for each market index. We calculate the pair-wise Jaccard Distance
across all financial networks G(t) and G(t ′) ranging from 12 May 2006 to 18 December 2019, related to
a given market index. For each market index figure, the first network on 12 May 2006 is represented in the
top-left corner and the last network on 18 December 2019 in the bottom right of each individual figure

weeks. This analysis provides an accurate point of view concerning how the current net-
work changes in the near future—if they do not change, we do not need to forecast them.
We quantify the changes in the network structure using the Jaccard Distance between G(t)
and G(t + h), considering L = 252 trading days to create each graph. Figure7 presents
the distribution of networks similarity related to the three network filtering methods DAG,
DTN and DMST of each stock market index. Experimental results suggest a high similarity
distribution among networks considering h = 1 step ahead to all network filtering methods.
However, the similarity distribution decreases with h, mainly in the DMST method. Consid-
ering h = 20, DMST presents a mean similarity lower than 25% in all markets. In general,
financial networks tend to have a certain margin of similarity for low h, but as h increases,
they become more and more dissimilar, hence justifying the importance of forecasting future
market structures, particularly in high-horizon forecasting scenarios. Analyzing the DTN
method, NIFTY50 and HANGSENG50 present a different behavior for larger h, where the
distribution of the similarity behaves differently from other markets, oscillating between the
maximum value and almost zero for larger h, as shown in h = 5, h = 10 and h = 15. This
amplitude can be explained by the analysis presented in Fig. 5, which shows that for some
periods the similarity among networks is high, but it is also very low for other periods. The
smallest similarity values are presented for the DMST method considering L = 20.
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Table 3 Cosine distance from cross-similarity results

EUROSTX FTSE HSENG NASDAQ NIFTY

DAG

DAX 0.9532 0.9435 0.9472 0.9341 0.9257

EUROSTX 0.9228 0.9403 0.9420 0.9070

FTSE 0.9150 0.9358 0.8978

HSENG 0.9297 0.9302

NASDAQ 0.9137

DTN

DAX 0.9338 0.8367 0.7573 0.6209 0.5795

EUROSTX 0.8755 0.7873 0.6143 0.6000

FTSE 0.8331 0.5479 0.5503

HSENG 0.5892 0.5531

NASDAQ 0.4269

DMST

DAX 0.9486 0.9354 0.8967 0.9011 0.9200

EUROSTX 0.9500 0.9058 0.9294 0.9312

FTSE 0.9253 0.9400 0.9338

HSENG 0.9169 0.9080

NASDAQ 0.9160

The bold values are the highest cosine similarity measures for each financial network DAG, DTN and DMST
We calculate the cosine similarity from cross-similarity matrices. We use the upper triangle of each matrix as
the input vector. European markets have the highest similarity

4.1.3 Financial network structure

The third descriptive analysis represents the financial network structure and is presented in
Fig. 8. We present the Cumulative Distribution Function (CDF) of the node degree across
networks of each index using the DAG, DTN and DMST network filtering methods. This
analysis provides information concerning the node degree according to three main aspects:
(i) the impact of time series size L; (ii) network filtering method and (iii) size of the market
index, considering the number of constituents. We calculated the node degree distribution
across all financial networks ranging from 3 March 2007 to 18 December 2019. Results
using L ∈ {126, 252, 504} trading days as rolling window size are presented. We observe in
Fig. 8 that market indices with the smallest number of constituents present a similar behavior
in terms of node degree when we use the DAG network filtering method. Besides, DAG
nodes are prone to have a higher occurrence of node with no connections. The DTN method
also presents high probability of nodes without edges, mainly on NIFTY50, NASDAQ100
and HANGSENG50. EUROSTOXX50 presents a distinct shape compared with the other
market indices in DTN with the smallest number of nodes without a connection—more than
75% of nodes has a degree greater than 1 edge. On the other hand, for all market indices,
at least 50% of the nodes have 4 or more connections in DAG. Considering the number of
stocks in each market index, we can also conclude that there are no nodes connecting to all
other vertices in any network filtering method because the largest degree distribution of each
market index. Results also suggest the degree distribution of the market indices is similar for
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Fig. 7 Networks Similarity versus TimeLag. Figure shows the distribution of networks persistence considering
h = {1, 5, 10, 15, 20} trading weeks ahead related to the three network filtering methods: DAG, DTN and
DMST. Network similarity is quantified using the Jaccard Distance between graphs G(t) and G(t + h)
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Fig. 8 CDF of node degree across networks using DAG, DTN and DMST network filtering methods. We
calculate the cumulative distribution function of node degree across all stock networks using the size of rolling
window L = 126, 252 and 504 trading days. The period of the experiments ranges from 3 March 2007 to 18
December 2019

L = 126, 252 and 504 trading days in all network filtering methods, indicating that the size
of L does not affect the degree distribution of stock networks of each market index.

4.2 Predictive analysis

In this section, we present a set of experimental results related to market structure forecasting
using machine learning. First, we investigate the predictive performance of the proposed
method in different scenarios, comparing it against the benchmarkmethods. Then, we present
a qualitative analysis concerning the model interpretability and its implications.
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4.2.1 Performance results

Weused amachine learning approach to forecast the financial networkG(t+h), where h is the
number of weeks ahead, h = 1, 2, . . . , 20 trading weeks. We discuss and report results using
the size of rolling windows L = 252 trading days to construct the financial networks. Results
regarding L ∈ {126, 504} trading days can be found in the Supplementary Material, Section
S.4. Figures9, 10 and 11 show the AUC measure of the proposed machine learning method
compared to baseline algorithms for DAG, DTN and DMST network filtering methods. For
each time step ahead h, we calculated the average AUC of each method and its respective
standard error over the test period, ranging from 5 May 2007 to 18 December 2019.

Denoted as “ML”, the machine learning method outperforms the baseline methods in all
market indices and all networkfilteringmethods. In general, predictive performancedecreases
as the time lag h increases. Despite its simplicity, TI is quite effective and presents good
performance across market indices and network filtering methods, similar to RW algorithm.
Figure9 presents results for theDAGnetwork filteringmethod, suggesting thatmarket indices
with a small number of constituents have a higher AUC than markets with a large number
of constituents. Results also suggest that the RW algorithm produces a edge ranking quite
similar to TI. The JC method presents the worst predictive performance in all market indices,
except for FTSE100 in which PA presents lower AUC values for the DAG network filtering
method.

Fig. 9 DAG—Predictive performance comparison of all methods. This figure shows the AUC measure of
the machine learning method compared to the baseline methods. For each time step, we calculate the AUC
average of each method and its respective standard error over the entire test period. The machine learning
method outperforms the baseline methods in all market indices
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Fig. 10 DTN—Predictive performance comparison of all methods. This figure shows the AUCmeasure of the
machine learning method compared against the baseline methods. For each time step, we calculate the AUC
average of each method and its respective standard error over the entire test period. The machine learning
method outperforms the baseline methods in all market indices

Figure 10 presents results for the DTN network filtering method. ML results are superior
in all markets and suggest the proposed method can accurately identify links with high
correlation due the main purpose of DTN method. We can observe that baseline algorithms
have worst results for HANGSENG50, NASDAQ100 and NIFTY50 indices. As presented
in Fig. 8, these market indices have expressive number of nodes without connections. TI
algorithm outperforms baseline algorithms in DAX30, EUROSTOXX50 and NASDAQ100.
Figure11 presents results related to the DMST network filtering method. Baseline methods
have theworst results among the three filteringmethods, except for the TI andRWalgorithms.
ML outperforms the benchmark methods in all markets.

Figure 12 presents the proposed method AUC performance for h trading weeks ahead
(1 ≤ h ≤ 20) using the DAG, DTN and DMST network filtering methods. The AUC
measure decreases as the time lag h increases. We also compared our results against the
benchmark time invariant method TI, where the networkG(t) is used as the forecastG(t+h).
We choose TI to compare our method due to its superior performance over all benchmark
methods presented in the previous analysis. Moreover, we selected the TI method because
it is derived from information from the pair-wise correlation, as described in Table 2. The
AUC* improvement is calculated as follows:

AUC∗ = (AUCm − 0.5)/(AUCb − 0.5) − 1, (6)

where AUCm is the machine learning AUC and AUCb is the benchmark’s AUC.
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Fig. 11 DMST—Predictive performance comparison of all methods. This figure shows the AUC measure of
the machine learning method compared against the baseline methods. For each time step, we calculate the
AUC average of each method and its respective standard error over the entire test period. The machine learning
method outperforms the baseline methods in all market indices

Figures 12b, d and f present AUC∗ improvement results and their standard errors for DAG,
DTN and DMST network filtering methods.

The proposed method presents similar AUC results for all network filtering methods.
Results using DAG shown in Fig. 12a suggest that networks with fewer constituents have bet-
ter AUC results. Figure12b shows that the highest AUC∗ improvement is fromNASDAQ100,
reaching almost 30% for h = 20 weeks ahead. On the other hand, for the DTNmethod shown
in Fig. 12c, the best results are FTSE100 and NIFTY50, in which EUROSTOXX50 is the
most distinct result. The biggest AUC∗ improvement related to DTN shown in Fig. 12d
is over NASDAQ100 and NIFTY50, reaching almost 40%. Results shown in Fig. 12e are
related to the DMST network filtering method and have a similar decay of AUC for all
markets, where DAX30 is the best result. Interestingly, the AUC∗ improvement shown in
Fig. 12e presents similar curves to NIFTY50 and HANGSENG50markets. Results show that
AUC∗ improvement for NIFTY50 and HANGSENG50 increases until approximately h = 9,
achieving almost 12% on NIFTY50. After this max value, the AUC∗ improvement decreases
as h increases. NASDAQ100 presents the best AUC∗ improvement, reaching almost 19% for
h = 15 trading weeks ahead.

4.2.2 Model interpretability

In finance, particularly in portfolio management, the investment risk is calculated using the
correlation among portfolio assets. This is the main information used to estimate risk and,
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Fig. 12 Machine learning AUC and AUC∗ for DAG, DTN and DMST network filtering methods. Panels
(a), (c) and (e) present the machine learning AUC measure and its standard error for h trading weeks ahead
(1 ≤ h ≤ 20). Panels (b), (d) and (f) present the AUC improvement over the benchmark time-invariant method
and its standard error. Results for L = 252
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given its importance in financial analyses, we also explore them as an input feature for mar-
ket structure forecasting. However, we want to measure how the topology of the network
helps forecast the future network itself. In other words, we are interested in evaluating the
importance of non-pair-wise correlation features for the forecasting market structure. As
described in Sect. 3.2.1, we separated the feature set into two subsets: pair-wise correlation
features and non-pair-wise correlation features. After constructing the boosted trees in the
XGBoost model, we can estimate the importance of each individual attribute. The impor-
tance of an attribute is related to the number of times that it is used to create relevant split
decisions, i.e., split points that improve the performance metrics [73]. For each market index,
we calculate the average and standard error of aggregate importance of pair-wise correlation

Fig. 13 Importance of non-pair-wise correlation features for DAG, DTN and DMST. Figure shows the aggre-
gate importance for non-pair-wise correlation features using the size of rolling window L = {126, 252, 504}
trading days and DAG, DTN and DMST network filtering methods. Results show the importance of these fea-
tures increases with the time step h. The importance of non-pair-wise correlation features for L = 126 trading
days is higher than L = 252 and L = 504 for all network filtering methods. The growth of the importance
of this subset is consistent across all markets. An interesting result is that the importance of non-pair-wise
correlation features changes according to the network filtering method
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and non-pair-wise correlation features. Figure13 presents results related to the importance
of non-pair-wise correlation features, considering the network filtering methods DAG, DTN
and DMST and L ∈ {126, 252, 504} trading days as the rolling window size. It is important
to note that the importance of the two feature subsets adds up to 1.

Results presented in Fig. 13 show that non-pair-wise correlation features help forecast
the future market using different network filtering methods. We observe that the importance
of non-pair-wise correlation features increases with h. Moreover, the importance of this
subset of features changes according to the network filtering method. Their importance can
be observed mainly for smaller L , such as L = 126, shown in Fig. 13a, d and g, where
their importance for h = 20 reaches almost 80% for NIFTY50 using the DAG method,
60% for EUROSTOXX50 using DTN and almost 90% for all markets using DMST. For
the DMST method, shown in Fig. 13g, h and i, the importance of non-pair-wise correlation
features has a similar shape to L = 126, 252 and 504 rolling window size. DAG results are
shown in Fig. 13a–c. For short h values, non-pair-wise correlation attributes do not add much
information when compared to pair-wise correlation features. However, the importance of
these features rapidly increases with the time step h, suggesting that these attributes can
be more useful than pair-wise correlation attributes for long-horizon forecasting exercises,
particularly for short rolling window sizes. For L = 252 and L = 504, non-pair-wise
correlation features have less importance in forecasting networks modeled using DAG and
DTN network filteringmethods. Considering DMST results, the importance of non-pair-wise
features rapidly increases, even for short h values. This behavior is different from DAG and
DTN. A possible explanation for this is the low persistence of trees, as shown in Fig. 6.
Thus, network features are able to add more information to the ML model when compared
to pair-wise correlation features.

5 Conclusion

In this article, we investigated stockmarket structure forecasting ofmultiple financialmarkets
using financial networks modeled using stock returns of major market indices constituents.
The stockmarket structure was modeled as networks, where nodes represent assets and edges
represent the relationship among them.Three correlation-basedfilteringmethodswere used to
create stock networks: Dynamic Asset Graphs (DAG), Dynamic Threshold Networks (DTN)
and Dynamic Minimal Spanning Tree (DMST). We formulated market structure forecasting
as a network link prediction problem, where we aim to accurately predict the edges that will
be present in future networks. We proposed and experimentally assessed a machine learning
model based on node- and link-based financial network features to forecast future market
structure.

We used data from company constituents of six different stock market indices from the
USA, the UK, India, Europe, Germany and Hong Kong markets, ranging from 1March 2005
to 18 December 2019. To assess the predictive performance of the model, we compared it
to seven link prediction benchmark algorithms. Experimental results showed the proposed
model was able to forecast the market structure with a performance superior to all benchmark
methods and for all market indices, regardless the network filter method. We also measured
the improvement against the Time-Invariant (TI) algorithm, which assumes that the network
does not change over time. Experimental results showed a greater improvement over the TI
in networks created using the DTN filtering method, reaching almost 40% improvement for
NASDAQ100. Our experimental results also suggested that topological network information
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is useful in forecasting stock market structure compared to pair-wise correlation measures,
particularly for long-horizon predictions.

As work limitations, we should emphasize that we only used assets that stayed in the
market index throughout the whole period, which limits the insertion and removal of nodes
in the networks. In addition, for networks with large number of nodes, the execution time
increased significantly, both for generating derived features and for training ML models.

Our results can be useful in the study of stock market dynamics and to improve portfolio
selection and risk management on a forward-looking basis and market structure estimation.
As future work, we plan to use the predicted stock market structure as input in portfolio and
risk management tools to evaluate its usefulness in risk management scenarios. Future work
also includes market structure forecasting using order book data for high-frequency trading
analysis and the study of different asset classes beyond equities.

Acknowledgements D.C. and A.C.P.L.F.C would like thank to CAPES, IFSULDEMINAS, Intel and CNPq
(Grant 202006/2018-2) for their support.

Author Contributions D.C. and T.T.P.S. developed the proposed model. D.C. and T.T.P.S. conceived and
designed the experiments. D.C. and T.T.P.S. prepared figures and tables, implemented and carried out the
experiments. All authors analyzed the results and wrote the manuscript. All authors reviewed the article.

Declarations

Conflict of interest The authors declare no competing financial interests.

References

1. Livan G, Inoue J-I, Scalas E (2012) On the non-stationarity of financial time series: impact on optimal
portfolio selection. J Stat Mech Theory Exp 2012(07):07025

2. Morales R, Matteo TD, Aste T (2013) Non-stationary multifractality in stock returns. Phys. A
392(24):6470–6483. https://doi.org/10.1016/j.physa.2013.08.037

3. Cont R (2005) Long range dependence in financial markets. In: Lévy-Véhel J, Lutton E (eds) Long range
dependence in financial markets. Springer, London, pp 159–179

4. Mantegna RN (1999) Hierarchical structure in financial markets. Eur Phys J B Condens Matter Complex
Syst 11(1):193–197. https://doi.org/10.1007/s100510050929

5. Tumminello M, Aste T, Di Matteo T, Mantegna RN (2005) A tool for filtering information in complex
systems. Proc Natl Acad Sci 102(30):10421–10426. https://doi.org/10.1073/pnas.0500298102

6. Iori G, Mantegna RN (2018) Chapter 11 empirical analyses of networks in finance. In: Hommes C,
LeBaron B (eds) Handbook of computational economics, vol 4. Elsevier, Amsterdam, pp 637–685
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