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Abstract
The next-item recommendation can extract critical information from the historical sequence
and predict the next actions of users. To better extract users’ interests, some sequential
recommender methods propose position-aware attention networks to obtain users’ general
intentions. Nonetheless, although these methods have achieved superior performances, they
cannot effectively extract core information from historical behavior sequences such as posi-
tion weights, the dynamic categories of users, and the dynamic preferences of users. The
position information in the historical sequence can assist in the modeling of user interest,
and the dynamic category of users can help us ensure the major intention of users. Moreover,
capturing the dynamic preference of users can help the model learn the evolution tendency
of user interest and make better recommendations. Therefore, this paper proposes a Position-
category-aware Attention Network (PCAN) to consider the above three factors. First, this
model obtains the dynamic category of the user in the data preprocessing stage. Then, a
long-term attention module is constructed to get the interaction between users and items in
the long-term sequential behavior, to better capture the users’ long-term preference represen-
tation. Meanwhile, the model utilizes the self-attention method to extract users’ short-term
interest features. Finally, two kinds of preference representation are adaptively fused through
an attention-basedmethod. On five kinds of Amazon public datasets, the experimental results
indicate that our proposed model PCAN achieves better performances on AUC , Precision,
and Recall, which demonstrates the superior performance of the method.
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1 Introduction

With the rapid development of the Internet, recommendation systems have become an
effective way to help users find available information [1]. As an important branch of recom-
mendation systems, sequential recommendation has recently gained popularity. It learns the
evolution of user interests by modeling the historical sequence of users to predict the user’s
next behavior [2]. In the early stage of sequential recommendation, Markov chain and matrix
factorization methods have been widely applied. For instance, Rendle et al. [3] proposed
factorizing personalized Markov chains model FPMC that introduces a personalized transfer
matrix based on theMarkov chain to capture both time information and users’ general prefer-
ences. In addition, to solve the sparse transfer matrix problem, it uses the matrix factorization
method, which reduces the number of parameters while improving model performance. The
study of [4] proposed a Fossil method, which uses matrix factorization to model long-term
preferences and utilizes theMarkov chain to capture short-term sequential dynamics. To sum
up, although these models have made good performances, the Markov chain recommender
models can only capture short-term dependencies. When the historical sequence is long,
the method cannot effectively capture user interest. Later, some scholars proposed applying
deep learning techniques to the sequential recommendation [5]. For instance, Hidasi et al.
[6] proposed GRU4REC, they utilize multi-layer RNN to extract sequential information
from historical behaviors and train the model through a ranking loss function. However, this
method only captures the short-term preference and ignores the context information of users
and items.

In the last few years, an increasing number of sequential recommenders have attempted
to utilize attention-based methods, including the location-aware context attention network
(PACA) [7]. However, these models cannot take full use of the category information and
position information hidden in the historical sequence. To be specific, first, most attention-
basedmodels regard item ID embedding as the historical session representation and neglect to
consider the category information. Second, capturing the dynamic category of users can help
models understand user intention and make recommendations to them. Third, one item has
different levels of importance when it appears in different positions of historical sequence,
and those vital items in the sequence should be assigned higher weight when predicting
the next item. Finally, integrating the position and category information effectively is very
important to improve the recommendation performance.

To solve the above problems, this paper proposes a novel recommendation method named
position-category-aware attention network (PCAN). First, The PCAN method extracts the
user dynamic category in the data preprocessing stage. Second, considering the context
information of items and users, the long-term attention module is designed to obtain users’
general preferences. Third, the short-term self-attention network is constructed to generate
users’ current interests. Finally, this paper utilizes an attention-based method to adjust the
weight of these two user interests under specific circumstances.

A summary of the contributions is given below:

1. A new position-category-aware attention network called PCAN is proposed. This method
uses the user dynamic category and attention-based network to capture the users’ interest
representation from the historical behavior.

2. A long-term attention module is proposed to integrate the position and context features
of items and users, which builds the deep interaction between items and users. Moreover,
to generate the deep preference representation of short-term historical behavior, a self-
attention module is proposed.
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3. The experiment results on five kinds of Amazon review datasets demonstrate that our
proposed algorithm outperforms all competitors under the metric of Recall, Precision,
and Area Under Curve.

The remainder of this article is organized as follows. Section 2 makes a brief review of the
sequential recommendation, attentionmechanism, aswell as positional embedding. Section 3
first introduces some symbols utilized in the paper, and then introduces our proposed PCAN
model. The experimental result and the performance of all models are provided in Sect. 4.
Section 5 concludes the research and future directions.

2 Related work

The paper will review three related tasks in this section, which include sequential recom-
mendation, attention mechanism, as well as positional embedding.

2.1 Sequential recommendation

Different from traditional recommendation systems, sequential recommender tries to model
the evolution of user interests. It learns the changes in users’ interests and predicts the next
item based on user historical records. Rendle et al. [3] proposed to fuse the Markov chain
and matrix factorization for the sparse sequential recommendation. He et al. [4] proposed to
use the k-order interaction to predict the next item. Hidasi et al. [6] used GRU to model the
dependencies between sequential behaviors, which first introduced recurrent neural networks
(RNN) to the sequential recommendation.

Moreover, considering the dynamics of user intent, Jannach et al. [8] proposed to use
LSTM to build a self-regression model RRN, which adaptively learns the dynamic embed-
ding of items and users. The study of [9] proposed to employ hierarchical RNN to make a
sequential recommendation, which characterizes the evolution of users’ interests in a ses-
sion sequence and makes personalizing session-based recommendations. Ludewig et al. [10]
proposed to combine RNN with the K-Nearest Neighbor algorithm to improve the recom-
mendation performance. What’s more, some works utilized convolution neural networks to
model users’ interests in historical behavior sequences. For example, the study of [11] pro-
posed a CNN-based model Caser. This model uses the convolutional neural network and the
Latent Factor Method to capture the sequential features and user features.

2.2 Attentionmechanism

In the last few years, a lot of attention-based sequential recommenders have been proposed.
For instance, the study of [12] utilized the self-attention method to capture users’ prefer-
ences from historical behaviors. At every time step, this method seeks those actions related
to the target item to predict the next item. AFM [13] introduced the attention mechanism
to traditional factorization machines, to learn the importance and extent of the interaction
feature (learn a weight for each interaction item).Moreover, DMAN [14] employed the atten-
tion mechanism and dynamic memory network to generate user preference. Cen et al. [15]
proposed a multi-interest sequential recommender (ComiRec), which utilizes a multi-head
self-attention method and capsule network to capture multiple interests from users’ historical
behaviors, but it fails to obtain the temporal interaction of items. The study of [16] proposed
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the SASRec model, which employs the self-attention method to extract core information
from user sequential behaviors, it considers items’ relative position and shows superior per-
formance. Nonetheless, this method ignores the short-term interest of users. Zhang et al.
[17] proposed an AttRec model, which models the short-term user preference through the
self-attention method and uses the metric learning method to model the long-term interaction
of items and users. The study of [18] proposed a deep attention network model (DIN) and
applied it to advertising recommendations, which uses a local activation unit to capture user
interest from historical behaviors.

Generally, users’ interests follow a hierarchical pattern, and users often show their inter-
ests in different granularities. Considering different granularities of users’ interests, the study
of [19] proposed to use a hierarchical network to obtain interests of different levels. Zhuang
et al. [20] proposed a SHAN model, which utilizes two layers attention network to model
sequential behaviors. Specifically, this model uses the first layer to generate users’ general
preferences, and it utilizes the second layer to couple the general preference and user sequen-
tial representation. However, this method does not strengthen short-term interests and ignores
the category information of items. Liu et al. [21] proposed a STAMP model, which utilizes
a novel neural attention network to capture users’ long-term interests and short-term pref-
erences in the historical sequence. Nonetheless, this model only treats the last term in the
historical behavior as the short-term sequence,which affects themodeling of user preferences.
The study of [22] used BERT to model users’ preferences from historical behaviors. SSE-PT
[23] applied a personalized transformer to the sequential recommendation, which utilizes
new regularization technology of randomly shared embedding to regularize the embedding
layer. Compared with SASRec [16], SSE-PT tends to recommend items closer to the target
item. Zhang et al. [24] proposed a TLSAN model, which utilizes the attention module and
personalized position embedding to generate user interest, but it cannot effectively obtain
users’ dynamic interest from long sequential behaviors. Niu et al. [25] proposed a CLSR
method, they employ the BIGRU and self-attention mechanism to generate the general pref-
erence and current interest, but they limited the length of the recently interacted sequence to
obtain short-term preference representation. Therefore, the captured user preference repre-
sentation cannot adapt to all kinds of users, especially some users whose historical behaviors
are sparse.

2.3 Positional embedding (PE)

When capturing the sequential information from user historical behaviors, the position infor-
mation of each item in a session can assist in themodeling of dependencies between sequential
behaviors.

The transformer [26] first introduced the concept of position embedding into the deep
learning field, which uses sine and cosine functions to generate the position feature represen-
tation. The study of [16] added a novel position embedding that can be learned to the input
embedding and showed superior performance. Atrank [27] extracted temporal information
from the source dataset and concatenated the embedding of time with input embedding to
obtain the final item representation. Huang et al. [28] proposed a CSAN model, which gen-
erates the position matrix for users’ behavior sequences and adds the positional weights to
the input embedding directly. Nonetheless, the position matrix cannot be trained and fails to
capture the personalized preferences of users. The PACA proposed by Cao et al. [7] utilized
positional vectors to learn the weight of each item in a session andmultiplied item embedding
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by position embedding to generate the position feature representation of each session. How-
ever, this method considers all features of users’ preferences the same and cannot capture
their personalized interests.

To sum up, the above-mentioned position-aware attention methods cannot effectively
extract core information from historical behavior sequences such as position weights, the
user dynamic category, and the dynamic preferences of users. In contrast, the PCAN model
improves the recommendation performance by capturing the deep interaction of user and
item context information, and it adaptively fuses the captured general preference and current
interest.

3 Position-category-aware attention network

This paper will define the problem of the next-item recommendation, describe the details of
the PCAN method, and then introduce the model training and loss function in this section.

3.1 Problem formulation

Before introducing the details of the PCAN method, this paper first defines some basic
symbols and the problem. LetU � {u1, u2, …, um} denotes the set of users and I � {i1, i2,
…, in} denotes the set of items. C � {c1, c2, …, cc} represents the items’ category set. For
each user u ∈ U , her/his sequential sessions are denoted as Lu

t � {Su1 , S
u
2 , …, Sut }, where t

represents the current time step, Sui represents the user’s historical behaviors on the i − th
day. Specifically, this paper divides the historical behaviors into sessions according to their
occurring time, each session represents a series of actions within a day. On the one hand, at
time step t , the item set Sut ∈ RS contains the user’s recently interacted items that can reflect
their short-term preferences, S is the length of the short-term sequence. On the other hand,
the historical item set before time step t , denoted by Lu

t−1 � {Su1 , S
u
2 , …, Sut−1}, can reflect

the general interests of users, where Lu
t−1 ∈ RL , L represents the length of the long-term

sequence. Moreover, this paper utilizes the user historical session to get sequential category
information from the category setC . For example, user Zhangsan bought a series of products
in the dataset, and we represent his historical sequence as {banana, iphone7, earphone,
computer, adidas}. Then, this paper searches the corresponding category information of each
item in the historical sequence from category set C and generates the sequential category
representation {fruit, electronics, electronics, electronics, clothes}. Specifically, for each
historical sequence of user u, this paper usesCu

L � {cu1 , c
u
2 ,…, cut−1} to denote the categorical

sequence corresponding to the long-term actions, uses Cu
S � {cut } to represent the short-term

item categorical sequence, where Cu
L ∈ RL and Cu

S ∈ RS .

3.2 The network architecture

This paper proposes a new method base on the attention mechanism and shows it in Fig. 1.
To effectively obtain the long- and short-term interest from user behavioral sequence, this
paper first divides the whole user historical behaviors into the long- and short-term sequence.
The behaviors that happened on the latest day are regarded as short-term items and other
behaviors as long-term items. To utilize the user context information more comprehensively,
this paper extracts the user dynamic category in the data preprocessing stage.
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Fig. 1 Architecture of PCAN. PCAN mainly consists of three modules: (1) the long-term position-category-
aware attention module incorporates category and position information to generate user preference in the
long-term historical sequence. The input of this module is the user embedding Eu

u ∈ R2D , long-term sequence
representation Eu

L ∈ RL×2D and context information. αi ∈ R1 and βi ∈ R1 represent the weight represen-
tation generated by the corresponding methods; (2) the short-term self-attention module explicitly filters out
the noisy items and learns an accurate preference representation for the short-term session. The input of this
module is a short-term sequence representation Eu

S ∈ RS×2D and context information; (3) Adaptive fusion
module dynamically adjusts long-term and short-term interest weights in specific circumstances and generates
the final user preference representation

Considering that the self-attention mechanism is not sensitive to the position information,
this paper utilizes this method to capture the important short-term items from the relatively
short sequence. At the same time, the position-category-aware module is sensitive to posi-
tion information and context information, which helps extract the vital items from the long
sequence. Therefore, we use this method to deal with long-term historical behavior. To fuse
these twomodules effectively, this paper uses the attention-basedmethod to adjust the weight
of long- and short-term preferences dynamically. However, this design way can increase the
number of parameters and training time. We plan to propose a better way to deal with the
long- and short-term interest and leave it for future work.

The core idea of our method is to generate the user interest representation through adap-
tively fusing long- and short-term interests. First, the method embeds the item, user, and
context information to get their dense embedding representation. After that, the model inputs
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the embedding representation of all features into the attention network to capture the general
preference and current interest. Specifically, to get the long-term interests before the time
step t , the model uses a long-term attention network to generate the position weight rep-
resentation and user context representation. Then, MLP (multi-layer perception) is used to
learn the nonlinear interaction between them and context information. The core idea of long-
term position-category-aware attention module came from [7, 19, 20, 24], which employs
the attention mechanism to utilize the position information and context information. Fur-
thermore, inspired by [27], which utilized the self-attention method to project heterogeneous
user behaviors. The model uses the self-attention method to obtain the deep interaction of
short-term item sets and context information, generating users’ current intentions. Finally, an
attention-basedmethod adaptively fuses the captured interest and generates the final user pref-
erence representation. This idea came from [29], which utilizes the attention-based method
to fuse general interest and short-term preference under specific circumstances. Next, we will
describe each module of the PCAN model.

3.2.1 Embeddingmodule

The embedding module aims to convert the high-dimensional sparse vector into a low-
dimensional dense vector representation. The embedding structure diagram of this module
is shown in Fig. 2. Specifically, for each historical sequence of user u, uses ct tu to represent
the dynamic user category at time step t , and uses tgut to denote the target item at time step t .

When processing long-term historical behaviors, this paper limits the length of the histor-
ical sequence to r . If the length is less than r , the right side of the historical sequence will be
added a padding item 0. Else if the length is greater than r , the latest r items will be selected
as our input. The embedding module of our model is based on the specific sequence of a
given user, which is defined as follows:

Eu
c � CL(ct tu)

Ec
L � CL(Cu
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Fig. 2 Structure diagram of the Embedding layer
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Table 1 Notation

Notation Description

I , U , C Item set, user set, and category set

I, U, C Item embedding set, user embedding set, and category embedding set

Lut−1, S
u
t Long-term and short-term item sequence at time step t

ct tu Dynamic user category ID

Cu
L , C

u
S User u’s long-term and short-term item category sequence

D Embedding dimension

n, m, c Number of items, users, and categories

L , S Length of long-term and short-term sequence

Ec
S � CL(Cu

S )

Eu
T � I L

(
tgut

)

Eu
u � Conc(Eu

c , UL(u))

Eu
L � Conc(Ec

L , I L(L
u
t−1))

Eu
S � Conc(Ec

S , I L(S
u
t )) (1)

where Conc(.) is the concatenate function, I L(.) represents the embedding lookups of item
ID, CL(.) is the embedding lookups of category, UL(.) represents the user ID’s embedding
lookups. u represents the user ID, Eu

c ∈ RD denotes the embedding of the dynamic user
category at time step t , Ec

L ∈ RL×D denotes the embedding of the long-term item category, L
is the length of the long-term sequence, Eu

u ∈ R2D denotes the user embedding, Eu
L ∈ RL×2D

denotes the embedding of the long-term items, Eu
S ∈ RS×2D denotes the short-term item

embedding, S is the length of the short-term sequence, and Eu
T ∈ R2D represents the target

item embedding. Table 1 shows the notations used and their descriptions.
In summary, given users and their historical behavior sequence HS, the model aims to

predict the next items and recommend them to users.

3.2.2 Dynamic user category extraction module

The user category can be described as he/she is interested in some categories of items at a
solid time. To get the user dynamic category at each time step t , this paper regards the most
frequent item category in the historical sequence as the user category. For example, Tom
bought a bag, a phone, and a headset three days ago, we represent the historical sequence as
{bag, phone, headset}. Phone and headset belong to electronics, bag belongs to grocery, and
the user category would be considered to be electronics. Moreover, Tom bought three bags
yesterday, and the historical sequence of him is {bag, phone, headset, bag, bag, bag}. In this
sequence, the numbers of grocery and electronics are 4 and 2, so this method regards grocery
as the user category. The user category can change dynamically over time, and capturing the
user dynamic category is an important direction to improve recommendation performance.
Some researchers have tried to extract the user category in the training stage, but the time
consumption is relatively high [30, 31]. After that, this paper uses the captured user category
to generate their embedding representation and concatenates it to the user ID embedding.
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3.2.3 Long-term position-category-aware attention module

The method proposed by [7] discards the personalized interest of users and context informa-
tion, which assumes the position weight in each historical sequence is the same for all users.
Moreover, it only considers the user’s general preferences.Ying et al. [20] proposed to utilize a
hierarchical network to generate long-term interest and short-term preference, which regards
user embedding as context information and utilizes the original attention method to model
the user interest representation. However, it does not strengthen the short-term interests and
discards the category information. This paper builds the long-term attention network through
the modeling of the position and category of items and users. First, this module extracts the
weights of each position pt in the historical sequence. And then the context-aware attention
method is used to obtain user context representation ut . At last, this module utilizes MLP to
fuse pt ., ut and context information.

To utilize the context information of each item in the historical sequence, this module
utilizes the mean pooling method to get each item’s mean pooling representation and denotes
the pooling sequence as mp � {mp1, mp2, …, mpL}. The mean pooling method is defined
as Eq. (2), where vi represents the i-th item embedding, the index L represents the length of
the long-term sequence, mpi ∈ R2D represents the mean value of all items in the historical
sequence, mp ∈ RL×2D . Furthermore, to utilize the category information of each item, this
paper concatenates the item ID embedding and category embedding for each item, so the
dimension of item embedding is 2D, that is, vi ∈ R2D .

And then MLP is used to get the session-specific feature tmp_embi . The computing
process is defined as Eq. (3), where the symbolic ∅(.) represents the sigmoid activation
function, which can capture the nonlinear interaction between vi and mpi . W1 ∈ R2D×2D

andW2 ∈ R2D×2D are transformationmatrices of long-term item sets and their mean pooling
representation, tmp_embi ∈ R2D is the session-specific feature.

mpi � v1 + v2 + · · · + vL

L
(2)

tmp_embi � ∅(W1vi +W2mpi ) (3)

αi � exp(posTi tmp_embi )
∑L

k�1exp(pos
T
k tmp_embk)

(4)

h �
L∑

i�1

αivi (5)

After that, a series of position vectors are used to capture the position weight information,
which is denoted as pos � {pos1, pos2, …, posL}. Then, the module uses the so f tmax
function to measure the attention weight αi of each position in the long-term item list. In this
way, the important item in a session will be assigned a higher attention score. The formula
is defined as Eq. (4), where pos ∈ RL×2D , posTi ∈ R2D , αi ∈ R1.

After capturing the position weight αi , this paper multiplies it by the item embedding
to get the item feature representation. And then adds them together to get the output state
h. The output state represents the positional weight representation of items in the historical
sequence. The formula is defined as Eq. (5), where h ∈ R2D .

On the other hand, a context-aware attentionmethod is utilized to generate the user context
representation. First, this method calculates each item’s weight in the long-term sequential
behaviors of a given user. Second, it aggregates the item embedding and the generatedweights
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to get the user context representation. Specifically, the weight computing process is defined
as Eq. (6), where W3 ∈ R2D×2D and b1 ∈ R2D×1 are model parameters, vi represents
the i-th item embedding vector in the historical sequence, the network first gets the hidden
representation Ei ∈ R2D by feeding the embedding of each item i ∈ Lu

t−1 into the MLP.
Function ∅(.) is the sigmoid activation function which enhances the nonlinear capability of
this network.

Ei � ∅(W3vi + b1) (6)

βi � exp(Eu
u
T Ei )∑

pεLu
t−1

exp(Eu
u
T Ep)

(7)

ulongt−1 �
∑

iεLu
t−1

βivi (8)

To utilize the dynamic user category information, this paper concatenates the embedding
of the user ID and the corresponding category embedding to get the hybrid embedding
representation Eu

u . At the same time, this paper regards Eu
u as the context embedding matrix

and computes the normalized similarity between Eu
u and Ei . And then so f tmax function is

used to get the attention score βi ∈ R1. The computing process is defined as Eq. (7), where
Eu
u ∈ R2D represents the user embedding.

Then, this paper computes the user context representation ulongt−1 as a sum of the item
embedding representation weighted by the attention scores. The formula is defined as Eq. (8),
where ulongt−1 ∈ R2D .

At last, themodule usesMLP to obtain the nonlinear interaction of user context representa-
tion, position weight representation, and context information. And then this module utilizes
a bilinear operation to generate long-term user interest representation. The component is
defined as follows:

L f inal
t−1 � MLP(Conc(ulongt−1 , h, Eu

T )) (9)

u f inal
t−1 � WbL

f inal
t−1 (10)

where Conc(ulongt−1 , h, E
u
T ) represents the concatenation of user context representation, posi-

tion weight representation, and target item embedding, MLP is the multi-layer perception
that captures their nonlinear interaction, L f inal

t−1 ∈ R2D represents the long-term user hybrid
representation, Wb ∈ R2D×2D is the bilinear weight matrix, Eu

T ∈ R2D represents target

item embedding, u f inal
t−1 denotes the generated long-term preference representation.

3.2.4 Short-term self-attention module

Users’ short-term preferences can reveal their behavioral tendencies and is important to
predict the next items. The model utilizes the multi-head self-attention method and multi-
head vanilla attention to obtain short-term user interest, the number of heads will be discussed
in the experiment part. And the structure of the short-term self-attention module is shown in
Fig. 3.

First, the users’ short-term item set is obtained from the items which they have interacted
with on the latest day. Furthermore, this paper uses the scaled dot-product attention [26] to
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Fig. 3 Structure of the short-term self-attention module

compute the relationship of different features and defines it as follows:

Attention � so f tmax

(
QKT

√
d

)
V (11)

where Q, K , and V denote query, keyword, and value,
√
d represents the scaling factor.

And in our case, Q, K , and V are the same objects, the self-attention operation regards the
short-term item embedding Eu

S as input. This paper utilizes linear operations to convert it into
three matrices, and then inputs them into an attention layer. And the multi-head mechanism
is utilized in the attention layer to capture the deep interaction.

SA � Attention(Eu
SW

Q , Eu
SW

K , Eu
SW

V ) (12)

where WQ ∈ R2D×2D , WK ∈ R2D×2D and WV ∈ R2D×2D represent the projection matri-
ces, Eu

S ∈ RS×2D denotes the short-term item embedding, SA ∈ RS×2D represents the
similarity of the S short-term items.

Second, considering that the self-attention mechanism can only capture the linear inter-
action of different features, this paper applies a point-wise feed-forward network to endow
it with nonlinear capability. To solve the model’s overfitting problem, this paper uses the
dropout technique [32].

F � FFN (SA) � Dropout(ReLU
(
SAW (1) + b(1)

)
W (2) + b(2)) (13)

where W (1) and W (2) represent 2D ∗ 2D dimension matrix, b(1) and b(2) represent 2D-
dimensional bias vectors, F ∈ RS×2D is the output of the network. And then this paper
successively applies layer normalization and residual connection [33] to the output to get the
self-attention representation Su .

Su � Layer Norm(SA + F) (14)

Layer Norm(x) � α � x − μ√
δ2 + ε

+ β (15)

where Layer Norm(x) denotes the layer normalization function used in our paper, � rep-
resents the element-wise function, δ and μ denote the variance and mean of x , α represents
the scale factors, β is the bias terms.

After capturing the self-attention representation Su , this paper uses vanilla attention to
generate the current preference representation u f inal

t .
The procedure of multi-head vanilla attention is similar to the multi-head self-attention

method. The differences between them are that vanilla attention considers the context infor-
mation (target item embedding) as the query matrix of attention, and Su is regarded as the
key and value matrix. This method is defined as follows:

SA′ � Attention(Eu
TW

Q′
, SuW

K ′
, SuW

V ′
) (16)

123



3242 L. Qiu et al.

F ′ � FFN
(
SA′) � Dropout(ReLU

(
SA′W (3) + b(3)

)
W (4) + b(4)) (17)

u f inal
t � Layer Norm

(
SA′ + F ′) (18)

where Eu
T ∈ R2D denotes the target item embedding,WQ′ ∈ R2D×2D , WK ′ ∈ R2D×2D and

WV ′ ∈ R2D×2D are the projection matrices, W (3) and W (4) represent 2D ∗ 2D dimension
matrices, b(3) and b(4) represent 2D-dimensional bias vectors, u f inal

t denotes the short-term
preferences generated by this module.

3.2.5 Adaptive fusion module

Both the long-term attention network and short-term self-attention module have strengths
and weaknesses. Therefore, accommodating these two modules is very necessary. Instead
of simply using add function to combine them, e.g., u f inal � u f inal

t−1 + u f inal
t , this paper

designs an adaptive method to fuse them. To be specific, this paper uses an attention-based
method to adjust long-term and short-term interest weights dynamically. By this means, the
model can find the optimal weights between two kinds of preference representation under
specific circumstances. And the proposed attention-based adaptive fusion method is defined
as follows:

γ � δ(WmConc(u f inal
t−1 , u f inal

t , Eu
T ) + bm) (19)

u f inal � γ *u f inal
t−1 + (1 − γ ) * u f inal

t (20)

where Wm ∈ R2D×2D and bm ∈ R2D×1 are model parameters, δ(.) represents the sigmoid
activation function,γ ∈ R1 is theweight of long-termpreference, and (1−γ ) ∈ R1 represents
the weight of recent intent. This paper uses Conc(u f inal

t−1 , u f inal
t , xcontext ) to represent the

concatenation of short-term preferences, long-term preferences, and contextual information.
In fact, for contextual information, the model can include all kinds of important features,
such as time stamps, target item categories, rating information, and location information. In
this paper, this model only uses the target item embedding Eu

T as the contextual feature.

3.3 Model training and loss function

This paper trains PCAN with the whole historical behaviors in the train set and then predicts
the items’ labels in the test set. To be specific, the model will be more effective when the
predicted label is closer to the truth. Moreover, this paper uses the unified sigmoid cross
entropy loss to optimize the method and to seek the optimal model parameters. And this
paper defines the loss function as Eq. (21):

Loss � −
∑

j , u

y j log
(
δ
(
f
(
u f inal
t , MI

j

)))
+

(
1 − y j

)
log

(
1 − δ

(
f
(
u f inal
t , MI

j

)))
+ λ(||θ ||)

(21)

where f (.) represents a dot-product function, MI
j is the j − th item embedding, θ � {U,

I, W∗, b∗} represents the regularized parameters in the training process, and λ represents
the l2 regulation rate. This paper uses y ∈ {0, 1} to represent the labels, and utilizes δ(.) to
represent the sigmoid activation function.
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Table 2 Five Amazon dataset statistics (After preprocessing)

Dataset Users Items Categories Instances Train
sessions

Test
sessions

Avg
Length

Electronics 39,991 22,048 673 561,100 568,506 39,991 10.21

Video 5436 4295 58 83,748 95,668 5436 12.25

Office 1720 901 170 29,387 40,828 1720 10.28

Home 11,567 7722 683 143,088 152,310 11,567 9.48

Phones 2097 1553 82 21,659 22,876 2097 8.83

4 Experiments

4.1 Experiment setting

4.1.1 Datasets

This paper evaluates our proposed model and the baselines over the popular Amazon review
dataset [12].

Amazon Dataset The dataset includes product data and metadata from Amazon. This paper
chooses five categories of Amazon Datasets including Electronics, Video, Office, Home,
and Phones to conduct the experiments. In the following experiment, the paper only utilizes
users, items, categories, and timestamp information to make a recommendation. Then the
paper preprocesses the original dataset according to the following subsection and shows the
statistics in Table 2.

4.1.2 Dataset preprocessing

Firstly, this paper selects those items with interactions of no less than 8 and those users whose
interactions are not less than 10 from each dataset to make sure that each item and user in
the dataset is effective for our experiment, and those infrequent users and items are removed
by us.

Secondly, this paper regards the interactions within a day as a session and divides all users’
historical behaviors into ordered sessions. To ensure the existence of both short-termand long-
term historical sequences, this paper chooses those users who own the number of sessions
between 4 and 90, and then utilize their historical actions to generate the corresponding
historical sequences.

Finally, this paper lets Lu
t � {Su1 , S

u
2 , …, Sut } represent the sequential behaviors for user

u at each time step t , and this paper chooses the 1 ∼ (t − 1)-th sessions as the historical
sequences. For the methods that take the user’s long- and short-term preference (TLSAN,
SHAN, PCAN) into consideration, this paper regards the newest session without the target
items as the short-term item set, and the 1 ∼ (t − 2)-th sessions as the long-term item set
to obtain the training set. For other methods, this paper considers all sessions before time t
as the historical sequence to generate the training set. Moreover, this paper uses the latest
session to generate the test set. Specifically, if the number of items in the latest session is
1, this paper will regard it as the target item. And the paper chooses the 1 ∼ (t − 2)-th and
(t − 1)-th sessions as the long- and short-term historical sequence. Else this paper randomly
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selects one item in the latest session as the target item. The other items in the session are
considered as the short-term historical behaviors, and the 1 ∼ (t−1)-th sessions are regarded
as the long-term sequence.

4.1.3 Evaluation standard

This paper uses three frequently used metrics, the area under the curve (AUC), Precision,
and Recall to evaluate the efficiency of our proposed method PCAN.

Generally speaking, AUC is equal to the probability that the predictive score of the model
for a positive sample is greater than that for a negative sample when a positive sample and
a negative sample are randomly selected. Therefore, it can reflect the sorting ability of the
classifier for the samples. However, it cannot reflect the accuracy of prediction, so this paper
introduces recall and precision to evaluate the experimental result more comprehensively.
The following formula shows the computing process of AUC .

AUC � 1

|UTest |
∑

u∈UTest

1
∣
∣I +u

∣
∣|I−

u |
∑

i∈I+u

∑

j∈I _u
σ (pu, i > pu, j ) (22)

where |UTest | denotes the size of the test set,UTest denotes the test set, I +u and I−
u represent

the positive and negative sample sets respectively, σ (.) represents the indicator function,
pu, j is the predicted score of user u may choose negative sample j , and pu, i represents the
predicted score of user u may choose positive sample i.

Precision@K and Recall@K : Precision rate and recall rate are two measures which
are often used to evaluate the quality of results. The precision rate is specific to the predicted
results, it represents the ratio of the correctly predicted positive samples to all predicted
positive samples. The recall rate is specific to the original samples, it represents the ratio
of correctly predicted positive samples to all original samples. K represents only the top-K
items that are considered. And these two evaluation metrics are defined as follows:

Precision@K � 1

|UTest |
∑

u∈UTest

∑K
s�1 f p(s, pos(u))

K
(23)

Recall@K � 1

|UTest |
∑

u∈UTest

∑K
s�1 f p(s, pos(u))

NK (u)
(24)

where |UTest | represents the size of the test set,UTest denotes the test set, pos(u) represents
the ground-truth item set related to user u, NK (u) denotes the number of positive items in
the top-K predicted items of user u, pos(u) denotes the set of items which has interacted
with user u, f p(s, pos(u)) represents an indicator function, it returns 1 when item s is in
pos(u) and returns 0 if item s is not in pos(u).

In our experiment, this paper utilizes AUC to evaluate the classification ability and uses
Precision@K and Recall@K to test the prediction accuracy of the proposed method.

4.1.4 Hyperparameters

ThePCANmodel and all baselines use different hyperparameters, the adjusting of embedding
size ES, learning rateλ, decay rateϕ, L2 regulation rateω, the number of heads h in short-term
self-attention module and the long-term sequence length LS will be discussed in Sect. 4.3.
To ensure the fairness and comparability of the experiments, this paper sets the batch sizes
to 32.
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As for BPR-MF, SHAN, PACA, and TLSAN, this paper sets the parameter values to be
the same as [24]. The parameters for other baselines, such as learning rate, decay rate, and L2
regulation rate are tuned according to the corresponding papers [6, 15, 18]. And the lengths
of recent sessions are set to 90 for them, which keeps the same as PCAN. Due to space
limitation, this paper does not show the details.

Moreover, for our proposedmodel and all baselines, the paper considers the dot-production
function as the ranking function, and the Stochastic Gradient Descent method is utilized as
the optimizer for all baselines and PCAN.

4.1.5 Baselines

This paper compares PCAN with the baseline methods as follows:
BPR-MF [34]: A nonsequential recommender that uses the Bayesian personalized ranking

to optimize the order between items, which can effectively rank the items that interacted with
users according to their preference. This method introduces BRP into matrix decomposition,
it learns the model parameters by maximizing a posteriori probability and aims to make
visited items better than unvisited items.

GRU4REC [6]: A classical sequential recommender that applies RNN to the sequential
recommendation area and regards the historical behaviors as hidden states to calculate the
dependencies of adjacent behaviors. GRU4REC then regards the final hidden states of GRU
to generate user preference representation.

DIN [18]: It introduces a local activation mechanism to utilize different user behavior
features. At the same time, DIN proposes mini-batch aware regularization and adaptive
activation functions to assist model training. This model considers the historical behavior
sequentially and captures user interest effectively.

SHAN [19]: User general taste and recent demand can make different contributions to the
prediction of the next item, so SHAN proposes the hierarchical attention network to learn
the dynamic long-term preference and short-term interest. And then it combines these two
features to generate the comprehensive user representation.

PACA [7]: PACAusers a trainable position vector to represent the positionalweight of each
item in the historical sequence. And then it utilizes an attention-based method to integrate
the context information and position information in the historical sequence, to generate the
user preference representation.

ComiRec-SA [15]: It was proposed to capture multiple interests of users from click
sequence, and two methods were utilized by this algorithm. One method applied to it is
the capsule network, and the other method is the self-attentive method. The self-attention
method utilizes the self-attention mechanism to compute user interest capsule, and this paper
utilizes this method as the competitor.

TLSAN [24]: A state-of-the-art method that was proposed recently, it mainly utilizes
personalized time aggregation and attentionmethods tomodel user preference representation.
Long-term preference and recent demand are considered by this model, it proposes two kinds
of feature-wise attention layers to capture these two preferences effectively. And the final
user preference representation is generated by the second feature-wise attention layer.

4.2 Results analysis

Table 3 shows the AUC results of all methods on the five datasets, Tables 4, 5, 6 and 7 show
the Precision and Recall performance of allmethods on theElectronics andHomes_kitchen
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Table 3 Results (AUC) on all datasets

Model Electronics Video Office Home Phones

BPR-MF 0.7457 0.6609 0.5576 0.6352 0.6084

GRU4REC 0.7916 0.7549 0.8110 0.6970 0.7348

DIN 0.7491 0.7658 0.7256 0.6602 0.7000

SHAN 0.7234 0.7930 0.7645 0.6573 0.6581

PACA 0.7573 0.7927 0.7907 0.6902 0.6981

ComiRec-SA 0.7279 0.7666 0.6994 0.6622 0.7020

TLSAN 0.7966 0.7908 0.8319 0.6985 0.6762

PCAN 0.8164 0.8267 0.8430 0.7163 0.7663

Bold indicates the optimal experimental results

Table 4 Result (Recall) on electronics dataset

Model Recall@1 Recall@10 Recall@20 Recall@30 Recall@40 Recall@50

BPR-MF 0.0052 0.0290 0.0431 0.0508 0.0594 0.0670

GRU4REC 0.0035 0.0236 0.0379 0.0488 0.0579 0.0662

DIN 0.0025 0.0133 0.0186 0.0225 0.0256 0.0283

SHAN 0.0026 0.0219 0.0344 0.0455 0.0544 0.0624

PACA 0.0024 0.0155 0.0261 0.0348 0.0429 0.0506

ComiRec-SA 0.0029 0.0164 0.0276 0.0385 0.0485 0.0569

TLSAN 0.0039 0.0239 0.0380 0.0493 0.0589 0.0674

PCAN 0.0052 0.0300 0.0465 0.0595 0.0705 0.0803

Bold indicates the optimal experimental results

Table 5 Result (Precision) on electronics dataset

Model Prec@1 Prec@10 Prec@20 Prec@30 Prec@40 Prec@50

BPR-MF 0.0052 0.0029 0.0022 0.0017 0.0015 0.0013

GRU4REC 0.0035 0.0024 0.0019 0.0016 0.0014 0.0013

DIN 0.0025 0.0013 0.0009 0.0007 0.0006 0.0006

SHAN 0.0026 0.0022 0.0017 0.0015 0.0014 0.0012

PACA 0.0024 0.0016 0.0013 0.0012 0.0011 0.0010

ComiRec-SA 0.0029 0.0016 0.0014 0.0013 0.0012 0.0011

TLSAN 0.0039 0.0024 0.0019 0.0016 0.0015 0.0013

PCAN 0.0052 0.0030 0.0023 0.0020 0.0018 0.0016

Bold indicates the optimal experimental results
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Table 6 Result (Recall) on Home_Kitchen dataset

Model Recall@1 Recall@10 Recall@20 Recall@30 Recall@40 Recall@50

BPR-MF 0.0009 0.0085 0.0165 0.0230 0.0292 0.0343

GRU4REC 0.0012 0.0111 0.0200 0.0280 0.0351 0.0419

DIN 0.0006 0.0046 0.0087 0.0128 0.0165 0.0199

SHAN 0.0006 0.0078 0.0146 0.0208 0.0266 0.0318

PACA 0.0016 0.0091 0.0161 0.0221 0.0277 0.0328

ComiRec-SA 0.0010 0.0063 0.0120 0.0174 0.0231 0.0281

TLSAN 0.0015 0.0126 0.0224 0.0311 0.0391 0.0464

PCAN 0.0025 0.0171 0.0287 0.0386 0.0475 0.0556

Bold indicates the optimal experimental results

Table 7 Result (Precision) on Home_Kitchen dataset

Model Prec@1 Prec@10 Prec@20 Prec@30 Prec@40 Prec@50

BPR-MF 0.0009 0.0008 0.0008 0.0008 0.0007 0.0007

GRU4REC 0.0012 0.0011 0.0010 0.0009 0.0009 0.0008

DIN 0.0006 0.0005 0.0004 0.0004 0.0004 0.0004

SHAN 0.0006 0.0008 0.0007 0.0007 0.0007 0.0006

PACA 0.0016 0.0009 0.0008 0.0007 0.0007 0.0007

ComiRec-SA 0.0010 0.0006 0.0006 0.0006 0.0006 0.0006

TLSAN 0.0015 0.0013 0.0011 0.0010 0.0010 0.0009

PCAN 0.0025 0.0017 0.0014 0.0013 0.0012 0.0011

Bold indicates the optimal experimental results

dataset. It can be found that our proposed method PCAN outperforms other models on five
datasets.

PCAN outperforms TLSAN, it is because that TLSAN cannot effectively integrate the
current interest and general preferences of users, and it does not take full use of the context
information of items and users when generating the corresponding preference representation.

PCAN achieves better performances than DIN and ComiRec-SA, it may be because that
DIN utilizes the attention mechanism to learn the relationship between historical behavior
and candidate items without considering the dependency of different items. And ComiRec-
SA only uses the self-attentive method to capture the multi-interest of users. Both of them
cannot model the temporal interaction of items and users.

The main reason why PCAN outperforms PACA is that PACA only obtains the general
preferences of users and ignores users’ context information.

PCAN achieves better performances than SHAN, it may be because that SHAN does not
emphasize the current preferences of users and ignores the category representation of items
and users.

The main reason why PCAN outperforms BPR-MF is that BPR-MF only captures users’
general preferences and does not consider the short-term interaction of items and users.

123



3248 L. Qiu et al.

Table 8 Metrics on embedding
size (ES) Parameter ES� 16 ES� 32 ES� 48

AUC 0.8110 0.8164 0.8118

Precision@50 0.0014 0.0016 0.0014

Recall@50 0.0698 0.0803 0.0706

Bold indicates the optimal experimental results

PCAN outperforms GRU4REC, probably because GRU4REC uses the dependency of
subsequent items tomodel the evolving of user interests and only considers the current interest
of users, ignoring the general preferences and the context feature of items and users. In this
paper, the method utilizes the self-attention method to capture the current preferences and
uses the long-term module to generate the general interest representation, while adaptively
fusing the current preference and general interest through an attention-based method.

4.3 Parameter analysis

There are six hyperparameters in the PCANmodel, including the size of embedding ES, the
length of long-term historical sequence LS , learning rate λ, decay rate ϕ, L2 regulation rate
ω, and the number of heads h in the short-term self-attention module. This paper utilizes
batch learning to learn the parameters and sets the batch size to 32. This subsection describes
the experiments to determine the above six hyperparameters in detail.

4.3.1 Embedding size

In this subsection, we introduce in detail the experiment that determines the embedding size
ES. This experiment is conducted on the Electronics dataset, and ES is searched from {16,
32, 48}. In the method, the dropout rate ϕ � 0.0, the long-term sequence length L � 90,
the L2 regulation rate ω �5e−5, the learning rate λ � 1.0, and the number of heads h � 8.
As ES increased by 16 every time, different embedding sizes are compared simultaneously.
On one hand, as shown in Table 8, all metrics rise and plateau when ES is adjusted from 16
to 32. On the other hand, as we adjust ES from 32 to 48, the AUC , precision, and recall
decrease quickly. The reason is that when ES is too small, the method cannot model the
potential features of users and items precisely. On the other hand, if ES is set too large, it
will cause an overfitting problem. For the PCANmodel, when ES is 32, the recommendation
result reaches the maximum.

4.3.2 Learning rate

In this subsection, this paper introduces the adjusting process of learning rate λ. This exper-
iment is conducted on the Office dataset, and λ is searched from {0.001, 0.01, 0.1, 0.8, 0.9,
1.0, 1.1, 1.2}. In the method, the dropout rate ϕ � 0.0, the long-term sequence length L �
5, the L2 regulation rate ω �5e–5, the embedding size ES � 32, and the number of heads h
� 8. Figure 4 shows how AUC changes at different learning rates.

It can be observed from the figure that AUC increases in the range [0.001, 1.0] and
decreases in the range [1.0, 1.2] with the increase in λ. Therefore, this paper set the initial
learning rate λ � 1.0.
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Fig. 4 AUC changes with different learning rate values

4.3.3 Dropout rate

In this subsection, this paper introduces the adjusting process of the dropout rate ϕ. The
experiment is conducted on the Office dataset, and ϕ is selected from {0.0, 0.1, 0.2, 0.3, 0.4,
0.5}. In the method, the learning rate λ � 1.0, the long-term sequence length L � 5, the L2
regulation rate ω �5e-5, the embedding size ES � 32, and the number of heads h � 8.

It can be observed from Figs. 5 and 6 that Precision@50 and Recall@50 decreases in
the range of [0.0, 0.5] with the increase in , and reach the maximumwhen ϕ � 0.0. Therefore,
this paper sets the dropout rate ϕ � 0.0.

4.3.4 L2 regulation rate

In this subsection, this paper introduces the adjusting process of the L2 regulation rateω. The
experiment is conducted on the Office dataset, and ω is searched from {0.0, 1e−5, 2e−5,
5e−5, 6e−5, 7e−5}. In the method, the learning rate λ � 1.0, the long-term sequence length
L � 5, the dropout rate ϕ � 0.0, the embedding size ES � 32, and the number of heads h �
8. Figure 7 shows how AUC changes at different L2 regulation rates.

It can be observed from the figure that AUC increases in the range [0.0, 1e−5] with the
increase in ω and decreases in the range [1e−5, 7e−5] with the increase in ω. Therefore, this
paper set the L2 regulation rate ω � 1e−5.

4.3.5 The number of heads in the short-term self-attention module

In this subsection, this paper introduces the adjusting process of the number of heads h. The
experiment is conducted on the Office dataset, and h is searched from {2, 4, 8, 16}. In the
method, the learning rate λ � 1.0, the long-term sequence length L � 40, the dropout rate ϕ
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Fig. 5 Precision@50 changes with different dropout rate values

Fig. 6 Recall@50 changes with different dropout rate values
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Fig. 7 AUC changes with different L2 regulation rate values

� 0.0, the L2 regulation rate ω �1e−5, and the embedding size ES � 32. Figure 8 shows
how AUC changes at different numbers of heads.

It can be observed from the figure that AUC increases in the range [2, 8] with the increase
in h and decreases in the range [8, 16] with the increase in h. Therefore, this paper sets the
number of heads in the short-term self-attention module h � 8.

Fig. 8 AUC changes with the different numbers of heads
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Fig. 9 AUC changes on long-term sequence length

4.3.6 Long-term sequence length

The long-term historical behaviors are also important to model user preferences. Therefore,
to select the optimal long-term sequence length L from {10, 30, 50, 70, 90, 100, 200}, we
conduct the comparable experiment on the Office dataset. In the method, the learning rate λ

� 1.0, the dropout rate ϕ � 0.0, the L2 regulation rate ω �1e-5, the embedding size ES �
32., and the number of heads h � 8 As shown in Fig. 9, the AUC increases with the growth
of L in the range of {10, 30, 50, 70, 90}, but it decreases quickly in the range of {90, 200}
and reaches the maximum when L is set to be 90. In Figs. 10 and 11, the Precision@50
and Recall@50 increase with the growth of L in the range of {10, 30, 50, 70, 90}, but it
decreases quickly in the range of {90, 200} and reaches the maximum when L is set to be
90. When L is set to 90, the above three metrics reach the maximum. Therefore, this paper
sets the long-term sequence length L to 90.

4.4 Complexity analysis

To demonstrate the computational feasibility of our proposed model PCAN, this subsection
carries out the complexity analysis and evaluates the training efficiency of PCAN and all
baselines. Due to limited space, this paper only experiments on the Office dataset.

First, this paper studies the training efficiency of our PCAN model. It can be seen from
Fig. 12 that the training loss decreases rapidly with the growth of the epoch. And it converges
quickly after 20 epochs. These results validate that PCAN is easy to train.

After analyzing the training efficiency of our PCAN model, we conduct the complexity
analysis of PCAN. Firstly, we show the number of parameters of all models in Table 9.

As shown in Table 9, TLSANhas themost parameters among all themethods, whereas our
proposedmethod PCANhas relatively fewer parameters. TLSANemploys an attention-based
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Fig. 10 Precision@50 changes on long-term sequence length

Fig. 11 Recall@50 changes on long-term sequence length
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Fig. 12 Loss changes on different epoch values

Table 9 Number of parameters of
all models Models Number of parameters

BPR-MF 145,253

GRU4REC 217,280

DIN 168,193

SHAN 86,885

PACA 34,784

ComiRec-SA 81,092

TLSAN 376,352

PCAN 221,398

Bold indicates the maximum number of parameters

method to separately capture the long- and short-term interest and effectively integrates the
time information, category information, and item information. This method requires more
parameters than othermethods. Conversely, PCANuses two differentmodules to capture user
interest: the self-attention-based method and the position-category-aware attention method.
Moreover, other methods use a single structure to capture user preference. For example,
GRU4REC uses GRU to generate user interest representation, and PACA uses the traditional
attention mechanism to integrate position information and item information. Both of these
methods have fewer parameters than PCAN. Increasing the number of model parameters
makes the model more complex but also enhances its expressive ability, which is reflected
in the recommendation performance of all methods. The more comprehensive user interest
vector can better express users’ intent and help the model recommend appropriate items for
them. For instance, TLSAN uses an attention-based method to separately consider the long-
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Table 10 Computational cost comparison on Office dataset

Models Runtime/epoch Training epoch Total training time

BPR-MF 1.1 s 20 22 s

GRU4REC 101.74 s 20 2034.8 s

DIN 33.59 s 20 671.8 s

SHAN 11.17 s 40 446.8 s

PACA 13.09 s 70 916.3 s

ComiRec-SA 39.85 s 20 797 s

TLSAN 17.65 s 20 353 s

PCAN 72.37 s 20 1447.4 s

and short-term interest, which needs more parameters but generates a better vector repre-
sentation than those methods such as SHAN, PACA, etc. Our proposed method PCAN can
generate user interest representation with fewer parameters and achieve better recommenda-
tion performance.

This paper then compares the computational cost of PCAN with all baselines. The results
are shown in Table 10.

The number of TLSAN’s parameters is maximum, while PACA has the minimum number
of parameters. And the number of PCAN’s parameters is 1.02 times that of GRU4REC. That
is to say, PCAN is more complex than GRU4REC. Even then, our proposed method has
a faster training speed than GRU4REC regarding training per epoch. The reason may be
that the calculation of each time step depends on the calculation and output of the previous
time step while training GRU4REC. And it is difficult to scale due to its inherent nature
of state computation, which is difficult to parallelize. However, thanks to the computational
parallelism of the attention mechanism, PCAN can be quickly trained and achieves the best
performance. As for other attention-based models, just like SHAN, DIN, and TLSAN et al.,
the number of their parameters is almost equal to GRU4REC, but their training speed is faster
than GRU4REC. Finally, although the traditional method BPR-MF can be trained fastest,
this method cannot capture the deep interaction of users and items, and it has the worst
recommended performance.

4.5 Component analysis

To demonstrate the effectiveness of each component in the PCAN, this subsection conducts
the ablation experiment on the core modules of the proposed method. To be specific, PCAN
mainly consists of the long-term attention module, dynamic user category extraction module,
short-term self-attention module, and adaptive fusion module. Therefore, this paper removes
the corresponding components and describes the ablation experiment. Specifically, PCAN-
NL is a model that removes the long-term attention module of PCAN; PCAN-NS is a model
that removes the short-term self-attention module of PCAN; PCAN-NU is a model that
removes the dynamic category extraction module of PCAN; PCAN-NA is a model that
removes the adaptive fusion module of PCAN, and we set a fixed weight for the captured
current interests and general preferences to generate the final preference representation. The
ablation experiment is conducted on the Electronics dataset. Due to space limitation, this
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Table 11 Metrics on PCAN, NL (without long-term module), NU (without dynamic user category extraction
module), NA (without adaptive fusion module), and NS (without short-term module)

Components PCAN PCAN-NL PCAN-NU PCAN-NA PCAN-NS

AUC 0.8164 0.7906 0.8100 0.8141 0.7764

Precision@50 0.0016 0.0014 0.0015 0.0014 0.0017

Recall@50 0.0803 0.0686 0.0726 0.0689 0.0836

Bold indicates the optimal experimental results

paper just shows the experimental performances under the metric of AUC , Precision@50,
and Recall@50.

Table 11 shows that those incompletemodels’ recommendation performance is not as good
as PCAN, and each component of the model can improve the recommendation performance
effectively. To be specific, this paper will explain the following four aspects.

First, according to the experiment results of the PCAN and PCAN-NLmethods, consider-
ing the long-term users’ interests can effectively improve the recommendation performance.
The PCANmethod improves the AUC , Precision@50, and Recall@50 on the Electronics
dataset by 3.26%, 14.29%, and 17.06%, respectively. Second, according to the experiment
results of the PCAN and PCAN-NS methods, PCAN-NS performs a little better than PCAN
at precision@50 and recall@50, but the result of AUC is the worst compared to other models.
This indicates that the recent intent of users may make noise to the final recommendation,
but adding the short-term self-attention module to PCAN-NS can improve the overall per-
formance. Third, according to the experimental performance of the PCAN and PCAN-NU
methods, it can be seen that considering the dynamic user category also improves the rec-
ommendation performance. The PCAN method improved the AUC , Precision@50, and
Recall@50 by 0.79%, 6.67%, and 10.61%, respectively. Finally, according to the experi-
mental performance of the PCAN and PCAN-NA models, it can be concluded that utilizing
the adaptive fusion module can improve the recommendation performance effectively. And
the PCAN model increases the AUC , Precision@50, and Recall@50 by 0.28%, 14.29%,
and 16.55%, respectively, on the Electronics dataset.

5 Conclusions

To sum up, a position-category-aware attention network called PCAN is proposed by us.
Specifically, thismethodfirst utilizes the embeddingmodule to generate the high-dimensional
dense vector representation of all features. Then, the method utilizes the long-term and
short-term components to capture the corresponding preference representation. Finally, an
adaptive fusion method is constructed to dynamically adjust the weight of two kinds of
preferences representation under specific circumstances. The method considers the dynamic
user preferences while modeling the high-level interaction between users and items. From
the experiments, the PCAN model has achieved better recommendation results than other
baselines on five real datasets according to AUC , Precision, and Recall.

In the future, we plan to continue to study the PCAN method, hoping to integrate more
auxiliary information such as time interval, rating information, and comments, to improve
the recommendation performance. In addition, the future method will further exploit the
information of users and items for better recommendation.
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