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Abstract
Session-based recommendation (SBR) is to predict the items that users are likely to click
afterward by using their recent click history. Learning item features from existing session
data to capture users’ current preferences is the main problem to be solved in session-based
recommendation domain, and fusing global and local information to learn users’ preferences
is an effective way to obtain this information more accurately. In this paper, we propose a
session-based recommendation with fusion of hypergraph item global and context features
(FHGIGC), which learns users’ current preferences by fusing item global and contextual fea-
tures. Specifically, the model first constructs a global hypergraph and a local hypergraph and
uses the hypergraph neural network to learn item global features and local features by relevant
session information and item contextual information, respectively. Then, the learned features
are fused by the attention mechanism to obtain the final item features and session features.
Finally, personalized recommendations are generated for users based on the fused features.
Experiments were conducted on three datasets of session-based recommendation, and the
results demonstrate that the FHGIGC model can improve the accuracy of recommendations.
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Hypergraph attention network · Attention mechanism · Feature fusion

Xiaohong Han and Xiaolong Chen contributed equally to this work.

B Xiaolong Chen
little_xl_chen@163.com

Xiaohong Han
382665448@qq.com

Mengfan Zhao
zhaomengfan@tju.edu.cn

Ting Liu
303779601@qq.com

1 Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China

2 Computer and Software Engineering, Sias University, Zhengzhou 451150, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-02058-3&domain=pdf


2946 X. Han et al.

1 Introduction

With the rapid development of the information age, Internet users are in an environment of
information explosion.An ensuing problem is howusers can quickly and accurately obtain the
required information from the huge and complexweb data. Recommender systems [1, 2] have
been proposed to solve the problem due to their powerful ability for capturing users’ interests
and have attracted a lot of attention from researchers. However, traditional recommendation
systems have some problems in capturing users’ short-time preferences, such as noise in
users’ historical interaction data, failure to reflect users’ short-time preference shifts through
historical information and personal data [3, 4], which leads to unsatisfactory recommendation
results. In order to solve the problems of traditional recommendation systems, the session-
based recommendation was born.

Session-based recommendation aims to predict the next item a user is likely to click
through the user’s click sequence in the recent period. Based on this feature, session-based
recommendation can better capture the current interest preference shift of users, thus improv-
ing the effectiveness and accuracy of the recommendation system. How to learn and capture
the features of items in a session and user preferences from session data has also become a
core problem in the field of session-based recommendation. As shown in Fig. 1, among the
four user browsing records, sessions S1, S2, and S3 reflect users’ interest in electronics and
accessories, while users in session S4 are clearly more likely to buy food.

In response to the problem of the above example, a large number of researchers have
explored how to obtain user preferences and generate accurate recommendation results from
such session data. In early studies of session-based recommendation, researchersmainly used
collaborative filtering (CF) [5–7] and Markov chain (MC) [8, 9], which largely ignore item
interactions in session data and are ineffective in making recommendations on sparse data.
Matrix factorization (MF) [10–12] methods perform well in dealing with sparse matrices,
but pose the problem of high time complexity as well as poor interpretability. Subsequently,
recurrent neural networks (RNNs) [13, 14] as well as attentionmechanisms [15–17] have also
been used in the field of recommender systems due to their excellent handling of sequential
data, and have been used to capture the sequential relationships of a session in session-based
recommendation. Although this approach, which relies on sequential structure, brings some
improvement to session-based recommendation, it still has many limitations. Thanks to the
higher-order feature representation capability of graph structures, graph neural networks
(GNNs) [18–21] have been widely used in various fields in recent years, especially in the
field of recommender systems, which has received wide attention and become a mainstream
approach. The session-based recommendation based on graph neural networks [22–24] learns
the similarity of items in a session by combining multiple sessions in a graph neural network
through graph structures, and although it can providemore information for items, this method

Fig. 1 A toy example of item conversion in different sessions
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of transferring information only through connected pairs of nodes still limits the performance
of session-based recommendation.

Compared with the ordinary graph where node pairs are connected to each other, the
hypergraph [25] connects two or more nodes per hyperedge, which can effectively transfer
information between multiple nodes. By introducing this hypergraph structure, a hyperedge
can connect multiple items when constructing a session graph, which can effectively capture
the complex relationship between two or more items in the session data. In session-based
recommendation, researchers usually propagate information about all items at the session
level [26, 27], which allows effective learning of the overall features of the session, but also
ignores the structural features of the items within the session to some extent. In this paper,
Session-based Recommendation with Fusion of Hypergraph Item Global and Context Fea-
tures (FHGIGC) is proposed. Firstly, all session data are constructed as a global hypergraph,
and different sessions are interconnected by shared nodes to learn item features by related
sessions in the hypergraph neural network. Then, for each session, the local hypergraph is
constructed by using the context window as a hyperedge, and the interrelationship of items
within the session is learned by the contextual information of the items in the session. Next,
the learned item features are fused according to the importance level by an attention mech-
anism to obtain the final item features and session features, which are finally used in the
recommendation task. The main contributions can be summarized as follows:

• To learn the features of items in a global session, all sessions are constructed as global
hypergraphs and information is propagated through Hypergraph Convolutional Neural
Networks (HGCN). Then local hypergraphs are constructed in individual sessions with
contextual information of items and the information is propagated through Hypergraph
Attention Network (HGAT) to learn the item interaction features within the sessions.

• The attention mechanism learns the different importance of inter-session holistic features
and intra-session item relationship features, and fuses the features learned from global
and local hypergraph structures according to this importance, and finally generates per-
sonalized recommendations for sessions based on the fused feature information.

• Extensive experiments were conducted on three datasets, Tmall, Diginetica, and Retail-
Rocket, respectively, to demonstrate that the FHGIGC model outperforms the existing
baseline model, and the designed modules were also shown to improve the recommen-
dation accuracy through ablation experiments.

2 Related works

2.1 SBR based on traditional methods

Collaborative filtering is mainly used to make recommendation by calculating the similarity
between users and items. Item-KNN [5] inferred items that might be of interest to users by
calculating the cosine similarity between different items and recommended them to users.
With the development of machine learning, there are also many researches on combining
machine learning in collaborative filtering for recommendation. NCF [28] used a multiple
perceptron approach to learn user-item interactions. J-NCF [29] further combined neural
collaborative filtering to learn deep user-item features from user-item interactions. Although
these methods have achieved some success, the accuracy of the recommendation results is
somewhat affected by ignoring the user preference shifts in the sequence.
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Markov chain-based recommender systems predict subsequent possible items from the
user’s current continuous session items. FPMC [8] captures the sequence information of a
session by combining a matrix decomposition model and a first-order Markov chain. Shani
et al. [30] predicted user preferences by Markov decision process for the sequential purchase
behavior of users. Similarly, Zimdars et al. [9] used the user interactions in a session as a
sequence to make recommendations based on temporal relationships. However, the Markov
chain-based approach only focuses on first-order interaction relations and only performs
local feature extraction based on the current sequence, ignoring global session information
resulting in unsatisfactory recommendation results.

2.2 SBR based on deep learning

Recurrent neural networks were first proposed to solve problems related to natural language
processing, and are also of interest in the field of session-based recommendation due to their
ability to learn sequence structure [31]. GRU4REC [13] first applied RNNs to session-based
recommendation to iterate the item sequence information in a session through a multilayer
gated recurrent unit (GRU). HRNN [32] proposed hierarchical recurrent neural network to
model users’ personal preference variations and also to improve the personalization of rec-
ommendations by fusing personal history information. Jannach et al. [33] combined the
recommendation results of the GRU4REC and the KNN in a set ratio as the recommen-
dation results. Considering that user interests are dynamically changing, ISLF [34] uses
variable automatic encoder (VAE) combined with RNNs to capture user preferences in ses-
sion sequences. These methods address to some extent the problem of separate items in
traditional methods and the inability to model sequential continuity information over a cer-
tain period of time, but still fail to distinguish the importance between multiple items in a
session.

Themain use of the attentionmechanism is to calculate the importance of each input using
key-value pairs according to the task requirements, so as to focus on the more important
inputs. NARM [35] captures the user’s main preferences in the current session sequence
by introducing an attention mechanism, and also incorporates the user’s history information
to accomplish the recommendation task. The short-term memory attention model proposed
by STAMP [36] implements a session-based recommender by fusing attention mechanisms
as well as RNNs. HARSAM [37] improves the recommendation capability of the model
by introducing a soft attention mechanism to model the user’s interaction information and
to learn the potential performance of the user. Atten-Mixer [38] leverages both concept-
view and instance-view readouts to achieve multi-level reasoning over item transitions.The
introduction of attentional mechanisms has enabled deep learning approaches to make great
progress in session-based recommendation. However, these approaches rely excessively on
information about adjacent items in the session order structure and are unable to learn the
interrelationship of non-adjacent items in a session.

2.3 SBR based on GNN

Graph neural networks provide a convenient and intuitive perspective for modeling com-
plex relationships among nodes, and their applications in recommender systems have been
expanding as research on graph neural networks has been pushed to a new high in recent
years. SR-GNN [39] proposed a graph neural network approach to model the relationship
of items in a session, capturing user as well as item interaction features while maintaining
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structural information between items. PGGNN [40] proposes a dual position encoding (DPE)
gated graph neural network to learn the positional information of items in a session. FGNN
[41] generates session embeddings through the weighted graph attention layer (WGAT) and
ultimately recommendations in the context of cross-session information. FGNN-BCS [42]
further construct a broadly connected session (BCS) graph to connect sessions to improve
session embedding. GC-SAN [43] learns long-term dependencies between session items by
combining graph neural networks and self-attention mechanisms. GARG [44] further pro-
posed an approach based ongraph convolutional neural networks and attentionmechanisms to
improve recommendation performance. In order to avoid information loss when constructing
session graphs, LESSR [45] used edge-order preserving aggregation (EOPA) and a fast graph
attention layer bymodeling sessions as directed graphs. COTREC [46] improves session data
utilization through a self-supervised learning approach based on graph convolutional neural
networks. In these graph methods, GNN can only capture the relationships between node
pairs and cannot capture the higher-order relationships of multiple items in a session, which
affects the effectiveness of recommendations to some extent.

Hypergraph is an improved graph structure that can handle higher-order relationships
betweenmultiple nodes. In the hypergraph structure, each edge can connect twoormore nodes
and treat them as a hypernode. This special connectionmakes the hypergraph structure highly
expressive in dealing with complex data relationships. DHCN [26] captures the relationship
of all items in a session by modeling the session as a hyperedge and enhances the learning
capability of the model by contrastive learning. SHARE [47] creates a hypergraph for each
session that captures the relevance of items in the session. HyperS2Rec [27] improves the
recommendation capability to some extent by combining the hypergraph structure with the
sequential structure to learn the global and sequential relationships between session items,
respectively. The FHGIGC proposed in this paper is a session-based recommendation model
that combines global hypergraph and local hypergraph structures to effectively capture item
consistency, relevant session information, and contextual interaction information of items in
session data.

3 The proposedmodel

3.1 Problem setup

The set of all items is denoted as V = {v1, v2, · · · , vN }, N is the total number of items, and
for the session m can be denoted as Sm = vm1, vm2, · · · , vmr , r is the length of this session.
The purpose of session-based recommendation is to predict the next item of possible interest
to the user based on such a session, i.e., vm(r+1).

In the FHGIGC model proposed in this paper, sessions are modeled as global and local
hypergraphs, respectively, and information is propagated through a hypergraph convolutional
network and a hypergraph attention network. Figure2 shows the overall framework of the
proposed model, which consists of four main parts: the first part is the global item feature
extraction module, which is used to capture the item consistency information of each session
and the information in the related sessions; the second part is the item context interaction
feature extraction module, which captures the context information of the items within a
session through the hypergraph attention network; the third part is the item feature fusion
module, which obtains the global and local item feature vectors through the attention The
fourth part is the session feature fusion and prediction module, in which the item feature
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Fig. 2 The overall framework ofHGIGCmodel.Module I is the global hypergraph based onHGCN to learn the
global item features. Module II is the local hypergraph based on HGAT to learn the local item features. Module
III fusion of global and local item features to generate fused item features. Module IV incorporates an attention
mechanism with position embedding to fuse item features into session features and make recommendations

in a session are fused by the attention mechanism with position embedding to obtain the
corresponding session feature, and thus calculate the probability of candidate items and
recommend the higher ranked items to users as a recommendation list.

3.2 Global item feature extractionmodule

In order to capture the higher-order relationships of items in all sessions rather than between
pairs of nodes, each session is treated as a hyperedge such that different sessions are con-
stitutively connected to each other by sharing nodes, while the nodes in each session are
connected to each other in the hyperedge. The hyperedges ε1, ε2 ε3 constructed by sessions
S1, S2, S3, respectively, are shown in Fig. 2, and the global features of items are effectively
captured by this structure.

The global graph notation is denoted as Gg = (V , E), V is the set of nodes consisting
of N items in all sessions, E is the set of all edges, each edge contains two or more nodes,
the total number of edges is M . Each edge corresponds to a single piece of session data, and
the different hyperedges are connected to each other through shared nodes in the session.
For such a hypergraph, its connectivity is represented by an association matrix H ∈ RN×M

with Hi j = 1 when node vi ∈ ε j and Hi j = 0 otherwise. Each hyperedge ε j is initialized
with weight W j j and all weights form a diagonal matrix W ∈ RM×M . The degrees of nodes
and hyperedges are defined as Di i = ∑M

j=1 W j jHi j ,B j j = ∑N
i=1 Hi j , respectively, and all

degrees form a diagonal matrix D ∈ RN×N and B ∈ RM×M .
By constructing the hypergraph structure in the above way, a global hypergraph con-

structed from all the session data in the dataset as hyperedges can be obtained. It has been
demonstrated in study [48] that removing the nonlinear activation functions and convolu-
tional layer parameter matrices between the layers of a graph convolutional network does
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Fig. 3 Constructing hyperedges through contextual windows

not adversely affect the downstream tasks of the model, and the computational complexity
of the information propagation process can be greatly reduced in this way. In addition, since
information can be transmitted across multiple nodes in a hyperedge, global dependencies
can be better captured by hypergraph convolutional neural networks. Based on the above
advantages, after obtaining the global hypergraph structure introduced above, the model
propagates information through the hypergraph convolutional network (HGCN) [26, 49],
and the propagation process is calculated as follows:

x(l+1)
i =

N∑

t=1

M∑

j=1

Hi jHt jW j jx
(l)
t (1)

where x(l)
t , x(l+1)

i are the input of item t at layer l and the output of item i at layer l, respectively.
∑N

t=1 Ht jW j jx
(l)
t is the hidden representation of hyperedge j at layer l, which represents the

hyperedge collects information from its connected nodes. The row normalization matrix of
Equation (1) takes the form of:

X(l+1) = D−1HWB−1HTX
(l)

(2)

where X(l), X(l+1) are the input and output of the layer l, respectively, and the zeroth layer
is obtained by random initialization, and the weight matrix is initialized to a unit matrix.

After that, the output of multilayer HGCN is obtained by averaging the final output of
HGCN, which is calculated as follows:

XG = 1

L + 1

L∑

l=0

X(l) (3)

3.3 Item context interaction feature extractionmodule

For each session, consider the contextual information that each item in the session can
provide for that item. Inspired by Wang et al. [47], we set up context windows of different
sizes in each session as the hyperedges of the local hypergraph, and the items covered by
the windows are all the nodes connected by this hyperedge. The process of constructing
multiple hyperedges through the set context window is illustrated in Fig. 3 to obtain the local
hypergraph corresponding to the current session.

The local hypergraph notation is denoted as Gl = (Vl , El), Vl is the set of all items in the
current session, and El is the set of all hyperedges obtained through the context window.
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Although the hypergraph convolutional network has been introduced in 3.2, and the hyper-
graph structure has been simplified to improve the computational efficiency of the model,
only some of the nodes in the same hyperedge in the local hypergraph may be able to provide
information for this hyperedge, and each hyperedge may have different effects on the nodes.
Therefore, we propagate information over a local hypergraph by incorporating a neural net-
work of attention, the hypergraph attention network (HGAT) [25, 47, 49], in which, unlike the
traditional graph structure in which information is propagated between neighboring nodes,
the hyperedges are considered as a kind of hypernodes and the node representation learning
process is decomposed into two steps.

3.3.1 Node to hyperedge

The information is first passed from the node to the hyperedge, and the propagation through
the attention mechanism is calculated as follows:

e(l)
j =

∑

t∈N j

h(l)
t− j (4)

h(l)
t− j = α j tW

(l)
1 x(l−1)

t (5)

whereN j denotes the set of all items connected by edge j , e(l)
j denotes the feature vector of

edge j at layer l, x(l−1)
t denotes the input representation of item t at layer l, h(l)

t− j denotes the

information passed from item t to edge j , W(l)
1 ∈ Rd×d is the trainable parameter matrix. α j t

is the attention coefficient between hyperedge j and item t , which is calculated as follows:

α j t = S(Ŵ(l)
1 x(l−1)

t , u(l))
∑

f ∈N j
S(Ŵ(l)

1 x(l−1)
f , u(l))

(6)

where Ŵ(l)
1 ∈ Rd×d , u(l) ∈ Rd are the trainable parameter matrix and attention parameters,

respectively, and S(∗) denotes the function for calculating the similarity score, which in the
experiments is computed by scaling the dot product attention [50, 51] as follows:

S(a, b) = aTb√
D

(7)

3.3.2 Hyperedge to node

After completing the first step of propagation, similarly, the propagation from the hyperedge
to the node is calculated as follows:

x(l)
t =

∑

j∈Yt

h(l)
j−t (8)

h(l)
j−t = βt jW

(l)
2 e(l)

j (9)

where Yt denotes all edges connected to item t , h(l)
j−t denotes the information passed from

edge j to item t , andW(l)
2 ∈ Rd×d is the trainable parameter matrix. βt j denotes the attention

coefficient between item t and hyperedge j , which is calculated as follows:

βt j = S(Ŵ(l)
2 e(l)

j ,W(l)
3 x(l−1)

t )
∑

f ∈Yt
S(Ŵ(l)

2 e(l)
f ,W(l)

3 x(l−1)
t )

(10)
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where Ŵ(l)
2 , Ŵ(l)

3 ∈ Rd×d is the trainable parameter matrix.

3.4 Item feature fusionmodule

Considering that global and local information has different importance for the target nodes,
in this process, the importance of the learned representation in the global and local structures
is captured and different weights are assigned to them for feature fusion by the attention
mechanism [27]. The attention coefficients are calculated as follows:

μG
i = qT1 tanh(W4x

G
i + b1) (11)

μL
i = qT1 tanh(W4x

L
i + b1) (12)

where xGi , xLi denote the representation learned by item i in the global hypergraph and local
hypergraph, respectively, q1 ∈ Rd , W4 ∈ Rd×d , b1 ∈ Rd are the attention parameters,
trainable parameter matrix and bias vector, tanh(∗) is the activation function to prevent the
gradient disappearance/explosion problem that may occur during training, the attention coef-
ficients are normalized by the so f tmax function, and the normalized attention coefficients
are expressed as:

γ G
i = exp(μG

i )

exp(μG
i ) + exp(μL

i )
= 1 − γ L

i (13)

Finally, by linearly combining global and local information through the attention coeffi-
cients, the final representation can be calculated as follows:

xi = γ G
i xGi + γ L

i xLi (14)

3.5 Session feature fusion and predictionmodule

Session representation can be obtained by aggregating the features of items in a session. It has
been shown [40, 52] that each item in a session is influenced by position and that introducing
reverse positional embeddings in a session plays a more important role in capturing user pref-
erences. Therefore, we introduce an attentionmechanismwith position embedding to capture
the importance of items at different position when computing the session representation. The
position embedding is initialized as P = {p1, p2, · · · , pm}, p1, p1, p2, · · · , pm ∈ Rd , and m
is the maximum session length. The initialized position embedding is connected to the item
features and linearly transformed as follows:

x∗
j,i = tanh(W5[x j,i ||pm j−i+1] + b2) (15)

where x j,i , x∗
j,i denote the representation before and after the transformation of item i in

session j , respectively, W5 ∈ Rd×2d , b2 ∈ Rd are the trainable parameter matrix and the
bias vector, respectively, and m j denotes the length of session j . The || indicates a vector
splice operation.

The attention coefficient is calculated as follows:

s′j = 1

m j

m j∑

i=1

x j,i (16)

θ j,i = qT2 σ(W6s
′
j + W7x

∗
j,i + b3) (17)
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where q2 ∈ Rd , W6 ∈ Rd×d , W7 ∈ Rd×d , b3 ∈ Rd are the attention parameters, trainable
parameter matrix and bias vector, respectively, σ(∗) denotes the sigmoid activation function,
and s′j is the average of all items within the session.

According to the calculated attention coefficients, the importance of different items for
session features can be distinguished, so that a linear combination of item features can be
obtained for session features as:

s j =
m j∑

i=1

θ j,ix j,i (18)

The final score is calculated by multiplying the discourse representation s j with the can-
didate item embedding xi and outputting the probability through the so f tmax function:

ẑ j,i = sTj xi (19)

ŷ j = so f tmax(ẑ j ) (20)

Finally, the K itemswith the highest scores in the results are created into a recommendation
list and recommended to users.

For each session s j , the loss function is defined as follows:

L = −�N
i (y j,i .log(ŷ j,i ) + (1 − y j,i ).log(1 − ŷ j,i )) (21)

where ŷ j,i denotes the probability that item i is in the recommendation list of session s j .
y j,i = 1 means that item i does exist in session s j , otherwise y j,i = 0.

4 Experiment

The model was experimented on three datasets, Tmall, Diginetica, and RetailRocket, respec-
tively, and the following three questions were analyzed to verify the validity of the proposed
FHGIGC model based on the experimental results:

• Whether FHGIGC outperforms the baseline model on real datasets.
• Whether the proposed FHGIGC can improve the recommended performance and what

is the impact of each module on the model.
• How different hyperparameter settings affect the overall prediction effect of the model.

In this section, the dataset used in the experiment and how the data were processed are
first introduced, then the evaluation metrics used and the parameters set in the experiment
are given, and finally the experimental results are analyzed.

4.1 Dataset

Tmall: This datasetwasfirst proposed in the IJCAI-15 competition and includes user shopping
records from the Tmall shopping site from six months before the Double 11 to the day of the
Double 11.

Diginetica: This dataset was proposed in the CIKM Cup 2016 and is session information
extracted from e-commerce search engine logs, using only transaction data in this experiment.

RetailRocket: This dataset is a competition dataset published on kaggle and contains 4.5
months of data from Russian online retailers.

For all the above datasets, we follow the processing of previous work [35, 39], Deleting
sessions that contain only one item and removing items with a total count of less than five,
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Table 1 Statistics of datasets Tmall Diginetica RetailRocket

Clicks 818,479 982,961 710,586

Training sessions 351,268 719,470 433,638

Test sessions 25,898 60,858 15,132

Items 40,728 43,097 36,968

Average length 6.69 5.12 5.43

and expanding the dataset by dividing it, As for session S = {v1, v2, · · · , vt }, divide it into
{[v1], v2}, {[v1, v2], v3}, · · · , {[v1, v2, v3, · · · , vm − 1], vm}, where the last item of each
sequence is used as the label. The statistics of all three datasets are given in Table 1.

4.2 Metrics

In order to observe the recommended effects of the model more intuitively, the FHGIGC
model was evaluated and compared with the baseline model by two ranking-based evaluation
metrics.

HR@K(Hit Rate): Which indicates the proportion of correctly recommended items in
the K recommendation list. When the test dataset size is N , HR@K is calculated as shown
below:

HR@K = Hitn
N

(22)

where Hitn indicates the number of correctly recommended item targets in the K recommen-
dation list.

MRR@K (Mean reciprocal rank): Which means the inverse of the ranking of the correct
recommendation item target in the K recommendation list, for example, the target appears
in the first position is scored as 1, the second position is scored as 0.5, and if the target does
not appear in the K recommendation list, it is scored as 0. When the size of the test dataset
is N , the formula for MRR@K is as follows:

MRR@K = 1

N

N∑

i=0

1

Rank(i)
(23)

where Rank(i) denotes the rank of correctly recommended item target in the K recommen-
dation list.

4.3 Baselines

The ability of the FHGIGC model to improve the recommended performance was demon-
strated by comparing the results with those of the following ten models.

POP: Recommending the K most frequently occurring items in the dataset.
Item-KNN[5]: Recommends similar products by calculating the cosine similarity between

items.
FPMC[8]: Combines matrix decomposition with first-order Markov chain method to gen-

erate sequence-based recommendations.
GRU4REC[13]: Compute the session feature representation by gated recurrent network

by treating the user’s current session as a sequence.
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NARM[35]: Improves GRU4REC by adding an attention layer to capture important fea-
tures in a session.

STAMP[36]: Replaces recurrent neural networks with multiple attention mechanisms and
captures short-term preferences at the last node of the session.

SR-GNN[39]: Learns feature representations in graph neural networks by modeling mul-
tiple sessions as directed graphs, and fuses feature representations of multiple items in a
session by an attention mechanism.

GC-SAN[43]: Combining graph neural networks with self-attention to learn long-term
dependencies of items in a session.

SHARE[47]: Setting contextual windows on a single-session sequence to capture complex
interactions between items within a session.

DHCN[26]: Constructing hypergraphs and line graphs to compute item as well as session
feature representations through hypergraph neural networks, respectively, and learning the
mutual information between them through a comparative learning approach.

4.4 Parameter setting

To be fair, the embedding vector length as well as the batch size were set to 100 in the
experiments following other research conventions. All learnable parameters are initialized
by a Gaussian distribution with mean 0 and variance 0.1. In the optimizer settings, the
Adam optimizer is selected and the learning rate is initialized to 0.001, decaying by 0.1
every three epochs, and trained for 30 epochs iteratively. Experiments show that the level
of the hypergraph network and the size of the sliding window have different effects on the
recommendation ability of the model under different datasets. For the baseline model, when
both its evaluation metrics and datasets are the same as in this paper, the best results in the
original experiment are used as a comparison; otherwise, the parameters are set to those of
the best performance of the model for the experiment and comparison.

4.5 Experiment result

The results are presented in Table 2 through the experiments, and it can be seen that the
FHGIGCmodel proposed in this paper outperforms the baselinemodel on these three datasets.
Specifically, we analyze the experimental results by answering the three questions posed
above in 4.5, 4.6, and 4.7, respectively.

As a comparison, the POP in the traditional method only recommends the most frequently
occurring items in the session data to the users without considering the user preferences, and
has the worst effect. the Item-KNN method recommends by calculating the item similarity,
but does not consider the sequential structure in the session data, so it does not achieve
better results. FPMC, by combining matrix decomposition and Markov chain methods, has
better results than the Item-KNN in both Tmall and RetailRocket datasets outperform Item-
KNN, which proves to some extent the importance of sequential interaction information for
obtaining user preferences.

GRU4REC is the first model to apply RNN to the field of session-based recommendation,
but the improvement of its recommendation accuracy is quite limited because GRU4REC
only considers the sequential relationships in a session and does not fully take into account
the preference changes at different positions in the sequence. NARM and STAMP integrate
attention mechanisms into RNN methods in order to more accurately capture shifts in user
preferences. Among them, STAMP demonstrates the importance of short-term preferences
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in predicting users’ next clicked item by replacing the RNN layer with multiple attention
mechanisms and using the last item in the session as the user’s short-term preference.

With the results of SR-GNN and GC-SAN, we can observe that the graph neural network
approach outperforms the traditional and deep learning methods in terms of recommen-
dations. This is because the graph structure approach is more conducive to capturing the
transformation relationships of pairs of items between sessions. However, the traditional
graph structure cannot effectively capture the higher-order relationships between multiple
nodes. SHARE and DHCN model the session data through hypergraphs, and the experi-
mental results fully demonstrate the advantages of hypergraph structure in session-based
recommendation.

The FHGIGC model proposed in this paper combines global and local information based
on all sessions to improve the accuracy of recommendations. In contrast to SHARE, themodel
effectively learns item consistency and relevant session information from the full session.
In addition, unlike DHCN, the model learns the contextual features of items in the current
session through the local hypergraph structure.

4.6 Ablation experiment

In order to verify the effect of different modules in the proposed FHGIGC model on the
recommended results, ablation experiments were performed by designing four variants of
the model, and the four variants are described as follows.

FHGIGC-G: In this variant, the global item feature extraction module is removed from
the model, and the item features learned in the item context interaction feature extraction
module are used as the final item features, and this variant is used to verify the effectiveness
of the global item feature extraction module.

FHGIGC-L: In this variant, the item context interaction feature extraction module is
removed from the model, and the item features learned in the global item feature extraction
module are used as the final item features, and this variant is used to verify the effectiveness
of the item context interaction feature extraction module.

FHGIGC-C: The item feature fusion module is removed from the model in this variant
to combine the global hypergraph with the local hypergraph by direct summation, and this
module verifies that global features have different importance from local features.

FHGIGC-P: In this variant, the positional embedding of the session feature fusion module
is removed, and the session features are obtained by directly fusing the item features in the
session, and this module verifies the different effects of items in different position in the
session on the session features.

The experimental results of the four variants of the model are shown in Fig. 4, and accord-
ing to the obtained experimental results, it can be observed that the proposed FHGIGC
achieves the best results. FHGIGC-G and FHGIGC-L show a significant decrease in model
performance compared to FHGIGC, which indicates the effectiveness of learning item fea-
tures jointly through multiple structures for prediction tasks. Meanwhile, the performance
degradation of FHGIGC-G is more significant relative to FHGIGC-L, which indicates that
the relevant sessions can provide more accurate and rich information for the recommenda-
tion task. Comparing FHGIGC with FHGIGC-C, it can be concluded that the information
learned from the two structures does not have the same degree of influence on the recom-
mended characters. The FHGIGC results outperformed the FHGIGC-P, which illustrates
that items in different position have different degrees of influence on the session as a whole,
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Fig. 4 Comparison of experimental results of the FHGIGC model and the proposed multiple variants

Fig. 5 Comparison of experimental results obtained by FHGIGC model when setting different parameters

validating the role of position embedding in capturing the importance of items in different
position.

4.7 Parameter experiment

To explore the best performance of the FHGIGC model parameter experiments were con-
ducted on each of the three datasets to find the best parameters by grid search, and the
experimental results are shown in Fig. 5.

Number of layers of HGCN: The layers of the hypergraph convolutional neural network
are set to 1, 2, 3, 4, 5, respectively. From the results in Fig. 5a, it can be observed that on the
Tmall dataset, the best results are obtained when the number of layers is 1, and the model
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Fig. 6 Experimental results of the model with session samples of different lengths

becomes less and less effective when the number of layers rises. And on the Diginetica and
RetailRocket datasets, the best results can be achieved when the hypergraph convolutional
neural network level is set to 3. For the above results, the possible reason for the analysis
is that in the Tmall dataset, where the average length of sessions is longer, a single-layer
neural network can better capture the session consistency in sessions. For the Diginetica and
RetailRocket datasets with shorter average lengths, a deeper layer of neural network needs
to be set up so that the model can add information from the relevant sessions.

Number of layers of HGAT: The hypergraph attention network layers are set to 1, 2, 3,
4, 5, respectively. The results in Fig. 5b show that the best results can be obtained when the
attention network is set to two layers, and the final prediction of the model decreases instead
of rising when the number of attention layers is continued to be raised. This is because the
deepening of the graph neural network layers may make the information between nodes too
smooth.

Size of context window: The context windows are set to 1, 2, 3, 4, 5, respectively. The
results are displayed in Fig. 5c. When the maximum window size is set to 1, each hyperedge
contains only one node, so that there is no information propagation between nodes. And
when the maximum window is set to 2, each hyperedge contains two nodes, in which case
the hypergraph structure degenerates to an ordinary graph structure. From the results, it can
be seen that larger window sizes achieve better results on the Tmall dataset, possibly because
the average session length in the Tmall dataset is larger, allowing multiple hyperedges to be
constructed with larger window sizes.

4.8 Case study

In this section, we further explore the ability of the proposed method to capture user prefer-
ences in sessions of different lengths. On the Tmall dataset, the dataset is firstly categorized
into four groups according to their lengths, and the session lengths of each group are 3–4,
5–8, 9–11, and greater than 12. Experiments are conducted on each of the four groups for
FHGIGC and DHCN, and the results of the experiments are displayed in Fig. 6. From the
results in the Fig. 6, it can be seen that FHGIGC performs more stably in sessions of different
lengths, and outperforms DHCN in the short-session experiments, which indicates that the
proposed method of fusing global and contextual information can effectively improve the
recommendation performance. In addition, the experimental results respond that the model
recommendation performance is higher when the session data are longer, which is because
the items in the global graph are more tightly connected to learn richer information when
the session length increases, and more hyperedges can be constructed for the current session
for feature propagation through the context window set in the local graph. Therefore, our
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proposed method can effectively capture the user preferences reflected by the session for
recommendation tasks.

5 Conclusion

In this paper, we propose a hypergraph neural network model FHGIGC for the session-based
recommendation task, which can learn relevant session information as well as item consis-
tency information from the global hypergraph and capture the contextual features of items
in a session from the local hypergraph, respectively. The learning item features are com-
bined through both structures and these features are integrated through an attention layer.
The experiments show that the proposed model outperforms the comparison model on all
three datasets, demonstrating that the FHGIGC model can effectively solve the problem of
missing item features within a session in existing session-based recommendation models and
mitigate the negative impact of information scarcity in short sessions on the recommendation
effect. Current research in session-based recommendation relies exclusively on session data
for recommendation. In future work, we consider constructing item as well as spatiotem-
poral information in session data through heterogeneous graphs, and introducing generative
adversarial networks to capture dynamic feature changes in these data.
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