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Abstract
Crowd counting based on convolutional neural networks (CNNs) has made significant
progress in recent years. However, the limited receptive field of CNNsmakes it challenging to
capture global features for comprehensive contextualmodeling, resulting in insufficient accu-
racy in count estimation. In comparison, vision transformer (ViT)-based counting networks
have demonstrated remarkable performance by exploiting their powerful global contextual
modeling capabilities. However, ViT models are associated with higher computational costs
and training difficulty. In this paper, we propose a novel network named JMFEEL-Net, which
utilizes joint multi-scale feature enhancement and lightweight transformer to improve crowd
counting accuracy. Specifically, we use a high-resolution CNN as the backbone network to
generate high-resolution feature maps. In the backend network, we propose a multi-scale
feature enhancement module to address the problem of low recognition accuracy caused by
multi-scale variations, especially when counting small-scale objects in dense scenes. Fur-
thermore, we introduce an improved lightweight ViT encoder to effectively model complex
global contexts.We also adopt a multi-density map supervision strategy to learn crowd distri-
bution features from feature maps of different resolutions, thereby improving the quality and
training efficiency of the density maps. To validate the effectiveness of the proposed method,
we conduct extensive experiments on four challenging datasets, namely ShanghaiTech Part
A/B, UCF-QNRF, and JHU-Crowd++, achieving very competitive counting performance.
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1 Introduction

Crowd counting aims to estimate the total number of people in an image using appropriate
methods, and it holds significant practical value, in fields such as video surveillance [1] and
city management [2]. In addition, it serves as the foundation for advanced tasks such asmulti-
class object counting [3], behavior analysis, and anomaly detection [4]. Therefore, in-depth
research into this technology is highly necessary.

Crowd counting in natural scenes faces many challenges, including crowd occlusion, per-
spective distortion, and illumination variation. Mainstream methods typically adopt CNNs
to regress crowd density maps and then obtain the total number of people by integrating and
summing these predicted density maps. In recent years, researchers have proposed a variety
of effective strategies to mitigate issues such as high density and multi-scale variation. One
feasible workaround is to utilize multi-column CNNs [5, 6] with different receptive fields
to aggregate multi-scale features of crowds. However, these methods lack an effective scale
fusionmechanism, leading to feature redundancy between different branches, whichmakes it
difficult to fully utilize the network’s representation ability and generalization performance.
To tackle the problem, somemethods [7–9] employed a lightweight architecture. Specifically,
these methods utilized VGG as the primary feature extractor and expanded the model’s per-
ceptual range by incorporating dilated convolution layers in the backend network. However,
the density maps generated by these networks are only 1/8 the size of the original input. Low-
resolution feature maps can result in the missing of much important information about the
small objects, which limits their performance in certain complex scenes.Moreover, due to the
single-column structure of VGG, it is difficult to achieve multi-level feature extraction and
fusion, which poses challenges in effectively modeling high-complexity scenes. In order to
further mitigate the interference of complex backgrounds on counting accuracy, researchers
introduced the attention mechanisms [10, 11] into counting networks. Applying attention
mechanisms in the networks helps enhance the ability to understand scenes, allowing them
to better focus on local details and crowded regions. These methods mentioned above have
been demonstrated to be useful. However, CNN usually only consider local regions, making
it difficult to capture global features for context modeling, which is extremely ineffective
especially in dense crowded areas. Another feasible strategy to improve the counting perfor-
mance is to utilize the ViT [12], which relies on a powerful global modeling capability and is
able to capture richer semantic information of crowds. In recent studies [13–16], researchers
proposed ViT-based counting models and achieved better counting performance. However, it
is undeniable that the computational cost of these methods is relatively high and the models
are difficult to train.

Based on the above analysis, it is necessary to construct a counting model that can balance
the performance and computational cost. For this purpose, this paper proposes a novel crowd
counting method that leverages the dual advantages of CNN and ViT. This method is capable
of better capturing the semantic information and contextual relationships within the crowd,
thereby further improving the accuracy of dense crowd prediction. To achieve this goal, we
use HRNet [17] as the front-end network, which maintains the size of its feature map output
at 1/4 of the original input size, thereby generating rich high-resolution representations. This
helps to preserve the richness of receptive field information, leading to more accurate density
mapprediction.Weemploymulti-scale feature enhancement andvisual attentionmechanisms
to mitigate the effects of scale variation, severe occlusion, perspective distortion, and other
factors on the counting results. We additionally adopt multi-density map supervision during
training to accelerate model convergence.

123



JMFEEL-Net: a joint multi-scale feature enhancement and lightweight... 3035

The contributions of this paper can be summarized as follows:

• We propose a novel network named JMFEEL-Net, which incorporates the local percep-
tion capability of CNN and the global modeling capability of ViT, and thus demonstrates
excellent performance in handling complex scenes.

• We propose a structurally simple and effective multi-scale feature enhancement mod-
ule (MSFEM) that better models multi-scale features and mitigates the problem of low
counting accuracy caused by scale variations.

• We design a multi-attention module (MAM) to enhance the model’s ability to handle
challenges in natural scenes. Additionally, we adopt a multi-density map supervision
training strategy for network parameter optimization, which significantly improves the
convergence speed and generalization performance of the model.

2 Related works

In recent years, deep learning techniques have advanced rapidly. Extensive research has
been conducted on the problem of crowd counting. To improve the expressiveness of net-
works, researchers have employed strategies such as multi-scale feature fusion, attention
mechanisms, and dilated convolutions to improve the feature extraction process. This sec-
tion provides a brief review of some mainstream works on architecture design and feature
extraction that are highly relevant to our proposed method.

2.1 Multi-scale feature fusion

Due to factors such as shooting angles and different scenes, the scale of objects in images
exhibits non-uniform variations.Multi-scale feature fusion aims to address the scale variation
problem by extracting the features of different scales using different receptive fields. In
previous work, based on MCNN [5] and Switching-CNN [6], IG-CNN [18] automatically
divided the density into different levels during training, and different patches selected the
corresponding network branches. Similarly, SANet [19] used a feature map encoder and a
density map estimator to extract multi-scale features and generate high-resolution density
maps. In [8, 20], researchers used multi-scale feature fusion networks to extract contextual
and semantic information fromcrowd scenes to reduce crowd feature loss. These architectures
are still instructive and informative, andmany subsequentmethods have followed or extended
this design idea.

2.2 Dilated convolution and deformable convolution

Dilated convolutions and deformable convolutions are two classical techniques used in image
convolution operations. Dilated convolutions allow the capturing of higher-level featureswith
larger receptive fields without increasing the number of parameters, computational com-
plexity, or network complexity. CSRNet [7] used dilated convolutions to understand highly
congested scenes and to perform accurate count estimation. DSSINet [21] adopted a multi-
scale structural similarity loss function with dilation convolutions to guide the network in
learning the local correlations of people in regions of different sizes, thereby generating
high-quality density maps. Deformable convolutions can adaptively adjust the shape and
size of receptive fields based on input features. DADNet [22] used deformable convolu-
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tions to achieve precise spatial transformations of crowd positions in the generated density
maps. ADCrowdNet [23] used deformable convolutions to improve the model’s perception
of detailed information, allowing it to capture crowd features more effectively.

2.3 Attentionmechanism

Attention mechanisms have been widely used in various computer vision tasks to help mod-
els cope with complex scene problems. To deal with factors such as occlusion, illumination
variations, and perspective distortion, some researchers have used attention mechanisms to
enable models to focus on the crowd regions, further improving the accuracy and adaptabil-
ity of the network. SCAR [10] introduced spatial and channel attention mechanisms into
the crowd counting task. Among them, the spatial attention is used to encode pixel-level
contextual information of the whole image, which improves the accuracy of the model in
predicting pixel-level density maps. The channel attention is used to extract different fea-
ture information, making the model more robust to complex backgrounds. In other works
[11, 24–26], researchers used attention mechanisms to filter out noisy information, reducing
errors caused by background interference and further improving the network’s generalization
performance.

2.4 Vision transformer

Recently, the ViT has demonstrated remarkable performance across diverse visual domains,
primarily attributed to its powerful capacity for capturing global context. Consequently,
some researchers have begun to use ViT to improve crowd counting models. Liang et al. [13]
proposed TransCrowd, a crowd counting network based on ViT, which achieved promising
counting results in a weakly supervised manner. In other similar research works, MAN
[14] used an improved transformer as an auxiliary feature extractor and incorporated global
attention, learnable region attention, and instance attention loss into the network to improve
the overall performance of the model. CCTrans [15] employed an efficient ViT as a backbone
network and integrated a pyramid feature aggregation module to better cope with scale
variation problem. The model achieved significant counting performance improvement in
both fully andweakly supervisedmethods. In this paper, an improved lightweightViT encoder
is used in the backend network to model the global features of the crowd scene, which further
reduces computational overhead and counting errors.

3 Proposedmethod

3.1 Overview

In this paper, the proposed JMFEEL-Net utilizes HRNet [17] as the backbone network. We
construct the multi-attention module (MAM), a CNN branch, a transformer branch, and a
regression decoder in the backend network. Among them, the CNN branch consists of an
atrous convolution module (ACM) and a deformable convolution module (DCM), which
mainly addresses the issue of multi-scale variations. The transformer branch contains an
improved MobileViTBlock [27], which is utilized to capture semantic relationships within
the entire region. An overview of the network is presented in Fig. 1. For each input image
I ∈ R

3×H×W , we initially extract primary features using the backbone HRNet [17], resulting
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Fig. 1 The overview of our proposed JMFEEL-Net

in four primary high-resolution feature maps with different resolutions and channel numbers,

namely E1 ∈ R
32× H

4 × W
4 , E2 ∈ R

64× H
8 × W

8 , E3 ∈ R
128× H

16× W
16 , and E4 ∈ R

256× H
32× W

32 . In
order to enable the network to learn features at different stages, we use the three upper
branches of HRNet to predict the three primary density maps separately; we define these
as P1, P2, and P3, with their height and width being, respectively, 1/4, 1/8, and 1/16 of the
original input size. Subsequently, these four primary feature maps are fed into the MAM and
fused into a new attention feature map via channel concatenation, resulting in the feature
E5 ∈ R

480×H×W . The parallel CNN branch and transformer branch are then used for multi-
scale feature enhancement and global contextual modeling. Next, we merge the outputs
of these two branches using channel-wise concatenation. Finally, the fused feature map is
fed into the decoder module for decoding, and predicting the final density map, defined as
P4, which is the same as the original input size. The decoder module consists of two 4×4
transposed convolutional layers and one 1×1 convolutional layer.

3.2 Backbone

For crowded areas or small target crowds, high-resolution representations are crucial. Unlike
many existing solutions, this paper uses HRNet [17] as a backbone to generate high-quality
feature maps. Compared to VGG, HRNet performs better in feature extraction and maintain-
ing high-resolution representations. It employs a strategy of repeatedly connecting and fusing
multiple high- to low-resolution sub-networks in parallel, thus maintaining high-resolution
features while being able to fully fuse multi-scale features. Considering the computational
cost, we only use the lightweight HRNet V32 as the backbone network. The resolution of
the output feature map is 1/4 of the input size, which makes the predicted feature map more
spatially accurate.

3.3 Multi-attentionmodule

In crowd counting tasks, applying attention mechanisms can help the network to distinguish
between different crowd distributions and complex backgrounds. We utilize HRNet [17] to
generate high-resolution representations and address the limitations of low-resolution feature
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Fig. 2 The architecture of the proposed multi-attention module (MAM)

maps. However, during the repeated fusion process, the network introduces redundant noise
information. Therefore, we perform the attention operation after HRNet.

We design a module called MAM that seamlessly integrates self-attention and channel-
attention. This module is primarily used to balance the global information and local details
of primary feature maps, thereby enabling the model to better understand complex crowd
distributions while reducing feature redundancy. The structure of MAM is shown in Fig. 2.
The input feature Fa ∈ R

C×H×W is first fed into the self-attention and channel attention
submodules, generating the self-attention output Fs ∈ R

C×H×W and the channel atten-
tion output Fc ∈ R

C×H×W , respectively. In order to allow the model to flexibly balance
self-attention and channel attention during the learning process, we use a dynamic weight
generation mechanism (a network consisting of convolutional layers and a sigmoid activa-
tion function) to compute weights for these two attentions, namely generating the weights
M1 ∈ R

C×H×W and M2 ∈ R
C×H×W . Subsequently, we add these two weights to obtain the

total weight M3 ∈ R
C×H×W , which is used to normalize the two weights. We then multiply

the pre-generated Fs and Fc with their normalized weights. Finally, we add them together to
generate the fused attention feature map FY ∈ RC×H×W , defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Mi = Fsa (Fi ; θ) ,

FY =
N∑

i=1

(

Fi � Mi
∑N

i=1 Mi

)

,
(1)

where Mi is the attention weight, namely M1 and M2. Fsa is a network consisting of con-
volutional layers and a sigmoid function, Fi is the attention output feature map, namely Fs
and Fc. The symbol � denotes the element-wise multiplication operation.

Self-attention The self-attention is an effective method for feature representation in neural
networks. It primarily captures global contextual information by computing internal rela-
tionships within the input features. The process of the self-attention mechanism is shown in
Fig. 3.

We replace fully connected layers with convolutional layers to achieve linear mapping.
Specifically, during initialization, linear mappings for key, query, and value are performed
by different convolutional layers with a kernel size of 1. These convolutional layers map
the input features to a higher-dimensional subspace. Similarly, the final projection layer
uses a convolutional layer with a kernel size of 1×1. Compared to traditional self-attention
operations, using convolutional layers with a kernel size of 1×1 helps to reduce the number
of model parameters, lower computational complexity, and improve the efficiency of model
optimization. Additionally, mapping the input features to a higher-dimensional subspace
allows the model to learn different feature dependencies in multiple subspaces, which further
enhances the feature representation capacity.
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Fig. 3 Diagram of the self-attention and channel attention process

Channel attentionWefirst apply globalmax pooling and global average pooling separately
to the input feature maps. Next, we compress the feature maps based on two dimensions
to obtain two different-dimensional feature descriptors. These two feature maps share a
multilayer perceptron (MLP) network. In the MLP, the channel dimension is reduced by a
fully connected layer and then restored by another fully connected layer. The two featuremaps
are then stacked along the channel dimension and the weights of each channel are normalized
using the sigmoid activation function. Finally, the normalized weights are multiplied by the
input feature maps to obtain the final weighted feature map.

3.4 Multi-density map supervision

Weusemulti-densitymap supervision (MMS) to guide the network in learning better models.
By aggregating feature information from different layers and resolutions of the network, the
model can adapt to different density levels in real scenarios and accelerate convergence. As
shown in the dashed part of Fig. 1, we calculate the sum of the weighted losses between P1,
P2, P3, and P4 with their ground truth (GT) density maps to perform the MMS. The purpose
of primary density map supervision is to enhance the robustness of intermediate feature maps
and promote the accuracy of the final density regression. In view of the lower resolution (1/32)
of the predicted primary feature maps in the fourth branch of HRNet, using lower-resolution
density maps for supervision training is likely to increase prediction errors, especially in
scenarios with smaller target crowds. Therefore, we do not use the primary density maps
predicted by this branch for supervision training. Subsequent ablation experiments show that
theMMS training-based strategy helps to fully exploit the correlations between density maps
of different resolutions, thereby facilitating learning of the crowd distribution in the scene,
producing finer density maps, and further improving training efficiency.

3.5 CNN branch

The output feature maps of HRNet [17] are only 1/4 the size of the original input image,
making it challenging to predict dense crowds or smaller targets. Therefore, it is necessary
to further increase the resolution of the feature map. Inspired by previous works such as
CSRNet [7], ADCrowdNet [23], DCN [28], and DADNet [22], we construct a multi-scale
feature enhancement module (MSFEM) in the CNN branch. This module consists of two
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Fig. 4 The architecture of the proposed multi-scale feature enhancement module (MSFEM)

submodules: the atrous convolution module (ACM) and the deformable convolution module
(DCM).

Atrous Convolution Module The architecture settings of the ACM submodule are shown
in Fig. 4. This submodule comprises three parallel branches, each containing convolutional
layers with dilation rates of 1, 2, and 4, respectively. The purpose is to further expand the
receptive field and integrate features of different scales. This design strategy effectively
compensates for the potential loss of feature detail during pooling and sampling operations,
enabling the network to better recognize small target clusters, edges, and other local features.
It also facilitates the modeling of multi-scale features, resulting in more accurate counting
results.

Deformable Convolution Module Compared to traditional convolutions, deformable
convolutions exhibit enhanced representational capabilities. They can learn richer spatial
distribution features of crowds, which improves the model’s performance in counting tasks.
In this submodule, the parameter settings are similar to those in the ACM. We use a three-
branch deformable convolutional group design. These three sub-branches process the input
feature maps in parallel, allowing the model to capture more diverse geometric shapes and
structural information at different feature levels. We set the convolution kernel size for all
three sets of deformable convolutional layers to 3×3. Compared to larger kernel sizes, the
3×3 convolution kernel has a clear advantage in terms of parameter efficiency while still
effectively capturing local features. In addition, we apply attention after the last deformable
convolutional layer in each branch to improve counting accuracy. Specifically, theDCM takes
the feature Fa ∈ R

3C×H×W as input and extracts the features Fi
d ∈ R

C×H×W (1 ≤ i ≤ 3)
layer by layer through three sets of deformable convolutional layers at different scales. These
features are then fed into the AFS network to generate the attention weights Wi

a . The AFS
network consists of an average pooling layer, a fully connected layer, and a sigmoid activation
function. Next, the feature Fi

m ∈ R
C×H×W is obtained by performing a multiplication oper-

ation between the pre-generated features Fi
d and the attention weights Wi

a , which is defined
as follows:

Fi
m = Fi

d � Wi
a, (2)

where Fi
d are the pre-generated features for each branch,W

i
a are the corresponding attention

weights. The symbol � denotes the element-wise multiplication operation.
Finally, the multi-scale features FY ∈ RC×H×W are aggregated:

FY = F1
m ⊕ F2

m ⊕ F3
m, (3)

where Fi
m are the features obtained from each branch. The symbol ⊕ denotes the channel

concatenation operation.
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Fig. 5 The process diagram of the MobileViTBlock

3.6 Transformer branch

In the transformer branch, we use a lightweight ViT encoder called MobileViTBlock [27]
to capture global context. The MobileViTBlock is suitable for deployment and execution on
resource-constrained devices. It is smaller than conventional ViTmodels while still providing
remarkable global modeling capabilities.

As shown in Fig. 5, the workflow of this module is as follows: firstly, for the features
FX ∈ R

C×H×W extracted fromMAM,MobileViT employs a shallow convolutional network
for local modeling and dimension transformation, generating features Fa ∈ R

D×H×W . In
order to learn a global representation with spatial inductive bias, the feature Fa is divided
into patches and unfolded into N non-overlapping features Fb ∈ R

D×N×P . Subsequently,
the encoder from the ViT model is used for feature interaction and encoding. The encoder
consists of amulti-head attention (MA)module, layer normalization (LN), and a feed-forward
network (FFN), defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F
′
x = LN (FFN (LN (Fx )) + LN (Fx )),

Fx = MA(Ix ) + Ix ,

Ix = UF(x),

MA(Ix ) = so f tmax

(
QKT

√
c

)

V ,

(4)

where F
′
x is the final output of the global contextual features from the encoder, UF(x)

represents the operation of unfolding the feature Fa . K , Q, andV are, respectively, the key,
query, and value in the multi-head attention operation, and they are three learnable weight

matrices.
1√
c
is a scaling factor.

After the aforementioned process, resulting in intermediate feature Fc ∈ R
D×N×P , which

is then folded into features Fe ∈ R
D×H×W . Finally, the residual FX is concatenated, and

a 1 × 1 convolutional layer is used to project the features into a lower-dimensional space,
obtaining the fused global contextual feature map FY ∈ R

C×H×W .
The multi-head attention operation incurs high computational cost. The challenge lies in

performing matrix multiplication operations with high time and space complexity based on
the context.We align the output channels of the 3×3 convolutional layer in the localmodeling
stage with the embedding dimension (embed-dim) of the transformer encoder and remove the
two 1×1 convolutional layers between them, further enhancing themodule’s lightweightness
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and efficiency. To further reduce computational cost, only one MobileViTBlock is used in
this branch, and the number of attention heads is set to 4.

3.7 Loss function

We utilize the Mean Squared Error (MSE) as the optimization objective function, which
measures the difference between the predicted density maps and the ground truth density
maps. Its definition is as follows:

Lm = 1

2N

N∑

i=1

‖DenEST
i − DenGT

i ‖22, (5)

where N is the number of training images, DenGT
i and DenEST

i denote the GT and predicted
density map, respectively.

As discussed above, during training, we use multi-density maps to supervise the model
training. The density maps P1, P2, P3, and P4 have different resolutions and semantic infor-
mation, which leads to the fact that they need to be optimized to different degrees. Therefore,
we balance the weight of each loss term by a hyperparameter λm . The final training loss
function is defined as follows:

Ltotal =
4∑

m=1

λmLm, (6)

where Lm (m=1,2,3,4) denotes the MSE loss between the predicted density maps (P1, P2,
P3, and P4) and GT density maps, λm is the weight assigned to each loss term. We set the
weights λ1,…, λ4 to 0.1, 0.15, 0.2, and 0.3, respectively.

4 Experiments

4.1 Datasets

We evaluate the performance of the proposed method on four public datasets, the character-
istics of which are outlined below.

ShanghaiTech [5] consists of two parts, Part A and Part B, with a total of 1,198 images. Part
A contains 300 training images and 182 testing images, while Part B contains 400 training
images and 316 testing images. Part A has a higher crowd density and is collected from web
images, while Part B has uniformly sized images with relatively lower crowd density and is
collected from street-view images.

UCF-QNRF [29] is a challenging dataset. This dataset contains a total of 1,535 images
with varying sizes, and the number of people ranges from 49 to 12,865. Both crowd density
and image resolution show significant variation in this dataset.

JHU-Crowd++ [30] contains 4,822 images, divided into 2,722 training images, 500 vali-
dation images, and 1,600 testing images. The number of people in each image varies greatly,
ranging from 0 to 25,791 individuals. Additionally, this dataset includes images captured
under extreme weather conditions such as snow, rain, and haze.
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4.2 Evaluationmetrics

We use two commonly used evaluation metrics, Mean Absolute Error (MAE) and Mean
Squared Error (MSE), to validate the accuracy and robustness of the proposed JMFEEL-Net.
These two metrics can be defined as follows:

MAE = 1

m

m∑

i=1

|yi − ȳi | , (7)

MSE =
√
√
√
√ 1

m

m∑

i=1

(yi − ȳi )2, (8)

where m is the total number of images, yi and ȳi are the GT and predicted count of the i-th
image, respectively.

4.3 Implementation details

In this work, we generate GT density maps using a fixed Gaussian kernel of size 15. During
the training process, we use the Adam optimizer. Initially, we train the model for 300 epochs
with an initial learning rate of 1e-4 and a weight decay rate of 5×1e-4. We then continue
training for another 200 epochs with a learning rate of 1e-5. We also use random cropping
and horizontal flipping to augment the training data. The cropping size for the Part A dataset
is 256×256, while that for the other datasets is 512×512.

4.4 Results and analysis

4.4.1 Counting results

We compare our method with 17 other classical methods, including CSRNet [7], FIDTM
[31], CLTR [32] and CHS-Net [33]. The comparative results are shown in Table 1. Overall,
our method achieves excellent counting performance on the ShanghaiTech, UCF-QNRF, and
JHU-Crowd++ datasets, significantly outperforming the majority of methods. Particularly,
the proposed method obtains the best counting results on the ShanghaiTech Part A dataset.
Compared tomethods based on other backbones, there is a significant reduction in count error.
For the Shanghai Tech PartB dataset, the counting performance of our proposed JMFEEL-Net
is comparable to CLTR [32] and SGANet [34], obtaining the third best counting performance.
Compared with DFRNet [35], MAE andMSE are improved by 2.9 % and 9.9%, respectively.
For the UCF-QNRF dataset, our method achieves substantial reductions in both MAE and
MSE. In terms of MAE, JMFEEL-Net is tied for second place with CHS-Net [33]. Addition-
ally, for the large-scale JHU dataset, our method is highly competitive, showing significant
improvements in both MAE and MSE, ranking third and second, respectively.

We further adopt visual density maps to illustrate the counting performance of JMFEEL-
Net under different density scenarios and compare it with density maps predicted by other
methods. Figure6 presents examples of density maps predicted by our method on datasets
with varying scales. It can be seen that our method shows excellent adaptability in coping
with changes in crowd density. This strongly demonstrates our method can efficiently extract
rich contextual feature at multiple scales. Figure7 displays the results of comparing the
density maps predicted by different methods. As can be seen, when dealing with crowd

123



3044 M. Wang et al.

Ta
bl
e
1

C
om

pa
ri
so
n
of

di
ff
er
en
tm

et
ho

ds
on

th
e
Sh

an
gh

ai
Te
ch
,U

C
F-
Q
N
R
F,
an
d
JH

U
-C

ro
w
d+

+
da
ta
se
ts

M
et
ho
d

V
en
ue

SH
A

SH
B

U
C
F-
Q
N
R
F

JH
U
-C
ro
w
d+

+

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

M
A
E

M
SE

C
SR

N
et
[7
]

20
18

C
V
PR

68
.2

11
5

10
.6

16
–

–
85

.9
30

9.
2

C
A
N
[8
]

20
19

C
V
PR

62
.3

10
0.
0

7.
8

12
.2

10
7

18
3

10
0.
1

31
4.
0

Pa
D
N
et
[3
6]

20
19

T
IP

59
.2

98
.1

8.
1

12
.2

96
.5

17
0.
2

–
–

A
M
R
N
et
[3
7]

20
20

E
C
C
V

61
.6

98
.4

7.
0

11
.0

86
.6

15
2.
2

–
–

M
SP

N
et
[3
8]

20
20

IC
A
SS

P
59
.8

98
.2

7.
5

14
.1

–
–

–
–

N
oi
sy
C
C
[3
9]

20
20

N
IP
S

61
.9

99
.6

7.
4

11
.3

85
.8

15
0.
6

67
.7

25
8.
5

D
S-
C
N
N
[4
0]

20
21

A
JS
E

–
–

–
–

11
5.
2

17
5.
7

–
–

A
ut
oS

ca
le
[4
1]

20
21

IJ
C
V

64
.2

98
.4

7.
2

11
.1

10
4.
7

17
3.
6

–
–

K
ha
n
et
al
.[
42

]
20

21
T
V
C

–
–

–
–

11
2

17
3

–
–

G
L
[4
3]

20
21

C
V
PR

61
.3

95
.4

7.
3

11
.7

84
.3

14
7.
5

59
.9

25
9.
5

K
ha
n
et
al
.[
44

]
20

21
IJ
C
IS

77
.5
8

12
9.
7

14
.1

21
.1
0

21
8.
2

35
7.
4

–
–

SG
A
N
et
[3
4]

20
22

T
IT
S

57
.6

10
1.
1

6.
6

10
.2

87
.6

15
2.
5

–
–

FI
D
T
M

[3
1]

20
22

T
M
M

57
.0

10
3.
4

6.
9

11
.8

89
.0

15
3.
5

66
.6

25
3.
6

C
LT

R
[3
2]

20
22

E
C
C
V

56
.9

95
.2

6.
5

10
.6

87
.3

14
2.
4

59
.5

24
0.
6

M
en
g
et
al
.[
45

]
20

22
ar
X
iv

57
.0

98
.6

7.
1

12
.3

85
.3

12
9.
4

66
.6

25
4.
9

D
FR

N
et
[3
5]

20
23

A
C
M

59
.6

10
0.
9

6.
9

12
.1

80
.2

14
5.
5

–
–

C
H
S-
N
et
[3
3]

20
23

IC
A
SS

P
59

.2
97

.8
7.
1

12
.1

83
.4

14
4.
9

–
–

JM
FE

E
L
-N

et
(o
ur
s)

–
56

.1
94

.5
6.
7

10
.9

83
.4

14
7.
8

60
.4

24
1.
6

B
es
tr
es
ul
ts
ar
e
hi
gh
lig

ht
ed

in
bo
ld

123



JMFEEL-Net: a joint multi-scale feature enhancement and lightweight... 3045

Fig. 6 Thevisualization results of densitymaps on theShanghaiTech,UCF-QNRF, and JHU-Crowd++datasets

Fig. 7 The visualization results of density maps generated by different methods

scenes with complex backgrounds, CSRNet [7] and PaDnet [36] cannot recognize crowds
and backgrounds effectively, especially in crowded areas. In comparison, the quality of the
density map predicted by our method is excellent and closer to GT. These results demonstrate
that our method exhibits better accuracy and greater robustness in complex crowd scenarios.
This can be largely attributed to our adoption of the MSFEM and MAM, which help to
address the multi-scale variation problem and capture global features, thus facilitating the
prediction of more detailed and accurate density maps. However, as shown in Fig. 8, in
specific scenarios, the density maps generated by JMFEEL-Net have lower quality, resulting
in a considerable difference in the counting results as compared to the GT. The reason may
be that the relatively low resolution and excessively high crowd density in some images,
which result in the loss of some detailed information during the sampling process, making it
challenging to obtain sufficient features for accurate estimation.
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Fig. 8 The visualization results of density maps with large prediction errors

Table 2 The comparisons of complexity

Method Backbone Parameters(M) FLOPs(G)

CSRNet [7] VGG 16.3 54.2

AutoScale [41] VGG 24.9 53.7

TransCrowd [13] Transformer 86.4 49.3

GL [43] VGG 21.5 52.3

FIDTM [31] HRNet V48 66.6 80.1

MAN [14] VGG 30.9 58.2

CLTR [32] ResNet50 43.4 78.6

JMFEEL-Net(ours) HRNet V32 33.8 62.4

The experiments are conducted on a 3090 GPU, and the size of the input image is 512 ×512

4.4.2 Complexity analysis

Table 2 presents the results of a computational cost comparison with other methods. Our
proposed JMFEEL-Net does not have an advantage in model parameters and FLOPs, pri-
marily because we utilize HRNet as the backbone, which increases the network’s complexity
to some extent compared to VGG. However, our method still has a lower computational
cost than methods such as FIDTM [31], TransCowd [13] and CLTR [32], while delivering
superior counting results. Our next objective is to streamline JMFEEL-Net using appropriate
pruning algorithms, further enhancing the model’s efficiency.

4.5 Ablation study

To validate the effectiveness of theMAM,MSFEM,MobileViTBlock, andMMS,we conduct
multiple ablation experiments on the ShanghaiTech Part A dataset. Firstly, we evaluate the
effect of MAM on the counting results. Then, we predict the results using CNN branch and
Transformer branch separately, and further evaluate the prediction results combining the two
branches.Next,we use twodifferent strategies for supervised training of themodel and further
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Table 3 Ablation experiments of the key components on the ShanghaiTech Part A dataset

HRNet MAM MSFEM MobileViTBlock MMS MAE MSE

� 69.1 113.2

� � 66.5 110.8

� � 65.6 106.7

� � 65.1 102.3

� � � 62.4 101.6

� � � � 58.4 98.3

� � � � � 56.1 94.5

Best results are highlighted in bold

explore the effect of λm on the counting results. The quantitative results of counting accuracy
are listed in Table 3. Finally, to provide a more intuitive demonstration of the effectiveness
of different components of the model, we display density maps for various combinations of
outputs, as shown in Fig. 9

Effectiveness of MAM To explore the effectiveness of MAM, we introduce MAM after
four branches of the backbone. The experimental results are shown in Table 3.We can observe
a significant improvement in counting error, specifically, the MAE and MSE are reduced by
3.8% and 2.1%, respectively. By comparing the predicted density maps, it can be seen that the
density maps predicted by backbone only are rather blurred. In particular, the dense regions
are less distinguishable between the background and crowd regions, while the quality of the
density maps generated by adding MAM is much improved and the local and global textures
of the images are clearer. This shows that in our work, MAM can better help the network to
better recognize the distribution of crowd and background regions, and can effectively solve
the semantic imbalance problem.

Effectiveness of MSFEM We incorporate a MSFEM after the backbone to compensate for
the details lost during the sampling operations and verify its positive impact on the counting
results. As shown in Table 3, both MAE and MSE are significantly reduced and the quality
of the density map is greatly improved. This proves that the module is able to enhance the
representation ability of the network by expanding the receptive field and effectively mitigate
the multi-scale variation problem. In addition, Table 4 shows that the network achieves
optimal results when the dilation rates are set to 1, 2, and 4, respectively. Considering that the
computational complexity becomes excessive when the number of parallel modules or the
number of layers in the dilated convolution is set to 4 or higher, we do not add any additional
modules beyond this point.

Effectiveness ofMobileViTBlock Similarly, we introduce the lightweightMobileViTBlock
after the backbone and evaluate its effect on the counting results. The results are shown in
Table 3, theMAEandMSEare improved by 5.8%and 9.6%, respectively.As can be seen from
Fig. 9, the density map generated by MobileViT is closer to GT, especially the prediction
results in crowded areas are better than those predicted by MSFEM, which indicates that
MobileViTBlock is more capable of modeling dense areas and can learn richer semantic
information. In order to prove that the joint learning of MSFEM and MobileViT is beneficial
to improve the global and local recognition performance of the network, we use both CNN
branch and transformer branch to predict the density map and compare the quality of their
density maps. As shown in Fig. 9, the density maps output from the joint MSFEM and
MobileViT have higher density quality, and show great clarity and accuracy in both congested
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Fig. 9 The visualization results of predicted density maps for different components

and sparse regions, which proves that our method can cope with multi-scale features as well
as efficiently model global features.

Effectiveness ofMMS In order to verify the advantages of themulti-densitymap supervised
training strategy, we compare the single-density map supervised training and multi-density
map supervised training. The experimental results are shown in Table 3, Figs. 9 and 10. By
jointly supervising P1, P2, P3 and P4, the MAE and MSE on SHA are improved by 3.9%
and 3.8%, respectively. As depicted in Fig. 10, theMMS strategy for training exhibits greater
stability and converges more quickly. This indicates that the MMS significantly outperforms
the results of single-density map supervision, which can enhance the semantic perception
of the network, fully utilize the correlation between feature maps of different resolutions to
further reduce the loss, and promote the convergence speed of the model.

Effect of different λm In training, we balance the global correlation and consistency of
different density maps by λm . We further evaluate the effect of different weights λm on the
counting results. The detailed operation is as follows: we first keep the weights of the four
losses the same and set them as the baseline, which also means optimizing the predicted four
density maps equally. However, the final counting results are not satisfactory. In addition, as
shown in Table 5, the counting accuracy of JMFEEL-Net declines obviously with the gradual
increase of λm . We then fine-tune the value of λm and gradually reduce the interval between
the four weights. It can be observed that the network obtains the lowest MAE andMSEwhen
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Table 4 The impact of different
dilation rates of the MSFEM on
the counting results

Module Dilation rate MAE MSE

MSFEM r = 1, 2, 3 59.6 102.4

r = 2, 3, 4 63.2 104.5

r = 1, 2, 4 56.1 94.5

r = 1, 3, 4 58.8 100.2

Best results are highlighted in bold

Fig. 10 Comparison results of different supervised training methods on SHA. SMS and MMS denote single-
density map supervised training and multi-density map supervised training

Table 5 The effect of changing
λm on the counting results

Module λ1-λ4 MAE MSE

MMS 0.1, 0.1, 0.1, 0.3 57.8 100.2

0.1, 0.1, 0.1, 0.5 59.3 102.3

0.1, 0.2, 0.3, 0.5 57.4 98.5

0.1, 0.15, 0.2, 0.3 56.1 94.5

0.1, 0.15, 0.2, 0.35 56.8 96.8

1, 1, 1, 1 58.1 105.4

Best results are highlighted in bold

the weights of the four loss terms are set to 0.1, 0.15, 0.20, and 0.3. Therefore, we choose
these four weight values to construct our proposed JMFEEL-Net.

5 Conclusion

In this paper, we propose a novel method, which effectively enhances the accuracy of dense
crowd prediction by combining the strengths of CNN and ViT. We construct a multi-scale
feature enhancement module in the CNN branch to supplement the lost detailed infor-
mation during pooling and convolution operations, effectively addressing the multi-scale
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problems. We integrate multiple attention mechanisms into the model to adaptively select
global semantic information and local detailed information. We also introduce multi-density
map supervision, effectively combining density maps from different stages and resolutions,
learning the correlation between high-resolution and low-resolution features, reducing count-
ing errors, and accelerating the model convergence. Experimental results demonstrate that
our method achieves promising counting accuracy on four classic datasets. Our ablation
experiments demonstrate the effectiveness of the proposed MSFEM, MobileViT, MAM, and
MMS. In future work, we will explore ways to determine the weights of individual loss terms
through learning automatic weighting, thereby further improving the counting performance
of the model.
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