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Abstract
Class imbalance has been widely accepted as a significant factor that negatively impacts
a machine learning classifier’s performance. One of the techniques to avoid this problem
is to balance the data distribution by using sampling-based approaches, in which synthetic
data is generated using the probability distribution of the classes. However, this process
is sensitive to the presence of noise in the data, and the boundaries between the majority
class and the minority class are blurred. Such phenomena shift the algorithm’s decision
boundary away from the ideal outcome. In this work, we propose a hybrid framework for
two primary objectives. The first objective is to address class distribution imbalance by
synthetically increasing the data of a minority class, and the second objective is, to devise an
efficient noise reduction technique that improves the class balance algorithm. The proposed
framework focuses on removing noisy elements from the majority class, and by doing so,
provides more accurate information to the subsequent synthetic data generator algorithm. To
evaluate the effectiveness of our framework, we employ the geometric mean (G-mean) as the
evaluation metric. The experimental results show that our framework is capable of improving
the predictionG-mean for eight classifiers across eleven datasets. The range of improvements
varies from 7.78% on the Loan dataset to 67.45% on the Abalone19_vs_10-11-12-13 dataset.
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1 Introduction

Class imbalance is widely acknowledged as a significant factor that interferes with the effec-
tiveness of classificationmodels [1–3]. In an imbalanceddataset, the amount of data belonging
to a class (namely, the majority or negative class) significantly exceeds that of another class
(namely, the minority or positive class) [4, 5]. When data is distributed unevenly across
different classes, it becomes challenging for a classification model to accurately predict out-
comes for the minority classes [6]. This, in turn, usually results in various costs associated
with misclassified data. The challenging feature of imbalanced data is apparent in numer-
ous significant classification domains where the target variable predominantly belongs to
the minority class, including fraud detection [7, 8], enterprise credit evaluation [9], disease
diagnosis [10, 11], image recognition [12, 13], and failure prediction [14, 15]. With this type
of data, it becomes challenging to overcome the issue of class imbalance due to obstacles
in acquiring balanced data, such as cost, confidentiality, and effort [1], thus encouraging
researchers to develop different approaches aimed at mitigating the degradation of the clas-
sification model performance caused by class imbalance.

Over the past few decades, numerous approaches have been proposed to address the class
imbalance problem. These methods are typically classified into three primary categories:
(i) sampling-based approaches, (ii) algorithm-based approaches, and (iii) cost-sensitive
approaches [3, 5]. Sampling-based approaches involve a preprocessing stage aimed at
balancing the class distribution. The purpose of algorithm-based approaches is to adjust
classification algorithms, allowing them to address the imbalance issue by favoring the dis-
crimination process toward the minority class. Finally, cost-sensitive approaches integrate
strategies in both the sampling-based approach and algorithm-level approach, allowing for
varying costs associated with various misclassification categories, and assigning higher costs
for misclassifying the minority class. The most extensively studied category of solutions is
the sampling-based approach due to its easy implementation [2, 3, 16]. In particular, this
approach aims to preprocess data by balancing the distribution between the majority and
minority classes. Subsequently, the balanced dataset can be utilized as input for any tradi-
tional classification method.

Sampling-based approaches can be divided into three categories: oversampling, under-
sampling, and hybrid methods that combine both approaches. Undersampling methods aim
to achieve a balanced class distribution by reducing the data of the majority class. On the
other hand, oversampling methods generate new data that resembles those of the minority
class [17]. However, these methods have their drawbacks, as they involve artificially altering
the initial class distribution. For example, undersampling may remove valuable data, leading
to information loss and possibly increasing the classifier’s variance. In contrast, oversam-
pling creates synthetic data to expand the dataset, which increases the risk of overfitting
and places a greater computational load on any learning model [18, 19]. Although oversam-
pling and undersampling demonstrate comparable effectiveness when applied to moderately
imbalanced data, oversampling is more commonly utilized than undersampling [20]. One of
the reasons is that oversampling outperforms undersampling when the data is significantly
imbalanced data [21, 22].

Combining undersampling and oversampling methods enables the effective utilization of
datasets with extremely imbalanced cases [23, 24]. By employing combination sampling
methods, the drawbacks of undersampling, especially when dealing with a small amount of
minority class data, can be mitigated. In noteworthy research conducted by [25], a synthetic
oversampling framework known as SWIM (sampling with the majority class) was intro-
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duced. The SWIM framework has proven to be effective in handling extremely imbalanced
problems. Based on our previous study [26], combining SWIMwith undersamplingmethods,
such as TomekLinks and edited nearest neighbors (ENN), shows superiority in improving
the classification performance on imbalanced cases with overlapped classes. However, an
adequate study addressing the issue arising from noisy data is still needed.

The presence of noise is another significant issue that typically accompanies imbalanced
data classification, leading to a substantial decrease in the classifier performance [6]. The
presence of noise poses a notable issue when the features of the majority data overlap with
those of the minority data, causing disruptions in the formation of decision boundaries [27].
Detecting the possible noise data and then eliminating those data from the majority class is
a crucial step. A study by [28] demonstrated an improvement of SMOTE by addressing the
noisy and borderline examples problem in imbalance classification. Therefore, these results
have inspired us to modify the SWIM framework by integrating a procedure to detect and
remove possibly noisy data from themajority class. The noise reduction stepwill lead tomore
precise majority class features for the SWIM framework to generate a precise representation
of the synthetic minority data.

Clustering algorithms can be applied for the detection of noise in data due to their likeli-
hood of producing "byproducts" that are commonly known as outliers. Moreover, utilizing
clustering for noise data detection is more straightforward and intuitive [29]. Therefore, we
utilized a density-based method, that is, the density-based spatial clustering of applications
with noise (DBSCAN) algorithm, for identifying possibly noisy data. This algorithm iden-
tifies points in regions with low density as noise data [30] and is widely adopted in various
applications because it does not require a predefined number of clusters, is insensitive to
noise, and can handle high-dimensional data while disregarding the shape and size of the
data [31–34].

The significant contributions of this study are outlined as follows:

1. We propose a hybrid sampling framework named noise-free sampling with majority that
addresses the challenges arising from imbalanced class and noise data simultaneously.
By utilizing DBSCAN, our proposed framework is able to identify potentially noisy data
and eliminate them from the majority class, enhancing the accuracy of the features used
to generate synthetic data for the minority class.

2. We conduct an extensive analysis of the proposed framework. For this evaluation, we
employ eleven datasets with diverse imbalance ratios to ensure unbiased evaluation
results. Moreover, to demonstrate the effectiveness of our proposed framework across
various classifiers, we utilized eight generally recognized classifiers in the evaluation
process.

The remainder of this paper is organized as follows. Section2 describes related work.
Section3 defines the proposed methodology. Section4 explains the experimental datasets
and experimental setup. The results and discussion of applying the proposed methodology
are presented in Sect. 5. Finally, Sect. 6 concludes the overall results.

2 Related work

The majority of machine learning algorithms perform optimally when applied to datasets
with balanced class distributions. Nonetheless, real-world applications often involve data
that exhibit unequal class distributions, also known as imbalanced data. This imbalance
raises challenges in machine learning, particularly when dealing with minority classes and it
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can lead to bias during training and reduced accuracy during testing. Consequently, numer-
ous researchers are dedicated to finding solutions to address this issue. Sampling-based
approaches represent a methodology for addressing imbalanced data distributions by adjust-
ing the original class frequencies through data addition or removal. To address imbalanced
data problems, three main categories are commonly employed: oversampling, undersam-
pling, and hybrid methods combining both oversampling and undersampling.

A popular technique within oversampling methods is the synthetic minority oversampling
technique (SMOTE) [35], which generates new data by randomly interpolating existing pairs
of nearest neighbors. However, SMOTE solely prioritizes the minority class and neglects the
majority class. Consequently, this could compromise the performance, as the generated data
may deviate significantly from that of the minority class [25]. Several variations of SMOTE
have been proposed to improve the algorithm’s performance, including Borderline-SMOTE
[36]. However, the issue of SMOTE remains to be solved.

TomekLinks, a widely used undersampling method, identifies all nearest neighbors
between overlapping classes and removes data from the majority class that are close to
those in the minority class [37]. Another commonly applied undersampling method is the
edited nearest neighbor (ENN) method [38]. The ENN method eliminates data from the
majority class that exhibit different predictions from those of the majority class when using
the k-nearest neighbors (kNN) method.

Achieving a more balanced distribution can be accomplished through either oversam-
pling or undersampling independently. However, each method has limitations when used
separately. In oversampling methods, data from the minority class is often duplicated, lead-
ing to the introduction of redundant information and resulting in overfitting. On the other
hand, undersampling methods require removing data from the majority class, leading to
the loss of valuable information from the original data. To address these issues effectively, a
combination of both strategies has been found to be more successful. A study by [39] demon-
strates that the combination of SMOTE with TomekLinks and SMOTE with ENN provides
excellent results, particularly for highly imbalanced datasets with few minority examples.
Moreover, Sasada et al. [40] integrated two resampling methods, known as SMOTEENN and
SMOTETomek, to solve imbalanced datasets by considering noise and overlap. The results
demonstrate the effectiveness of the approach in comparison with that of traditional methods.

Another significant challenge commonly associated with imbalanced data classification
is the existence of noise, which has the potential to significantly degrade the performance
of a classifier. Noisy data in a dataset is identified by their differentiation from the rest
of the data, as they do not align with the general patterns found within the dataset [41].
As a result, accounting for noise data could lead to incorrect conclusions. In datasets with
imbalanced classes, noisy data contributes to overlap scenarios and potentially increase the
class imbalance ratio, while discarding them could result in a significant loss of information
[42].

Various studies have been proposed to solve the noise problem in a given dataset. Fang
et al. [43] introduced a clustering algorithm-based approach to detect and eliminate noise
from air pollutant data gathered through mobile portable sensors. They tested and com-
pared six clustering algorithms to determine which was the most suitable. These algorithms
include the simple K-means, hierarchical clustering, cascading K-means, X-means, expecta-
tion maximization, and self-organizing map. The results of the experiment showed that the
expectation maximization and cascading and simple K-means algorithms yielded the most
effective results. Hao et al. [29] used classical DBSCAN to cluster the data and remove the
noise. The results indicated that removing the noise using DBSCAN is significantly efficient
for improving the classification performance.
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As mentioned in Sect. 1, the state-of-the-art oversampling framework, namely, SWIM,
generates synthetic samples regarding the information of the majority class and has demon-
strated its effectiveness in managing highly imbalanced problems. Our previous study
demonstrated that enhancing the representation of the majority class by utilizing under-
sampling techniques to remove overlapping data results in a better generation of synthetic
data in the SWIM framework and leads to subsequent improvement in the classification
performance [26]. However, the problem arising from noisy data remains to be solved and
needs to be addressed. Motivated by this problem, we proposed an integrated framework that
improves the synthetic generation process of SWIM by incorporating a mechanism to iden-
tify and eliminate potential noise within the majority class. Detecting and eliminating noise
in the majority class leads to more precise features for the SWIM framework to generate a
better representation of the synthetic data. As a result, our framework is particularly efficient
for classification tasks where there is limited data in the minority class and there is possibly
noisy data in the majority class.

3 Noise-free sampling withmajority (NF-SWIM) framework

In this section, we introduce a hybrid framework to improve the synthetic data generation
process of SWIM by adding a mechanism to eliminate the noise data in the majority class.
While our previous study focused on removing overlapping data between the classes using
undersampling methods [26], this study highlights noise detection methods and eliminates
noisy data to provide a noise-free majority class and improve the quality of the synthetic data
generation process. Identifying and removing noise data from themajority class enhances the
accuracy of the features used by the SWIM framework, leading to an improved representation
of the synthetic data. We refer to this hybrid framework as noise-free sampling with majority
(NF-SWIM).

Figure1 illustrates the workflow of the proposed framework. There are two main compo-
nents in the NF-SWIM framework: noise reduction for the majority class and synthetic data
generation for the minority class to obtain a balanced dataset. We modified and improved
the SWIM framework by integrating a process to reduce the noisy data in the majority class.
The SWIM framework uses the distributional information of the majority class to generate
synthetic data for the minority class. Therefore, the quality of the majority class plays an

Fig. 1 Workflowof theNF-SWIMframework. There are twomain components of this framework: (i) removing
the noisy data in the majority class and (ii) generating synthetic data for the minority class to obtain a balanced
training set
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Fig. 2 Illustration of DBSCAN. a A cluster of a dataset. b A core object. c A border point. d Cluster-density
reachable objects and noise points. Points with four-pointed red dots represent core points. Points with blue
outlined circles represent ε-neighborhoods of corresponding core points. Points with yellow dots represent
border points. Points with blue dots represent noise points

important role in generating synthetic data. By integrating this noise reduction step, we can
provide the SWIM framework with more accurate features of the majority class, allowing for
a more precise generation of synthetic minority data. The noise reduction component used in
our study is introduced in Sect. 3.1. Then, the concept of the synthetic data generation com-
ponent is described in Sect. 3.2. Finally, an explanation of howNF-SWIMworks is presented
in Sect. 3.3.

3.1 Noise reduction component

In this section, we explain the noise reduction component of NF-SWIM. This component
removes the noisy data from the majority class and improves the SWIM framework in terms
of generating more accurate synthetic data. In this study, we applied the DBSCAN clustering
algorithm to detect the noisy data in the majority class. DBSCAN clusters the data from the
majority class and obtains the cluster label. Data with low cluster density will be labeled as
noise and eliminated from the majority class.

DBSCAN, awidely recognized clustering algorithm, is capable of identifying clusterswith
arbitrary shapes and does not rely on a predefined number of clusters [44]. This algorithm
can identify noise as points with low cluster-density areas [30] and works based on two input
parameters, epsilon (ε) and the minimum sample points (minPts) [32–34]. ε determines the
radius of the neighborhood surrounding each data point, andminPts represents theminimum
number of points within ε.

Given a dataset of n points D = {x1, x2, . . . , xn}, where xi = {xi1, xi2, . . . , xid} for
1 ≤ i ≤ n is a vectorwithd dimensions, theDBSCANalgorithmdefines distinct relationships
between any two different points as follows.

1. Directly cluster-density reachable. A point p is directly cluster-density reachable from
a point q if it lies within an ε distance from the core point p. The values of the distance
function vary when using various distance metrics, such as the Manhattan distance or
Euclidean distance.

2. Cluster-density reachable. A point p is cluster-density reachable to a point q with respect
to ε and minPts, if there is a sequence of points p1, . . . , pn , and p1 = q, pn = p, such
that pi+1 is directly cluster-density reachable from pi with respect to ε and minPts, for
1 ≤ i ≤ n − 1, pi ∈ D (see Fig. 2 points with red four-pointed dots).

Based on the relationshipsmentioned above, DBSCAN classifies all points into three cate-
gories, i.e., core points, border points, and noise points. These point categories are illustrated
in Fig. 2.
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1. Core point. If the number of points directly cluster density reachable from point p is
greater than minPts within the ε-neighborhood, point p is classified as a core point
(refer to Fig. 2(b), point with red four-pointed dots).

2. Border point. If the number of points within the ε-neighborhood of point p is less than
or equal to minPts and p is directly cluster-density reachable from a core point, then p
is categorized as a border point (refer to Fig. 2c, point with yellow dots).

3. Noise point. If a point p is neither a core point nor a border point, then p is a noise point
(refer to Fig. 2d, point with blue dots).

The DBSCAN process begins by selecting an unvisited starting point and calculating its
cluster density, representing the number of points in its ε-neighborhood [45]. If the point
qualifies as a core point, DBSCAN labels it as a new cluster and includes all points that
are cluster-density reachable to it, labeling them with the same cluster label. Otherwise, the
selected point is labeled as a noise point. For a point that has not been labeled, it undergoes
a neighborhood function to receive a label with the following properties: (i) Neighborhood
functions are executed solely for points labeled as unde f ined . (ii) When a neighborhood
function is conducted on a point, it is subsequently labeled either as a cluster label or noise.
(iii) The point is relabeled only when its label changes from noise to a cluster label. Con-
sequently, DBSCAN iteratively gathers point cluster density reachable from core points,
continuing until no new point can be added to any cluster. DBSCAN examines the dataset
only once and computes the distance between any pair of objects in the dataset.

3.2 Sampling with themajority class (SWIM)

In this section, we explain how we integrated SWIM into our framework. The SWIM frame-
work is known for utilizing the density of each minority class data in relation to the majority
class distribution to determine the location for generating synthetic data [25]. However, in
scenarios where there is considerable noisy data in the majority class and overlap between
classes, the SWIM framework will introducemisleading information about the majority class
distribution and generate a poor representation of synthetic data for the minority class. As a
result, classifiers built with SWIM data may underperform in domains where the noisy data
and overlap problems are prevalent. However, we expect that our noise reduction component
can overcome these problems.

The principal components of SWIM are density estimation and shift procedures. Any
appropriate technique for estimating density can be used. The SWIM framework can be
implemented using theMahalanobis distance (SWIM-MD) and radial basis function (SWIM-
RBF) [25]. In this study,we focused on improvingSWIM-MDwhich has less time complexity
than SWIM-RBF when it is applied to a dataset. The SWIM framework effectively employs
the Mahalanobis distance (MD) to calculate the distance between the mean of the majority
class distribution and a minority class seed point while considering the density along the path
connecting them. Accordingly, points lying on the same hyperelliptical density contour will
have an equal MD from the mean. This differs from the concept of the Euclidean distance,
where the distance is mainly the straight-line distance between two points in Euclidean space.
The MD accounts for the correlations within the dataset, which is crucial when the variables
are correlated. In scenarios where the variables are correlated, the Euclidean distance may
not provide an accurate representation of the actual distance between observations. Figure 3
shows an illustration of the Mahalanobis distance between two points p and q from the
mean. Within the SWIM framework, any point in the nearby regions of the data space with
the same MD as a minority seed can be sampled as synthetic minority training data. The
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Fig. 3 Illustration of the Mahalanobis distance between two points p and q from the mean. Both points have
the same Mahalanobis distance

MD calculation requires the known mean μ and covariance matrix � of the distribution. In
practice, these parameters are estimated using μ̄ and �̄ of a sample population.

The process of the SWIM framework usingMD is described in lines 5–14 of Algorithm 1.
Line 5 includes the application of preprocessing measures to streamline both data generation
and μ̄ and �̄ estimation from the majority class examples. The steps of this process are as
follows.

1. Center the majority and minority classes: Let μ− be the feature mean vector of the
majority class. Initially, the majority class is adjusted to have a 0mean and subsequently
aligns the minority class with the mean vector of the majority class.

D−
c = D− − 0

D+
c = D+ − μ− (1)

2. Whiten theminority class: Let� denote the estimated covariancematrix of D−
c , and�−1

denote its inverse. �− 1
2 is the square root of �−1. The center minority class is whitened

as follows:

D+
w = D+

c �− 1
2 . (2)

In the whitened space of a distribution, the MD is analogous to the Euclidian distance.
3. Find the feature limits: Feature limits are employed to limit the dispersion of the synthetic

samples. Find the mean μ f and standard deviation σ f for each feature f in D+
w . Then,

calculate its upper and lower limits.

u f = μ f + ασ f

l f = μ f − ασ f
(3)

α ∈ R regulates the number of standard deviations for the limits.

Then, the process described in lines 8-13 of Algorithm 1 is iterated until the desired number
of synthetic samples is generated, and in practice, these lines are repeated until a balanced
class distribution is achieved. During each iteration, a minority staple di is randomly chosen
and the shift procedure is employed to generate synthetic data. The shifting procedure for
SWIM is described as follows.

1. Generate a new sample. A random number is generated for each feature f between u f

and l f . Accordingly, a sample point d ′
i is obtained in the whitened space, where each

feature d ′
i, f is l f ≤ d ′

i, f ≤ u f . A sample is generated at the same Euclidean distance
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from the mean of the majority class. As a result of centering the data, the new sample
will have an identical Euclidian norm to that of the minority seed di .

dnormi = d ′
i
||di ||2
||d ′

i ||2
(4)

2. Return the scaled sample to its original space.

d ′′
i = (�− 1

2 )−1dnormi (5)

The synthetic sample d ′′
i will be located in the same density contour as its corresponding

minority seed data di .

Algorithm 1 NF-SWIM
Input:

D+: original minority class training set
D−: original majority class training set
n+: the number of minority class data
ε: radius of cluster
minPts: density threshold, the minimum number of samples for a cluster
dist : distance function

Output:
D′: balanced training set

/* NF-SWIM sampling method */
1: label ← GetCluster Label(D−, ε,minPts, dist) //DBSCAN Algorithm
2: D−

0 ← D− with label = Noise

3: D−
1 ← D−\D−

0
4: n−

1 ← the number of data in D−
1

5: Estimate a density function P̂D−
1
from D−

1

6: n ← n−
1 − n+ // Number of samples to generate

7: k = 1
8: while k ≤ n do
9: d ← select a random data from D+ set
10: p ← P̂D−

1
(d) // Get the density of d with the center density function of D−

1

11: d ′ ← shi f t(d, p) // Shift d to neighboring region with density p
12: D+

new ← d ′ ∪ D+
13: k = k + 1
14: end while
15: return D′ ← D+

new ∪ D−
1

3.3 Implementation of NF-SWIM

In this section,we explain howweused our noise reduction technique to improve the quality of
synthetic data generation from SWIM. As previously mentioned, the performance of SWIM
is degraded when there are noisy data and overlapping classes. As mentioned in Sect. 3, the
framework has two main components: the first component is responsible for removing noise
data, and the second component is responsible for the synthetic data generation process. The
process of the framework is described in Algorithm 1.

The first part of the framework (lines 1–6) is responsible for removing noise. First,
DBSCAN is used to detect noisy data in the majority class D− (line 1). The function
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GetCluster Label is called using the DBSCANmethod to discover noisy data in the major-
ity class regions, characterized by low cluster-density data. The data points that are believed
to contain noise are labeled and added to a group named D0 (line 2). We then subtract D−

0
from D−, resulting in a noise-free group named D−

1 (line 3). The variable that holds the
length of the majority class is updated (line 4). We use SWIM to estimate the probability
density function (PDF) P̂D−

1
from D−

1 (line 5) to capture the distributional characteristics of

the noise-free majority class. The process of estimating the PDF P̂D−
1
is inspired by using

the MD of the SWIM framework and described in detail in Sect. 3.1. The process starts by
estimating μ̄ and �̄ from D−

1 . μ̄ is estimated by calculating the feature mean vector of D−
1 .

Then, D−
1 is centered to have a 0 mean, as shown in equation 1, resulting in D−

c . The �̄ is
then estimated by calculating the covariance matrix of D−

c . After estimating the parameters
of P̂D−

1
, we calculate the number of samples to be generated n (line 6).

After the majority class is noise-free, our framework proceeds to the next step, which is
to iteratively generate data for the minority class (lines 8–14). First, we select a random data
point from the minority class d . Then, the algorithm estimates the PDF of the selected data
point and stores it in p with the center of the density vector of D−

1 . The process of estimating
the PDF of d begins by aligning with the mean vector of D−

1 using the Eq.1. Then, the center
of d is whitened, as described in Eq.2, by using the estimated covariance matrix of D−

c .
After that, the algorithm shifts the selected point d to the neighboring region with density p,
resulting in a shifted point d ′. The inspiration for the shifting procedure is comprehensively
explained in Sect. 3.1. The generated point d ′ is then inserted into the minority class. This
process is repeated until both classes are balanced.

4 Experimental setup

An extensive study was carried out to evaluate the effectiveness of the proposed NF-SWIM
framework. First, we introduce the dataset used in the experiment in Sect. 4.1. Then, we
describe the data preprocessing step before employing the proposed method in Sect. 4.2. The
evaluation metrics for this experiment are defined in Sect. 4.3. The parameter settings used
in this experiment are described in Sect. 4.4. Finally, the technical specifications used in this
experiment are presented in Sect. 4.5.

4.1 Dataset

In this experiment, we test the NF-SWIM framework on a real-case imbalanced dataset,
which is available online.1 The real-case dataset is obtained from the Landing Club company
and primarily focuses on the variable determining loan defaults. This imbalanced dataset
contains recorded transaction data from 2007 to 2015. We also used ten benchmark datasets
from the KEEL repository [46] with highly imbalanced cases that are commonly used in
other studies [25, 26]. These datasets are selected to test the generalizability of the proposed
framework and compare with other sampling-based methods.

Table 1 describes the summary of the datasets, including Nins denoting the total number
of data, Nvar representing the number of variables, and I R, denoting the imbalance ratio,
which is the ratio of minority data to the total of data. A low IR means that a particular class
is represented much less than others in the dataset, leading to an imbalanced dataset. An IR

1 https://github.com/sarathi-tech/lending-club
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Table 1 Summary of the datasets Dataset Nins Nvar I R degOver

Loan data 9578 14 0.16 0.61

Abalone19_vs._10-11-12-13 1622 8 0.02 0.41

Abalone20_vs._8-9-10 1916 8 0.01 0.04

Abalone19 4174 8 0.01 0.07

Abalone9-18 731 8 0.06 0.41

Winequality-red-3_vs_5 691 11 0.01 0.04

Winequality-white-3-9_vs._5 1482 11 0.02 0.06

Yeast-0-5-6-7-9_vs._4 528 8 0.10 0.19

Yeast-1_vs._7 459 7 0.07 0.15

Yeast-1-2-8-9_vs._7 947 8 0.03 0.07

Yeast-1-4-5-8_vs._7 693 8 0.04 0.10

close to zero indicates a highly imbalanced dataset. The overlap ratio, calculated using the
degOver formulation, measures the overlap of data of both classes relative to the total data
in the data space [47]. A larger degOver value signifies a greater overlapping area. These
datasets exhibit varying imbalance ratios, ranging from 0.01 to 0.16, and overlap ratios that
span from 0.04 to 0.61.

4.2 Data preprocessing

Prior to using the NF-SWIM framework, a preprocessing step is employed. The sampling-
based method and several classification methods, such as kNN and QDA, rely on distance
metrics. Consequently, these methods cannot process string-based categorical variables, and
these variables must be converted into numerical values. Therefore, we transform all the
categorical variables into binary variables using one-hot encoding. Additionally, since the
numeric variables have a distinct measurement scale, it is necessary to normalize the vari-
ables to ensure a uniform measurement scale, which is achieved by individually scaling and
transforming each variable to fall within the range[0,1] using min-max scaling [48].

4.3 Evaluationmetric

The geometric mean (G-mean) provides a unified value that effectively evaluates both the
majority and minority classes together and it surpasses traditional metrics in performance
[49]. The G-mean accurately captures the level of inductive bias by precisely assessing the
qualities of the majority and minority classes. To compute the G-mean for a classification
model, one must consider the accuracy on the target positive class and the accuracy on the
negative class. The formula for calculating the G-mean is as follows:

G-mean =
√

T P

T P + FN
× T N

T N + FP
. (6)

T P (true positive) refers to a scenario where the model makes a correct prediction of the
positive class. Correspondingly, T N (true negative) is an outcome in which the model accu-
rately predicts the negative class. On the other hand, FP (false-positive) occurs when the
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Fig. 4 Example of a k-distance graph for theAbalone9-18 datasetwhen k = 5.The optimum ε is approximately
0.1 with minPts = 5

model incorrectly predicts the positive class, and FN (false-negative) arises when the model
makes an incorrect prediction of the negative class.

4.4 Determining the parameters

The DBSCAN performance relies on two parameter values that must be carefully chosen
to conform to the input dataset, the minimum sample points (minPts) and epsilon (ε).
The number, shape, and size of the identified clusters are significantly influenced by the
two parameter values. It is essential to note that minPts depends on ε, as it represents the
minimum number of observations expected within a given distance around each point. In
this study, we apply a heuristic method to determine the appropriate input parameters for
DBSCAN. However, determining the two parameters is a challenging task. Higher minPts
values resulted in increased fragmentation since small features with a number of points below
minPts are considered noise. On the other hand, lower minPts values lead to excessive
connectivity between clusters and a high number of detected small features [50]. It is common
to select the minPts parameter empirically based on the specific dataset under investigation
[51].

In general, selecting smaller values for the ε parameter is often preferred. One heuristic
method to determine the appropriate ε value is based on the distances within the dataset. To
achieve this, the k-distance graph is utilized [52]. Specifically, we calculate the mean of the
distances between each point and its k nearest neighbors, where k corresponds to minPts.
By plotting these k-distances in ascending order, we observe a distinct point known as a
“knee” or “valley.” The value of this knee point represents the optimal ε parameter. In this
study, we set the minPts value to 5. Then, we use the minPts value as k for the k-distance
graph to obtain the optimum ε in each dataset. Figure4 shows an example of the k-distance
graph on the Abalone9-18 dataset when k = 5. In the graph, we can approximate that the
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Table 2 Summary of optimum ε Dataset Optimum ε

Loan Data 0.35

Abalone19_vs_10-11-12-13 0.125

Abalone20_vs_8-9-10 0.1

Abalone19 0.175

Abalone9-18 0.1

Winequality-red-3_vs_5 0.3

Winequality-white-3-9_vs_5 0.25

Yeast-0-5-6-7-9_vs_4 0.2

Yeast-1_vs_7 0.2

Yeast-1-2-8-9_vs_7 0.9

Yeast-1-4-5-8_vs_7 0.25

Table 3 Hyperparameters of the
classifiers

Classifiers Hyperparameter

k-Nearest neighbors n_neighbors = 3; weight = uniform;
leaf_size = 30; p = 2; metric =
minkwoski

SVC with linear kernel C = 0.025

SVC with RBF kernel C = 2; gamma = 1/(n=feature *
X.var())

Random forest n_estimators = 4; max_dept
= 5; min_sample_split =
2; min_sample_leaf = 1;
min_weight_fraction_leaf = 0;
max_features = 5

MLP hidden_layer_sizes =100; alpha=0.1;
batch_size = min(200, n_samples);
learning_rate_init = 0.001; power_t =
0.5; max_iter = 200; tolerance = 1e-4;
momentum = 0.9; validation_fraction
= 0.1; beta_1 = 0.9; beta_2 = 0.999;
epsilon = 1e-8; n_iter_no_change =
10; max_fun = 15000

AdaBoost n_estimators = 50; learning_rate = 1.0

Naive Bayes var_smoothing = 1e-9

QDA -

optimum ε is 0.1 when minPts equal to 5. Table 2 shows the summary of the optimum ε of
the eleven datasets after examining the knee point of each k-distance graph when k = 5.

In this experiment, we assess the classification performance on a sampling-based method
training set using eight different classifiers. These classifiers are the k-nearest neighbor
(kNN), support vector classification (SVC) with both linear and radial basis function (RBF)
kernels, random forest, multilayer perceptron (MLP), AdaBoost, naive Bayes classifier, and
quadratic discriminant analysis (QDA). The hyperparameters of the classifiers used in this
study are initially tuned on the Abalone19 dataset. Subsequently, the same hyperparameters
are applied across all datasets, as described in Table 3. It is important to note that we do
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not anticipate these hyperparameters to significantly influence our results, as our primary
focus is on the preprocessing step. This involves developing a method for balancing the class
distribution and testing the balanced data with the original model, rather than optimizing the
classifier performance through hyperparameter tuning.

4.5 Technical specifications

The experiment is performed on an Intel Core i9-990K CPU, equipped with 64 GB of RAM.
The operating system used is Linux Mint 21.2 “Victoria,” chosen for its wide community
support and stability. We utilize Python 3.10 as the programming language. Additionally, the
libraries used for this experiment are Pandas 2.1.0 [53], Numpy 1.25 [54], Scipy 1.11.2 [55],
Matplotlib 3.6.0 [56], scikit-learn 1.3.0 [57], and imbalanced-learn (imblearn) 0.11.0 library
from scikit-learn [58].

5 Results and discussion

In this section, we conduct a comprehensive evaluation of the proposed framework to analyze
the efficiency and effectiveness of solving the imbalanced class problem in the presence of
noisy data in the majority class. We compare the performance of NF-SWIM with that of
other sampling-based methods. Table 4 shows a summary of other sampling-based methods
and their categories.

To validate the improvement in classifier performance for imbalanced datasets, achieved
through sampling-based approaches, we compare the classification results derived from orig-
inal imbalanced datasets against those from balanced datasets generated by sampling-based
methods. To enhance readability and facilitate understanding, in this study, we use the term
"baseline" to refer to the classification results obtained from the original imbalanced data.
Additionally, to ensure a robust evaluation, the datasets are divided into training and testing

Table 4 Sampling-based methods for the comparison analysis

Method Category

Oversampling Undersampling Hybrid

SMOTE [35] �
ADASYN [59] �
BL-SMOTE [60] �
SWIM-MD [25] �
SWIM-RBF [25] �
NearMiss [61] �
ENN [38] �
TomekLinks [37] �
Neighborhood Cleaning Rule (NCR) [62] �
SMOTEENN [39] �
SMOTETomek [39] �
Tomek-SWIM [26] �
ENN-SWIM [26] �
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data using fivefold cross-validation, which helps assess the model performance, reduce over-
fitting, and provide a more reliable estimate of how well a model is likely to generalize to
new, unseen data. Subsequently, we computed the average of the evaluation metrics for each
run.

The NF-SWIM performance evaluation on a loan dataset and ten benchmark datasets is
first presented in Sect. 5.1. Then, a discussion on the capability of noise reduction components
compared to that of undersamplingmethodswithin themajority class to improve the synthetic
data generation process is described in Sect. 5.2. The evaluation of the effect of detected
noise using NF-SWIM on the majority class is discussed in Sect. 5.3. The significance tests
of the NF-SWIM performance against that of other sampling-based methods are presented
in Sect. 5.4. The effect of the data distribution on the performance of NF-SWIM is evaluated
in Sect. 5.5. Then, the effect of changing the hyperparameters of NF-SWIM on the variation
in the classification performance is discussed in Sect. 5.6. Finally, the impact of utilizing the
proposed NF-SWIM on the selective training partition is discussed in Sect. 5.7.

5.1 NF-SWIM performance evaluation

We test the proposed NF-SWIM on imbalanced datasets with various imbalanced ratios
and overlapping issues. The experiment aims to verify the performance of the proposed
NF-SWIM framework and validate the impact of removing noise from the majority class
training set on the synthetic data generation process. For the analysis, the loan and KEEL
datasets were evaluated independently. The loan data evaluation is described in Sect. 5.1.1.
The performance ofNF-SWIMon theKEELbenchmark datasetswas evaluated and described
in Sect. 5.1.2.

5.1.1 Performance evaluation with the loan dataset

In this section, we evaluate the performance of NF-SWIM against that of other sampling-
based methods on a real imbalance problem. The loan dataset is evaluated to test the
performance of NF-SWIM in terms of improving the classification of an actual imbalanced
case, specifically in a case on the determination of loan default transactions. Table 5 shows
the percentage average and the standard deviation G-mean of the results for all sampling-
based methods across different classifiers. The highest percentage of the average G-mean for
each classifier is shown in bold, while the second-best percentage of the average G-mean is
underlined. Moreover, the highest percentage of the average G-mean across eight classifiers
and all sampling-based methods is shown in bold with asterisk(*).

Compared to the performance of the baseline, the performance of all classifiers is sig-
nificantly improved by implementing the sampling-based method to rebalance the class
distribution, as shown by the increase in the percentage average of theG-mean after balancing
the class distribution. Moreover, the standard deviation of the G-mean for each sampling-
based method is relatively small, indicating low variability among the balanced training set
across all five folds.

Furthermore, we evaluated the performance of each sampling-based method with respect
to each classifier. According to the optimal G-mean pairing between each sampling-based
technique and the classifier in Table 5, the proposed NF-SWIM outperforms existing
sampling-based methods. NF-SWIM achieves the highest G-mean percentage compared to
the other sampling-based techniques across all classifiers, shown in bold with asterisk num-
bers. This result shows that the proposed NF-SWIM is able to simultaneously remove noise
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Table 5 Percentage average and standard deviation of G-mean on the loan dataset

Method Classifier

KNN SVC
Linear

SVC RBF Random
forest

MLP AdaBoost Naive bayes QDA

Avg Avg Avg Avg Avg Avg Avg Avg
(Std.) (Std.) (Std.) (Std.) (Std.) (Std.) (Std.) (Std.)

Baseline 31.14% 0.00% 21.28% 8.46% 12.16% 18.24% 52.39% 47.85%

(0.02) (0.) (0.02) (0.05) (0.03) (0.02) (0.02) (0.02)

SMOTE 54.34% 57.11% 51.98% 58.34% 60.41% 50.34% 59.89% 58.54%

(0.02) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02)

ADASYN 54.55% 57.16% 51.32% 57.68% 59.62% 47.26% 59.83% 59.28%

(0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02)

BL-SMOTE 53.77% 57.12% 50.08% 58.50% 60.03% 51.73% 60.57% 58.30%

(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.02)

NearMiss 54.59% 50.48% 52.09% 51.84% 52.83% 51.94% 54.61% 0.50%

(0.01) (0.01) (0.01) (0.03) (0.02) (0.01) (0.02) (0.01)

ENN 50.30% 0.00% 48.38% 38.85% 46.27% 46.46% 58.84% 56.75%

(0.01) (0.) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02)

Tomek 36.34% 0.00% 26.10% 7.58% 14.83% 23.13% 53.01% 49.39%

(0.04) (0.) (0.01) (0.05) (0.01) (0.03) (0.03) (0.02)

NCR 51.74% 0.00% 46.83% 33.82% 44.75% 44.28% 57.25% 55.64%

(0.01) (0.) (0.03) (0.05) (0.06) (0.02) (0.02) (0.02)

SMOTEENN 56.54% 50.31% 55.99% 54.04% 56.43% 60.46% 60.82% 60.49%

(0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

SMOTETomek 54.52% 57.33% 52.48% 58.82% 60.66% 49.14% 60.45% 58.44%

(0.01) (0.02) (0.01) (0.02) (0.02) (0.04) (0.02) (0.02)

SWIM-MD 58.87% 58.69% 58.53% 58.99% 58.81% 58.70% 58.68% 58.87%

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

SWIM-RBF 58.06% 58.21% 58.30% 57.91% 58.23% 58.47% 58.25% 57.48%

(0.02) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

Tomek-SWIM 53.49% 57.73% 53.55% 59.48% 62.84% 61.70% 59.72% 58.45%

(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03) (0.02)

ENN-SWIM 56.78% 58.62% 58.58% 59.84% 62.56% 61.88% 60.41% 59.52%

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.) (0.01)

NF-SWIM 58.09% 58.72% 57.94% 60.38% 62.99%* 61.57% 60.17% 58.99%

(0.02) (0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

The values presented in the table represent the percentage of the average G-mean along with its corresponding
standard deviation (in the bracket) obtained from fivefold cross-validation. The bold numbers represent the
highest percentage of the averageG-mean for each classifier, while the italic numbers represent the second-best
percentage of the average G-mean. The bold with * number represents the highest percentage of the average
G-mean across eight classifiers and all sampling-based methods

from the majority class and generate a precise representation of synthetic data for the minor-
ity class for the real loan dataset, subsequently improving the classification performance, as
demonstrated by the superior average G-mean percentage of 62.99%.
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In a comprehensive manner, the SWIM-MD oversampling method achieved the highest
percentage average G-mean with the kNN classifiers. The hybrid method, SMOTEENN,
achieves the best percentage average G-mean with the naive Bayes and QDA classifiers.
The ENN-SWIM method yields the highest percentage average G-mean with the SVC RBF
kernel andAdaBoost classifiers. Furthermore, the proposedNF-SWIMoutperforms the other
sampling-based methods with three of eight classifiers, namely, SVC linear kernel, random
forest, and MLP classifiers.

Upon analyzing to determine the most effective sampling-based method, as indicated by
the highest average G-mean, further examination reveals the second-best outcomes noted
by the underlined numbers in Table 5. Specifically, BL-SMOTE gave a good result perfor-
mance with the naive Bayes classifier, ranking as the second-best method. In the context
of SVC classifiers employing both Linear and RBF kernels, SWIM-MD demonstrated com-
mendable efficacy. Additionally, Tomek-SWIMand ENN-SWIMemerged as the second-best
methods for the MLP and AdaBoost classifiers, and the KNN, random forest, and QDA clas-
sifiers, respectively. Despite variability in results, the notable performance of BL-SMOTE,
Tomek-SWIM, and KNN-SWIM underscores the enhancement in data quality, achieved by
eliminating overlap and borderline data in the majority class, thereby fostering improved
classifier performance.

From the comparisons of ENN-SWIM and NF-SWIM with SWIM-MD, we notice an
improvement in the classification performance for most of the classifiers. Thus, removing
noise and overlapping data in the majority class provides a more relevant majority class for
SWIM-MD to generate a better representation of synthetic data for the minority class.

5.1.2 Performance evaluation with the KEEL datasets

In this section, we evaluate the performance of NF-SWIM against that of other sampling-
based methods on the ten benchmark datasets from the KEEL repository. The KEEL
benchmark datasets are evaluated to validate the generalizability across diverse conditions
and a general comparison of the proposed framework with other sampling-based methods.
To evaluate the performance of NF-SWIM on the KEEL benchmark datasets, we select the
classifiers that pair best with each sampling-basedmethod from eight tested classifiers (KNN,
SVC linear kernel, SVCRBFkernel, random forest,MLP,AdaBosst, naiveBayes, andQDA).

The results are shown in Table 6, with the best percentage average G-mean values dis-
played in bold, while the second-best values are underlined. The results indicated that the
proposed NF-SWIM framework outperforms the other sampling-based methods on nine of
the ten datasets, while SWIM-RBF achieved superior performance on one dataset. Similar
to the standard deviation on the loan dataset, the standard deviation of the G-mean for each
sampling-based method across all KEEL datasets is relatively small. This result suggests
minimal variability among the balanced training sets resulting from each sampling-based
method for all five folds.

The results also show that NF-SWIM outperforms the existing hybrid methods, namely,
SMOTETomek and SMOTEENN. These existing hybrid methods generate synthetic data
using SMOTE and then remove noisy data. In contrast, our proposed framework eliminates
noisy data from the original majority class set instead of removing noisy data from the
balanced dataset. This result proves the effectiveness of removing noise from the majority
class in improving the quality of the synthetic data generated using SWIM.

Following the identification of the optimal sampling-based method based on the highest
average G-mean, we then analyze the second-best performing methods as outlined in Table
6. BL-SMOTE was the second-best on one dataset. Both SWIM-MD and SWIM-RBF gave
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the second-best results on three distinct datasets each. Tomek-SWIM attained this rank on
two datasets, and NF-SWIM achieved similar results on one dataset. These findings indicate
a diversity in the efficacy of alternative sampling-based methods that exhibit high perfor-
mance, distinct from our proposed approaches. Notably, our proposed method consistently
outperformed others in nine datasets.

5.2 Undersampling versus noise reduction

In this section, we discuss the capability of the noise reduction component compared to that of
the undersampling method within the majority class to improve the synthetic data generation
process using SWIM. The SWIM framework is recognized for utilizing the density of data
from each minority class, relative to the distribution of the majority class, to determine
where synthetic data should be generated [25]. However, when a substantial amount of noisy
and overlapping data is presented in the majority class, SWIM tends to produce inaccurate
information regarding the majority class distribution, leading to an inadequate generation of
synthetic data for the minority class.

In our previous study, we attempted to solve the problem of overlapping data between
classes by merging SWIM with undersampling methods, namely, Tomek-SWIM and ENN-
SWIM [26]. This study demonstrates enhanced efficiency in improving the classification
performance in an imbalanced problem where the classes overlap. Tomek-SWIM and ENN-
SWIM use the TomekLinks and ENN methods, respectively, for detecting overlap between
the majority and minority class data before generating synthetic data for the minority class.
However, TomekLinks and ENN are not capable of detecting possibly noisy data in the
majority class.

By removing noise from the majority class, we obtain more precise information about
the distribution of the majority class set, leading to better-defined class groups. This noise-
free majority class enhances the SWIMmethod’s ability to generate more valuable synthetic
minority data. The combination of the precise majority data and the valuable synthetic data in
the balanced dataset contributes to an improved training process for the classification model.

5.3 Effect of noise on themajority class

In this study, we are interested in the noise detection performance of the sampling-based
algorithm, i.e., the ability of the algorithm to detect possibly noisy data based on the density
of the data and remove these data before generating the synthetic data to obtain a balanced
class distribution. Therefore, in this section, we evaluate the effect of detected noisy data
using NF-SWIM on the majority class. Through this evaluation, we aim to gain insight into
how the removal of noisy data on themajority class influences the classification performance.

To answer this question, we test the classification performance on two different scenarios.
The first scenario is training the classifier on newbalanced dataset resulting from the proposed
NF-SWIM method. The second scenario is retaining the detected noisy data and including
them in the classification process. During the noise detection process, the detected noisy
data are eliminated for the synthetic data generation process. However, these data are then
restored in the classification process to preserve all the majority class information.

Figure5 shows a comparison of the two scenarios, i.e., training on the new balanced
dataset with or without the noisy data. The percentage averageG-mean values when retaining
the noisy data in the classification process are lower than those when the detected noisy
data are removed. Therefore, removing the noisy data from the majority class increases
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Fig. 5 Comparison of the percentage average G-mean between retaining and removing detected noisy data
from the majority class. The graph shows that removing detected noisy data increases the classification
performance

Table 7 The percentage of noise removed from the majority class

Dataset degOver Noise removed (%)

Loan data 0.61 3.94

Abalone19_vs._10-11-12-13 0.41 1.05

Abalone20_vs._8-9-10 0.04 0.10

Abalone19 0.07 0.12

Abalone9-18 0.41 1.78

Winequality-red-3_vs._5 0.04 46.60

Winequality-white-3-9_vs._5 0.06 33.60

Yeast-0-5-6-7-9_vs._4 0.19 54.92

Yeast-1_vs._7 0.15 70.59

Yeast-1-2-8-9_vs._7 0.07 0.32

Yeast-1-4-5-8_vs._7 0.10 68.98

the classification performance. This result provides evidence that the DBSCAN clustering
algorithm can effectively detect the possibly noisy data in themajority class and providemore
accurate information about the majority class data for the SWIM-MD method, enabling this
method to generate a better representation of the synthetic data.

Moreover, Table 7 shows the percentage of noise removed from the majority class for
each dataset. The results show that the loan dataset, all Abalone datasets (Abalone19_vs._10-
11-12-13, Abalone20_vs._8-9-10, Abalone19, and Abalone9-18), and Yeast-1-2-8-9_vs._7
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Table 8 Significance value of the Wilcoxon signed-rank test

ab1 ab2 ab3 ab4 wr ww y1 y2 y3 y4 Loan

SMOTE 0.64 0.38 0.95 0.02* 0.04* 0.01* 0.55 0.74 0.01* 0.95 0.01*

ADASYN 0.38 0.55 0.74 0.01* 0.02* 0.01* 0.64 0.84 0.01* 1.00 0.02*

BL-SMOTE 0.01* 0.08** 0.01* 0.01* 0.05** 0.01* 0.46 1.00 0.02* 1.00 0.02*

NearMiss 0.02* 0.01* 0.05* 0.01* 0.01* 0.01* 0.20 0.20 0.04* 0.95 0.01*

ENN 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.03* 0.01* 0.01* 0.02* 0.01*

Tomek 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.02* 0.02* 0.01* 0.03* 0.01*

NCR 0.01* 0.01* 0.01* 0.01* 0.01* 0.01* 0.02* 0.01* 0.01* 0.02* 0.01*

SMOTEENN 0.84 0.74 0.84 0.02* 0.04* 0.01* 0.55 0.84 0.02* 0.74 0.05**

SMOTETomek 0.25 0.31 0.74 0.01* 0.04* 0.01* 1.00 0.84 0.01* 1.00 0.02*

SWIM-MD 0.01* 0.01* 0.01* 0.04* 0.04* 0.02* 0.95 0.84 0.01* 0.95 0.15

SWIM-RBF 0.01* 0.04* 0.02* 0.04* 0.01* 0.01* 0.64 0.46 0.02* 1.00 0.02*

Tomek-SWIM 0.02* 0.02* 0.04* 0.02* 0.11 0.01* 0.64 0.95 0.02* 0.38 0.02*

ENN-SWIM 0.02* 0.02* 0.04* 0.02* 0.11 0.01* 0.64 0.95 0.02* 0.38 0.95

Numbers in bold with * indicate that the NF-SWIM method is significantly better compared to the method in
the same row at α = 0.05, while numbers in bold with ** indicate significant improvement at α = 0.10
ab1 = abalone19_vs._10-11-12-13; ab2 = abalone20_vs._8-9-10; ab3 = abalone19; ab4 = abalone9-18; wr =
winequality-red-3_vs._5;ww=winequality-white-3-9_vs._5; y1=yeast-0-5-6-7-9_vs._4; y2=yeast-1_vs._7;
y3 = yeast-1-2-8-9_vs._7; y4 = yeast-1-4-5-8_vs._7

have a relatively small percentage of noise removed from the majority class, i.e., less than
4%. However, the rest of the datasets have a high percentage of noise removed from the
majority class. Datasets that have a high degOver (Loan data, Abalone19_vs._10-11-12-
13, and Abalone9-18) notably have a small percentage of noise removed from the majority
class. Based on this evidence, it appears that the noise detected in the majority class does
not inherently come from overlapping data between the two classes. NF-SWIM detects and
removes noisy data from the majority class that are not aligned with the general pattern
observed in the majority class. Eliminating noise from the majority class results in more
accurate information about the distribution, consequently yielding more distinctly defined
class groups.

5.4 Significance test of resampling performance

In this section, we test the significant improvement of NF-SWIM for balancing the class
distribution compared to the results of the other sampling-based methods across different
classifiers on all datasets. We use the nonparametric Wilcoxon signed-rank test to evaluate
the significantly different performance of NF-SWIM compared to the performance of the
other sampling-based methods.

TheWilcoxon signed-rank test is used to compare two related samples or to conduct a pair
difference test on repeated measurements within a single sample. The aim is to determine if
there are statistically significant differences in the population mean ranks of the compared
elements [63, 64]. We compare the percentage average G-mean values of NF-SWIM with
those of another sampling-based method across different classifiers for all datasets.

Table 8 shows the significance values of the Wilcoxon signed-rank test. We test the differ-
ence in average G-mean values under two levels of significance (α = 0.05 and α = 0.10).

123



Noise-free sampling with majority framework 4033

Fig. 6 Boxplots for rank distribution of the G-mean in each resampling method across all datasets. The green
line in each boxplot depicts the median of the rank, and the size of the box shows the rank variability across
all datasets

The bold numbers with * indicate that the proposed NF-SWIM is significantly better than
the corresponding method of the row under α = 0.05, and the bold numbers with ** indicate
that the proposed NF-SWIM is significantly better than the corresponding method of the row
method under α = 0.10.

There are some pieces of evidence that indicate that the proposed NF-SWIM is signif-
icantly better than the other sampling-based methods, e.g., the significance values that are
less than the significance level (α = 0.05 or α = 0.10) and shown in bold numbers. Some
examples in Table 8 show that NF-SWIM is significantly better than other sampling-based
methods for Abalone9-18, winequality-white-3-9_vs._5, and yeast-1-2-8-9_vs._7 datasets.
These evidences are shown by the significance values that are less than the significance level
of 0.05.

However, the Wilcoxon signed-rank test results show no statistically significant dif-
ference between NF-SWIM and some sampling-based methods for some datasets. One
example from the data in Table 8, there is no significant difference between NF-SWIM and
some sampling-based methods, namely, SMOTE, ADASYN, SMOTEENN, and SMOTE-
Tomek, on the Abalone19_vs._10-11-12-13 dataset. Nevertheless, the proposed NF-SWIM
framework yielded competitive results, with the best percentage average G-mean across all
classifiers for all datasets. To support this statement, we evaluate the rank of the implemented
methods for each dataset. Figure6 shows the boxplot of the ranks for each sampling-based
method on all datasets. Specifically, the boxplots demonstrate that NF-SWIM achieves the
highest average ranks and exhibits lower variability in comparison with those of the other
methods.
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Fig. 7 t-SNE plot of six original imbalanced datasets. Various data distributions are represented

5.5 Effect of the data distribution on NF-SWIM

In this section, we evaluate the effect of the data distribution on the performance ofNF-SWIM
in balancing the data distribution. Our hypothesis is that the effectiveness of the proposedNF-
SWIM lies in its ability to eliminate noisy data from the majority class. By eliminating these
noisy data, the majority class will contain more accurate information, which could enhance
the capability of the SWIM framework to generate synthetic data. By employing t-SNE
analysis, we can determine the specific dataset categories in which NF-SWIM demonstrates
the optimal performance.

Figure7a–f shows the t-SNE plots of six imbalanced datasets that have various data distri-
butions, particularly the loan data, Abalone19, Abalone9-18, winequality-white-3-9_vs._5,
yeast-1-2-8-9_vs._7, and yeast-1-4-5-8_vs._7. Throughout our empirical analysis, we find
that the NF-SWIM framework has an advantage on datasets in which the majority class has
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multiple cluster points that are close together, e.g., see Figs. 7a–c. Additionally, Fig. 7d, e
shows that datasets with a single cluster with closely located points are also particularly
favorable for DBSCAN to detect noise effectively and improve the NF-SWIM performance.
However, NF-SWIM undergeneralizes on the dataset with a single cluster and lower-density
area, as shown in Fig. 7f. In this case, the DBSCAN algorithm may detect misleading noisy
data, resulting in a substantial loss of majority class information. Although it is feasible to
ease the DBSCAN parameter, we expect that such relaxation would frequently yield negative
consequences.

5.6 Effect of hyperparameters on NF-SWIM

In this section, we examine the effect of hyperparameter changes on the variation in the
performance of NF-SWIM. Our proposed framework relies on two parameter values related
to the noise removal component, namely, minPts and ε, which need to be appropriately
adjusted to suit the given input dataset. As mentioned in Sect. 4.4, the minPts value in this
study is empirically set to 5. This minPts value is then used as the k value of the k-distance
graph to find the optimum ε. To check the impact of changing these parameters on the
performance of NF-SWIM, we test the proposed framework under different settings.

Figure8 shows the average G-mean plots with different values of minPts and ε on three
imbalanced datasets with various data distributions, particularly Abalone19, Winequality-
white-3-9_vs._5, and Yeast-1-2-8-9_vs._7. Figure8a–e shows the variation in the average
G-mean with different values of minPts [5,10,15,20] on these datasets. When we test the
effect of theminPts values, we set the ε parameter for each dataset according to the optimum
ε in Table 2. Conversely, we set the minPts parameter as 5 when we test the effect of ε on
the NF-SWIM performance. Figure8b, d, f shows the variation in the average G-mean with
different values of ε [0.1,1.0]. Moreover, SVC with linear and RBF kernels is used to test the
effect of changing the parameter settings on the performance of NF-SWIM.

Figure8c, e shows a decreasing pattern of the average G-mean when a higher minPts
value is used. Meanwhile, Fig. 8b shows an insignificant change in the averageG-mean using
different minPts. Therefore, we recommend using a minPts value of 5 for NF-SWIM.
Too large a minPts value may mislead the noise detection process, as the algorithms may
mistakenly label important data as noise, which leads to the loss of valuable information
from the majority class. Meanwhile, Fig. 8b, d, f shows some significant changes in the
averageG-meanwhen the ε parameter is changed.However, the change pattern of the average
G-mean is inconsistent in this case. Therefore, determining the most suitable ε parameter
for each dataset is crucial in NF-SWIM. In this study, the parameters minPts and ε are
manually determined for each dataset a process that is time-consuming and labor-intensive,
particularly in optimizing ε for noise data detection in the majority class. The automation
of these parameters presents a valuable direction for future research, potentially enhancing
efficiency and effectiveness.

5.7 Impact of selective training partition

In this section, we investigate the effects of applying our framework to subsets of the data.
Previously, we employed fivefold cross-validation to mitigate bias and overfitting during the
training process, allocating 80% of the dataset for training and 20% for testing in each fold.
The methodology was applied to the entire training set, constituting 80% of the total data.
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Fig. 8 Performance plots showing the relationship between the average G-mean and the hyperpamater values
(minPts and ε) of NF-SWIM

However, we now evaluate the progression of the G-mean as our framework is applied to
incremental portions of the training data, rather than its entirety.

We further explore the implications of NF-SWIM to understand the impact, potential
advantages, or disadvantages of this selective application, especially for model training and
validation.We divide the original training set into four equal segments. Subsequently, we train
each of the eight classification methods examined in this study on these segments, comparing
the predictive G-mean performance when utilizing NF-SWIM on 25%, 50%, 75%, and 100%
of the training data. This evaluation is conducted on both the Abalone9-18 and Abalone19
datasets.

Figure9 illustrates the predictive performance of each training partition for the eight
classification models. The plots show that for most classifiers, the G-mean increases as the
percentage of training data used grows from 25 to 100%. In Fig. 9a, for most classifiers,
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Fig. 9 Comparative predictive performance of NF-SWIM on eight classifiers across varying training data sizes

there is a marked improvement in performance as the training partition size increases. This
is significant because it suggests that the models are able to utilize the additional balanced
data to refine their decision boundaries and improve classification accuracy. From this plot,
we can see that the degree of improvement varies among different classifiers. For instance,
random forest and AdaBoost show a steady and significant increase in G-mean, indicating
that these models benefit substantially from more data.

Figure9b shows that the rate of improvement in G-mean varies between classifiers. Some,
such as the random forest and AdaBoost, show a steep increase in G-mean as the percentage
of training partition utilized using NF-SWIM increases from 25% to 50%, and continues to
improve steadily up to 100%.While theG-mean generally improveswithmore balanced data,
the rate of improvement is not constant. Additionally, this could indicate that models have
varying degrees of sensitivity to the amount of training data. Overall, the plot underscores
the critical role of sufficient balanced training data in developing effective machine learning
models and suggests that the benefits of NF-SWIM utilized in the higher volume of training
sets are significant, particularly when moving from smaller to larger partition training sets.
As we increase the percentage of training data utilized by NF-SWIM, it leads to an enhanced
G-mean, indicating better performance with more comprehensive balanced training data.

6 Conclusion

The problem of class imbalance has been acknowledged as a significant factor, leading to the
degradation of the classification model performance. This problem occurs in various crucial
domains where the minority class often holds greater significance, such as fraud detec-
tion, enterprise credit evaluation, disease diagnosis, image recognition, and failure detection.
Another notable concern that often accompanies imbalanced data classification is the pres-
ence of noise, which can significantly reduce classifier performance. The presence of noise
becomes a notable issue when the features of the majority data overlap with those of minority
data, causing the shift of decision boundaries. To address this, we proposed a noise-free sam-
pling with majority (NF-SWIM) by removing the noisy data from the majority class and then
generating synthetic data for the minority class. Removing the noisy data from the majority
class will yield more precise information on the majority class distribution. Consequently,
the SWIM framework is able to generate more valuable and representative synthetic minor-
ity data. We implemented the DBSCAN clustering algorithm to detect and remove possibly
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noisy data from the majority class and SWIM-MD to generate synthetic data for the minority
class to obtain a balanced class distribution.

We compared and evaluated the proposedNF-SWIMwith several existing sampling-based
methods on a loan dataset and ten KEEL benchmark datasets. The experimental results indi-
cated that our framework has the ability to enhance the predictive accuracy of eight different
classifiers, with improvements ranging from 7.78% to 67.45% across the eleven datasets
evaluated. The results also showed that the DBSCAN clustering algorithm can effectively
identify potentially noisy data in themajority class, providingmore precise information about
the majority class. This enhanced the information of the majority class for the SWIM-MD,
and led to a better representation of the synthetic data generated. Based on the percentage
average G-mean values, the results showed that classifiers trained on balanced datasets using
NF-SWIM outperformed other sampling-based methods. In general, there were statistically
significant differences between the proposed NF-SWIM and the other sampling-based meth-
ods across all classifiers on most datasets.

Although our proposed framework is able to improve the classification performance,
there are some limitations that require further investigation. First, the determination of the
parameters minPts and ε is done manually, which makes it time-consuming, as it requires
substantial manual effort to find the best parameters. This is especially true for finding the
best ε that detects noise in the majority class. An automated way of finding these parameters
would significantly enhance the efficiency and accuracy of the framework, as well as reduce
the workload for the user. Another point of improvement relates to the need to investigate
noisy data in the minority class after synthetic data generation. A thorough examination,
followed by the elimination of noise from both classes has the potential to improve the overall
classification performance. Lastly, our framework could be expanded to function reliably in
more diverse conditions, such as environments with higher noise levels and greater degrees of
class overlap, a remaining key area for future research. Overcoming these limitations would
not only increase the robustness of our method but also extend its applicability to a broader
range of scenarios.
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