
Knowledge and Information Systems (2024) 66:3921–3958
https://doi.org/10.1007/s10115-024-02076-9

REGULAR PAPER

Unifying Faceted Search and Analytics over RDF Knowledge
Graphs

Maria-Evangelia Papadaki1,2 · Yannis Tzitzikas1,2

Received: 23 June 2023 / Revised: 15 October 2023 / Accepted: 8 February 2024 /
Published online: 24 March 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
The formulation of analytical queries over Knowledge Graphs in RDF is a challenging task
that presupposes familiarity with the syntax of the corresponding query languages and the
contents of the graph. To alleviate this problem, we introduce a model for aiding users in
formulating analytic queries over complex, i.e., not necessarily star schema-based, RDF
Knowledge Graphs. To come up with an intuitive interface, we leverage the familiarity of
users with Faceted Search systems. In particular, we start from a general model for Faceted
Search over RDF data, and we extend it with actions that enable users to formulate analytic
queries, too. Thus, the proposed model can be used not only for formulating analytic queries
but also for exploratory purposes, i.e., for locating the desired resources in a Faceted Search
manner. We describe the model from various perspectives, i.e., (1) we propose a generic user
interface for intuitively analyzing RDF Knowledge Graphs, (2) we define formally the state
space of the interaction model and the required algorithms for producing the user interface
actions, (3) we present an implementation of the model that showcases its feasibility, and (4)
we discuss the results of an evaluation with users that provides evidence for the acceptance of
themethodbyusers.Apart frombeing intuitive for endusers, another distinctive characteristic
of the proposed model is that it allows the gradual formulation of complex analytic queries
(including nested ones).

Keywords Knowledge Graphs · Analytics · Faceted Search

1 Introduction

There are several KnowledgeGraphs (KGs) expressed in RDF (Resource Description Frame-
work) that integrate data from various sources, from general purpose KGs (like DBpedia [1]

B Maria-Evangelia Papadaki
marpap@ics.forth.gr

Yannis Tzitzikas
tzitzik@ics.forth.gr

1 Institute of Computer Science, FORTH-ICS, Vasilika Vouton, 70013 Heraklion, Crete, Greece

2 Department of Computer Science, University of Crete, Panepistimioupoli Vouton, 70013 Heraklion,
Crete, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-024-02076-9&domain=pdf

3922 M-E. Papadaki, Y. Tzitzikas

Fig. 1 Schema of the running example

andWikidata [2]) to domain specific semantic repositories, like Europeana [3, 4] for the cul-
tural domain, DrugBank [5] for drugs, GRSF [6] for the marine domain, WarSampo [7] for
historical data, ORKG [8] for scholarly works, and [9–11] for COVID-19-related datasets.
There are also Markup data through schema.org expressed in RDF, as well as Knowledge
Graphs producible from plain file systems [12]. Finally, Knowledge Graphs recently are used
also for validating and enriching the responses of Large Language Models (like ChatGPT),
for example in [13].

Plain users can (1) browse such graphs (i.e., the user can start from a resource, inspect
its values, and move to a connected resource, and so on, or even decide to move to the more
similar resources, e.g., [14]), (2) search them using keyword search where the emphasis
is on the ranking of the resources according to their relevance to the submitted query (e.g.,
see the multi-perspective keyword search approach described in [15]), or (3) use interactive
query formulators that aim at aiding the user to formulate a structured query (like A-QuB
[16], FedViz [17], SPARKLIS [18], and SPARQL-QBE [19]). However, the latter, i.e.,
structured query formulation, is in general difficult for ordinary users, and it seems that there
is no standard, or widely accepted, method of such query formulators, especially for analytic
queries. To this end, in this paper, we focus on the formulation of analytic queries over RDF
graphs, a task that for ordinary users is considered almost infeasible, while for expert users
it is laborious and time-consuming. We aim at providing a user-friendly method that will
allow even novice users to formulate analytic queries over Knowledge Graphs, easily and
intuitively.

To emphasize that need, consider aKGwith information about products and related entities
(companies, persons, locations, etc.) with schema as shown in Fig. 1 (for reasons of brevity
namespaces are not shown). Suppose that we want to find “the average price of laptops made
in 2023 from US companies that have 2 USB ports and an SSD drive manufactured in Asia
grouped by manufacturer”. This information need can be expressed in SPARQL as shown
in Fig. 2. Obviously, the formulation of such queries is quite difficult for novice users who
do not have the required technical background.

Consequently, there is a need for an interaction model that will let users formulate such
analytic queries with simple clicks, without presupposing knowledge neither of the vocabu-
lary (schema, ontology, thesauri), nor the actual contents of the dataset, nor the syntax of the
corresponding query language (i.e., SPARQL). To this end, we leverage the familiarity of
users with Faceted Search [20], since this model supports the expression of complex condi-
tions with simple clicks. In particular, we start from a general model for Faceted Search over
RDF data, specifically from the core model for faceted exploration of RDF data (described
in [21]), and we extend it with actions that enable users to formulate analytic queries, too.
The user actions are automatically translated to a query according to the high-level query
language for analytics, called HIFUN, and then, the HIFUN query is translated to a SPARQL
query (see also Fig. 3). In brief, the contributions of this paper are: (1) we propose a generic

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3923

Fig. 2 Expression in SPARQL of the query “average price of laptops made in 2021 from US companies that
have 2 USB ports and an SSD drive manufactured in Asia grouped by manufacturer”

user interface for intuitively analyzing RDF Knowledge Graphs without pre-supposing any
technical knowledge, (2) we define formally the state space of the interaction model and the
required algorithms for producing a UI (user interface) that supports this state space, (3) we
present an implementation of the model that showcases its feasibility, and (4) we discuss the
results of an evaluation of the proposed system with users.

The distinctive characteristics of the proposed model are: (1) it can be applied to any RDF
dataset (i.e., not only to star-schema datasets), (2) it provides guidance in the sense that the
generated SPARQL queries never produce empty results, and it provides count information
during the interaction, (3) it offers expressive power in the sense that it supports arbitrarily
long paths; it supports the formulation of HAVING clauses, as well as nested analytic queries,
and (4) it supports both Faceted Search and analytic queries.

The basic ideawas demonstrated in the demopaper [22]. In this paper, we detail and further
elaborate on this direction, specifically: (1) we discuss in more detail the related works and
our placement, (2) we formally specify the interaction model with states and transitions, (3)
we express the query requirements of themodel formally using a query language-independent
formalism (HIFUN) facilitating in this way the implementation of the model over different
technologies, query languages, and triplestores; (4) we provide the exact specification of the
UI and the algorithms for facilitating the implementation of the model, (5) we describe the
implementation of the model and its evaluation from various perspectives.

The rest of this paper is organized as follows: Sect. 2 provides the required background.
Section3 describes related work. Section4 describes the basic idea behind interaction model
including the GUI extensions. Section5 discusses the extensions (in comparison to FS) that

123

3924 M-E. Papadaki, Y. Tzitzikas

Fig. 3 Context and main elements

are required for analytics. Section6 provides the formal notations and key points of the
algorithms, Sect. 7 presents the algorithm that computes the state space, and Sect. 8 focuses
on how the intentions of the states are expressed and computed. Section9 discusses an imple-
mentation of the model. Section10 describes the expressive power of the model. Section11
discusses evaluation. Finally, Sect. 12 concludes the paper and identifies issues for further
research.

2 Background

Here we briefly discuss RDF (in Sect. 2.1), Faceted Search (in Sect. 2.2), and HIFUN (in
Sect. 2.3). A diagram that illustrates how these are connected (and the general context) is
given in Fig. 3.

2.1 The Resource Description Framework (RDF)

Resource Description Framework (RDF) The Resource Description Framework (RDF)
[23, 24] is a graph-based data model for linked data interchanging on the web. It uses triples,
i.e., statements of the form subject − predicate − object , where the subject corresponds
to an entity (e.g., a product, a company etc.), the predicate to a characteristic of the entity
(e.g., price of a product, location of a company), and the object to the value of the predicate
for the specific subject (e.g., “300,” “US”). Formally, a triple is considered to be any element
of T = (U ∪ B) × (U) × (U ∪ B ∪ L), where U , B and L denote the sets of URIs, blank
nodes and literals, respectively. Any finite subset of T constitute an RDF graph (or RDF
dataset).

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3925

RDFSchema.RDFSchema1 is a special vocabulary that enables the definition of schemas
that can be used for describing the resources in a more expressive, semantic, way. RDF
Schema enables defining classes that can be used for categorizing the resources. It also
enables defining properties to build relationships between the entities of a class and to
model constraints. A class C is defined by a triple of the form <C rdf:type rdfs:Class>
using the predefined class “rdfs:Class” and the predefined property “rdf:type.” For example,
the triple <ex:Product rdf:type rdfs:Class> indicates that “Product” is a class, while the
triple <ex:product1 rdf:type ex:Product> that the individual “product1” is an instance of
class Product . A property can be defined by stating that it is an instance of the predefined
class “rdf:Property.” Optionally, properties can be declared to be applied to certain instances
of classes by defining their domain and range using the predicates “rdfs:domain” and
“rdfs:range,” respectively. For example, the triples<ex:manufacturer rdf:type rdf:Property>,
<ex:manufacturer rdfs:domain ex:Product>, <ex:manufacturer rdfs:range ex:Company>
indicate that the domain of the property “manufacturer” is the class “Product” and its range
the class “Company.” The RDF Schema is also used for defining hierarchical relationships
among classes and properties. The predefined property “rdfs:subclassOf” is used as a pred-
icate in a statement to declare that a class is a specialization of another more general class,
while the specialization relationship between two properties is described using the prede-
fined property “rdfs:subPropertyOf.” For example, the triple <ex:Laptop rdfs:subClassOf
ex:Product> denotes that the class “Laptop” is sub-class of the “Product” class. And the
triple <ex:fatherOf rdf:subPropertyOf ex:parentOf> defines that the property “fatherOf” is
sub-property of “parentOf.” In addition, RDFS offers inference functionality,2 for example,
if <ex:myLaptop rdf:type ex:Laptop> and <ex:Laptop rdf:subClassOf ex:Product>, then
it can be deduced that “ex:myLaptop rdf:type ex:Product,” i.e., that ex:myLaptop is also a
Product.

2.2 Faceted Search

Faceted Search (or Faceted Exploration) [25–27] is a widely used interaction scheme for
Exploratory Search. It is the de facto query paradigm in e-commerce [20, 28, 29] and in
digital libraries [30, 31]. It is also used for exploring RDF Data (e.g., see [21] for a recent
survey, and [32, 33] for recent systems), as well as for exploring general purpose Knowledge
Graphs [34, 35]. There are also recent extensions of the model, with preferences and answer
size constraints [33]. Informally we could define Faceted Search as a session-based interac-
tive method for query formulation (commonly over a multidimensional information space)
through simple clicks that offers an overview of the result set (groups and count information),
never leading to empty result sets.

2.3 HIFUN: a functional query language for analytics

HIFUN [36] is a high-level functional query language for defining analytic queries over big
datasets, independently of how these queries are evaluated. It can be applied over a dataset that
is structured or unstructured, homogeneous or heterogeneous, centrally stored, or distributed.
To apply that language over a dataset D, two assumptions should hold: The dataset should
(1) consist of uniquely identified data items and (2) have a set of attributes each of which is

1 https://en.wikipedia.org/wiki/RDF_Schema.
2 https://www.w3.org/standards/semanticweb/inference.

123

https://en.wikipedia.org/wiki/RDF_Schema
https://www.w3.org/standards/semanticweb/inference

3926 M-E. Papadaki, Y. Tzitzikas

Fig. 4 Spectrum of related works

viewed as a function associating each data item of D with a value, in some set of values. Let D
be a dataset and A be the set of all attributes (a1,..., ak) of D. An analysis context over D is any
set of attributes from A, and D is considered the origin (or root) of that context. A query in
HIFUN is defined as an ordered triple Q = (g,m, op) such that g and m are attributes of the
dataset D having a common source and op is an aggregate operation (or reduction operation)
applicable on m-values. The first component of the triple is called grouping function, the
secondmeasuring function (or themeasure), and the third aggregate operation (or reduction
operation). In addition, one can restrict the three components g,m, op of a HIFUN query.
Thus, the general form of a HIFUN query is q = (gE/rg,mE/rm, opE/ro), where gE is
the grouping expression, mE the measuring expression, and opE the operation expression,
whereas rg is a restriction on the grouping expression, rm is a restriction on the measuring
expression, ro is a restriction on the operation expression.

Later,whenwewill define formally the interactionmodel,we shall useHIFUNfor express-
ing the formulated analytic query. This enables the exploitation of the model in other contexts
where HIFUN is applicable. Returning to Knowledge Graphs over RDF, HIFUN queries are
translated to SPARQL queries.

3 Related work

General Positioning and Focus. We focus on developing a user-friendly interface, where
the user will be able to apply analytics to any RDF data in a familiar and gradual manner,
without having to be aware of the contents of the dataset(s), nor the lower-level technicalities
of SPARQL.

Below we discuss in brief the spectrum of related works, also illustrated in Fig. 4. For a
more detailed survey, see [37]. In particular, we describe works about formulating analytic
queries directly over RDF (in Sect. 3.1), defining Data Cubes over RDF data (in Sect. 3.2),
defining domain-specific pipelines that produce RDF data and support particular analytic
queries (in Sect. 3.3) and publishing statistical data in RDF (in Sect. 3.4). In addition, we
compare with Query-by-Example (in Sect. 3.5), and finally, we describe our positioning and
contribution (in Sect. 3.6).

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3927

3.1 Formulation of analytic queries directly over RDF

Formulating Analytics Queries directly over RDF. Here, we refer to the three most related
systems and works, i.e., to work/systems that enable the formulation of analytic queries
directly over RDF. At first, [38] proposes an approach for guided query building that sup-
ports analytical queries, which can be applied over any RDF graph. The implementation is
over the SPARKLIS editor [39], and it has been adopted in a national French project.3 The
approach is interesting; however, during query formulation, no count information is provided,
reducing the exploratory characteristics of the process. As regards expressiveness, HAVING-
restrictions are not supported. In addition, the GUI is not the classical of FS, so not every user
is familiar with it. Nevertheless, the authors report positive evaluation results as regards the
expressive power of the interactive formulator. The second is [40] that describes a possible
extension of SemFacet [41] to support numeric value ranges and aggregation. The authors
also state that they work toward extending the proposed approach to support reachability, too.
However, the focus is on theoretical query management aspects, related to Faceted Search,
and an interface as well as an implementation is lacked. From the mockups of the GUI,
it seems that no count information is provided (which is considered important enough for
exploration purposes). Moreover, explicit path expansion is not supported. The authors use
the notion of “recursion” to capture reachability-based facet restrictions. Finally, the third one
[42] (and the more recent paper [43]) explores the integration of Faceted Search and Visu-
alization as a means to fetch data from SPARQL endpoints and analyze it, effectively. The
approach incorporates filters, property paths, and count information. However, the analytical
queries formulated within this framework are constrained to basic exploration capabilities
Faceted Search offers, lacking the flexibility to impose restrictions on final results. Addition-
ally, no evaluation of the proposed approach has been conducted to validate its effectiveness
and performance.

3.2 Definition of data cubes over RDF

Another related topic is the definition of a data cube over RDF. There are works that implic-
itly define a data cube over existing RDF graphs4 [44–46], and then apply OLAP (Online
Analytical Processing). One weakness of this approach (as stressed also in [38]) is that is
requires someone with technical knowledge to define the required data cube(s). Apart from
reduced flexibility, the wealth of connections of the knowledge graph cannot be leveraged,
since the user is restricted on one data cube. Also, it is not guaranteed that the constructed
RDF Data Cubes will be multi-dimensional compliant and how multi-valued attributes, or
empty values, will be treated. Towards this general direction, [47] analyzed the applicability
of HIFUN (as described in Sect. 2.3), over RDF. Specifically it provides various methods
for defining an analysis context (which is analogous to a data cube), and including feature
construction operators for cases where the RDF data cannot fit to a cube.Moreover, that work
provides the algorithms for translating HIFUN queries to SPARQL queries. What is missing
from that work is the interactive formulation of a HIFUN query. In the current paper we
want to fill this gap, i.e., we focus on how to formulate the HIFUN query interactively, while
exploring the dataset. This task is not easy for users, since it is laborious to find and select
the right property from a big schema, let alone the formulation of restrictions. Note that, in
small star schema the tasks of selection and restriction formulation are not difficult. How-

3 http://data.persee.fr/explore/sparklis/?lang=en.
4 https://team.inria.fr/oak/projects/warg/.

123

http://data.persee.fr/explore/sparklis/?lang=en
https://team.inria.fr/oak/projects/warg/

3928 M-E. Papadaki, Y. Tzitzikas

ever, in knowledge graphs with broad coverage, these tasks can be very laborious. Therefore,
methods that can reduce this effort and support exploration are required.

3.3 Domain-specific pipelines produce and analyze RDF data

There are also domain-specific works (focusing on a particular topic, not on anyRDF dataset),
like [48] that motivates Knowledge Graph-enabled cancer data analytics. An analogous work
for covid-19-related data is [49]. Such works focus on defining specific pipelines for con-
structing the desired Knowledge Graph and then enabling particular analytic queries and
visualizations to support domain-specific research purposes, i.e., they do not provide general-
purpose methods for Knowledge Graph analytics.

3.4 Publishing of statistical data in RDF

Another related topic is the publishing of statistical data. Indeed, there are methods (e.g.,
[50]) for publishing statistical data as linked data, and toward this end the RDF data cube
vocabulary5 (QB) provides a means to publish such data on the web using the W3C RDF
standard. In our work, we do not focus on publishing statistical data, but on formulating
analytic queries over any RDF dataset.

3.5 Comparison with Query-By-Example

Query-By-Example, for shortQBE, refers to a paradigm for interactive query formulation that
aims at enabling even non-programmers to query relational databases (e.g., MS ACCESS),
and this is achieved by asking the user to provide examples of the desired answer. The idea
was first proposed for relational databases [51]; however, themain idea can be transferred also
to Knowledge Graphs, in particular for aiding the formulation of SPARQL queries. Indeed,
there are some works about QBE over KGs, including [19, 52–54].

As regards the comparison between FS (Faceted Search) and QBE, we could say that if the
user knows that he wants, i.e., if he knows the desired conditions related to his information
need, then FS is beneficial, because it enables him to apply the desired filter conditions(s),
during the exploration of the information space. If on the other hand, the user has no idea
about the desired constraints, e.g., suppose a user that likes some particular movies but he
has no idea about the characteristics of these movies (actors, director, genre, etc.), then a
QBE approach is beneficial, since it enables him to use these movies as examples and let
the system formulate the constraints that describe these movies. We could therefore say that
FS and QBE are complementary approaches. Finally, we should mention that FS is widely
used by all users (for e-commerce, bookings, etc.); however, QBE is mainly for database
developers. Furthermore, QBE for Knowledge Graphs is still subject of research and has not
yet reached all users.

5 https://www.w3.org/TR/vocab-data-cube/.

123

https://www.w3.org/TR/vocab-data-cube/

Unifying Faceted Search and Analytics over RDF Knowledge… 3929

3.6 Our position and contribution

In general, we observe that are not so many works, neither running systems, that support the
easy and intuitive analysis of RDF Knowledge Graphs; consequently, we could say that the
majority of RDF datasets are not easily explored and queried.

Ourwork falls in the category of Sect. 3.1. InTable 1,wequalify themore relevant systems,
mentioned in Sect. 3.1, according to some important functionalities, i.e., applicability (if they
can be applied over star schemas or over any RDF graph), support of basic analytic queries,
support of analytic queries with HAVING clause, support of plain Faceted Search, support
of property paths in Faceted Search and analytics, support of results’ visualization, offer of
running systems, and conduction of an evaluation.

We observe that in comparison with the related systems, our approach (and the system
RDF-ANALYTICS that we shall present later) out-stands since (1) it can be applied to any RDF
graph (not only to star-schema graphs) without requiring data pre-processing, (2) it supports
plain browsing of the graph as well as analysis of it, (3) it supports restrictions of the results
and property paths, (4) it offers visualization of the results in a running system that is publicly
available, and (5) it has been evaluated by users. We should also stress the support of nested
queries, as well as the user guidance (stemming from the characteristics of Faceted Search).

As regards comparison with OLAP (Online Analytical Processing) operations, they are
described after the presentation of the model, specifically in Sect. 10.2.

Belowwe describe the proposed approach from three perspectives: (a) we formally specify
the interaction model with states and transitions, (b) we express the query requirements of
the model formally using a query language independent formalism facilitating in this way the
implementation of the model over different technologies, query languages, and triplestores
(see [55] for a survey of triplestores), and (c) we provide the exact specification of the UI
and the algorithms followed for facilitating the implementation of the model.

4 The interactionmodel in brief

GUI Extensions in Brief. The classical FS interface usually comprises two main frames: the
left is used for presenting the facets and the right for displaying the objects, see Fig. 5 (left).
The model, that we propose, extends the user actions of the left frame with actions required
for the formulation of analytical queries. Specifically, it is enriched with two buttons, i.e.,
G and ± next to each facet, as shown in Fig. 5 (right). Moreover, an additional frame, called
“Answer Frame” (for short AF), has been added, for displaying the results of the analytic
queries in tabular or graphical format. To grasp the idea, we describe below four (4) indicative
examples that show how a simple or complex analytic query can be formulated using our
model. We assume that the data of the examples follow the schema of Fig. 1.

Example 1 (an AVG query without GROUP BY). Suppose that we would like to find
“the average price of laptops made in 2021 from US companies and have SSD and 2 USB
ports”. The part of the query that refers to specific laptops (i.e., laptops made in 2021 from
US companies that have SSD and 2 USB ports) could be expressed by using the classical FS
system. Note that the condition “US companies” would be specified by expanding the path
of the property “manufacturer” till the property of “origin.” What is missing is the
specification of the aggregate function (in this case “AVG”). For that, the ± button laid on
the right on the “price” facet is offered letting the users click and select the desired function
from the displayed menu.

123

3930 M-E. Papadaki, Y. Tzitzikas

Ta
bl
e
1

C
om

pa
ri
ng

th
e
fu
nc
tio

na
lit
ie
s
of

re
la
te
d
sy
st
em

s

Sy
st
em

A
pp
lic
ab
ili
ty

(S
TA

R
vs

A
N
Y
)

A
na
ly
tic

qu
er
ie
s:
ba
si
c

A
na
ly
tic

qu
er
ie
s:
w
ith

ha
vi
ng

Pl
ai
n
Fa
ce
te
d

Se
ar
ch

Pr
op
er
ty

pa
th
s
(i
n

Fa
ce
te
d
Se
ar
ch

an
d
an
al
yt
ic
s)

V
is
ua
liz

at
io
n

R
un

ni
ng

sy
st
em

E
va
lu
at
io
n

[4
0]

A
N
Y

Y
es

Y
es

Y
es

bu
tw

ith
N
o

C
ou

nt
in
fo
rm

at
io
n

N
ot

ex
pl
ic
itl
y,

re
ac
ha
bi
lit
y

N
o

N
o

N
o

[3
8]

A
N
Y

Y
es

N
o

N
o.

Sp
ec
ia
li
nt
er
fa
ce

N
ot

cl
ea
r

N
o

Y
es

Y
es

[4
2]

A
N
Y

Y
es

N
o

Y
es

Y
es

w
ith

co
un
ts

Y
es

Y
es

N
o

O
ur

ap
pr
oa
ch

A
N
Y

Y
es

Y
es

by
A
F

Y
es

Y
es

w
ith

co
un
ts

Y
es

Y
es

Y
es

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3931

Fig. 5 Core elements of the GUI for Faceted Search and Analytics

Example 2 (a COUNT query with GROUP BY). Suppose now that the user would like
to find “the count of laptops that made in 2021 and have SSD and 2 USB ports grouped by
manufacturers’ country.” The part of the query that refers to specific laptops, i.e., “laptops
made in 2021 that have SSD and 2 USB ports,” could be expressed by using the classical FS
system. As it has already been mentioned in the previous example, the aggregate function
(in this case “count”) would be defined by clicking on the ± button laid on the right of the
“price” facet and selecting the desired function from the displayed menu. What is missing
is the specification of the grouping condition. For that, the G button laid on the right of each
facet lets the users group the results on any set of facets. In this case, the user would click
on the G button laid next to the “origin” facet. Note again that the condition “manufacturers’
country” would be specified by expanding the path of the property “manufacturer” till
the property of “origin.”

Example 3 (a query with range values). Suppose now that the user would like to find
“the count of laptops that made in 2021 and have SSD and 2 or more USB ports grouped by
manufacturers’ country.” The only difference with the previous query is that the user should
specify the range of the values that refer to USB ports. For that, the � button laid on the right
of each facet enables the users to filter the values based on the desired range. In this case, the
user would click on the � button laid next to the “USB ports” facet and (s)he would specify
the desired range in the provided form.

Example 4 (a query with restriction on groups, i.e., with HAVING). Suppose now that,
we would like to find “the average price of laptops grouped by company and year, only for
the laptops that have average price above a threshold t .” The aggregate function and the
grouping of the results would be specified via the G and ± buttons laid next to the desired
facets, as described in the previous examples.What is missing is to restrict the results over the
aforementioned threshold. For that, the answer of an analytical query can be loaded as a new
dataset on the extended FS system letting the users further restrict its values. For example,
suppose that the results of the first part of the query “average price of laptops grouped by
company and year” correspond to the table shown in Fig. 6a. In order to further restrict the
answer, we have attached a button, called “Explore with FS” below this table (as shown in
Fig. 5) which lets the users load the results as a new dataset on the FS system as shown in
Fig. 6b. As it is shown, each column of the table corresponds to a facet of the system having
instances the values of the corresponding column. Now, the users can express the desired
restriction over the average price by clicking on the “filter” button laid next to the “price”
facet and specifying the intended range on the pop-up window that is displayed.

123

3932 M-E. Papadaki, Y. Tzitzikas

Fig. 6 Example 3: Exploring the
results of an analytic query with
Faceted Search

Expressing the Queries of the Previous Examples in HIFUN. Above we described the
interaction. During the interaction, HIFUN queries are formulated. For reasons of complete-
ness, below we show the HIFUN queries that correspond to the aforementioned examples.

• Example 1: (ε, price/E, AVG), where ε is an empty grouping function and E = {i ∈
D/releaseDate(i) = 2021 ∧ origin ◦ manu f acturer(i) = US ∧ SSD = true ∧
USBPorts(i) = 2}

• Example 2: (g/E, I D,COUNT), where g = origin ◦ manu f acturer , E = {i ∈
D/releaseDate(i) = 2021 ∧ origin ◦ manu f acturer(i) = US ∧ SSD = true ∧
USBPorts(i) = 2} and I D is the identity function

• Example 3: g/E, I D,COUNT), where g = origin ◦ manu f acturer , E = {i ∈
D/year ◦ releaseDate(i) = 2021 ∧ origin ◦ manu f acturer(i) = US ∧ SSD =
true ∧USBPorts(i) ≥ 2} and I D is the identity function

• Example 4: (g/E, price, AVG)/F , where g = (manu f acturer × ({i | i ∈ D ∧
year ◦ releaseDate(i))}), E = {i ∈ D/releaseDate(i) = 2021 ∧ origin ◦
manu f acturer(i) = US ∧ SSD = true ∧ USBPorts(i) = 2} and F = {gi ∈
(g/E)/ans(gi/E) ≥ t}

GUI Extensions. Below, we describe in brief the UI extensions of the classical FS system
that we introduce for supporting analytics, too.

• Facets: On the right side of each facet name, there are two buttons: (1) the G button for
grouping the results of the analytical query on this facet and (2) the ± button that lets the
users select the function, i.e., avg, min, max, etc., that will be applied to each group of
the analytic results,

• States of G and ± buttons. If the user clicks on the G button of more than one facets,
then the system asks if (s)he wants to group the results by >1 attributes, or if (s)he wants
to remove some of them. Analogously, for ±: If the user clicks on the ± button of more
than one facets, then the system asks if (s)he wants to apply >1 aggregate functions to
each group of the analytic results or if (s)he wants to remove some of them.

• Answer Frame. A frame is used for showing the results of the analytic query in tabular
or graphical format.

• Michelanea. Extra Columns. The answer frame could let the users add or remove
columns corresponding to the grouping attributes (i.e., display or remove attribute that
corresponds to the grouping of the results).

Special cases. As stated in [47], there are cases where HIFUN is not applicable on a dataset,
i.e., if multi-valued attributes or empty values exist. For those cases, we could add one more

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3933

buttons next to each facet name, say T, that would let users apply transformation functions,
i.e., the feature constructor operators like those proposed in [47], over it. In addition, such
a button would be useful for defining derived attributes, e.g., for decomposing a date-based
attribute to Year, Month, Day, etc.

5 The required extensions of the formal model for FS over RDF for
supporting analytics

Here, we describe in brief the basics of the underlying core model for FS over RDF data (in
Sect. 5.1) and the required extensions of that model for supporting analytics (in Sect. 5.2).

5.1 Background: the coremodel for FS over RDF

Our approach is based on the general model for Faceted Search over RDF described in [21].
In brief, that model defines the state space of the interaction, where each state has an intention
(query), an extension (set of resources), and transitions between the states. Each transition
is enacted through a transition marker (anywhere that the user can click). The approach is
generic in the sense that it is independent from the particular query languages (QLs) (used
for expressing the intentions of the model).

That work describes formally how the transitions of a given state are determined and how
each click is interpreted, i.e., how the new state is generated, etc. Distinctive characteristics
of the model presented, in comparison with the classical FS system, are that: (1) it leverages
the rdfs:subclassOf and rdfs:subPropertyOf relations, (2) it supports the for-
mulation of path expressions (exploiting the RDF principles), and (3) it supports switching
of entity types. Thus, this model leverages the complexity of RDF graphs.

5.2 The extension of themodel for analytics (formally)

Let Obj be the set of all objects (i.e., all individuals in our case), let ctx the current state,
ctx .Ext be the set of objects of the current focus (i.e., displayed objects), and ctx .I nt be a
query whose answer is ctx .Ext . The question is: How a HIFUN query can be formulated
over such an FS system?

Initially, the user should specify the context of analysis, this is, the set of object in ctx .Ext ,
and the attributes to be analyzed, which are the properties applicable to ctx .Ext . Next, (s)he
should specify the grouping function, the measuring function and the aggregate operation of
the query. Recall that the general form of a HIFUN query is q = (gE/rg,mE/rm, opE/ro).
Each of these parts of the query can be specified through the G and ± buttons laid next to each
facet. In particular,

• clicking on f .G: when the user click on f .G the intention ctx .I nt of themodel is changed.
Specifically, the grouping function is defined as: gE ′ = gE + f , where f can denote a
facet or a property path. If f corresponds to a value, then a restriction on the grouping
function is applied.

• clicking on f .±: when the user click on f .± the intention ctx .I nt of themodel is changed.
Specifically, the measuring function is defined as: mE ′ = mE + f , where f can again
denote a facet or a property path. If f corresponds to a value, then a restriction on the
measuring function is applied.

123

3934 M-E. Papadaki, Y. Tzitzikas

In both cases, the extension, i.e., ctx .Ext , as well as the transitions remains the same,
since these buttons do not affect neither the displayed objects on the right frame nor the
available transition markers.

In addition, as wementioned earlier, for supporting HAVING queries, the result set should
be loaded as a newdataset to the system.Thatwill also enable users to define analytical queries
of unlimited nesting depth.

6 The interactionmodel formally and the related algorithms

In Sect. 6.1, we introduce the notations that we shall use for describing (in Sect. 6.2) the
desired state space of the proposed interaction declaratively (the procedural specification is
given later in Sect. 7), while in Sect. 6.3 we describe how a result set can be reloaded as a
new dataset.

6.1 Notations

RDF. Let K be a set of RDF triples and let C(K) be its closure (i.e., the set containing
also the inferred triples). We shall denote with C the set of classes, with Pr the set of
properties, with ≤cl the rdfs:subclassOf relation between classes, and with ≤pr the
rdfs:subPropertyOf relation between properties. We also define the instances of a
class c ∈ C as inst(c) = {o | (o,rdf : type, c) ∈ C(K)} and the instances of a property
p ∈ Pr as inst(p) = { (o, p, o′) | (o, p, o′) ∈ C(K)}.

For defining formally the transitions, we provide some auxiliary definitions, too. We
shall denote with p−1 the inverse direction of a property p, e.g., if (d, p, r) ∈ Pr , then
p−1 = (r , inv(p), d), and with Pr−1 the inverse properties of all properties in Pr .

Below, we introduce notations for restricting the set of resources E ; p is a property in Pr
or Pr−1, v is a resource or literal, vset is a set of resources or literals, and c is a class.

Restrict(E, p : v) = { e ∈ E | (e, p, v) ∈ inst(p)}
Restrict(E, p : vset) = { e ∈ E | ∃ v′ ∈ vset and (e, p, v′) ∈ inst(p)}

Restrict(E, c) = { e ∈ E | e ∈ inst(c)}
We also provide a notation for joining values, i.e., for computing values which are linked

with the elements of E :

Joins(E, p) = { v | ∃e ∈ E and (e, p, v) ∈ inst(p)}

6.2 Defining the state space of the interaction

Here, we describe the transitions between the states followed by examples, for understanding
the sought interaction.
Interaction States. If s denotes a state, then we shall use s.Ext to denote its extension. Let
s0 denote an artificial (or default) initial state. We can assume that s0.Ext = URI ∪ L I T ,
i.e., the extension of the initial state contains (1) every URI and literal of the dataset, i.e.,
all individuals,6 or a subset of the dataset, e.g., the result of a keyword query [15], or of a
natural language query [56].

6 i.e., the results of the SPARQL query “select ?x where { ?x rdf:type owl:NamedIndividual. }.”

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3935

Fig. 7 Data of our running example

Fig. 8 Data of our running example (as visualized by Protege)

6.2.1 Initial class-based transitions

Below we shall refer to examples assuming the schema of Fig. 1; in particular, we consider
a few instances, specifically the ones illustrated in Figs. 7 and 8; the latter is created by
Protege; however, in both cases the diagrams show only the more important information.

Initially, the top-level or maximal classes maximal≤cl (C) are presented, see Fig. 9a.
Each of these classes corresponds to a “class-based transition marker” and leads to a state

with extension inst(c). These classes can be expanded and unfold their subclasses (see Fig. 9
(b)) as well as their top-level or maximal properties maximal≤pr (Pr) (see Fig. 9c). Each
subclass c ∈ subclasses≤cl (C) corresponds to a “class-based transition marker.” Each such
transition yields again a state with extension inst(c). If the number of the subclasses is high,
then they are hierarchically organized based on the subClass relationships among these

123

3936 M-E. Papadaki, Y. Tzitzikas

Fig. 9 aClass-based transitionmarkers,b class-based transitionmarkers expanded, c property-based transition
markers, d property-based transition markers and grouping of values

classes. Such a layout illustrates the structure of the reflexive and transitive reduction7 of the
restriction of ≤cl on the applicable transition markers C (i.e., on Rref l,trans(≤cl | C)).

6.2.2 Property-based transitions

Having expanded the top-level classes, their maximal properties maximal≤pr (Pr) unfold
(Fig. 9c). Each applicable value of these properties corresponds to a “property-based transition
marker.” Specifically, if E is the set of current objects, the property-based transitions by p
are the set Joins(E, p). By clicking on a value v in Joins(E, p), we transit to a state with
extension Restrict(E, p : v).

If the number of the subproperties is high, then they are hierarchically organized based
on the subproperty relationships among these properties.

7 The reflexive and transitive reduction in a binary relation R is the smallest relation R’ such as both R and
R’ have the same reflexive and transitive closure.

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3937

Fig. 10 a Property-based transition markers, b property path-based transitions markers

Transitions for Path Expansion. Let p1, . . . , pk be a sequence of properties. We shall
call this sequence successive, if Joins(Joins(. . . (Joins(s.Ext, p1), p2) . . . pk)
= ∅, i.e., if
such a sequence does not produce empty results. LetM1, . . . Mk denote the corresponding sets
of transition markers at each point of the path. If we assume that M0 = s.Ext , then the tran-
sition markers for each i , where 1 ≤ i ≤ k, are defined as: Mi = Joins(Mi−1, pi) (Fig. 10).

Now suppose that the user selects a value vk from the transition marker Mk (i.e., one value
from the end of the path). Such an action will restrict the set of transitions markers in the
following order Mk, . . . , M1, and finally, it will restrict the extension of s. Let M ′

k, . . . M
′
1 be

these restricted sets of transitions markers. They are defined as M ′
k = {vk} (this is the value

that the user selected from the end of the path), while for 1 ≤ i < k they are defined as:

M ′
i = Restrict(Mi , pi+1 : M ′

i+1) (1)

The extension of the new state s′ is defined as s′.e = Restrict(s.Ext, p1 : M ′
1). Equiv-

alently, we can consider that M ′
0 corresponds to s′.e, and in that case Eq.1 holds also for

i = 0.

6.3 Loading AF as a new dataset

The results of an analytic query can be loaded as a new derived (RDF) dataset that the user
can further explore and restrict. Assume that the answer of the current analytic query is a
table with attributes A1, . . . , Ak , comprising a set of tuples T = {t1, . . . , tn}. We assign to
each tuple (ti1, . . . , tnk) a distinct identifier, say ti , and we produce the following k RDF
triples: (ti , A j , ti j) for each j = 1 . . . k. These n ∗k triples are loaded to the system, and they
can be explored as if they were an ordinary RDF dataset. Any restriction expressed over this
model corresponds to HAVING clauses over the original data.

7 The algorithm that implements the state space

Here, we provide the exact algorithm for building the GUI of the proposed model that will
be in compliance with the state space described in Sect. 6.2. Below we describe each step of
the algorithm.

123

3938 M-E. Papadaki, Y. Tzitzikas

7.1 Starting points

The function Startup shows that the interaction can start in two ways: (1) from scratch, or (2)
by exploring a set, let’s call it Results provided by an external accessmethod (e.g., a keyword
search query). In both cases, the function ComputeNewState is called. The responsibility
of this function is to compute and display the facets of the left frame and the objects of the
right frame.

7.2 Computing the objects in the right frame

The computation of the objects in the right frame is described in the Part A of the algorithm
Alg. 1. As we can see the parameter Filt can be equal to “CLASS c,” “PVALUE p:v,”
“PVALUE p:vset,” or empty (ε). If empty, the current set E is set to be all objects of the
KG. If nonempty, it restricts the current set of resources E according to the notations given
in Sect. 6.1.

Algorithm 1 Computing Active Facets, Zoom points (Filters) and Analytics

1: function Startup Two ways to start the exploration process
2: ComputeNewState (∅, ε, s0) Initial call if we want to explore the entire KB
3: ComputeNewState (Results, ε, s0) Initial call if we want to explore a particular set of objects

(Results) coming from an external access method
4: end function

5: function ComputeNewState(E :set of objects, Filt: Restriction spec, s: current state)
 Part A: Computation of the objects for the right frame

6: if E = ∅ then meaning that we have to explore the entire KB
7: E ← Obj E is set to the set of all objects
8: else if Filt
= ε then if we have to compute a restriction of the current state
9: switch (Filt): Computation of the restricted E for the right frame
10: case “CLASS c”: E ← Restrict(s.Ext, c)
11: case “PVALUE p : v”: E ← Restrict(s.Ext, p : v)

12: case “PVALUE p : vset”: E ← Restrict(s.Ext, p : vset)
13: endSwitch
14: end if
15: Show E Display the objects in E in the right frame

 Part B: Computation of the facets for the left-frame
 Part B.1: Computation of class-based restrictions

16: FacetsClasses ← T Mcl (E) The applicable class-based transition markers
17: for each c ∈ FacetsClasses do Creation of the nodes for the transition markers (with names,

counts, and onClick)
18: Node node ← new Node();
19: node.name ← c.name ; The name that will be displayed
20: node.count ← | Restrict(s.Ext, c) | The count that will accompany the name
21: node.onClick ← ComputeNewState(E , “CLASS c”, s) the onClick behavior
22: end for
23: Part B.2 see Alg. 2
24: end function

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3939

7.3 Computing the facets corresponding to classes

The part of the algorithm for computing the facets of classes is Part B.1 of Alg. 1. Being
at a state s with extension E , the classes that can be used as class-based transition markers,
denoted by T Mcl(E), are those that the entities in E belong, and they are defined as:

T Mcl(E) = {c ∈ C | Restrict(E, c)
= ∅} (2)

If the user clicks on a class-based transition marker, i.e., c ∈ T Mcl(E), then the extension
of the targeting state s′ is defined as s′.e = Restrict(E, c).

For each such transition marker, a node is created. Each node has a name, i.e., the name of
the corresponding subclass, a count information, i.e., the number of entities that belong to this
subclass, and an on-click behavior. Clicking on the node, the function “ComputeNewState”
is called. In that case, where the objects are restricted to a class, the filtering condition that
is passed to the call of this function is “Class C”, i.e., ComputeNewState(E , “CLASS c”, s).

7.4 Computing the facets that correspond to properties

The part of the algorithm for computing the facets that correspond to properties is Part B.2
of Alg. 2.

Algorithm 2 Computing Active Facets, Zoom points (Filters), and Analytics

1: function ComputeNewState(E :set of objects, Filt: Restriction spec, s: current state)

 Part B.2: Computation of property-based restrictions
2: FacetsPropsForw ← {p ∈ Pr | Joins(s.Ext, p)
= ∅} forward properties
3: FacetsPropsBack ← {p ∈ Pr−1 | Joins(s.Ext, p)
= ∅} backwards props
4: for each p ∈ FacetsPropsForw do
5: Node hnode ← new HeadingNode(p.name) Separator and name of p
6: for each v ∈ Joins(s.Ext, p) do TMs related to p
7: Node node ← new Node();
8: node.name ← v ; The name that will be displayed
9: node.count ← | Restrict(s.Ext, p : v) | The accompanying count
10: node.onClick ← ComputeNewState(E , “PVALUE p : v”, s)
11: end for
12: Optional: group all values based on their classes, i.e., with respect the following classes: {c |

Joins(s.Ext, p) ∩ inst(c)
= ∅}
13: hnode.addButton(G, onClick=gE+ = p) For group by

14: hnode.addButton(±, onClick=mE+ = p) For measuring op
15: For Entity Type Switch:
16: hnode.addButton(“EntityTypeSwitch”, For entity type switch
17: onClick ← ComputeNewState(Joins(s.Ext, p), ε, s))
18: For Path Expansion:
19: hnode.addButton(“�”, For path expansion
20: onClick ← ComputeNewState(s.Ext ,
21: “PVALUE p:” + ExpandAndRestrictRecursive(Joins(s.Ext, p)), s)
22: end for
23: ... Analogously for FacetsPropsBack
24: end function

In brief, being at a state s, with extension E , the properties that can be used in the expansion
of a property p are those that connect to that property as well as to the current entities E of

123

3940 M-E. Papadaki, Y. Tzitzikas

focus, and they are defined as:

P = {p ∈ Pr | Joins(E, P)
= ∅} (3)

For each such property p, a heading node is created. For each property value of p that is
joinable, a node is createdwith the appropriate name, count, and on-click behavior.Moreover,
two buttons for analytics, i.e., G and ± are created. Finally, an additional expansion button,
i.e., “�”, is added enabling the user to further expanding the property path (described next
in Sect. 7.4.1).

Clicking on a node corresponding to a property value, the function “ComputeNewState”
is called. In that case, where the objects are restricted over a property, the filtering condition
that is passed to the function is “PVALUE p:v”, i.e., ComputeNewState(E , “PVALUE p:v”,
s).

As regards the part of the algorithm about Entity Type Switch (line 15), this function
enables the user to set as focus (new state) the transition markers of a property. This can be
useful for navigating through different types of entities connected by the chosen property.
For instance, while the user is filtering products based on their manufacturer and other filters,
he can decide to switch the type, and start exploring (and filtering out) these manufacturers.
For achieving this, it is enough to set a extension of the new state and joins of the property
(line 17).

7.4.1 Computing the facets corresponding to path expansion

Notice in Alg. 2 the line about path expansion (line 18). On clicking on the element “”,
the algorithm for computing the facets that correspond to path expansion is called, shown in
Alg. 3. By clicking on “�”, the function “ExpandAndRestrictRecursive(M)” is called again
and the process is repeated (as described in Sect. 6.2.2).

Algorithm 3 Function for Path Expansion
 Carries out the expansion over a set of URIs M and returns a set of values (to be used for filtering by the
caller).

1: function ExpandAndRestrictRecursive(M :Uris):ValuesSet
2: P ← {p ∈ Pr | Joins(M, p)
= ∅} applicable properties
3: for each p ∈ P do
4: Node hnode = new HeadingNode(p.name) Separator and name of p
5: for each v ∈ Joins(M, p) do TMs related to p
6: Node node ← new Node();
7: node.name ← v ; The name that will be displayed
8: node.count ← | Restrict(M, p : v) | The accompanying count
9: node.onClick ← return Restrict(M, p : v) on click it returns a set
10: end for
11: hnode.addButton(“�”, recursive call for further expansion
12: onClick ← return Restrict(M, p, Expand AndRestrict Recursive(Joins(M, p)))
13: hnode.addButton(G, onClick=gE+ = p) For group by

14: hnode.addButton(±, onClick=mE+ = p) For measuring op
15: end for
16: end function

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3941

Table 2 SPARQL expression of the model’s notations, assuming that the extension of the current state (either
E or s.Ext) is stored in temporary class temp

Table 3 For SPARQL-only evaluation approach

Notation Expression in SPARQL

E ← Restrict(s.Ext, c) s.q ← s.q + “?x1 rdf:type c”

E ← Restrict(s.Ext, p : v) s.q ← s.q + “?x1 p v”

E ← Restrict(s.Ext, p : vset) s.q ← s.q + “?x1 p ?V. Filter (?V=v1 ||...|| ?V=vk)”

8 Expressing and computing the intentions of the states

Here, we explain how the intentions of the proposed model are expressed in a specific query
language that of RDF data, i.e., SPARQL.

Table 2 (adapted from [21]) interprets the notations specified for thismodel and shows how
the intentions are expressed in SPARQL. We assume that all the inferred triples (deduced
from subClassOf and subPropertyOf relations) are available (materialized) in the
storage level.

As it is shown, the extension of the current state (i.e., ctx .Ext) can be computed either
(1) extensionally or (2) intentionally. “Extensional” means that the current state is stored in a
temporary classtemp, i.e., theRDF triples(e, rdf:type, temp) for each e ∈ ctx .Ext
have been added to the triplestore. On the other hand, “intentionally” means that instead of
storing the current state in a temporary class, the desired triples are obtained by querying the
triplestore. The way queries are formulated is given in Table 3.

The approach to be selected (extensional or intentional) depends on the size of the dataset
and the server’s main memory. In particular, if the dataset is quite big and cannot not fit in

123

3942 M-E. Papadaki, Y. Tzitzikas

Fig. 11 Architecture of the system RDF-ANALYTICS

the memory, then the intentional approach is preferred. In our implementation, described in
the next section, we adopt the intentional approach.

9 Implementation

We have implemented the proposed model as a web application, called RDF-ANALYTICS.
The server-side uses the triplestore Virtuoso8 that offers persistent storage and the SPARQL
endpoint for executing the queries. The front-end side of the system is implemented in
Angular.9 The states are computed using the intentional approach, i.e., the extension of the
new state is computed using a SPARQL query without based on the extension of the previous
state. Figure11 shows the main components of the implementation and the responsibilities
of each component.

Figure12 shows a screenshot of the left frame of the GUI representing the data of our
running example. Here, the user has expressed the query “Average price of laptops that
have been manufactured by US companies and they have from 2 to 4 USB ports, group by
manufacturer”. The results of this query are initially displayed in tabular form as shown
in Fig. 13 (a). At this point, the user can (1) change the attributes of analysis (by clicking
on the “BACK” button), (2) export the results as a.csv file (by clicking on the “EXPORT
AS EXCEL” button), (3) visualize the results (by clicking on the “VISUALIZE” button) as
shown in Fig. 13b, or (iv) further restrict the final results (by clicking on the “EXPLORE
WITH FS” button) as shown in Fig. 13c.
Common Extensions. The system could be enriched with auxiliary functionalities that
are useful in case the ontology is too big, i.e., it contains numerous classes and schema
properties, and the values that are used as property values are too many. Such extensions

8 http://docs.openlinksw.com/virtuoso/.
9 https://angular.io/.

123

http://docs.openlinksw.com/virtuoso/
https://angular.io/

Unifying Faceted Search and Analytics over RDF Knowledge… 3943

Fig. 12 GUI of the system RDF-ANALYTICS for formulating the query “Average price of laptops that have
2–4 USB ports and have been manufactured by US company, group by manufacturer”

Fig. 13 Tabular and graphical visualization of the results—loading of the results as a new dataset

123

3944 M-E. Papadaki, Y. Tzitzikas

include: search boxes on each individual facet, methods for facet/value ranking (as described
in Sect. 6.3.2 of the survey [21] and more recent ones like [35, 57]), methods for predicting
useful facets [58], as well as with similarity-based browsing functions (as in [14]). Currently,
we are investigating the connection of the system with a 3D visualization (based on [59]) for
enabling a more interactive exploration of the results.

9.1 Efficiency

Complexity and Optimizations. The implementation does not have any additional cost
except for the evaluation of the respective SPARQL queries. As described in the previous
section (Sect. 8), there is an extensional and an intentional approach. The intentional is ben-
eficial for big datasets. Below we discuss the time complexity of the algorithms, for the
intentional implementation, i.e., for computing the required queries. In particular, part A of
the main algorithm (that computes the extension of the new state) evaluates a SPARQL query
that performs a simple restriction. Part B.1 (that computes the class-based transition markers
and their count information), evaluates a SPARQL query (like the one shown in row (5) of
Table 2) that finds and counts the instances of a particular class. Part B.2 (that computes the
property-based transition markers and their count information), evaluates a SPARQL query
that (1) fetches and (2) counts the range values of the properties that connect to the current
resources (as shown in rows (4) and (7) of Table 2, respectively), so essentially it relies on
the evaluation a couple of queries. The algorithm for path expansion (Alg. 3) evaluates the
queries of Part B.2 of the main algorithm for each expansion step.

The efficiency of queries’ execution depends on (1) the storing, indexing, and query
processing techniques of the triplestore (as discussed in [55]) and (2) the size of the collection.
Query optimization is beyond the scope of this work, i.e., our focus is how to facilitate the
formulation of the query. We shouldmention that there are works that focus on optimizations
for the evaluation of SPARQL analytic queries. Apart from the corresponding parts of the
surveys [37, 55], we could mention that [60] focuses on queries that include several chain
and star patterns.

[61] focuses on the optimization of SPARQL queries with aggregate operators; in particu-
lar, it implements pattern matching queries with the help of two index structures, a VS*-tree
(which is a specialized B+-tree) and a trie-based T-index; [62] focuses on the optimization of
aggregate queries over federations of SPARQL endpoints by materializing the intermediate
results of the queries; in particular, it proposes a cost model for estimating result sizes for
components, such as triple patterns, joins, grouping, and aggregation. These components are
combined with the processing strategies into an approach called the Cost-based Optimizer
for distributed aggregate queries. Finally, [63] focuses on the selection and materialization
of aggregate RDF views for reasons of efficiency and provides the needed rewriting method
for user queries.
Experimental Evaluation. Below,we report a few indicative execution times of such queries
for datasets of various sizes. Based on the schema of the running example, we produced
synthetic datasets of different sizes from 100 triples to 1 million triples. Then, we tested the
following list of queries regarding the time needed for executing them as well as displaying
the final results to the user. The set of queries ranges from simple to more complex containing
groups, paths, filters, and combinations of them.

• Q1: Average price of laptops group by manufacturer (simple group)
• Q2: Average price of laptops group by manufacturer and release date (combination of

groups)

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3945

• Q3: Average price of laptops that have at least 2 USB ports group by manufacturer (filter)
• Q4: Average price of laptops group by the birthplace of founders (path)
• Q5: Average price of laptops released after 1/1/2021, and have at least 2 USB ports,

group by the origin of manufacturer (complex query containing path, filters, group)
• Q6: Average price of laptops released after 1/1/2021, have at least 2 USB ports, and have

gdb of origin [2000, 15,000], group by the origin of manufacturer and the birthplace of
the founders (complex query containing paths, filters, groups)

We carried out experiments on a laptop equipped with an Intel(R) Core(TM) i5-7200U
CPU, operating at a base clock speed of 2.50GHz and a turbo boost frequency of 2.70GHz.

The system was configured with 8.00 GB of RAM and used a 64-bit operating system,
specifically Windows 10, version 22H2, on an x64-based processor architecture. As it is
shown in Table 4, the response time depends mainly on the evaluation of the query, since the
time required for displaying the results to the user is negligible.

We also notice that the functions and the aggregate operations that the query has do not
affect its execution time. Overall, as we can see, we support real-time interaction. In general,
the evaluation time of the query depends on the storage, indexing, and query processing
techniques that the SPARQL endpoint uses (in this case Virtuoso).

10 The expressive power of themodel

We aim to cover the more basic information needs in a familiar interaction style and not
to propose an interaction model with extreme expressive power that would be complex to
use. In such cases, the users could directly use SPARQL. Just like Faceted Search systems
which offer an intuitive and widely successful method for incrementally formulating mainly
conjunctive queries (or conjunctions over facet-restricted disjunctions), our goal is to support
the main needs for analytic queries over RDF.

Below, we describe the expressive power of the proposed model with respect to (a) the
kind of HIFUN expressions that can be formulated by this model (in Sect. 10.1) and (b) the
OLAP operations it supports (in Sect. 10.2).

10.1 Expressible HIFUN queries

Here, we discuss about the kind HIFUN queries that can be expressed with the proposed
model.

• Analysis context: it is the set D of the objects of focus, i.e., ctx .Ext . The proposedmodel
lets the users define this set through the facets it offers, since they restrict the information
space and specify the focus.

• gE is the grouping expression: refers to the facet(s) by which the analytical results are
grouped. The facet(s) may belong to different categories, e.g., classes (pairing operator
in HIFUN) and a facet can correspond to a path (composition operator in HIFUN). Since
a G button is laid next to each facet name of any level, the system supports both pairing
and composition expressions for the grouping function.

• mE is the measuring expression: refers to the facet(s) on which the aggregate operation
will be applied. Again, the facet(s) may belong to different categories (pairing operator
in HIFUN) and a facet can correspond to a path (composition operator in HIFUN). Since
a ± button is laid next to each facet name of any level, the system supports both pairing
and composition expressions for the measuring function.

123

3946 M-E. Papadaki, Y. Tzitzikas

Ta
bl
e
4

E
ffi
ci
en
cy

D
at
as
et
si
ze

(i
n
tr
ip
le
s)

Q
ue
ry

ev
al
ua
tio

n
(i
n
m
s)

Pr
es
en
ta
tio

n
of

re
su
lts

(i
n
m
s)

q1
q2

q3
q4

q5
q6

q1
q2

q3
q4

q5
q6

10
2

34
5

42
5

38
8

36
4

62
4

41
8

24
25

29
25

45
26

10
3

33
1

41
5

45
2

40
9

52
1

61
8

23
32

56
37

30
49

10
4

43
9

40
9

44
0

38
1

45
4

48
8

26
34

33
44

32
30

10
6

26
05

32
58

22
76

25
44

19
37

15
69

58
62

59
11

1
61

47

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3947

• opE the operation expression: it is the aggregation function applied to the grouped values.
Since a ± button laid next to each facet name offers a menu with the basic aggregation
functions of an analytical query, the system supports this function, too.

Attribute restrictions. Recall that the grouping and the measuring function may contain a
set of restrictions. Any restriction is also supported by the proposed model, since the G and
± buttons lay next to each value of every facet.
Results restrictions. Apart from restricting the attributes of a HIFUN query, the user can
also restrict the results of it. The proposed model supports this functionality by loading the
results of the analytical query as a new dataset on the FS system. In that case, the user is able
to further restrict them by specifying the range of the values of the desired facets.
Nesting. A HIFUN query may express a query in terms of one or more other queries, i.e.,
nested queries. Since the proposed system lets the users load the current analytical results as
a new dataset to the system and create new queries, it supports nested queries, too.

10.2 OLAP operators supported

Online Analytical Processing systems (OLAP).
Online Analytical Processing (OLAP), introduced in the early ’90 s [64], is used for the

analysis of transaction data.
In order to apply OLAP, data should be organized in a multi-dimensional (MD) structure,

known asData Cube. A Data Cube consists of (1) facts which are the subjects of the analysis
and quantified bymeasures and (2) hierarchically organized dimensions allowing formeasure
aggregation. The operations that can be applied over it are: roll-up (performs aggregation by
climbing up a concept hierarchy for a dimension or by dimension reduction), drill-down (is the
reverse operation of roll-up and performs aggregation by stepping down a concept hierarchy
for a dimension or by introducing a new dimension), slice (selects one particular dimension
from a given cube and provides a new sub-cube), dice (selects two or more dimensions from
a given cube and provides a new sub-cube), and pivot (provides an alternative presentation
of data).

The comparison of the exploration capabilities of plain Faceted Search with OLAP has
been described long ago, e.g., in Sect. 3 of [20]. The model presented in the current paper
is about graph data, and we have seen that it can be applied directly over the graph, i.e.,
without requiring to define first a data cube, as it is discussed in Sect. 3.2. The additions
that we propose (to FS for enabling analytic queries) essentially cover the needs for OLAP
over graph data. Assume an analytic query expressed with RDF-ANALYTICS. The user by
applying restriction and group by actions can achieve the desired result, i.e., the desired
level of granularity and the desired sub-cube. The correspondence is illustrated in Fig. 14.
In particular, traversing up the hierarchy of a facet, or removing adding a GroupBy action,
corresponds to a roll-up operation, traversing down the hierarchy of a facet, or adding a
new GroupBy action, corresponds to a drill-down operation, picking one value for a facet
corresponds to slice, picking two ormore values frommultiple facets corresponds to dice, and
moving to a facet which is directly or indirectly connected to the facet of focus corresponds
to pivot.

To make this more clear below, we provide one particular example of roll-up and drill-
down. Suppose a user who has expressed the query “Average prices for products, grouped by
manufacturer”, as shown inFig. 15(left). If the userwants to drill down and inspect the average
prices also based on the product type, he can press the G button on the class Product. That

123

3948 M-E. Papadaki, Y. Tzitzikas

Fig. 14 Correspondence with OPAP operations

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3949

Fig. 15 An example of roll-up and drill-down

would correspond to the query “average prices of product types grouped by manufacturer”.
This is shown in Fig. 15(right). The inverse direction would be roll-up.

11 Evaluation

Section 11.1 discusses the results of an evaluation of our approach with users, and Sect. 11.2
conveys an implementation of the model that proves its feasibility and the completeness of
the introduced algorithms.

11.1 Task-based evaluation with users

We performed a task-based evaluation with users. The objective was to investigate if they
can formulate easily analytic queries, especially complex queries containing various value
restrictions and path expressions. Twenty (20) users participated to the evaluation. The num-
ber was sufficient for our purposes since, according to [65], 20 evaluators are enough for
getting more than 95% of the usability problems of a user interface. The participants had
varying educational levels (Computer Science Student (25%), Computer Science related
(60%), Other (15%)), level of experience (experts (55%), medium knowledge of RDF and
SPARQL (30%), novice (15%)), age groups (twenties (25%), thirties (40%), forties (20%),
fifties (10%), sixties (5%)), and sex (male (80%), female (20%)). We did not train them; we
just provided them with a concise assisting page that explains the functionality of the buttons
laid next to each facet.10

10 The deployment of the system that was used is accessible at https://demos.isl.ics.forth.gr/rdf-analytics.

123

https://demos.isl.ics.forth.gr/rdf-analytics

3950 M-E. Papadaki, Y. Tzitzikas

We defined 10 tasks for the evaluation; below we list them along with the success rates of
the users.

• Q1. Count the laptops grouped by manufacturer.: Success (85%), Partial success (0%),
Fail (15%)

• Q2. Count the number of laptops grouped by manufacturer that were released after
1/1/2022.: Success (85%), Partial success (0%), Fail (15%)

• Q3. Count the number of laptops grouped by manufacturer that were released after
1/1/2022 and have at least 2 USB ports.: Success (85%), Partial success (0%), Fail (15%)

• Q4. Average price of laptops released after 1/1/2022 and have at least 2 USB ports.:
Success (80%), Partial success (0%), Fail (20%)

• Q5. Average price of laptops released after 1/1/2022 and have at least 2 USB ports
grouped by manufacturer.: Success (90%), Partial success (0%), Fail (10%)

• Q6. Average price of laptops with HDD manufactured in an Asian country.: Success
(50%), Partial success (0%), Fail (50%)

• Q7. Average price of laptops with HDD manufactured in US.: Success (50%), Partial
success (0%), Fail (50%)

• Q8. Count the laptops grouped by the country of the founder.: Success (50%), Partial
success (0%), Fail (50%)

• Q9. Average price of laptops grouped by manufacturer.: Success (80%), Partial success
(0%), Fail (20%)

• Q10. Average prices of laptops grouped by manufacturer, having average price below
800 Euro.: Success (65%), Partial success (10%), Fail (25%)

We observe that users had higher success rates to questions related to simple aggregations
(Q9) and applying filters to the data (Q1–Q5). They were able to successfully navigate the
filtering options and effectively apply them to refine and manipulate the dataset. In contrast,
they encountered challenges when it came to questions that required formulating paths in
the graph data (Q6–Q8). This particular task seemed to present difficulties for users, as they
struggled to navigate and comprehend the intricacies of the graph structure. Additionally,
users encountered difficulties in understanding how to formulate “HAVING” clauses by
loading the results as a new dataset, as they struggled to grasp the concept of applying
conditions to aggregated data. This suggests that it isworth improving the systembyproviding
more guidance in such cases (e.g. through info boxes, tooltips, etc.).

The results indicate a clear correlation between participants’ experience levels and their
task completion outcomes. Among those classified as “Experts,” a substantial 74% achieved
success, while none reported partial success, and 26% faced failures. In the “Intermediate”
group, 81.67% marked successful completion, 33.30% reported partial success, and 15%
encountered failures. Novice participants demonstrated a 70% success rate, with 2.5% expe-
riencing partial success and 27.5% facing difficulties. These findings highlight the influence
of expertise on task completion, with experienced individuals tending to achieve higher suc-
cess rates, while intermediate participants navigate a balance between success and partial
success. The results of the analysis demonstrate that even novice users achieved a commend-
able level of success, showcasing their ability to perform tasks effectively. Furthermore, it
is noteworthy that the differences in task completion rates between novice users and more
experienced participants were not significantly pronounced. This suggests that while exper-
tise certainly plays a role in task success, novice users can still perform at a level that is
competitive with their more experienced counterparts. These findings underscore the impor-
tance of user-friendly interfaces and well-designed systems that can accommodate a diverse
range of users, regardless of their experience levels.

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3951

Fig. 16 Task-based evaluation with users: task completion and user rating

Fig. 17 Task-based evaluation with users: total task completion and total user rating

Regarding user rating, among expert users, an impressive 60% found the system “very
useful,” indicating a high level of satisfaction and effective utilization. Intermediate users
also reported a favorable 16% rating for “very useful,” showcasing its applicability to this
user group. Novice users, despite their relative inexperience, expressed a noteworthy 50%
rating for “very useful,” highlighting the system’s user-friendly design. The “useful” category
received positive feedback from experts and intermediates, with 40% and 60%, respectively,
and also garnered a favorable 50% rating from novice users. Remarkably, among expert and
intermediate users, the product received no “little useful” or “not useful” ratings, emphasizing
its overall effectiveness across these experience levels. Thesefindings underscore the system’s
versatility and its ability to cater to users of varying expertise (Fig. 16).

As we can see in Fig. 17a, we can see a substantial total success rate of 75.89%; it is
evident that a majority of participants demonstrated proficiency in achieving their objectives.

123

3952 M-E. Papadaki, Y. Tzitzikas

However, the presence of a partial success rate of 11.60% suggests that there were instances
where participants made notable progress, yet encountered some hurdles on their path to suc-
cess. Meanwhile, a 22.50% fail rate signifies challenges and setbacks faced by participants
during their tasks. Also in Fig. 17b, the analysis reveals that the system earned a solid average
of 42% for being “Very Useful” across the spectrum of expertise. Additionally, the “Useful”
rating garnered an average of 50%, indicating a generally positive reception across all expe-
rience levels. It is worth noting that even among less experienced users, represented by the
“Novice” category, the system was considered “Very Useful” in 50% of cases, underlining
its accessibility and effectiveness. While there was a modest 5.33% rating of “Little Useful”
among Intermediate users, there were no instances of a “Not Useful” rating. These results
underscore the system’s overall positive reception and suggest that it effectively caters to a
diverse range of users, including those with varying levels of expertise.

Overall, the results are very promising in terms of task completion, as shown in Fig. 16a
(i.e., success 75.89%, partial success 11.6%, fail 22.5%) and user rating as shown in Fig. 16b
(i.e., Very useful 42%,Useful 50%, Little Useful 5,3%,NotUseful 0%), given that no training
was provided to the users. These results align well with our target audience, where 55% of
users have an expert-level background, 30% are at an intermediate level, and 15% are novice
users. It’s important to emphasize that our system is designed with a focus on addressing
the needs of non-expert users. Therefore, the positive outcomes in task completion and user
satisfaction demonstrate the effectiveness of our system in assisting those who may not have
prior expertise.
UserFeedback.Users provided uswith some additional comments for improving our system.

Firstly, there was a call for including a “Reset” button next to the “Analyze” button for
clearing their input and starting a fresh with a new analysis.

They suggested to make the “Analyze” button “sticky,” so as to remain visible and acces-
sible as they scroll through the page exploring various facets.

They also highlighted the importance of providing brief explanations next to faceted search
symbols, i.e., G, ±, �, for additional guidance.

Additionally, they suggested to enhance the manual with more clear guidelines and pos-
sibly sample queries, and screenshots showcasing various usage scenarios.

They faced a difficulty with the concept of “group by” and “group by having a condition,”
and they asked for simplification for users not well versed in database queries.

Finally, they suggested to ensure the smooth system availability across different browsers.
In response to user feedback, we implemented several enhancements in our system.
We successfully addressed the call for a more user-friendly interface by introducing a

“Reset” button adjacent to the “Analyze” button, allowing users to effortlessly clear their
input and start a new analysis.

Furthermore, we have made the “Analyze” button “sticky”, ensuring its visibility and
accessibility as users navigate through various facets while scrolling.

To enhance user understanding, we incorporated tooltips next to faceted search symbols
(i.e., G, ±, �), providing concise explanations for improved guidance.

The manual was enriched with clearer guidelines, sample queries, and screenshots depict-
ing various usage scenarios.

Acknowledging the challenge users faced with the concepts of “group by” and “group by
having a condition,” particularly for those less familiar with database queries, we recognize
the need for further simplification in these areas and we are exploring ways to present these
concepts in a more intuitive manner, ensuring that users of varying levels of expertise can
grasp these functionalities.

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3953

Fig. 18 An alternative implementation of the proposed model

Lastly, in alignment with user suggestions, we are committed to ensuring the smooth
availability of our system across different browsers.

11.2 Testing implementability

The development of Interactive User Interfaces is in general time-consuming. In this paper,
we provided the concrete algorithms for producing the UIs in order to make the model easily
implementable. To test the completeness and clarity of the description of the model and
the proposed algorithms, we assigned an undergraduate student in the fourth year (not a
member of the research group) to implement it (as a Diploma Thesis) by providing him
with a preliminary version of the current paper. He was free to decide the implementation
technologies he would use. For the back-end side, he used Java, Spring framework, and
apache Jena, whereas for the front-end side, he used Vue.js, Bootstrap, and Font Awesome.
He managed to implement the model correctly. A few screenshots are shown in Fig. 18.

12 Concluding remarks

The formulation of structured queries over RDF Knowledge Graphs is difficult, especially
in case that the graph has a broad domain, and thus contains large number of classes and
properties. To aid especially novice users (and to save time from expert users), we present a
model that aims to enable them to formulate easily analytic queries over any RDF knowledge
graph, without having any knowledge of the schema/terminology of the graph, nor the syntax
of SPARQL. To come up with an intuitive interaction model and interface, we leverage the
familiarity of users with the Faceted Search systems. We start from a general model for

123

3954 M-E. Papadaki, Y. Tzitzikas

Faceted Search over RDF data, and we extend it with actions that enable users to specify
analytic queries, too. Distinctive characteristics of the model are: (1) it can be applied to any
RDF dataset (i.e. independently if it follows a star schema), (2) it supports only answerable
queries (i.e., it never produces empty results due to lack of data), (3) it supports arbitrarily
long paths, (4) it provides count information, (5) it supports the interactive formulation of
HAVING clauses, (6) it supports both Faceted Search and analytic queries, and (7) it supports
nested analytic queries.

We have detailed the model, specifically (1) we defined formally the state space of the
interaction model and the required algorithms for producing the UI (User Interface), (2) we
described a hybrid (extensional and intentional) query evaluation approach, (3) we presented
an implementation of the model that showcased its feasibility, and (4) we discussed in brief
the results of a preliminary evaluation of the proposed system that provided evidence about
its acceptance by users in terms of task completion and user rating. As regards the latter, the
results of the task-based evaluation with users are very positive in terms of task completion
(i.e., Success 75.89%, Partial Success 11.6%, Fail 22.5%) and user rating (Very useful 42%,
Useful 50%, Little Useful 5.3%, Not Useful 0%), given that no training was provided to the
users, in an audience of 55% expert, 30% intermediate, and 15% novice users. As regards
efficiency, without any particular optimization, the system offers real-time interaction, i.e.,
the analytic queries which are formulated during the interaction require around 3 secs to be
evaluated over a KGs with 1 millions triples.
Perspectives. The model has wide applicability; it can be applied to any Knowledge Graph;
it can complement the other access methods over graph data, In the future, we plan to enrich
the model with (1) further visualization features for aiding the interpretation of the analytical
results and (2) feature constructor operators (FCO) for cases where data transformations are
required. Another direction for future research is to evaluate the system in very large datasets
and then investigate what kind of optimizations is required.

Acknowledgements Many thanks toAlexandros Perrakis for proof reading the entire paper and for developing
the second implementation of the model.

Author Contributions All authors contributed to the study conception, design, and writing of this work. The
implementation of the system was done by Maria-Evangelia Papadaki.

Funding FORTH-ICS.

Data availability The dataset used in the running example as well as the running system is publicly accessible.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Consent for publication Yes.

Code availability Upon request to the authors.

References

1. Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia—a
crystallization point for the web of data. J Web Semant 7(3):154–165

2. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM
57(10):78–85

3. Isaac A, Haslhofer B (2013) Europeana linked open data–data. europeana. eu. Semant Web 4(3):291–297

123

Unifying Faceted Search and Analytics over RDF Knowledge… 3955

4. Fafalios P, Petrakis K, Samaritakis G, Doerr K, Kritsotaki A, Tzitzikas Y, Doerr MFASTCAT (2021)
collaborative data entry and curation for semantic interoperability in digital humanities. J Comput Cult
Herit (JOCCH) 14(4):1–20

5. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z et al
(2018) DrugBank 5.0: a major update to the drugbank database for 2018. Nucl Acids Res 46(D1):1074–
1082

6. Tzitzikas Y, Marketakis Y, Minadakis N, Mountantonakis M, Candela L, Mangiacrapa F et al (2019)
Methods and tools for supporting the integration of stocks and fisheries. In: Information and communi-
cation technologies in modern agricultural development: 8th international conference, HAICTA 2017,
Chania, Crete, Greece, September 21–24, 2017, Revised Selected Papers 8. Springer, pp 20–34

7. Koho M, Ikkala E, Leskinen P, Tamper M, Tuominen J, Hyvönen E (2020) Warsampo knowledge graph:
Finland in the second world war as linked open data. Semantic Web—Interoperability, Usability, Appli-
cability. https://doi.org/10.3233/SW-200392. In press

8. Jaradeh MY, Oelen A, Farfar KE, Prinz M, D’Souza J, Kismihók G, Stocker M, Auer S (2019) Open
research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: Proceed-
ings of the 10th international conference on knowledge capture, pp 243–246

9. Dimitrov D, Baran E, Fafalios P, Yu R, Zhu X, Zloch M, Dietze S (2020) TweetsCOV19—a knowledge
base of semantically annotated tweets about the COVID-19 pandemic. In: Proceedings of the 29th ACM
international conference on information & knowledge management, pp 2991–2998

10. Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, Burdick D, Eide D, Funk K, Katsis Y, Kinney R et al
(2020) COVID-19 open research dataset (CORD-19). https://www.kaggle.com/datasets/allen-institute-
for-ai/CORD-19-research-challenge

11. Gazzotti R, Michel FGF (2020) CORD-19 named entities knowledge graph (CORD19-NEKG). Zenodo.
https://doi.org/10.5281/zenodo.3827449

12. Tzitzikas Y (2022) FS2KG: from file systems to knowledge graphs (demo). In: ISWC 2022
13. Mountantonakis M, Tzitzikas Y (2023) Using multiple RDF knowledge graphs for enriching ChatGPT

responses. In: European conference on machine learning and principles and practice of knowledge dis-
covery in databases, ECML PKDD

14. Chatzakis M, Mountantonakis M, Tzitzikas Y (2021) RDFsim: similarity-based browsing over DBpedia
using embeddings. Information 12(11):440

15. Nikas C, Kadilierakis G, Fafalios P, Tzitzikas Y (2020) Keyword search over RDF: is a single perspective
enough? Big Data Cogn Comput 4(3):22

16. Kritsotakis V, Roussakis Y, Patkos T, Theodoridou M (2018) Assistive query building for semantic data.
In: SEMANTICS posters & demos

17. e Zainab SS, Saleem M, Mehmood Q, Zehra D, Decker S, Hasnain A (2015) FedViz: a visual interface
for SPARQL queries formulation and execution. In: VOILA@ ISWC, p 49

18. Ferré S (2014) SPARKLIS: a SPARQL endpoint explorer for expressive question answering. In: ISWC
posters and demonstrations track

19. Akritidis A, Tzitzikas Y (2023) Demonstrating interactive SPARQL formulation through positive and
negative examples and feedback. In: 26th international conference on extending database technology,
EDBT 2023

20. Sacco GM, Tzitzikas Y (2009) Dynamic taxonomies and faceted search: theory, practice, and experience.
Springer, Berlin

21. Tzitzikas Y, Manolis N, Papadakos P (2017) Faceted exploration of RDF/S datasets: a survey. J Intell Inf
Syst 48(2):329–364

22. PapadakiM-E, Tzitzikas Y (2023) RDF-ANALYTICS: interactive analytics over RDF knowledge graphs.
In: 26th international conference on extending database technology, EDBT 2023

23. Antoniou G, Van Harmelen F (2004) A semantic web primer. MIT Press, Cambridge
24. Mountantonakis M, Tzitzikas Y (2018) LODsyndesis: global scale knowledge services. Heritage 1(2):23
25. Prieto-Diaz R (1991) Implementing faceted classification for software reuse. CommunACM34(5):88–97
26. Sacco G (2000) Dynamic taxonomies: a model for large information bases. IEEE Trans Knowl Data Eng

12(3):468–479
27. English J, Hearst M, Sinha R, Swearingen K, Yee K-P (2002) Hierarchical faceted metadata in site search

interfaces. In: CHI’02 extended abstracts on human factors in computing systems, pp 628–639
28. Tunkelang D (2009) Faceted search, vol 5. Morgan & Claypool Publishers, San Rafael
29. Russell-Rose T, Tate T (2012) Designing the search experience: the information architecture of discovery.

Newnes, Oxford, p 45
30. Tessel B (2019) Metadata categorization for identifying search patterns in a digital library. J Doc

75(2):270–286. https://doi.org/10.1108/JD-06-2018-0087

123

https://doi.org/10.3233/SW-200392
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
https://doi.org/10.5281/zenodo.3827449
https://doi.org/10.1108/JD-06-2018-0087

3956 M-E. Papadaki, Y. Tzitzikas

31. Kobayashi Y, ShindoH,MatsumotoY (2019) Scientific article search system based on discourse facet rep-
resentation. Proc AAAI Conf Artif Intell 33:9859–9860. https://doi.org/10.1609/aaai.v33i01.33019859

32. Moreno-Vega J, Hogan A (2018) GraFa: scalable faceted browsing for RDF graphs. In: International
semantic web conference. Springer, Berlin, pp 301–317

33. Manioudakis K, Tzitzikas Y (2020) Faceted search with object ranking and answer size constraints. ACM
Trans Inf Syst (TOIS) 39(1):1–33

34. ArenasM, Grau BC, Kharlamov E,Marciuška Š, Zheleznyakov D (2016) Faceted search over RDF-based
knowledge graphs. J Web Semant 37:55–74

35. Feddoul L, Schindler S, Löffler F (2019)Automatic facet generation and selection over knowledge graphs.
In: International conference on semantic systems. Springer, Berlin, pp 310–325

36. Spyratos N, Sugibuchi T (2018) HIFUN-a high level functional query language for big data analytics. J
Intell Inf Syst 51:529–555

37. Papadaki M-E, Tzitzikas Y, Mountantonakis M (2023) A brief survey of methods for analytics over RDF
knowledge graphs. Analytics 2(1):55–74

38. Ferré S (2021) Analytical queries on vanilla RDF graphs with a guided query builder approach. In:
International conference on flexible query answering systems. Springer, Berlin, pp 41–53

39. Ferré S (2017) Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural
language. Semant Web 8(3):405–418

40. Sherkhonov E, Grau BC, Kharlamov E, Kostylev EV (2017) Semantic faceted search with aggregation
and recursion. In: International semantic web conference. Springer, Berlin, pp 594–610

41. Kharlamov E, Giacomelli L, Sherkhonov E, Grau BC, Kostylev EV, Horrocks I (2017) Semfacet: making
hard faceted search easier. In: Proceedings of the 2017ACMon conference on information and knowledge
management, pp 2475–2478

42. Leskinen P, Miyakita G, Koho M, Hyvönen E (2018) Combining faceted search with data-analytic visu-
alizations on top of a SPARQL endpoint. In: CEUR workshop proceedings

43. Hyvönen E, Ahola A, Ikkala E (2022) Booksampo fiction literature knowledge graph revisited: building a
faceted search interface with seamlessly integrated data-analytic tools. In: 26th international conference
on theory and practice of digital libraries, TPDL 2022, Padua, Italy, September 20–23, 2022. Springer,
Berlin, pp 506–511

44. Zhao P, Li X, Xin D, Han J (2011) Graph cube: on warehousing and OLAP multidimensional networks.
In: Proceedings of the 2011ACMSIGMOD international conference onmanagement of data, pp 853–864

45. Azirani EA, Goasdoué F, Manolescu I, Roatiş A (2015) Efficient OLAP operations for RDF analytics.
In: 2015 31st IEEE international conference on data engineering workshops. IEEE, pp 71–76

46. Benatallah B, Motahari-Nezhad HR et al (2016) Scalable graph-based OLAP analytics over process
execution data. Distrib Parallel Databases 34:379–423

47. PapadakiM-E, SpyratosN, TzitzikasY (2021)Towards interactive analytics overRDFgraphs.Algorithms
14(2):34

48. Hasan SS, Rivera D, Wu X-C, Durbin EB, Christian JB, Tourassi G (2020) Knowledge graph-enabled
cancer data analytics. IEEE J Biomed Health Inform 24(7):1952–1967

49. Michel F, Gandon F, Ah-Kane V, Bobasheva A, Cabrio E, Corby O, Gazzotti R, Giboin A, Marro S,
Mayer T et al (2020) Covid-on-the-Web: knowledge graph and services to advance COVID-19 research.
In: International semantic web conference. Springer, Berlin, pp 294–310

50. Salast PER, Martin M, Da Mota FM, Auer S, Breitman KK, Casanova MA (2012) Olap2datacube: an
ontowiki plug-in for statistical data publishing. In: 2012 second international workshop on developing
tools as plug-ins (TOPI). IEEE, pp 79–83

51. Zloof MM (1975) Query-by-example: the invocation and definition of tables and forms. In: Proceedings
of the 1st international conference on very large data bases, pp 1–24

52. Li H, Chan C-Y, Maier D (2015) Query from examples: an iterative, data-driven approach to query
construction. Proc VLDB Endow 8(13):2158–2169

53. Arenas M, Diaz GI, Kostylev EV (2016) Reverse engineering SPARQL queries. In: Proceedings of the
25th international conference on world wide web, pp 239–249

54. DiazG, ArenasM, BenediktM (2016) SPARQLByE: querying RDF data by example. ProcVLDBEndow
9(13):1533–1536

55. Ali W, Saleem M, Yao B, Hogan A, Ngomo A-CN (2021) A survey of RDF stores & SPARQL engines
for querying knowledge graphs. VLDB J (2021). (accepted for publication)

56. Nikas C, Fafalios P, Tzitzikas Y (2021) Open domain question answering over knowledge graphs using
keyword search, answer type prediction, SPARQL and pre-trained neural models. In: International seman-
tic web conference. Springer, Berlin, pp 235–251

57. Ali E, Caputo A, Lawless S, Conlan O (2021) Personalizing type-based facet ranking using BERT embed-
dings

123

https://doi.org/10.1609/aaai.v33i01.33019859

Unifying Faceted Search and Analytics over RDF Knowledge… 3957

58. Niu X, Fan X, Zhang T (2019) Understanding faceted search from data science and human factor per-
spectives. ACM Trans Inf Syst (TOIS) 37(2):1–27

59. Tzitzikas Y, Papadaki M-E, Chatzakis M (2021) A spiral-like method to place in the space (and interact
with) too many values. J Intell Inf Syst 58:1–25

60. Ravindra P, Deshpande VV, Anyanwu K (2010) Towards scalable RDF graph analytics on mapreduce.
In: Proceedings of the 2010 workshop on massive data analytics on the cloud, pp 1–6

61. Zou L, ÖzsuMT, Chen L, ShenX, Huang R, ZhaoD (2014) gStore: a graph-based SPARQL query engine.
VLDB J 23:565–590

62. Ibragimov D, Hose K, Pedersen TB, Zimányi E (2015) Processing aggregate queries in a federation of
SPARQL endpoints. In: The semantic web. Latest advances and new domains: 12th European semantic
web conference, ESWC2015, Portoroz, Slovenia,May 31–June 4, 2015. Proceedings 12. Springer, Berlin,
pp 269–285

63. Ibragimov D, Hose K, Pedersen TB, Zimányi E (2016) Optimizing aggregate SPARQL queries using
materialized RDF views. In: The semantic web–ISWC 2016: 15th international semantic web conference,
Kobe, Japan, October 17–21, 2016, Proceedings, Part I 15. Springer, Berlin, pp 341–359

64. Codd EF, Codd SB, Salley CT (1993) Providing OLAP (on-line analytical processing) to user-analysts:
an IT mandate. E. F. Codd and Associates

65. Faulkner L (2003) Beyond the five-user assumption: benefits of increased sample sizes in usability testing.
Behav Res Methods Instrum Comput 35:379–383

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Maria-Evangelia Papadaki obtained her PhD from the Computer Sci-
ence Department at the University of Crete, Greece, in 2024. She
obtained her MSc and BSc from the same department, and she is mem-
ber of the Information Systems Laboratory (ISL) of FORTH-ICS since
2015. Her research interests fall in the areas of Semantic Web, Linked
Open Data, Analytics, and 3D Visualization.

123

3958 M-E. Papadaki, Y. Tzitzikas

Yannis Tzitzikas is Professor of Information Systems in the Com-
puter Science Department at University of Crete (Greece) and Affili-
ated Researcher of the Information Systems Laboratory at FORTH-ICS
(Greece). He studied at the University of Crete and he conducted post-
doctoral research at (a) the University of Namur (Belgium), (b) ISTI-
CNR (Pisa, Italy), and (c) VTT Technical Research Centre of Finland.
Since 2005, he coordinates the Semantic Access and Retrieval group,
and from 2019 also the Centre for Cultural Informatics of the Informa-
tion Systems Laboratory of FORTH-ICS.

123

	Unifying Faceted Search and Analytics over RDF Knowledge Graphs
	Abstract
	1 Introduction
	2 Background
	2.1 The Resource Description Framework (RDF)
	2.2 Faceted Search
	2.3 HIFUN: a functional query language for analytics

	3 Related work
	3.1 Formulation of analytic queries directly over RDF
	3.2 Definition of data cubes over RDF
	3.3 Domain-specific pipelines produce and analyze RDF data
	3.4 Publishing of statistical data in RDF
	3.5 Comparison with Query-By-Example
	3.6 Our position and contribution

	4 The interaction model in brief
	5 The required extensions of the formal model for FS over RDF for supporting analytics
	5.1 Background: the core model for FS over RDF
	5.2 The extension of the model for analytics (formally)

	6 The interaction model formally and the related algorithms
	6.1 Notations
	6.2 Defining the state space of the interaction
	6.2.1 Initial class-based transitions
	6.2.2 Property-based transitions

	6.3 Loading AF as a new dataset

	7 The algorithm that implements the state space
	7.1 Starting points
	7.2 Computing the objects in the right frame
	7.3 Computing the facets corresponding to classes
	7.4 Computing the facets that correspond to properties
	7.4.1 Computing the facets corresponding to path expansion

	8 Expressing and computing the intentions of the states
	9 Implementation
	9.1 Efficiency

	10 The expressive power of the model
	10.1 Expressible HIFUN queries
	10.2 OLAP operators supported

	11 Evaluation
	11.1 Task-based evaluation with users
	11.2 Testing implementability

	12 Concluding remarks
	Acknowledgements
	References

