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Abstract

The principal component analysis (PCA) is widely used in computational science branches
such as computer science, pattern recognition, and machine learning, as it can effectively
reduce the dimensionality of high-dimensional data. In particular, it is a popular transforma-
tion method used for feature extraction. In this study, we explore PCA’s ability for feature
selection in regression applications. We introduce a new approach using PCA, called Targeted
PCA to analyze a multivariate dataset that includes the dependent variable—it identifies the
principal component with a high representation of the dependent variable and then examines
the selected principal component to capture and rank the contribution of the non-dependent
variables. The study also compares the feature selected with that resulting from a Least
Absolute Shrinkage and Selection Operator (LASSO) regression. Finally, the selected fea-
tures were tested in two regression models: multiple linear regression (MLR) and artificial
neural network (ANN). The results are presented for three socioeconomic, environmental, and
computer image processing datasets. Our study found that 2 of 3 random datasets have more
than 50% similarity in the selected features by the PCA and LASSO regression methods. In
the regression predictions, our PCA-selected features resulted in little difference compared to
the LASSO regression-selected features in terms of the MLR prediction accuracy. However,
the ANN regression demonstrated a faster convergence and a higher reduction of error.
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1 Introduction

Feature selection is widely used in computational science branches, such as computer sci-
ence, pattern recognition, and machine learning, to effectively reduce high-dimensional data.
Feature selection can improve, firstly, computational efficiency and, secondly, the accuracy
of the prediction algorithms [1]. Three major traditional feature selection approaches for
machine learning development include the filter, wrapper, and embedded methods [2]. The
filter method selects features based on certain evaluation criteria, such as a high joint prob-
ability or correlation between input and output variables [3—-8]. Meanwhile, the wrapper
method conducts feature selection through the machine learning algorithm, which evaluates
all possible combinations of features by using a searching strategy and produces the result
in a machine learning of the training dataset [9]. Lastly, the embedded method is similar to
the wrapper method but derives the features during model training via a regulation technique
that adds a penalty to the different parameters of a model to reduce its freedom [10].

Feature selection differs from feature extraction in that the former creates a subset of
the initial inputs, while the latter produces new composite features. Feature extraction is
at times undesirable as its transformation of initial features removes their identifiability. A
powerful and commonly used method for feature extraction method is the principal compo-
nent analysis (PCA). By contrast, few published works exist on the implementation of PCA
for feature selection. One previous study investigated the contribution of features toward
the principal components (PC) with the largest eigenvalues [11]. This contribution value is
the relative measure of a feature’s representation quality for the selected PC over the total
representation quality of all features. The features were sorted in descending order of con-
tribution, and their ranks were considered an indicator of relative importance [11]. Another
study in 2018 applied a similar method for feature selection but only selected the first two
highest correlation coefficients from each selected PC [12]. In the same year, a group of
researchers from China applied a new method to implement PCA for feature selection on
high-dimensional data before they could be applied to the clustering model [13]. The method
first reduces the dimensionality of the data using a robust PCA technique that is less sensitive
to outliers than traditional PCA. Robust PCA is a dimensionality reduction technique that
aims to extract the most important features while minimizing the influence of outliers. This
is achieved by decomposing the data matrix into low-rank and sparse components, where the
low-rank component captures the underlying structure of the data and the sparse component
accounts for the outliers. This way, the method automatically identifies and selects the most
important features while minimizing the impact of noisy or irrelevant features [13]. Once
the dimensionality of the data is reduced, the local adaptive learning algorithm is applied to
learn the clustering structure of the reduced-dimensional data. The adaptive learning algo-
rithm adaptively adjusts the bandwidth of the kernel function used for density estimation,
allowing it to capture the local structure of the data. All three studies involve unsupervised
feature selection for pattern recognition and image processing applications.

Our study aimed to adapt these approaches to the supervised feature selection problem. We
introduce a new approach using PCA, called Targeted PCA to analyze a multivariate dataset
that includes the dependent variable. The reviewed studies [11-13] determined the selection
of the PC based on explained variance and the rank of contribution along the selected PC
governed feature selection in unsupervised learning applications. Guided by this, we explored
the implementation of the same method but also considered the dependent variable within
the dataset for supervised learning applications. The method can be summarized in three
parts. Firstly, it performs PC selection based on variance explained exceeding a certain

@ Springer



Supervised feature selection using principal component analysis 1957

threshold. Secondly, it selects one or more reference PC(s) based on a top contribution rank
by the dependent variable. Lastly, it finalizes feature selection based on contribution values
exceeding a certain threshold from among the independent variables on the reference PCs.
The approach is assessed in two ways: First, the selected features are compared with features
selected using the LASSO regression model. Second, they were used as input in linear
(multiple linear regression) and nonlinear (artificial neural network) regression models. We
used three datasets covering socioeconomic, environmental, and computer image processing
fields of applications.

2 Materials and methods

The full methodology of Targeted PCA is presented in Fig. 1, and detailed descriptions are
presented in the following subsections. The final section (ref Dataset section) describes three
datasets that were used to evaluate the methodology.

2.1 Method development

This section presents the proposed modification to PCA for feature selection. The process
begins with a standard calculation of eigenvalues X and eigenvectors v based on the covariance
matrix W as represented by Eq. 1.

Wuv =2 (D

The eigenvalues X and eigenvectors v can be solved by rearranging eq. 1 into eq. 2, where
I is the identity matrix, then applying the singular value decomposition (SVD) technique.

(W—=xDv=0 (@)
The following steps are used to perform the feature selection:

1. Identify and select the PCs (i.e., the eigenvectors) with individual variance explained
percentage higher than 1% and cumulative variance explained percentage at minimum
80%. According to Hair (2009), PCA has no universal minimal cumulative explained
variance [14]. Instead, the explained variance is based on the analysis context and desired
level. Therefore, we chose 80% as the threshold for cumulative explained variance, a
common percentage value in many previous studies [11, 12]. Meanwhile, we chose 1%
for the threshold of variance explained based on a previous study by Mubarak et al. (2018).
The previous study also suggested not selecting too low a threshold because it may include
many PCs and increase the complexity of the feature selection process.

2. Identify the quality of representation, RJZ._ - of feature components toward the PC [15].
Since all features are represented in the form of a geometrical coordinate, this is deter-
mined from the cosine rule, which dictates that for any given variable vector, R?. » is equal
to the squared cosine of the angle 6 between the vector of a selected principal compo-
nent and given variable vector. A higher R?’ , Value indicates a smaller 8, hence a good
representation of the variable on the principal component. This is illustrated in Fig. 2.
The main reasons for the selection of the squared cosine in principal component analysis
(PCA) in measuring the quality of representation of data features are as stated below:

(a) It measures the angle between variable and PC vectors, rather than their magnitude,
making it robust to scale differences. This is important in PCA because the magnitude
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Supervised feature selection using principal component analysis 1959

of the vectors in the PCA space may differ from those in the original space due to the
transformation process.

(b) It is robust to outliers. According to Abdi and Williams (2010), the squared cosine
similarity metric is robust to outliers because it penalizes large angles between vectors
more heavily than small angles [16]. For example, consider two vectors, vl and v2,
with an angle of 60 degrees between them. The cosine similarity value between these
vectors is 0.5. However, the squared cosine similarity value is 0.25, smaller than the
original cosine similarity value. If the angle between the vectors is smaller, e.g., 30
degrees, the cosine similarity value would be 0.87, and the squared cosine similarity
value would be 0.76, closer to 1.

(c) Other methods may be used to measure the similarities between these two parameters,
such as Pearson correlation, Euclidean distance, Manhattan distance, and Mahalanobis
distance. However, cosine squared has a straightforward interpretation and is easy
to compute. According to Kassambara (2017), the cosine rule is the most common
practice used in calculating the quality of representation of variables in each PC.

3. Identify the contribution value of each feature to each selected PC from the relative quality

of representation (Eq. 3, where j = 1,2, ..., total number of PCand p = 1,2, ..., m.
m is the total number of features in the dataset).
2
jp
p=1"j,p

4. Select the PC corresponding to the largest C;, , of the dependent variable data as the
reference PC.

5. Calculate a cutoff point for the relative contribution value as shown in Eq. 4 [following
15]. The cutoff parameter can be calculated as an expected (average) contribution. If
the variables’ contribution were equal, the expected value would be divided by the total
number of variables, m.

1
Coif = — % 100% 4)
m

6. Select the features with the contribution value, C; , higher than cutoff value, Coff, con-
tributing to the reference PC.

7. Rank the importance of each feature toward the reference PC by comparing the C; ,
value, as obtained in Step 3. Ranking the features according to the contribution value in
descending order may expedite the filtering process using the threshold method (explained
in the previous subsection under point number 6). The higher the C; ), the higher the
correlation between the feature to the PC and, thus, the dependent variable. However, a
limitation comes when more than one reference PC is selected. The rank for all features
cannot be determined based on the C; , across all reference PCs because they carry
different information. Thus, the features are ranked separately for each reference PC.

2.2 Rationale

The Targeted PCA is the new method in feature selection, an evolution of traditional PCA.
This section explains the justification for the proposed method based on the original prin-
ciples of PCA and demonstrates the advantages of Targeted PCA in the feature selection
procedure. An established principle of the PCA is that the eigenvector corresponding to a
larger eigenvalue can capture more representative sample information [17]. For this reason, it
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Fig.2 Implementation of cosine rule in the calculation of quality of representation

is reasonable to investigate the eigenvectors corresponding to larger eigenvalues when one is
interested in explaining the variance of the data along each feature’s axis. Analyzing multiple
eigenvectors allows for a more robust evaluation, considering multiple angles and directions
of dependencies. Our proposed method considers analyzing more than one PC, but only those
with significant C;; ,, of the dependent variable. We leverage this property to improve the fil-
tering of the features without losing the information on the correlation between dependent
and independent variables. Next, we assess the C; , of each feature component in the PC that
can explain its importance and relation toward the reference PC [11, 12]. The computation of
this value accounts for the importance and relation of all features toward the same reference
PC. By extension, their importance and relation toward each other are accounted.

2.3 Evaluation

Validating a new method with established methods allows an objective evaluation of its
performance. Furthermore, it allows an analysis into the strengths and weaknesses of the
different methods compared, facilitating the identification of gaps and opportunities for future
research. Assessment is conducted by (1) analysis of the features selection by the Targeted
PCA with that of an established feature selection method, the Least Absolute Shrinkage and
Selection Operator (LASSO) regression, and (2) measuring the ability of selected features
to fit linear and nonlinear models.

2.3.1 Analysis of Selected Features

The Least Absolute Shrinkage and Selection Operator (LASSO) regression
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LASSO was introduced by Tibshirani [18]. The regression method minimizes the least squares
and has an additional penalty/regularization term for the regression coefficients based on the
L1-Norm. The LASSO estimate is defined by the solution to the L1 optimization problem,

Y -XBII3

which is to minimize m

>, subject to Zl;zl IBll; < t, where t is the upper bound

for the sum of coefficients in Eq. 5. Suppose X and Y are the input and output vectors,
respectively, B is the vector of the coefficients for all features, k is the number of features,
and 7 is the total number of samples.

Y — XBll3
n

MM=m¥m +HMO (5)

where [|Y — XBII3 = Y1, (Vi — (X,B)i)z, 1811, = ZI;':1 IB1l; and A > 0 is the parameter
that controls the strength of the penalty—the larger the value of A, the greater the amount of
shrinkage.

The relationship between A and the upper bound ¢ is an inverse one. As ¢ tends toward
infinity, the problem becomes an ordinary least square, and A becomes 0. Conversely, as ¢
tends toward 0, all coefficients reduce toward 0, while A goes to infinity. This yields LASSO
its variable selection capability—as we minimize the error in the optimization algorithm,
some coefficients are shrunk to zero, i.e., Bj (*) = 0, for some values of j (depending on
the value of the parameter 1). In this way, the features with coefficients equal to zero are
excluded from the model.

The cross-validation (CV) for standard LASSO utilizes the cv.glmnet implementation in R
that provides efficient minimization by path-wise coordinate descent for coefficient updates
and a method called ‘covariance update,” which is a dynamic programming approach to
increase the efficiency of the solver [18].

The necessary parameters are:

e nfolds = 10 is the number of folds used for the CV.

e keep = TRUE makes sure that the information about the fold selection is stored. Since
the folds are generated randomly, this was a necessary adjustment.

e family = ‘Gaussian’ is the option for ordinary regression for linear labels.

e type.measure = ‘mse’ (mean squared error) is the indicator for the evaluation method. It
measures the deviation from the fitted mean to the response.

e alpha =1 is a hyperparameter that denotes the elastic-net mixing that the study could
use if a L1 and L2 penalty mixture is wanted. alpha = 0 is used for ridge regression(L2)
and alpha = 1 for pure LASSO regression. The increasing number of alpha may reduce
the number of selected features.

e A fitted LASSO model is used to compute the best coefficient value for each independent
variable.

Comparability of Targeted PCA and LASSO regression

A LASSO regression is conducted for validating the PCA as both are similar in their function
and approach. Firstly, both PCA and LASSO regression can effectively reduce the dimen-
sionality of the feature space. They aim to filter and select a subset of features that capture
the most relevant information for predicting the target variable while discarding less impor-
tant or redundant features. Secondly, both techniques implicitly rank the features based on
their importance. In PCA, the principal components are ranked in descending order of the
explained variance they capture. Features with high loadings in the top-ranked components
are considered more influential. In LASSO regression, the features with nonzero coeffi-
cients are deemed important for prediction, while those with zero coefficients are considered
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less relevant. Lastly, PCA and LASSO regression both operate on linear combinations of
features. PCA creates linear combinations (principal components) of the original features,
while LASSO regression finds the optimal linear combination of the features as predictors.

Comparison of selected features

The selected features by Targeted PCA and LASSO regression are compared in terms of
(1) the number of selected features and (2) the similarities and differences of selected and
non-selected features.

To measure the similarities of selected features, we used the Hamming distance technique
[19]. This technique is often used to quantify the extent to which two-bit strings of the same
dimension differ. In a traditional application of the Hamming distance, the only concern
is whether the corresponding bits in two strings agree. However, over the past few years,
many researchers have started implementing this method in data preprocessing for machine
learning [20, 21]. The Hamming distance is used to find the pairwise similarity in the input
space to avoid the excessive redundancies of the input sample.

In this case study, we generalize all the features into bit strings depending on the total
number of features used in the dataset:

1. We create two-bit strings representing all selected features from the suggested PCA and
LASSO regression methods.

2. We measure the similarity of bits from both bit strings.

3. We calculate the similarity percentage by dividing the total number of similar bits by the
length of bit strings.

2.3.2 Linear and nonlinear modeling

Next, two learning algorithms were fitted using selected features from the Targeted PCA and
LASSO regression, and their modeling performance was comparatively assessed to establish
any advantage of the Targeted PCA. Both learning algorithms are briefly described in the
following subsections.

Multiple Linear Regression

In multiple linear regression analysis, an attempt is made to account for the variation of
the independent variables with respect to the dependent variable synchronously [22]. The
regression analysis model is formulated as in Eq. 6.

y=X181+ X2+ ...+ Xy Br + € (6)
where y denotes the dependent (or study) variable that is linearly related to k independent (or
explanatory) variables X1, X», ..., X through parameters B, B2, ..., Bx. The parameters
Bi1, B2, ..., Br are the regression coefficients associated with X1, X», ..., Xk, respectively,

and € is the random error component reflecting the difference between the observed and fitted
linear relationship. There can be various reasons for such differences, e.g., the joint effect of
those variables not included in the model, random factors that cannot be accounted for, etc.
In a regression equation, the € random error refers to the residual variation that the model
does not explain. Furthermore, the € parameter has also been used in LASSO regression to
include the bias characteristic in the fitted model.

Metrics R* and adjusted R? have been used in this study. R? measures the proportion of
variance in the dependent variable explained by the regression model. It ranges from O to 1,
with higher values indicating a better fit. R? is calculated as the ratio of the sum of squared
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Table 1 Standard setup for the experimental setting of ANN model for train and test selected dataset

Elements Experimental setting

Input neuron Selected features using PCA or LASSO regression
Number of hidden layers 1

Number of hidden neurons Input number x 2

Activation function Sigmoid function(hidden) & Linear function(output)
Optimization algorithm Stochastic Gradient descent

Learning rate 0.01

Stopping rule 1 Early stopping algorithm (threshold = 0.001)
Stopping rule 2 1,000,000 iterations

Error function Sum of squared error

errors (SSE) of the regression model to the total sum of squares (SST) of the data:

) SSE
RP=1-—or )

where SSE is the sum of squared errors between the predicted and observed values of the
dependent variable, and SST is the total sum of squares of the dependent variable.

Adjusted RZ, on the other hand, takes into account the number of predictor variables in
the model. It adjusts R? by penalizing the addition of extra predictor variables that do not
significantly improve the fit of the model. Adjusted R? is calculated as:

®)

_R? _
AdjustedRzzl_[(l R”) x (n 1)]

n—p-—1
where n is the sample size, and p is the number of predictor variables in the model.

Artificial Neural Network

ANN is composed of elementary computational units called neurons combined according to
different architectures with multiple numbers of layers of network [23]. They are also known
as generalized nonlinear models. Typically, the model performance of the ANN changes
depending on model hyperparameter tuning and training dataset manipulation [23]. Thus, to
analyze the impact of selected features, the experimental settings were set constant to avoid
that additional bias is introduced affecting the model performance.

Table 1 presents the experimental setting of the ANN model used to evaluate the regression
of the dependent output data on the selected features. Table 1 presents the experimental setting
of the ANN model used to evaluate the regression of the dependent output data on the selected
features. Two stopping rules were used for the ANN model training. The first rule applied
the early stopping algorithm, which monitored loss in mean squared error (MSE) over time
(epochs), and stopped the training when the difference in the loss between previous and
current epochs was lower than a threshold value set at 0.001, and the loss increased again in
the following epoch. The second rule avoids that the number of epochs keeps increasing due
to a non-converging model by stopping the training if the iteration numbers reach 1,000,000.

The ANN can capture the nonlinearity in the dataset because of the activation function
used in the algorithm. We use 70%, 10%, and 20% of the dataset for training, validation,
and testing stages, respectively. Thus, the ANN can maintain the generalization of patterns
in the dataset while also identifying the nonlinearity connection between input and output
variables [24].
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Table 2 Description of the case dataset

Data characteristic Description
Dataset notation Dataset 1 Dataset 2 Dataset 3
Name Communities and Relative location of Leptospirosis

crime dataset

CT slices on axial
axis dataset

incidence and
land-use types

dataset

Dataset characteristic Multivariate Multivariate Multivariate
Attribute numbers 100 385 215
Associated task Regression Regression Regression
Sample numbers 1994 53,500 513
Missing value No No No
Area Socioeconomic Computer image Epidemiology and

processing environment

2.4 Dataset

The study used two public-domain datasets from the UCI Machine Learning Repository
collection. A third dataset was from the Federal Department of Town and Country Planning
Peninsular Malaysia and the Ministry of Health Malaysia.

The first dataset combines socioeconomic data from the 1990 US Census, law enforcement
data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR [25]. The
second dataset is the medical dataset retrieved from 53,500 computed tomography (CT)
images from 74 patients (43 male, 31 female). This dataset predicts the CT slice’s relative
location on the human body’s axial axis [26]. These data are represented in histogram analysis
of CT values which describe the bone structures (from value0 to value239) and air inclusion
(from value240 to value383). The third dataset is an environmental dataset consisting of 215
land-use types that predict the number of leptospirosis cases that occur in Negeri Sembilan,
Malaysia. Land-use types include agriculture, jungle, sport and recreational areas, public
infrastructure, and residential areas. Each sample in this dataset represents the percentage
coverage of land use in 5 x 5Km areas inside the Negeri Sembilan state. Table 2 presents
the summary of these three datasets.

3 Results and discussion

The main results are summarized and presented in this section, while a full list of the ranked
selected and rejected features from all datasets is reported in Appendix.
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Table 3 The eigenvalue of 100 PC from Dataset 1

PC Eigenvalue Variance explained (%) Cumulative explained variance (%)
PC1 1.0885e+00 2.7205e+01 27.20
PC2 7.5512e—01 1.8872e+01 46.08
PC3 3.2765e—01 8.1888e+00 54.27
PC4 2.8520e—01 7.1276e+00 61.39
PC5 1.8382e—01 4.5941e+00 65.99
PC6 1.5967e—01 3.9905e+00 69.98
PC7 1.3266e—01 3.3154e+00 73.29
PC8 1.0958e—01 2.7387e+00 76.03
PC9 7.8591e—02 1.9641e+00 77.99
PC10 7.6475e—02 1.9113e+00 79.90
PC11 5.6561e—02 1.4136e+00 81.32
PC12 5.4966e—02 1.3737e+00 82.69
PC13 5.2167e—02 1.3038e+00 83.99
PC14 4.7305e—02 1.1822e+00 85.18
PC97 5.8702e—05 1.4671e—03 99.99
PC98 2.9117e—05 7.2769e—04 99.99
PC99 2.8408e—05 7.0997e—04 99.99
PC100 2.0795e—05 5.1970e—04 100.00

3.1 Selected features by Targeted PCA
3.1.1 Dataset 1: Communities and crime dataset

Table 3 shows that the first 14 principal components (PC) from Dataset 1 have explained
variance exceeding 1%. The cumulative proportion of the first 14 PC is 85%.

Among the first 14 PCs, PC1 and PC5 were chosen as the reference PC, as both PC
consisted of higher C; ,, (3.9184% and 6.5057%) of the dependent variable (‘ViolentCrimes-
PerPop’) compared to that of other variables (Table 8). Based on these two PC, features with
C;,p above the cutoff 1% were selected as features associated with the dependent variables.
Therefore, the first 50 highest-ranked features from PC1 and the first 27 highest from PC5
were selected. The selected features may be determined by PC1 or PC5 or both. For example,
the variable names ‘PopDens,” ‘PctVacMore6Mos,” ‘PctSpeakEnglOnly,” ‘PctSameState85,
and ‘PctSameHouse85” were chosen because these variables contributed C; , more than 1%
for both PCs. Overall, 70 variables out of 100 were selected for a high association with the
dependent variable (‘ViolentCrimesPerPop’).

Several important keys exist in predicting the total number of crimes [27]. They are
divided into four major groups: socioeconomic disparities, education and literacy levels, fam-
ily structure, and drug abuse or addiction. Based on our analysis, socioeconomic variables
such as poverty rates (NumUnderPov), income inequality (medIncome), and unemployment
rates (PctUnemployed) were found to correlate with higher crime rates. As discussed in
the referenced study [27], individuals in economically disadvantaged areas often face lim-
ited opportunities and reduced access to education, healthcare, and employment, leading to
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Table 4 The eigenvalue of 385 principal components from Dataset 2

PC Eigenvalue Variance explained (%) Cumulative explained variance (%)
PC1 5.0091e+02 9.4009e+01 94.01

PC2 7.6621e+00 1.4380e+00 95.44

PC3 2.5762e+00 4.8350e—01 95.93

PC384 4.5027e—30 8.4505e—31 99.99

PC385 4.5027e—30 8.4505e—31 100.00

frustration, desperation, and higher rates of criminal behavior. Besides, areas with low edu-
cational attainment and high illiteracy rates often experience higher crime rates. Inadequate
access to quality education can limit individuals’ prospects, leading to a higher probability
of involvement in violent crime. Additionally, Targeted PCA ranked ‘PctNotHSGrad’ highly
in predicting crime. This feature measures the percentage of people 25 and over that are not
high school graduates. Finally, the stability of the family structure and positive social support
networks significantly impacts crime rates. Broken families (TotalPctDiv), a lack of parental
involvement (PctWorkMom and PctWorkMom YoungKids), and weak social networks (Pct-
NotSpeakEnglWell) can contribute to higher crime rates as individuals may seek validation,
belonging, and support from alternative sources, including criminal activities [27]. Targeted
PCA also identified urbanization and the immigrant population in the city to be linked to the
number of crimes [28].

3.1.2 Dataset 2: Relative location of CT slices on axial axis dataset

Table 4 shows that two PC contributed more than 1% variance percent in Dataset 2, which are
PC1 and PC2. Besides, based on Table 9, both were also selected as reference PC because
the C; , of the dependent variable (reference) in both PCs were highest, at 0.7163% and
2.2770%, respectively.

Overall, 254 features contributed C; ;, of more than 0.2597% (the cutoff value) and were
selected as essential features to predict the relative location of CT in the human body. Of
these, 183 were higher-ranked features from PC1, and 71 were from PC2. The Targeted PCA
found 149 input features from bone structure to be important in predicting the location of the
CT slice. Meanwhile, only 105 features from the air inclusion group were selected. According
to Furuhashict et al. (2009), the importance of histogram analysis of bone structure and air
inclusion can be discussed as following [29]: (1) Bone structures play a significant role in
predicting the relative location of CT slices due to their distinctive properties. Moreover, bone
structures provide structural context and serve as reference points for assessing the spatial
relationships between adjacent CT slices. Therefore, histograms describing bone structures
are considered an important factor in predicting the relative location of CT slices on the
axial axis. (2) Air inclusions, such as the lungs or air-filled cavities, also contribute to the
localization of CT slices. However, air inclusions might not be as prominent as bone structures
in predicting slice location, but they still provide valuable information. (3) In certain cases,
particularly when dealing with thoracic or abdominal CT scans, air-filled structures can
serve as reliable landmarks for determining the relative position of a slice along the axial
axis. By incorporating histogram analysis of air regions, the predictive accuracy of CT slice
localization can be further improved.
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Table 5 The eigenvalue of 215 principal components from Dataset 3

PC Eigenvalue Variance explained (%) Cumulative explained variance (%)
PC1 3.9055e+05 3.7852e+01 37.85

PC2 3.4225e+05 3.3171e+01 71.02

PC3 2.2028e+05 2.1350e+01 92.37

PC4 2.5004e+04 2.4234e+00 94.79

PC5 1.7788e+04 1.7241e+00 96.52

PCo6 8.0422e+03 7.7946e—01 97.30

PC214 3.5113e—27 3.4032e—31 100.00

PC215 3.5113e—27 3.4032e—31 100.00

3.1.3 Dataset 3: Leptospirosis incidence and land use types dataset

Based on Table 5, PC1 to PC5 were selected for investigation. However, among five PCs,
only PC1 is chosen as the reference PC because this PC consists of the dependent variable
(‘total Leptospirosis cases’) with the highest C; , compared to other independent variables.
The dataset resulted in only one reference PC, unlike Datasets 1 and 2, which resulted in
more than one reference PC. The cutoff value for this dataset is 0.4651%. Based on this, 155
independent variables were found to be important features in predicting the total cases of
Leptospirosis (Table 10).

Ten types of land use were found to be important in determining the total number of
leptospirosis in Negeri Sembilan, Malaysia, These are residential areas (LU_7), palm oil plan-
tation (LU_4), rubber plantation (LU_23), sport complex (LU_5), roads (LU_115), oxidation
pond (LU_60), schools (LU_52), monsoon drains (LU_66), bushes (LU_9), and hardware
store (LU_2). Residential and roadways land uses demark the center of the human popula-
tion and urbanization. The population of rats may be directly dependent on the presence of
human homes, as they provide the source of food for rats via garbage [30]. Furthermore, the
oxidation ponds treat wastewater received through the sewer system, where many colonies of
rats are breeding and sheltering [31]. Like residential land use, a school area attracts a com-
munity of rats, as it provides a food source. Leptospira may infect school children through
rats’ urine and contact with street cats or dogs in school areas [32]. In 2016, a descriptive
analysis demonstrated that Malaysian students registered the most significant cases in the
country. 40% of the cases were reported to be students coming from school activities [33].
Palm and rubber plantation land uses are related to occupational exposure. Plantation work-
ers are likely to be infected by Leptospira because they often work physically in contact
with the surrounding environment. The predominant host animal in oil plantations has been
shown to contribute 88.1% of the overall rat pathogenic Leptospira [34]. The unsafe work
practices by plantation workers also catalyze this disease’s infection rate. A cross-sectional
study has shown that many workers have poor work practices that expose themselves to the
plantation’s surface soil and water environment, which is most likely contaminated with the
urine of infected animals [35].

@ Springer



1968 F.Rahmat et al.

Table 6 Comparison in terms of the total number, similarities, and differences of selected features by both
methods Targeted PCA and LASSO regression

Dataset 1 (n = 99) Dataset 2 (n = 384) Dataset 3 (= 214)

Total selected by Targeted PCA 70 254 155
Total selected by LASSO 74 359 78
Similarities (Hamming distance) 57.58% (n = 57/99)  63.02% (n = 242/384) 42.99% (n = 92/214)

Table 7 Summary of performance of multi-linear regression fitted with input features selected by LASSO
regression and Targeted PCA

Dataset 1 Dataset 2 Dataset 3

Selected features LASSO Suggested method LASSO Suggested method LASSO Suggested method
by

Multiple 0.6908  0.6943 0.8644  0.8480 0.8883  0.8928
R-squared

Adjusted 0.6781 0.6783 0.8635 0.8473 0.8863  0.8900
R-squared

p value 2.2e—16 2.2e—16 2.2e—16 2.2e—16 2.2e—16 2.2e—16

3.2 Selected features by LASSO regression

Table 8 shows all the selected independent features in Dataset 1 with ranked coefficients
value by using LASSO regression. Overall, 74 predictors out of 100 were identified to have
a significant correlation with a dependent variable using this approach. The level of filtering
achieved may be considered minimal, and theoretically, further adjustment to the value of
alpha or the regulation value (L.1) could be used to increase the reduction of features. This is
because as the penalty value increases, the coefficients of many features will be set equal to
zero. However, this regulation must be controlled because very high values will cause feature
selection bias and misinterpretation during prediction [18].

According to Tables 9 and 10, LASSO regression found 359 and 78 features for Datasets
2 and 3, respectively. Dataset 3 shows the most restrictive selection where almost two-thirds
of the independent variables were rejected.

3.3 Comparison between Targeted PCA and LASSO selected features
3.3.1 Similarities and differences between selected features

Table 6 shows the number of features chosen by Targeted PCA and LASSO regression for
all datasets. The number of selected features using Targeted PCA was lower than that by
LASSO regression with Datasets 1 and 2. The total number of selected features in Dataset 3
when using PCA is nearly double that when using LASSO regression.

According to the Hamming distance method, the Targeted PCA and LASSO regression
chose 242 similar features out of 384 total features, the equivalent of 63.02% similarity, from
Dataset 1. Meanwhile, Targeted PCA and LASSO regression select 57 of 99 similar features,
the equivalent of 57.58% similarity, from Dataset 2. On the other hand, Dataset 3 shows
the lowest similarity with only 92 out of 214 features selected by both methods. Since both
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Fig.3 Performance graph of ANN model trained by input features selected by LASSO regression and Targeted
PCA

methods recorded a more significant gap in the total number of individual selected features
in Dataset 3, the potential to have similar features selected by both methods was low.

All these similarities and differences may change depending on the dimensionality reduc-
tion parameters used by both methods. For example, if the study increases the cutoff of
variance percent from 1% to 5%, PC 5 might be not selected as a reference PC since the vari-
ance percent is 4.6%, which is lower than the threshold value. In this case, the analysis would
reject almost 28 selected features. The same goes for LASSO regression. In conclusion, the
study found that both methods share more than 50% similarity of independent variables for
Datasets 1 and 2. Meanwhile, Dataset 3 has less than 50% similarity of independent variables,
which means there is a significant difference in the selected and rejected features by Targeted
PCA and LASSO regression.

3.3.2 Prediction performance on linear and nonlinear model

This section presents the impact of selected features in identifying the linearity and nonlin-
earity between input and output prediction tasks.

Table 7 shows the summary of the trained and tested multiple linear regression (MLR)
model, which used the selected input from all three datasets by both approaches. Both methods
produce the same p value values that are lower than 0.05 for all datasets. In addition, model
prediction performances when using selected features from LASSO regression and Targeted
PCA are not significantly different for all datasets. The difference for multiple R? and adjusted
R? was less than 0.02.

Figure 3 shows the tested ANN performance at multiple epochs comparing the different
sets of selected features for all datasets. The model trained using the selected input in Dataset
1 from Targeted PCA produced a slightly higher starting error than the model trained with
the input by LASSO regression. However, it recorded a drastic reduction in error for the
second epoch, finally converging at epoch 13. In contrast, with the selected features by
LASSO regression, the starting error was 0.00075 lower. However, the model showed a
slower convergence until epochs 11 and 17, at which there are significant changes in the next
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epoch’s error reduction. Finally, the model converged at epoch 24, with an error higher than
the model trained by selected features by Targeted PCA.

With Dataset 2, the results were similar. The selected features from the Targeted PCA
showed a larger error of 0.4463 at the beginning, while the model with input from LASSO
had a lesser error of 0.3914. However, the condition changed when the model with the
Targeted PCA performed very aggressive training when the model demonstrated a significant
reduction repeatedly, especially between epochs 8 and 9. The error changed from 0.4001 to
0.2991. However, the error in the model with input from the LASSO regression gradually
decreased until epoch 28, when the error started showing a significant decrease from 0.2286
to 0.1909. Figure 3 also shows both models converged at the same number of epochs, which
is 35, but the model with input from the Targeted PCA produced a better performance than
the model that was trained with input from LASSO with final MSE values of 0.1186 and
0.1355, respectively.

Dataset 3 shows the ANN model trained with the input from the Targeted PCA per-
formed better than the model with selected features from LASSO from the beginning until
the last epoch. The model with the Targeted PCA produced 0.099 MSE, while the model with
LASSO regression produced 0.2973 MSE at the beginning epoch. Then, both models grad-
ually decreased the error for the following epoch. However, the model with the input from
Targeted PCA converged much faster at epoch 55 with a final error at 0.0113. Meanwhile,
the model with input from LASSO regression converged with additional epochs at epoch 58,
and the final error was higher at 0.0844. All trained models seemed to converge using the first
rule of the early stopping algorithm, whereby the training stopped at specific epochs when
the difference in the loss between previous and current epochs is lower than 0.001.

In conclusion, both methods have shown a good ability to capture the relationship between
the input and output in the dataset when linearity was assumed through multi-linear regres-
sion. However, the ANN model trained faster and had better performance (lower error) with
the selected features from the Targeted PCA. The selected features from the Targeted PCA
provided more informative nonlinear connections between the input—output than those from
the LASSO regression. Besides, the LASSO regression technique may have been underfit-
ted the linear fitted model. To overcome the nonlinearity problem in the LASSO regression
technique, previous researchers have used other LASSO variants applied for the nonlinear
feature problem such as Least Absolute Shrinkage and Selection Operator-Neural Network
(LassoNET) and Least Absolute Shrinkage and Selection Operator-Multi-Layer Perceptron
(LassoMLP). However, these two methods are embedded feature selection methods that may
not perform well with other classifiers [36]. Meanwhile, other traditional nonlinear feature
selection methods such as distance correlation, Hilbert—Schmidt Information Criterion, and
Hoeffding’s test have suffered from ignoring the joint contribution of features in predicting
the target data [37]. None of the above studies was aimed to assess regression performance
using the selected features.

4 Conclusion

This study proposed a new approach using PCA for feature selection. It identified and ranked
the important features based on the independent variable’s connection to the selected principal
component. The methodology was tested for three different datasets from different fields to
ensure its robustness. The study found 2 out of 3 datasets to have above 50% similarities in
selected features when compared to features selected using LASSO regression. On the other
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hand, the results of the feature selection indicate that the Targeted PCA performed efficiently
in capturing both linear and nonlinearity patterns in the dataset in prediction tasks. The
Targeted PCA produced a faster convergence and better performance in the ANN training.

The Targeted PCA method has a limitation in that it focuses on selecting the features in the
dataset that belong to the reference PC with a particular threshold value. It only considers the
PC with a high eigenvalue (variance explained percentage higher than 1%) and C; , value
from the dependent variable. Consequently, it may not be applicable to datasets that have
their dependent variable with a low C; , value in high-ranked PCs. To address this, future
studies could investigate the effectiveness of different methods of feature transformation of
the original dataset prior to the PCA.
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Table 8 The rank of all features in Dataset 1 is based on the Targeted PCA and LASSO regression

No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC5 Rank Coefficient Rank
1 whitePerCap 0.0119 65 0.4707 45 0.1395 18
2 TotalPctDiv 1.8111 24 6.4249 1 Reject NA
3 RentMedian 1.7682 27 0.0189 91 Reject NA
4 RentLowQ 0.0000 73 6.3737 2 0.2122 5
5 RentHighQ 0.0000 74 1.8447 16 Reject NA
6 racePctWhite 0.1169 53 2.1837 12 0.0256 59
7 racePctHisp 0.0621 55 0.918 31 0.0501 36
8 racepctblack 0.1232 52 6.1622 3 0.1984 6
9 racePctAsian 0.1124 54 0.9314 30 Reject NA
10 PopDens 1.0203 48 3.4117 8 0.0019 73
11 PersPerRent -OccHous 0.0000 75 0.0701 81 0.0755 27
12 PersPerOwn -OccHous 0.0000 76 1.6102 19 0.1171 19
13 PersPerOccup -Hous 3.1971 4 0.0738 80 0.3197 1
14 PersPerFam 1.2178 32 0.1817 61 Reject NA
15 perCaplnc 1.1338 39 0.4779 44 Reject NA
16 PctYoungKid -s2Par 0.0000 77 1.4224 21 0.035 50
17 pctWWage 0.0284 61 1.8476 15 0.1629 11
18 pctWSocSec 1.1904 36 0.5374 41 0.0495 38
19 pctWRetire 2.2011 20 0.5238 43 0.0864 23
20 pctWPubAsst 2.6608 10 0.5268 42 Reject NA
21 PctWorkMomYoungKids 1.8857 23 0.1268 65 0.0263 57
22 PctWorkMom 0.0000 78 5.8458 4 0.1468 14
23 PctWOFullPlumb 1.1991 35 0.0297 87 0.0076 68
24 petWinvine 0.0263 63 0.545 40 0.1508 13
25 pctWFarmSelf 0.028 62 0.5799 39 0.0367 48
26 PctVacMore6Mos 1.0159 49 3.3602 9 0.0627 32
27 PctVacantBoarded 2.5184 15 0.0402 85 0.0504 35
28 PctUsePubTrans 0.0000 79 1.4604 20 0.034 51
29 petUrban 3.633 1 0.6478 37 0.039 46
30 PctUnemployed 1.211 33 0.243 55 0.0088 66
31 PctTeen2Par 1.0456 44 0.1346 64 Reject NA
32 PctSpeakEnglOnly 1.0451 45 4.636 0.0026 72
33 PctSameState85 1.026 47 3.5279 Reject NA
34 PctSameHouse85 1.0077 50 2.5826 10 Reject NA
35 PctSameCity85 0.0000 80 1.1163 27 0.0291 55
36 PctRecImmig8 2.874 7 0.0989 75 0.0253 60
37 PctRecImmig5 2.5398 13 0.1001 74 Reject NA
38 PctRecImmigl0 0.0000 81 0.0967 76 Reject NA
39 PctRecentImmig 0.0000 82 0.1008 73 Reject NA
40 PctPopUnderPov 0.0082 66 2.4247 11 0.1468 15
41 PctPersOwnOccup 0.0000 83 0.0537 82 0.0797 25
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Table 8 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC5 Rank Coefficient Rank
42 PctPersDenseHous 0.0000 84 0.049 83 0.1637 10
43 PctOccupMgmtProf 2.1481 21 0.1963 59 0.0329 52
44 PctOccupManu 0.0004 70 0.2052 58 0.0483 40
45 PctNotSpeakEnglWell 2.3288 18 0.0963 77 0.0793 26
46 PctNotHSGrad 2.6658 8 0.2528 53 0.0002 74
47 PctLess9thGrade 0.0058 67 0.2734 52 0.0549 33
48 PctLargHouseOccup 0.0000 85 0.0834 79 0.044 45
49 PctLargHouseFam 0.0000 86 0.0913 78 0.0639 31
50 PctKids2Par 0.0000 87 0.1347 63 0.2791 2
51 PctImmig -Recent 1.1711 38 0.115 69 0.0045 69
52 PctlImmigRec8 2.349 17 0.1016 71 0.0026 71
53 PctImmigRec5 2.4864 16 0.115 70 Reject NA
54 PctImmigRec10 0.0000 88 0.1012 72 Reject NA
55 Pctllleg 3.4528 3 0.1192 67 0.1456 17
56 PctHousOwn -Occ 1.5261 30 0.0414 84 Reject NA
57 PctHousOccup 0.0000 89 1.3699 22 0.0518 34
58 PctHousNo -Phone 2.2553 19 0.0309 86 0.0101 64
59 PctHousLess3 -BR 0.0000 90 1.6711 18 0.0676 30
60 PctForeignBorn 0.0000 91 0.0000 98 0.0736 28
61 PctFam2Par 2.5551 11 0.1661 62 Reject NA
62 PctEmplProf -Serv 1.1074 41 0.2086 57 Reject NA
63 PctEmploy 0.0031 69 1.2848 23 0.1465 16
64 PctEmplManu 2.6608 9 0.2281 56 0.0457 43
65 PctBSorMore 0.0034 68 0.2506 54 0.0371 47
66 PctBornSame -State 0.0000 92 1.1262 25 Reject NA
67 OwnOccMed -Val 1.7738 26 0.0264 89 Reject NA
68 OwnOccLow -Quart 0.0000 93 0.0268 88 0.0477 41
69 OwnOccHi -Quart 1.1105 40 0.0212 90 0.0045 70
70 OtherPerCap 1.7854 25 0.298 49 0.0443 44
71 NumUnderPov 1.7057 28 0.2901 51 Reject NA
72 NumStreet 3.5503 2 0.0022 97 0.189 7
73 NumlInShelters 1.1782 37 0.0039 96 0.0999 22
74 NumImmig 1.9818 22 0.1186 68 0.1107 20
75 Numllleg 1.1024 42 0.121 66 0.0732 29
76 numbUrban 0.0337 60 0.6854 36 0.0462 42
77 MedYrHous -Built 0.0000 94 2.1833 13 0.0084 67
78 MedRentPct -HousInc 0.0000 95 0.0147 93 0.0494 39
79 MedRent 0.0000 96 0.0176 92 0.239 4
80 MedOwnCost -PctIncNoMtg 3.1428 5 0.0069 95 0.0845 24
81 MedOwnCost -PctInc 0.0000 97 0.0139 94 0.035 49
82 MedNumBR 1.0395 46 4.3088 6 0.0121 63
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Table 8 continued

No Features ID Targeted PCA (PCA) LASSO
PC1 Rank PC5 Rank Coefficient Rank

83 medIncome 1.0466 43 0.5964 38 Reject NA
84 medFamlInc 0.0204 64 1.1244 26 0.0499 37
85 MalePctNev -Marr 0.0000 72 1.8142 17 0.1622 12
86 MalePctDivorce 0.0003 71 0.1835 60 0.1641 9
87 LandArea 1.234 31 0.0000 99 0.02 62
88 indianPerCap 2.5474 12 0.3339 47 0.0293 54
89 1..population 1.6117 29 0.9718 28 Reject NA
90 HousVacant 0.0000 98 1.2589 24 0.1641 8
91 householdsize 0.1273 51 0.9515 29 Reject NA
92 HispPerCap 1.2097 34 0.2912 50 0.0265 56
93 FemalePctDiv 0.0000 99 1.856 14 0.1098 21
94 blackPerCap 3.0167 6 0.4548 46 0.0222 61
95 AsianPerCap 2.5198 14 0.3205 48 0.0256 58
96 agePct65up 0.0393 59 0.6989 35 0.01 65
97 agePct16t24 0.0441 58 0.75 34 Reject NA
98 agePct12t29 0.0488 57 0.8052 33 0.2423 3
99 agePct12(21] 0.0612 56 0.8648 32 0.0325 53
100 ViolentCrimesPerPop 3.9184 0 6.5057 0 Dependent Nora
Appendix B Table of Dataset 2
See Table 9.
Table9 The rank of all features in Dataset 2 is based on the Targeted PCA and LASSO regression
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
1 reference 0.7163 0 2.277 0 Dependent 0
2 valueO 0.0817 221 0.0251 201 3.0069 65
3 valuel 0.0393 310 0.0201 216 1.1044 190
4 valuel0 0.5439 67 0 379 1.0806 192
5 value100 0.0103 368 0 369 1.5116 145
6 valuel01 0.0446 300 0.3275 62 1.4233 153
7 value102 0.0847 217 0.0589 154 1.3687 160
8 valuel03 0.0918 204 0.0307 191 0.5176 277
9 value104 0.2798 170 0.2305 74 0.6539 262
10 value105 0.2764 172 0.1751 85 1.0133 203
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Table 9 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
11 value106 0.0681 255 0.0097 276 3.719 45
12 valuel07 0.0232 339 0.0822 133 0.9754 210
13 value108 0.0802 224 0.0242 202 2.7983 72
14 value109 0.5224 79 0.0003 355 0.2221 319
15 valuel 1 0.5046 84 0.0098 273 0.2253 318
16 valuel 10 0.5144 81 0.0511 167 2.9062 68
17 valuell1 0.0873 210 0.0202 215 0.8539 228
18 valuel12 0.2767 171 0.0585 156 0.5084 279
19 valuel13 0.3703 140 0.0169 233 1.175 182
20 valuel14 0.0111 366 0.2674 71 5.2627 27
21 valuell5 0.4364 115 0.0679 144 2.857 70
22 valuel 16 0.0502 292 0.8249 49 1.9089 112
23 valuel 17 0.0412 307 0.0774 136 0.0515 352
24 valuel 18 0.481 98 0.1661 87 5.9019 22
25 valuel19 0.5728 53 0.2112 78 8.8307 10
26 valuel2 0.0709 248 0.0031 309 0.4073 291
27 value120 0.0169 359 0.8911 47 5.1915 28
28 valuel21 0.0889 206 0.0127 262 1.9616 110
29 valuel22 0.0661 260 0.0238 204 1.269 170
30 valuel23 0.3307 154 0.0165 238 1.1669 183
31 valuel24 0.0958 194 1.8671 14 0.2026 324
32 valuel25 0.282 169 0.0003 354 0.3256 304
33 value126 0.3892 134 0.0052 294 1.0743 195
34 valuel27 0.058 273 0.9724 44 0.4414 289
35 value128 0.4096 125 0.0059 289 2.5861 78
36 valuel29 0.6337 28 0.0084 281 2.4533 86
37 valuel3 0.0802 225 1.5724 22 0.2116 321
38 valuel30 0.337 153 0.2001 80 1.1259 186
39 valuel31 0.0384 315 0.0879 124 1.0776 193
40 value132 0.405 128 0.0165 239 4.0606 39
41 valuel33 0.0792 228 1.7046 19 1.7726 122
42 valuel34 0.4064 127 0.0116 267 0.0689 347
43 valuel35 0.4492 111 0.0501 168 3.505 53
44 valuel36 0.0875 208 0.0164 240 2.0222 107
45 valuel37 0.0315 324 0.0302 192 4.2849 36
46 value138 0.5011 87 0.0001 359 1.4506 151
47 value139 0.5621 57 0.1625 88 2.5039 81
48 valuel4 0.2848 168 0 370 0.1409 336
49 value140 0.079 230 0.0175 228 Reject NA
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Table9 continued

No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
50 valuel41 0.3566 144 0.1002 113 0.6572 260
51 value142 0.0962 193 0.0001 366 1.6264 137
52 valuel43 0.2849 167 0.0668 146 1.9715 109
53 valuel44 0.2716 177 0.0178 226 0.9935 207
54 valuel45 0.0787 234 2.1297 4 1.4923 147
55 valuel46 0.0619 265 0.0236 206 1.496 146
56 value147 0.0237 338 0.1358 94 0.9398 215
57 value148 0.5338 73 0.128 99 1.1419 184
58 value149 0.5128 82 0.0022 320 0.4571 286
59 valuel5 0.0678 257 0.6163 51 0.4776 283
60 valuel50 0.0437 304 0.0037 303 2.4917 83
61 valuel51 0.0464 296 1.895 12 0.5789 268
62 value152 0.0379 317 1.927 10 1.2006 179
63 valuel53 0.4078 126 0.0889 123 1.6767 132
64 valuel54 0.0592 269 0.0647 148 0.1469 333
65 valuel55 0.0183 354 0.8849 48 0.2994 307
66 valuel56 0.0443 303 0.0141 255 1.7379 128
67 valuel57 0.6062 35 0.0014 332 Reject NA
68 valuel58 0.4909 93 0.0073 286 1.2025 178
69 valuel159 0.6428 23 0.1158 105 1.6279 136
70 valuel6 0.0252 335 0.5308 54 0.9225 217
71 value160 0.0591 271 0.0087 280 0.4443 288
72 valuel61 0.047 295 0.3504 60 0.5383 272
73 valuel62 0.2664 181 0.0009 335 0.1326 339
74 valuel63 0.0496 294 0.0169 234 1.2966 165
75 valuel64 0.0955 195 1.9408 9 0.1772 329
76 valuel65 0.017 358 0 374 0.6336 267
77 valuel166 0.5336 74 0.0366 182 0.8905 223
78 valuel67 0.6131 33 0.0001 360 1.2774 169
79 value168 0.7045 8 0.0024 315 Reject NA
80 valuel169 0.6061 36 0.0163 241 0.0034 358
81 valuel7 0.0445 302 0.0025 314 0.0837 345
82 valuel70 0.0544 281 0.0867 127 2.3877 91
83 valuel71 0.3873 136 0.0232 207 0.0903 344
84 valuel72 0.068 256 1.5656 24 0.0609 349
85 valuel73 0.25 183 0.2331 72 0.5169 278
86 valuel74 0.4726 104 0.0749 139 24177 88
87 valuel75 0.0502 293 0.002 323 1.2995 164
88 valuel76 0.6164 30 0.0124 264 3.7979 42
89 valuel77 0.02 351 0.017 232 0.8306 233
90 valuel78 0.5921 46 0.0038 300 10.0854 8
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Table 9 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
91 valuel79 0.6932 11 0.0023 318 Reject NA
92 valuel8 0.0032 380 0.0003 351 2.6263 71
93 value180 0.4778 101 0.0401 174 2.157 101
94 valuel81 0.0144 361 0.0932 121 0.2917 309
95 value182 0.0308 327 0.0877 125 2.1938 97
96 valuel83 0.0656 261 1.3121 33 1.2674 171
97 valuel84 0.0188 353 0.2325 73 0.1676 332
98 valuel85 0.0584 272 0.0006 340 1.4911 148
99 valuel86 0.0314 325 0.002 324 Reject NA
100 value187 0.0825 218 0.0637 150 3.7113 46
101 value188 0.5869 47 0.0079 284 6.501 18
102 value189 0.7078 5 0.0349 184 Reject NA
103 valuel9 0.0932 201 0.1053 112 2.9385 67
104 value190 0.0518 287 0.0022 321 0.0166 357
105 valuel91 0.4419 114 0.0001 367 2.5266 79
106 value192 0.0227 342 0.0566 157 Reject NA
107 value193 0.3116 161 0.005 296 1.1033 191
108 value194 0.0544 282 0.0001 362 0.2047 323
109 value195 0.4661 107 0.0055 292 1.8613 115
110 value196 0.5708 55 0.0016 330 1.6472 135
111 valuel97 0.6341 27 0.0732 140 0.8491 229
112 value198 0.633 29 0.0028 310 Reject NA
113 value199 0.5555 60 0 376 5.2954 26
114 value2 0.0985 186 0.0173 229 0.8926 222
115 value20 0.0646 262 0.1305 98 1.2823 168
116 value200 0.0001 384 0 380 0.959 211
117 value201 0.0808 222 1.2332 37 0.5308 275
118 value202 0.0414 306 1.6461 21 1.6007 139
119 value203 0.0607 267 0.0208 213 1.0186 201
120 value204 0.4157 122 0 381 0.2676 313
121 value205 0.4209 119 0.0083 282 0.3117 306
122 value206 0.4019 131 0.0126 263 1.6017 138
123 value207 0.0793 227 0.0051 295 1.0522 198
124 value208 0.5448 65 0.0262 196 0.3285 303
125 value209 0.6679 19 0.0374 179 Reject NA
126 value21 0.0087 373 0.3455 61 0.5344 273
127 value210 0.0859 214 0.0363 183 1.5982 140
128 value211 0.0247 336 0.0008 337 3.0543 63
129 value212 0.022 345 0.2222 75 2.4911 84
130 value213 0.3484 148 0.0075 285 1.0299 200
131 value214 0.0921 203 1.1394 39 0.6651 257
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Table9 continued

No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
132 value215 0.2724 176 0.1431 92 1.8045 120
133 value216 0.2701 178 0.0107 270 0.1736 330
134 value217 0.5452 64 0.0158 246 1.8864 113
135 value218 0.0577 274 0.015 250 3.0474 64
136 value219 0.5428 68 0.0049 297 0.0593 350
137 value22 0.0059 377 1.5302 29 1.6763 133
138 value220 0.4704 105 0.0031 308 2.1164 102
139 value221 0.3128 159 0.1219 102 0.2723 312
140 value222 0.073 243 0.6069 52 3.3075 58
141 value223 0.0805 223 1.5632 25 0.9218 218
142 value224 0.0982 189 0.9347 46 2.0028 108
143 value225 0.037 319 1.8287 16 3.1214 62
144 value226 0.4339 117 0.014 256 2.7281 75
145 value227 0.2733 175 0.0551 161 3.5395 51
146 value228 0.4728 103 0.0254 199 3.4414 54
147 value229 0.5046 85 0.0339 186 4.2807 37
148 value23 0.0711 247 0.0191 220 1.2615 172
149 value230 0.0566 275 0.0056 291 1.9424 111
150 value231 0.0514 288 0.0001 363 0.6717 255
151 value232 0.3387 151 0.0097 275 2.3601 92
152 value233 0.0548 279 0.4474 57 0.5049 280
153 value234 0.3569 143 0.0664 147 0.5474 271
154 value235 0.0388 311 1.125 40 0.342 301
155 value236 0.4488 112 0.0003 350 1.34 162
156 value237 0.0149 360 0.0998 114 3.2329 60
157 value238 0.0854 215 0 382 2.1888 98
158 value239 0.5571 59 0.0438 173 0.8163 235
159 value24 0.3614 142 0.0163 242 0.8763 225
160 value240 0.0882 207 1.5517 26 0.2047 322
161 value241 0.0905 205 0.7615 50 0.1857 327
162 value242 0.0523 285 1.7757 17 2.4701 85
163 value243 0.2967 164 0.1531 91 0.0352 355
164 value244 0.0075 374 0.304 64 0.729 245
165 value245 0.0972 191 0.0513 166 Reject NA
166 value246 0.698 10 0.0367 181 14.7552 4
167 value247 0.6925 12 0.0397 175 11.1959 7
168 value248 0.0387 312 0.0028 311 0.7841 239
169 value249 0.0446 301 1.9959 7 1.0569 197
170 value25 0.0868 211 2.1138 5 0.6671 256
171 value250 0.4484 113 0.0271 195 0.7023 252
172 value251 0.4532 110 0.0986 117 1.8638 114
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Supervised feature selection using principal component analysis 1979
Table 9 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
173 value252 0.0703 249 0.0519 165 1.5383 144
174 value253 0.0261 333 1.3004 34 0.7468 242
175 value254 0.69 13 0.0595 153 19.7067 2
176 value255 0.7046 7 0.2073 79 2.0547 104
177 value256 0.0535 284 2.2443 1 Reject NA
178 value257 0.4633 108 0.0391 177 0.7719 240
179 value258 0.3505 146 0.0004 343 0.0652 348
180 value259 0.2668 180 0.0015 331 0.3884 296
181 value26 0.3182 157 0.0143 254 0.7543 241
182 value260 0.4132 124 0.015 251 0.1418 335
183 value261 0.0929 202 0.1741 86 0.1381 338
184 value262 0.6386 25 0.1127 108 7.0967 16
185 value263 0.6419 24 0.0183 224 1.473 149
186 value264 0.3415 150 0.0211 212 1.4501 152
187 value265 0.3021 163 0.0053 293 0.7035 251
188 value266 0.3923 132 0.023 209 1.2958 166
189 value267 0.3617 141 0.085 129 0.3233 305
190 value268 0.2748 173 0.0002 358 1.1069 189
191 value269 0.4936 92 0.0638 149 1.6782 131
192 value27 0.5784 50 0.0954 120 8.7888 11
193 value270 0.0268 332 0.0539 162 1.3995 157
194 value271 0.5955 45 0.0031 306 Reject NA
195 value272 0.0309 326 0.0027 312 1.1789 181
196 value273 0.423 118 0 383 4.8132 31
197 value274 0.2902 166 0.0081 283 2.0279 105
198 value275 0.4197 120 0 375 0.6584 259
199 value276 0.0642 263 0.0199 217 Reject NA
200 value277 0.0368 320 1.0966 42 3.6159 50
201 value278 0.529 76 0.0396 176 2.2549 96
202 value279 0.7148 1 0.0181 225 4.5911 34
203 value28 0.0554 278 0.0166 237 11.3251 6
204 value280 0.5252 77 0.0195 218 0.913 221
205 value281 0.3862 137 0.2209 76 1.412 155
206 value282 0.2691 179 0.004 299 0.534 274
207 value283 0.4167 121 0.0907 122 0.7264 246
208 value284 0.0407 309 0.0127 261 0.2499 315
209 value285 0.4787 100 0.0187 222 0.1791 328
210 value286 0.6699 18 0.0016 328 0.6475 265
211 value287 0.603 41 0.0333 188 7.5118 14
212 value288 0.0792 229 0.1408 93 1.7566 124
213 value289 0.3121 160 0.0167 236 0.808 237
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Table9 continued

No Features ID Targeted PCA (PCA) LASSO
PC1 Rank PC2 Rank Coefficient Rank

214 value29 0.5161 80 0.009 279 3.8808 40
215 value290 0.0194 352 1.6637 20 0.0394 354
216 value291 0.0937 197 0.2777 68 0.9213 220
217 value292 0.0183 355 0.2703 70 0.1859 326
218 value293 0.4792 99 0.0214 211 2.1732 100
219 value294 0.0006 383 0.0007 338 4.0743 38
220 value295 0.5983 43 0.0731 141 0.8106 236
221 value296 0.0051 378 0.0229 210 0.9986 205
222 value297 0.0749 240 1.5509 27 1.4109 156
223 value298 0.0027 382 0.5687 53 0.4653 284
224 value299 0.0747 241 2.0021 6 0.3527 300
225 value3 0.4032 129 0.0598 151 6.5645 17
226 value30 0.4901 94 0.0001 361 0.6973 254
227 value300 0.0821 220 1.149 38 1.2395 174
228 value301 0.0334 323 1.9186 11 0.1873 325
229 value302 0.6032 40 0 378 0.4386 290
230 value303 0.0411 308 0.0019 325 6.4688 19
231 value304 0.0514 289 0.0288 193 0.1449 334
232 value305 0.0965 192 0.2732 69 0.2313 317
233 value306 0.296 165 0.0009 336 0.9257 216
234 value307 0.0737 242 0.038 178 1.7526 125
235 value308 0.0063 376 0.4365 59 0.1384 337
236 value309 0.0244 337 2.1764 3 Reject NA
237 value31 0.0632 264 2.1807 2 0.9489 214
238 value310 0.6382 26 0.0022 322 7.4751 15
239 value311 0.6989 9 0.0024 317 8.3131 12
240 value312 0.4867 97 0.1146 107 0.2473 316
241 value313 0.4137 123 0.0851 128 0.8871 224
242 value314 0.0201 350 1.8532 15 2.1839 99
243 value315 0.0592 270 0.2792 67 1.0758 194
244 value316 0.4884 96 0.0337 187 1.2401 173
245 value317 0.4984 89 0.0188 221 1.1328 185
246 value318 0.5442 66 0.0678 145 1.1817 180
247 value319 0.5502 63 0.0588 155 3.3358 57
248 value32 0.0935 199 1.544 28 1.062 196
249 value320 0.0457 297 0.0959 119 0.6413 266
250 value321 0.0093 371 0.1313 97 1.0511 199
251 value322 0.086 213 0.1157 106 1.2842 167
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Supervised feature selection using principal component analysis 1981
Table 9 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
252 value323 0.0217 348 0.0787 135 2.8141 71
253 value324 0.0098 370 0.0003 349 0.8329 232
254 value325 0.0721 246 0.0017 327 0.3912 294
255 value326 0.0295 328 0.0153 248 0.3915 293
256 value327 0.5503 62 0.0098 274 3.6542 48
257 value328 0.0765 237 1.29 35 0.354 298
258 value329 0.038 316 0.0532 163 0.9536 212
259 value33 0.0457 298 0.0326 189 0.5623 270
260 value330 0.4996 88 0.107 111 0.7413 243
261 value331 0.0092 372 1.0194 43 0.283 311
262 value332 0.3154 158 0.0825 130 0.124 342
263 value333 0.5408 70 0.1602 89 0.6492 264
264 value334 0.6025 42 0 368 1.7113 130
265 value335 0.0226 343 0.097 118 0.8714 226
266 value336 0.0385 314 0.1788 83 0.7007 253
267 value337 0.0945 196 1.4868 30 Reject NA
268 value338 0.07 251 0.0172 231 0.9755 209
269 value339 0.5044 86 0.0144 253 14714 150
270 value34 0.0281 329 1.1113 41 0.8253 234
271 value340 0.0677 258 0.0177 227 2.3904 90
272 value341 0.0219 346 0.0056 290 5.1795 29
273 value342 0.708 4 0.0095 278 4.4498 35
274 value343 0.023 341 0.0005 342 0.7091 250
275 value344 0.0355 322 0.0161 244 0.8343 231
276 value345 0.338 152 0.0868 126 0.1081 343
277 value346 0.327 155 0.0254 200 0.3538 299
278 value347 0.5674 56 0.0163 243 2.5192 80
279 value348 0.5814 48 0.0006 339 0.078 346
280 value349 0.6551 20 0.1262 100 22792 93
281 value35 0.3504 147 0.134 96 3.3948 55
282 value350 0.6873 14 0.0024 316 Reject NA
283 value351 0.713 2 0.0068 287 Reject NA
284 value352 0.3846 138 0 371 0.2598 314
285 value353 0.3822 139 0.0003 346 0.2219 320
286 value354 0.0689 254 0.0013 333 0.1712 331
287 value355 0.3874 135 0.1222 101 0.4816 281
288 value356 0.052 286 0.0491 169 0.8057 238
289 value357 0.6045 39 0.0005 341 0.9533 213
290 value358 0.6147 31 0.1798 82 6.1181 20
291 value359 0.6071 34 0.024 203 24134 89
292 value36 0.0364 321 1.5701 23 3.6906 47
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Table9 continued

No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
293 value360 0.0378 318 0.3036 65 0.1326 340
294 value361 0.3516 145 0.0004 344 0.5177 276
295 value362 0.4888 95 0.0466 171 3.5244 52
296 value363 0.0937 198 0.4649 56 1.2345 176
297 value364 0.4768 102 0.0804 134 1.8322 116
298 value365 0.4962 90 0.0038 301 0.0028 359
299 value366 0.5804 49 0.0003 347 1.82 118
300 value367 0.6726 16 0.0067 288 1.5765 141
301 value368 0.5372 71 0.1109 109 0.4599 285
302 value369 0.0387 313 0.5065 55 0.289 310
303 value37 0.5719 54 0.0147 252 Reject NA
304 value370 0.4354 116 0.0696 143 0.8485 230
305 value371 0.0138 362 0.0368 180 0.8567 227
306 value372 0.0752 239 0.2949 66 0.7151 248
307 value373 0.0995 184 1.3434 31 0.6497 263
308 value374 0.018 357 0.0756 137 5.7319 24
309 value375 0.079 231 0.0001 365 2.7896 73
310 value376 0.0231 340 0.0003 353 0.1305 341
311 value377 0.0983 188 0.3105 63 0.4014 292
312 value378 0.3233 156 0.1778 84 1.2377 175
313 value379 0.028 330 0.0596 152 0.9776 208
314 value38 0.5059 83 0.0992 115 4.6245 33
315 value380 0.0761 238 0.0004 345 0.655 261
316 value381 0.47 106 0.0003 348 1.6577 134
317 value382 0.051 291 0.1902 81 4.8572 30
318 value383 0.0183 356 0.0003 352 5.8625 23
319 value39 0.0613 266 0.0044 298 Reject NA
320 value4 0.2648 182 0.0129 260 6.1084 21
321 value40 0.0563 276 0.0237 205 3.3036 59
322 value4 1 0.0776 236 0.0022 319 0.9939 206
323 value42 0.0788 233 1.8894 13 2.7802 74
324 value43 0.0724 245 0.0002 356 Reject NA
325 value44 0.0985 187 0 373 2.4309 87
326 value45 0.4552 109 0.0521 164 1.7445 127
327 value46 0.043 305 0.1084 110 0.0236 356
328 value47 0.5367 72 0.0123 265 1.4164 154
329 value48 0.0111 367 0.0136 257 53.3376 1
330 value49 0.5783 51 0.0018 326 22742 94
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Supervised feature selection using principal component analysis 1983
Table 9 continued
No Features ID Targeted PCA (PCA) LASSO

PC1 Rank PC2 Rank Coefficient Rank
331 value5 0.0449 299 0.0708 142 33714 56
332 value50 0.0226 344 0.0559 160 2.902 69
333 value51 0.4943 91 0.0002 357 1.357 161
334 value52 0.0072 375 0.957 45 1.3293 163
335 value53 0.0137 363 0.0001 364 1.3844 158
336 value54 0.0114 365 0.0316 190 0.2974 308
337 value55 0.0124 364 0.0151 249 1.8316 117
338 value56 0.5983 44 0.0129 259 0.4791 282
339 value57 0.5421 69 0.0825 131 3.8349 41
340 value58 0.6703 17 0.0111 269 0.7401 244
341 value59 0.606 37 0.0106 271 Reject NA
342 value6 0.0975 190 0.0035 304 0.9989 204
343 value60 0.079 232 0.0563 159 0.576 269
344 value61 0.3914 133 0.0825 132 1.2176 177
345 value62 0.0604 268 1.3372 32 0.3312 302
346 value63 0.3088 162 0.099 116 2.9792 66
347 value64 0.0216 349 0.0119 266 2.5033 82
348 value65 0.576 52 0.1202 104 2.0568 103
349 value66 0.005 379 0.0097 277 2.7162 76
350 value67 0.4021 130 0.0136 258 3.7204 44
351 value68 0.7122 3 0.2192 77 Reject NA
352 value69 0.5505 61 0 372 Reject NA
353 value7 0.2743 174 0.0206 214 3.1934 61
354 value70 0.0274 331 0.0173 230 0.7131 249
355 value71 0.0796 226 0.0442 172 1.765 123
356 value72 0.0986 185 0.157 90 2.26 95
357 value73 0.0538 283 0.4386 58 0.4482 287
358 value74 0.0666 259 0.0038 302 1.798 121
359 value75 0.0935 200 0.016 245 1.8077 119
360 value76 0.5241 78 0 384 3.7268 43
361 value77 0.0726 244 0.1349 95 7.6988 13
362 value78 0.649 21 0.0114 268 0.0413 353
363 value79 0.6486 22 0.0346 185 Reject NA
364 value8 0.3437 149 0.0184 223 5.6806 25
365 value80 0.0548 280 0.026 198 1.1231 188
366 value81 0.0031 381 0.0158 247 1.7483 126
367 value82 0.0874 209 0.0105 272 1.5435 143
368 value83 0.0512 290 0.0031 307 0.0593 351
369 value84 0.0868 212 0.0755 138 0.3885 295
370 value85 0.0694 252 0.001 334 1.568 142
371 value86 0.0103 369 0.0025 313 0.383 297
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Table9 continued

No Features ID Targeted PCA (PCA) LASSO
PC1 Rank PC2 Rank Coefficient Rank
372 value87 0.5333 75 0.0231 208 4.6946 32
373 value88 0.6759 15 0.0167 235 Reject NA
374 value89 0.705 6 0.0564 158 3.6325 49
375 value9 0.0782 235 0.0488 170 1.0178 202
376 value90 0.0825 219 0.0261 197 1.3694 159
377 value91 0.0219 347 1.7144 18 2.0229 106
378 value92 0.0694 253 0 377 1.1258 187
379 value93 0.0852 216 1.2463 36 0.7158 247
380 value94 0.0261 334 0.0195 219 0.9217 219
381 value95 0.0702 250 0.0016 329 0.6626 258
382 value96 0.0557 277 1.9865 8 1.7331 129
383 value97 0.5599 58 0.0287 194 9.133 9
384 value98 0.6147 32 0.1205 103 18.5862 3
385 value99 0.6053 38 0.0035 305 13.9036 5
Appendix C Table of Dataset 3
See Table 10.
Table 10 Th.e rank of all features No Feature ID  Targeted PCA (PCA) LASSO
in Dataset 3 is based on the
Targeted PCA and LASSO PC1 Rank Coefficient Rank
regression I LU0 04936 116 000213229 55
2 LU_1 0.5904 12 0.664464958 73
3 LU_2 1.0583 10 Reject NA
4 LU_3 0.5868 18 0.060544005 NA
5 LU 4 1.0991 2 1.048678917 76
6 LU_5 1.0972 4 Reject 77
7 LU_6 0.0002 212 4.663301763 69
8 LU_7 1.0994 1 Reject NA
9 LU_8 0.4724 135 0.835606956  NA
10 LU_9 1.0588 9 Reject 70
11 LU_10 03414 173 0.642604261 29
12 LU_11 0.3599 166 Reject 14
13 LU_12 0.5882 15 Reject 72
14 LU_13 0.4803 129 Reject 31
15 LU_14 0.3034 185 Reject NA
16 LU_I5 0.5513 65 0.1741555 NA
17  LU_16 0.0003 194 0.406984499 NA
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Supervised feature selection using principal component analysis 1985
Table 10 continued
No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
18 LU_17 0.0003 199 Reject NA
19 LU_18 0.5083 106 Reject NA
20 LU_19 0.3992 156 Reject NA
21 LU_20 0.5606 58 Reject NA
22 LU_21 0.4698 140 Reject NA
23 LU_22 0.5233 93 Reject NA
24 LU_23 1.0979 3 0.543832757 NA
25 LU_24 0.4895 119 0.856977295 36
26 LU_25 0.3751 161 Reject NA
27 LU_26 0.5235 92 Reject NA
28 LU_27 0.5931 11 Reject NA
29 LU_28 0.5161 97 0.017154528 NA
30 LU_29 0.5612 56 Reject 67
31 LU_30 0.5249 89 4.006090662 61
32 LU_31 0.3416 172 Reject 12
33 LU_32 0.5865 19 Reject NA
34 LU_34 0.3456 171 Reject NA
35 LU_35 0.3748 162 0.01604638 NA
36 LU_36 0.5679 47 Reject 68
37 LU_37 0.474 132 0.264527014 NA
38 LU_38 0.3412 174 Reject 45
39 LU_39 0.4709 138 0.000485054 NA
40 LU_40 0.4818 126 Reject 22
41 LU_41 0.2988 186 0.303879563 NA
42 LU_42 0.4821 125 0.001380156 41
43 LU_43 0.5899 13 0.245579513 75
44 LU_44 0.5717 38 Reject 47
45 LU_45 0.334 175 Reject NA
46 LU_46 0.3539 169 Reject NA
47 LU_47 0.468 146 Reject NA
48 LU_48 0.0003 195 0.734548258 NA
49 LU_49 0.4691 143 1.02E-05 27
50 LU_50 0.4775 131 0.058103446 NA
51 LU_51 0.4926 117 0.250353693 62
52 LU_52 1.0953 7 Reject 46
53 LU_54 0.0003 203 Reject NA
54 LU_57 0.0003 209 Reject NA
55 LU_59 0.0004 191 0.014897198 NA
56 LU_60 1.0958 6 Reject 8
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Table 10 continued

No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
57 LU_61 0.0003 198 0.544445776 NA
58 LU_64 0.0003 207 0.103667061 33
59 LU_65 0.5663 48 Reject 57
60 LU_66 1.0938 8 48.05861538 NA
61 LU_67 0.4721 136 Reject 1
62 LU_68 0.503 109 Reject NA
63 LU_69 0.4843 122 Reject NA
64 LU_70 0.4993 111 Reject NA
65 LU_71 0.5796 30 0.667267792 NA
66 LU_72 0.4674 148 Reject 28
67 LU_74 0.4675 147 Reject NA
68 LU_75 0.5765 34 0.22867467 NA
69 LU_76 0.5475 74 1.201208248 49
70 LU_77 0.5233 94 Reject 19
71 LU_78 0.4729 133 Reject NA
72 LU_79 0.5507 66 Reject NA
73 LU_80 0.377 160 Reject 25
74 LU_81 0.4808 127 0.294027436 NA
75 LU_82 0.5493 71 Reject 42
76 LU_383 0.0003 211 23.86268745 NA
77 LU_84 0.0003 204 17.24817655 2
78 LU_85 0.0003 201 5.482019244 3
79 LU_86 0.3606 164 2.157124122 7
80 LU_87 0.5098 104 Reject 16
81 LU_88 0.4665 151 Reject NA
82 LU_89 0.5682 45 0.012546071 NA
83 LU_90 0.0003 205 0.097611892 NA
84 LU_91 0.5781 31 0.027907954 58
85 LU_92 0.5879 16 4.378085251 64
86 LU_93 0.3276 180 Reject 9
87 LU_9%4 0.4728 134 Reject NA
88 LU_95 0.4971 114 0.08131086 NA
89 LU_9%6 0.5154 98 Reject 60
90 LU_97 0.565 51 Reject NA
91 LU_98 0.5774 33 Reject NA
92 LU_99 0.3103 183 Reject NA
93 LU_100 0.3277 179 Reject 30
94 LU_101 0.4863 121 Reject NA
95 LU_102 0.5496 69 Reject NA
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Supervised feature selection using principal component analysis 1987
Table 10 continued
No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
96 LU_103 0.0003 200 Reject NA
97 LU_104 0.5537 63 Reject NA
98 LU_105 0.4806 128 Reject NA
99 LU_106 0.4696 141 Reject NA
100 LU_107 0.4669 150 Reject NA
101 LU_108 0.5706 39 Reject NA
102 LU_109 0.5248 90 2.241067936 NA
103 LU_110 0.5479 73 0.534393123 NA
104 LU_I11 0.4997 110 3.234181505 35
105 LU_112 0.0005 190 1.269873289 13
106 LU_113 0.5558 61 Reject 18
107 LU_114 0.4662 152 0.025522253 NA
108 LU_115 1.096 5 Reject 65
109 LU_116 0.5633 55 Reject NA
110 LU_117 0.5755 35 0.002058971 NA
111 LU_118 0.3842 159 0.598942764 74
112 LU_119 0.5105 102 0.00308489 32
113 LU_120 0.3278 178 Reject NA
114 LU_I121 0.584 24 Reject NA
115 LU_122 0.0002 213 Reject NA
116 LU_123 0.5121 100 Reject NA
117 LU_124 0.4838 123 Reject NA
118 LU_125 0.5274 86 0.017826069 NA
119 LU_127 0.548 72 Reject 66
120 LU_128 0.5816 26 0.286200211 NA
121 LU_129 0.4835 124 0.606223165 43
122 LU_130 0.5719 36 Reject NA
123 LU_131 0.5682 44 Reject NA
124 LU_132 0.5451 75 0.360278266 NA
125 LU_133 0.0003 206 0.108872398 39
126 LU_134 0.5188 96 0.269309922 56
127 LU_135 0.5404 77 Reject 44
128 LU_136 0.4705 139 Reject NA
129 LU_137 0.0003 202 Reject NA
130 LU_139 0.537 79 Reject NA
131 LU_140 0.5253 87 0.004931333 NA
132 LU_143 0.4911 118 Reject 71
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Table 10 continued

No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
133 LU_144 0.5549 62 0.852871327 NA
134 LU_145 0.5499 67 2.181417399 24
135 LU_147 0.1437 188 Reject 15
136 LU_148 0.557 59 Reject NA
137 LU_149 0.0003 208 Reject NA
138 LU_150 0.4866 120 4.337239735 51
139 LU_151 0.4683 145 Reject 10
140 LU_152 0.5237 91 Reject NA
141 LU_153 0.54 78 Reject NA
142 LU_155 0.5499 68 Reject NA
143 LU_156 0.569 43 Reject NA
144 LU_157 0.5647 52 Reject NA
145 LU_158 0.5352 81 Reject NA
146 LU_160 0.3598 167 Reject 38
147 LU_l61 0.4656 153 0.8219101 NA
148 LU_162 0.5522 64 Reject 26
149 LU_163 0.0004 193 Reject NA
150 LU_l164 0.5718 37 Reject NA
151 LU_165 0.5804 28 Reject NA
152 LU_166 0.565 50 8.172232949 NA
153 LU_167 0.3145 182 Reject 6
154 LU_168 0.3252 181 Reject NA
155 LU_169 0.5069 107 Reject NA
156 LU_170 0.0003 210 Reject NA
157 LU_171 0.4685 144 Reject NA
158 LU_172 0.5496 70 0.140950788 NA
159 LU_173 0.0003 197 Reject 54
160 LU_174 0.5438 76 Reject NA
161 LU_175 0.5828 25 Reject NA
162 LU_176 0.5659 49 Reject NA
163 LU_177 0.525 88 1.71171669 NA
164 LU_178 0.0004 192 Reject 17
165 LU_179 0.3307 177 Reject NA
166 LU_180 0.0003 196 0.046582821 NA
167 LU_181 0.5636 54 Reject 63
168 LU_182 0.2988 187 0.152235805 NA
169 LU_183 0.4652 155 0.177073547 52
170 LU_184 0.3066 184 Reject 50
171 LU_185 0.5197 95 Reject NA
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Table 10 continued
No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
172 LU_186 0.5611 57 1.114171305 NA
173 LU_187 0.3577 168 1.25E-11 21
174 LU_189 0.3507 170 Reject 78
175 LU_190 0.0005 189 Reject NA
176 LU_191 0.57 41 0.236043882 NA
177 LU_192 0.4671 149 Reject 48
178 LU_193 0.3988 157 Reject NA
179 LU_194 0.5645 53 Reject NA
180 LU_195 0 214 0.082958005 NA
181 LU_196 0.5568 60 Reject 59
182 LU_197 0.5691 42 0.145589036 NA
183 LU_198 0.5877 17 Reject 53
184 LU_199 0.5816 27 Reject NA
185 LU_200 0.5147 99 Reject NA
186 LU_201 0.5801 29 Reject NA
187 LU_203 0.5848 23 0.313433025 NA
188 LU_204 0.5679 46 Reject 40
189 LU_205 0.36 165 Reject NA
190 LU_207 0.5704 40 Reject NA
191 LU_208 0.3701 163 17.10389786 NA
192 LU_209 0.4975 113 Reject 4
193 LU_210 0.4693 142 16.86886805 NA
194 LU_211 0.5343 82 Reject 5
195 LU_212 0.4953 115 Reject NA
196 LU_213 0.3317 176 Reject NA
197 LU_214 0.5774 32 Reject NA
198 LU_216 0.4793 130 Reject NA
199 LU_218 0.5859 21 1.165642762 NA
200 LU_219 0.5362 80 Reject 20
201 LU_220 0.3877 158 Reject NA
202 LU_221 0.5883 14 Reject NA
203 LU_222 0.5338 83 Reject NA
204 LU_223 0.5101 103 Reject NA
205 LU_224 0.5285 85 Reject NA
206 LU_225 0.5863 20 Reject NA
207 LU_230 0.471 137 Reject 34
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Table 10 continued

No Feature ID Targeted PCA (PCA) LASSO

PC1 Rank Coefficient Rank
208 LU_231 0.4984 112 0.500411721 NA
209 LU_232 0.585 22 Reject 37
210 LU_234 0.5337 84 Reject NA
211 LU_236 0.512 101 4.126724408 NA
212 LU_237 0.5064 108 Reject 11
213 LU_238 0.5097 105 0.512689373 NA
214 LU_240 0.4655 154 Reject 23
215 casebyyear$total 1.1994 0 0.114093712 0
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