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Abstract
Multi-instance learning (MIL) handles data that is organized into sets of instances known
as bags. Traditionally, MIL is used in the supervised-learning setting for classifying bags
which contain any number of instances. However, many traditional MIL algorithms do not
scale efficiently to large datasets. In this paper, we present a novel primal–dual multi-instance
support vector machine that can operate efficiently on large-scale data. Our method relies
on an algorithm derived using a multi-block variation of the alternating direction method
of multipliers. The approach presented in this work is able to scale to large-scale data since
it avoids iteratively solving quadratic programming problems which are broadly used to
optimize MIL algorithms based on SVMs. In addition, we improve our derivation to include
an additional optimization designed to avoid solving a least-squares problem in our algorithm,
which increases the utility of our approach to handle a large number of features aswell as bags.
Finally, we derive a kernel extension of our approach to learn nonlinear decision boundaries
for enhanced classification capabilities. We apply our approach to both synthetic and real-
world multi-instance datasets to illustrate the scalability, promising predictive performance,
and interpretability of our proposed method.

Keywords Multi-instance learning · Support vector machine · Alternating direction method
of multipliers · Scalability

1 Introduction

Multi-instance learning (MIL) is a sub-area of machine learning in which training and testing
data are organized in sets called bags. What makes MIL challenging is that labels associated
with these data are frequently provided at the bag level, but not at instance level. This is also
known as weakly supervised learning in the literature. Algorithms that adhere to this type
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of weakly supervised learning paradigm are naturally suited to a wide variety of real-world
problems that contain limited labeled data. For example, images can be represented by a bag
of patches, documents can be organized into sentences or paragraphs, and patients can be
represented by a collection of medical records, to name a few. Because the labels are given at
the bag level, a lot of resources spent on characterizing each instance are saved. For example,
the clinicians only need to label/diagnose the bag or patient, but not each medical record.
However, as illustrated in Fig. 1, since each bag can have an arbitrary number of instances,
standard machine learning approaches that rely on fixed-length vector representations cannot
be applied to such data directly. In this case, the multi-instance learning would be a better
choice compared to single-instance learning, because in single-instance learning, predicting
becomes difficult when the given instance does not contain any useful information for the
prediction. Meanwhile, multi-instance learning enables correct classification from the key
instances included in the bag. As a result, significant research efforts have been made to
design algorithms that can handle this type of data in recent years.

1.1 Related works

In the past twenty years, a large number of MIL algorithms [1–8] have been proposed. These
approaches have been applied to many different topics including drug activity prediction [9],
content-based image and video retrieval [10, 11], medical image analysis [12], and document
classification [13], among many other application areas [14]. Recently, deep learning-based
MIL methods [15–17] have also been proposed to handle multi-instance data. While these
methods have demonstrated their effectiveness in solving a variety of real-world problems,
their limitations have also been discussed [18, 19]. For example, a recent survey paper
[19] notes that current state-of-the-art MIL approaches are sensitive to the construction of
instances within a bag. Specifically, they determine that the performance of MIL methods
are sensitive to witness rate, e.g., the proportion of positive instances in positive bags, as well
as whether the algorithm operates on the instance or bag level. This has also been observed
in older MIL survey papers [18] and requires new algorithms to be tested on a range of
different datasets and applications. In addition to dataset-specific performance, the authors
of these survey papers highlight that performance improvements in the training time of MIL
algorithms, especially those who rely on instance-level information, are necessary for further
adoption.

Recently, the scalability for analyzing large amount of data has become another major
issue of MIL studies with the development of data mining technologies. The large amount of
bags and instances are involved in MIL problems, and MIL models require many parameters
to analyze the complex patterns between instances. However, many existing MIL models
are often tested on small or moderately sized dataset. To alleviate this scalability issue, We
et.al., [20] proposes to map the raw representation of a bag into simpler representation of a
vector format which can be classified by the followed SVM model. Although effective, this
method does not improve the scalability of the followed SVMmodel. Vatsavai [21] employs
the divide-and-conquer strategy to scatter the large images into patches of predefined size
which can be parallelized and processed by Citation-KNN MIL algorithms [22]. However,
Citation-KNNMIL algorithm adapted in [21] scales quadratically with respect to the average
number of instances per bag.

Besides the quantitative evaluation of MIL models, the qualitative evaluation is also
gaining interest. For example, when multiple patches of a histopathological image are for-
mulated as instances, the key instances identified as patches exhibiting the evidence of the
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Fig. 1 An illustrative comparison of the single-instance and multi-instance learning paradigms. Algorithms
that operate on multi-instance data must contend with the fact that instances are rarely individually labeled.
Instead, labels are generally provided at the bag level. Thus, the goal of a multi-instance learning algorithm is
to learn to identify instances, within a given bag, that indicate a particular class membership

disease would be useful for the doctors who need a reference for the corresponding medical
decision [23]. At the same time, the aforementioned identified key instances can provide
credibility to the predictions of MIL models. In an effort to interpret the outputs of MIL
models, mi-SVM [23] provides pixel-wise abnormality scores of an X-ray image and these
scores are plotted over the image constructing the heatmap to identify the regions exhibit-
ing abnormalities. Another multi-instance learning framework [24] divides each instance
into patches and calculates their similarities with respect to the positive and negative pro-
totypical parts. As a result, the method in [24] explains which patches in an instance are
responsible for the prediction. However the interpretation often requires the ground truth
explanation or additional processes to generate the explanations, which sacrifices the scala-
bility.

In this work, we focus specifically on scaling SVM-based MIL algorithms, as they have
shown consistent performance and can be further extended to nonlinear decision boundaries
via kernelization. Popular SVM-based MIL approaches such as miSVM/MISVM [1], NSK
[25], and sMIL/sbMIL [2] have been proposed to handlemulti-instance data and have demon-
strated promising performance, even when compared against modern MIL deep-learning
architectures such as miNet/MINet [26]. While these approaches have performed well and
can be extended to solve a variety of real-world problems, they are not widely used in practice
as they do not scale well to large datasets. Furthermore, many of these approaches are not
equipped with capabilities to interpret the results of their predictions. These two shortcom-
ings, speed of model training and model interpretability of multi-instance learning methods,
are the focus of this work.

1.2 Our contributions

For the remainder of this manuscript, we present a novel method that extends amulti-instance
SVM to large-scale data. Our approach uses the multi-block alternating direction method of
multipliers (ADMM) to avoid iteratively solving the quadratic programming problems that
arise from standard SVM-based MIL approaches. The scientific contributions of this work
are as follows:
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– A novel MIL algorithm derivation, named the primal–dual multi-instance SVM
(pdMISVM)method, and an associated implementation that scales linearly as the number
of bags increases.

– An inexact variation of our approach, based on the optimal line searchmethod, that scales
linearly as the number of features increases.

– Experimental results showcasing the promising predictive performance, scalability, and
interpretability of our approach on baseline multi-instance data and real-world image
data compared against other MIL algorithms.

– An extension of our approach that allows for the inclusion of an arbitrary kernel function
and a proof-of-concept experiment on synthetic data verifying our derivation.

This paper is an extension of our recent work [27] originally reported in the Proceedings
of the Twenty-First International Conference on Data Mining (ICDM 2021). In this extended
journal manuscript, we provide the following expansions over its conference version:

– We expand our discussions on the previous works related with the scalability and inter-
pretability of MIL problems (Sect. 1.1).

– We present the complete derivations of the kernel variation of our pdMISVM method
that scales linearly against the number of bags.

– While the scalability issue of the kernel version of our new method against the
number of bags has been discussed in the conference version, it was not solved. In
this journal extension, we systematically derive the objective of the kernel version of
our pdMISVM method and its solution algorithms. (Sect. 2.5).

– The experimental results of our two kernel variations are added to compare their
performance and scalability (Sects. 3.2 and 3.3).

– We provide the detailed analyses on the computational complexities of our pdMISVM
method and its kernel extension (Sects. 2.4 and 2.5). The codes to implement our
method and the data used in our methods have been made publicly available online
at: https://github.com/minds-mines/pdMISVM.jl.

– We expand our experimental evaluations with two additional benchmark datasets and
two recently proposed attention-based deep learning models (Sect. 3.2).

– We include a case study on neuroimaging data to further evaluate the performance and
interpretability of our method to solve real-world problems. We apply our method to
identify the disease relevant brain regions from the neuroimaging perspective (Sect. 3.6).

2 Methods

In this section, we begin with a sketch for the steps required for the multi-instance SVM
(MISVM) derivation initially presented by Andrews et.al., [1]. Then, following the multi-
block ADMM framework [28–30], we construct the augmented Lagrangian that will be used
to derive the solution to the proposed pdMISVM method, which is then followed by a step-
by-step derivation to optimize the proposed objective. In addition, we extend our approach to
handle a large number of features through an application of the optimal line search method
[31]. Finally, we derive the solution algorithm of kernel pdMISVM.
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2.1 Notation

In this manuscript we represent matrices asM, vectors asm, and scalars as m. The i-th row
and j-th column of M are denoted as mi and m j , respectively. Similarly, mi

j is the scalar
value indexed by the i-th row and j-th column of M. The matrix Mp corresponds to the
p-th column-block of M. Given a K × N matrix M, {m, i} = argmaxm′,i ′(M) gives the
row-by-column coordinates for the maximum element in M. The row and column indices
are given by argmaxm′,i ′(M)m and argmaxm′,i ′(M)i , respectively.

2.2 Extending theMISVM to K-class classification

In the binary multi-instance classification problem, the MIL algorithm is presented with a
collection of bags and labels represented by the set {Xi , yi }N

i=1, where yi ∈ {−1, 1} and
Xi ∈ R

d×ni designates a bag containing ni instances, and {x1, . . . , xni } ∈ Xi represent each
instance within the i-th bag. Following the instance-centric approach advocated by Andrews
et.al., [1] for the MISVM model, where a single “witness” instance determines the class of
a bag, we define the decision function for a multi-instance binary classifier as

yi = sign

(
max
xi ∈Xi

(wT xi + b)

)
, (1)

wherew and b are the hyperplane and intercept for theMISVMmodel. TheMISVMobjective
devised by Andrews et.al., is [1]

min
w,b,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi

subject to max
xi ∈Xi

(
wT xi + b

)
yi ≥ 1 − ξi ,

ξi ≥ 0, i = 1, . . . , N ,

(2)

where C is a hyperparameter that determines the level of regularization on the learned hyper-
plane, and ξi are slack variables. The constraints in Eq. (2) can be incorporated into the
objective via a Lagrangian function

min
w,b

max
α

L(w, b,α) subject to αi ≥ 0, (3)

which can be solved with respect to the dual variables (αi ) using off-the-shelf quadratic
programming solvers or heuristic algorithms like sequential minimal optimization [32] that
takes advantage of a limited number of support vectors. Although the MISVM formulation
proposed by Andrews et.al., [1] is widely used in MIL literature, it is generally limited to
binary classification problems.

In order to design amethod suitable formulti-classmulti-instance classification,we extend
the decision function presented in Eq. (1) to K -classes via

ŷi = argmax
m′,i ′

(
WTXi + bT 1i

)m
, (4)

where W ∈ R
d×K , b ∈ R

K , ŷi ∈ {1, . . . , K } represents the hyperplanes, intercepts, and
labels for K classes. Motivated by the results of [33] where it is argued that all-in-one
formulations for K -class SVMs provide superior predictive performance, when compared to
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one-vs-all approaches, we construct the followingWeston&Watkins [34]MISVM extension
to Eq. (2)

min
W,b,ξ

1

2

K∑
m=1

‖wm‖22 + C
N∑

i=1

K∑
m=1

ξm
i

subject to
(
1 − [

max(wT
mXi + 1bm) − max(wT

y Xi + 1by)
]
ym

i

)
+ ≤ ξm

i ,

0 ≤ ξm
i , i = 1, . . . , 2, m = i, . . . , K ,

(5)

where wy , by is the hyperplane-intercept pair associated with the i-th bag’s class label,
(·)+ = max(0, ·) is the hinge loss function, and ym

i ∈ {−1, 1} indicates if the i-th bag belongs
to the m-th class. Similar to Eq. (2), the K -class formulation above can be transformed into
a quadratic programming problem and solved, although this approach is known [33] not
to scale well as the number of bags increases. To address this issue, we propose a novel
primal–dual algorithm based on the multi-block ADMM [30] to optimize Eq. (5).

2.3 A primal–dual multi-instance SVM

Incorporating the constraints of Eq. (5) into the objective gives the unconstrained optimiza-
tion

min
W,b

1

2

K∑
m=1

‖wm‖22 + C
N∑

i=1

K∑
m=1

(1 − [max(wT
mXi + 1bm)

− max(wT
y Xi + 1by)]ym

i )+,

(6)

which is difficult to solve given the coupling acrosswm , bm , and the max(·) operations. Using
the multi-block ADMM approach, we introduce the following constraints, inspired by [31,
35], and rewrite Eq. (6) as

min
W,b,E,
Q,R,T,U

1

2

K∑
m=1

‖wm‖22 + C
N∑

i=1

K∑
m=1

(
ym

i em
i

)
+

subject to em
i = ym

i − qm
i + rm

i , qm
i = max

(
tmi

)
, tmi = wT

mXi + 1bm,

rm
i = max

(
um

i

)
, um

i = wT
y Xi + 1by,

(7)

to decouple the primal variables. Then, the augmented Lagrangian function of Eq. (7) is

Lμ = 1

2

K∑
m=1

‖wm‖22 + C
N∑

i=1

K∑
m=1

(
ym

i em
i

)
+

+ μ

2

N∑
i=1

K∑
m=1

[ (
em

i − (ym
i − qm

i + rm
i − λm

i /μ)
)2

+ (
qm

i − max
(
tmi

) + σm
i /μ

)2 +
∥∥∥tmi −

(
wT

mXi + 1bm

)
+ θm

i /μ

∥∥∥2
2

+ (
rm

i − max
(
um

i

) + ωm
i /μ

)2 +
∥∥∥um

i −
(
wT

y Xi + 1by

)
+ ξm

i /μ

∥∥∥2
2

]
,

(8)

where W,b,E,Q,T,R,U are the primal variables, �,�,�,�,	 are the dual variables,
and μ > 0 is a tuning parameter. Equation (8) is then differentiated with respect to each
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primal variable to derive Algorithm 2.1. The primal–dual updates terminate when the total
difference between the constraints incorporated via the augmented Lagrangian terms are less
than a predefined tolerance. In the following, we provide the details to derive each step of
Algorithm 2.1.

Algorithm 2.1 The pdMISVM method to optimize Eq. (8)

1: Data: X ∈ R
D×(n1+···+nN ) and Y ∈ {−1, 1}K×N .

2: Hyperparameters: C > 0, μ > 0, ρ > 1 and tolerance > 0.
3: Initialize: primal variables W,b,E,Q,R,T,U and dual variables �,�,�, �,	.
4: while residual > tolerance do
5: for m ∈ K do
6: Update wm ∈ W by Eq. (10), or Eq. (25) (inexact)
7: Update bm ∈ b by Eq. (11)
8: end for
9: for (p, m) ∈ {N , K } do
10: Update em

p ∈ E by Eq. (13)

11: Update qm
p ∈ Q by Eq. (15)

12: Update rm
p ∈ R by Eq. (16)

13: for j ∈ n p do
14: Update tm

p, j ∈ T by Eq. (19)

15: Update um
p, j ∈ U by Eq. (20)

16: end for

17:

Update λm
p , σm

p , ωm
p , θm

p , ξm
p by λm

i = λm
i + μ(em

i − (ym
i − qm

i + rm
i ));

σm
i = σm

i + μ(qm
i − max(tmi )); ωm

i = ωm
i + μ(rm

i − max(um
i ));

θm
i = θm

i + μ(tmi − (wT
mXi + 1bm )); ξm

i = ξm
i + μ(um

i − (wT
y Xi + 1by)).

18: end for
19: Update μ = ρμ

20: end while
21: return (wm , . . . ,wK ) ∈ W and (b1, . . . , bK ) ∈ b.

Update W & b, exact. Removing all terms from Eq. (8) that do not include W and
decoupling across columns ofW gives the following K subproblems

wm = argmin
wm

1

2
‖wm‖22 + μ

2

N∑
i=1

[∥∥tmi − (
wT

mXi + 1bm
) + θm

i /μ
∥∥2
2

]

+
N ′∑

i ′=1

K∑
m′=1

[μ

2

∥∥um′
i ′ − (

wT
mXi ′ + 1bm

) + ξm′
i ′ /μ

∥∥2
2

]
,

(9)

where i ′ indicates the column blocks in X (and the corresponding columns of U and 	) that
belong to the m-th class and N ′ is the total number of bags belonging to the m-th class.
Taking the derivative of Eq. (9) with respect to wm and setting the result equal to zero gives
the closed form solution

wT
m =

( ∑N
i=1

[(
tmi − 1bm + θm

i /μ
)
XT

i

] + ∑N ′
i ′=1

∑K
m′=1

[
(um′

i ′ − 1bm

+ ξm′
i ′ /μ)XT

i ′
]) ∗

(
I/μ + ∑N

i=1 XiXT
i + K

∑N ′
i ′=1 Xi ′XT

i ′
)−1

,

(10)

which can be calculated via a least-squares solver to avoid an inverse calculation.
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Similarly, differentiating Eq. (9) element-wise with respect to bm and setting the result
equal to zero gives the update

bm =
∑N

i=1

[
tmi − wT

mXi + θm
i /μ

] + ∑N ′
i ′=1

∑K
m′=1

[
um′

i ′ − wT
mXi ′ + ξm′

i ′ /μ
]

N + K N ′ . (11)

Update E. Dropping terms that do not containE fromEq. (8), by performing element-wise
decoupling of the problem, we end up with the following K × N subproblems

em
i = argmin

em
i

C
(
ym

i em
i

)
+ + μ

2

(
em

i − nm
i

)2
, (12)

where nm
i = ym

i − qm
i + rm

i − λm
i
μ
. Equation (12) can be differentiated with respect to em

i via
the sub-gradient method, and solved by the following three cases

em
i =

⎧⎪⎨
⎪⎩

nm
i − C

μ
ym

i when ym
i nm

i > C
μ

,

0 when 0 ≤ ym
i nm

i ≤ C
μ

,

nm
i when ym

i nm
i < 0.

(13)

Update Q & R. Keeping only terms with Q in Eq. (8) and performing element-wise
decoupling, we end up with the following K × N subproblems

qm
i = argmin

qm
i

(
em

i − ym
i + qm

i − rm
i + λm

i /μ
)2

+ (
qm

i − max
(
tmi

) + σm
i /μ

)2
.

(14)

Taking the derivative of Eq. (14) with respect to qm
i and setting the result equal to zero, we

can the problem for qm
i by the following update

qm
i =

(
ym

i − em
i + rm

i − λm
i /μ + max

(
tmi

) − σm
i /μ

)
2

. (15)

Following the same steps for each rm
i ∈ R, we derive the element-wise updates

rm
i =

(
em

i − ym
i + qm

i + λm
i /μ + max

(
um

i

) − ωm
i /μ

)
2

. (16)

Update T & U. Keeping terms in Eq. (8) containing T and decoupling across K and N ,
we end up with the following subproblem

tmi = argmin
tmi

(
qm

i − max
(
tmi

) + σm
i /μ

)2 +
∥∥∥tmi −

(
wT

mXi + 1bm

)
+ θm

i /μ

∥∥∥2
2
, (17)

which can be further decoupled into element-wise subproblems for each tm
i, j ∈ tmi , giving

K × (n1 + · · · + nN ) problems

tm
i, j = argmin

tm
i, j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
qm

i − tm
i, j + σm

i /μ
)2 +

(
tm
i, j − φm

i, j

)2
,

when tm
i, j = max

(
tmi

)
,(

tm
i, j − φm

i, j

)2
else,

(18)

where φm
i = wT

mXi + 1bm − θm
i /μ.
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Taking the derivative of Eq. (18) with respect to tm
i, j and setting the result equal to zero,

we solve the problem for tm
i, j by the following updates

tm
i, j =

{
max(φm

i )+qm
i +σm

i /μ

2 if j = argmax(φm
i ),

φm
i, j else.

(19)

This same strategy is applied to derive the element-wise updates of U, which gives

um
i, j =

{
max(ψm

i )+rm
i +ωm

i /μ

2 if j = argmax(ψm
i ),

ψm
i, j else.

(20)

where ψm
i = wT

y Xi + 1by − ξm
i /μ.

The associated dual variable updates are provided in Algorithm 2.1.

2.4 Scaling to a large number of features

Although the updates derived in Sect. 2.3 provide a suitable algorithm as the number of
bags increase, it does not scale well against the increasing number of features. To be spe-
cific, the calculation in Eq. (10) for the left parenthesis

( ∑N
i=1

[(
tmi − 1bm + θm

i /μ
)
XT

i

] +∑N ′
i ′=1

∑K
m′=1

[
(um′

i ′ − 1bm + ξm′
i ′ /μ)XT

i ′
])

has the computational complexity O
((

n1 +· · ·+
nN

) ·d)
and the right parenthesis (I/μ+∑N

i=1 XiXT
i + K

∑N ′
i ′=1 Xi ′XT

i ′ )
−1 can be efficiently

calculated via the least-squares solver which has complexity O
(
d2

)
. As a result, the updating

wm requires the time complexity O ((n1 + · · · + nN + d) · d) which scales quadratically as
the number of features increase; this limits the scalability of our approach to bags only. Addi-
tionally, since μ is updated every iteration, the least-squares solver must be invoked at every
iteration although (

∑N
i=1 XiXT

i + K
∑N ′

i ′=1 Xi ′XT
i ′ ) can be precomputed at the beginning of

algorithm. The inversion calculation for d × d matrix is the bottleneck of SVM algorithms.
To handle this issue, we propose an alternative optimal line search method [31] to updateW
for avoiding the inverse matrix calculation.

Update W, inexact. The partial derivative of Eq. (9) with respect to wk gives

∇T
wm

= wT
m − μ

N∑
i=1

[tmi − wT
mXi − 1bm + θm

i /μ]XT
i

− μ

N ′∑
i ′=1

K∑
m′=1

[um′
i ′ − wT

mXi ′ − 1bm + ξm′
i ′ /μ]XT

i ′ ,

(21)

which can be used to create the following minimization problem

sm = argmin
sm

1

2

∥∥∥wT
m − sm∇T

wm

∥∥∥2
2
+ μ

2

N∑
i=1

[∥∥tmi − (wT
m − sm∇T

wm
)Xi − 1bm

+ θm
i /μ

∥∥2
2

]
+

N ′∑
i ′=1

K∑
m′=1

[μ

2

∥∥um′
i ′ − (wT

m − sm∇T
wm

)Xi ′ − 1bm + ξm′
i ′ /μ

∥∥2
2

]
,

(22)

in terms of sm instead of wm .
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Differentiating Eq. (22) with respect to sm and setting the result equal to zero, we solve
the problem for sm as follows

sm =
(
wT

m − μ
∑N

i=1 t̂
m
i XT

i − μ
∑N ′

i ′=1
∑K

m′=1 û
m′
i ′ X

T
i ′
)

∇wm

∇T
wm

(
I + μ

∑N
i=1 XiXT

i + μK
∑N ′

i ′=1 Xi ′XT
i ′
)

∇wm

, (23)

where t̂mi = tmi − wT
mXi − 1bm + θm

i /μ and ûm′
i ′ = um′

i ′ − wT
mXi ′ − 1bm + ξm′

i ′ /μ.
Because the denominator of Eq. (23) is equivalent to

∥∥∇wm

∥∥2
2 + μ

N∑
i=1

∥∥∥∇T
wm

Xi

∥∥∥2
2
+ μK

N ′∑
i ′=1

∥∥∥∇T
wm

Xi ′
∥∥∥2
2
, (24)

Equation (23) can be calculated efficiently in O ((n1 + · · · + nN ) · d) time.
By combining Eq. (21) and Eq. (23), we can update wm via

wm = wm − sm∇wm . (25)

This “inexact” update option avoids solving the least squares problem present in Eq. (10)
and is provided as an option on Line 6 of Algorithm 2.1 to extend our method to handle a
large number of features.

2.5 A primal–dual multi-instance SVMwith Kernel

While the exact and inexact formulations described in Algorithm 2.1 are computationally
efficient and show promising performance on a variety of multi-instance datasets, they are
limited to classification problems where instances within bags are linearly separable. In order
for enabling ourmethod to learn nonlinear decision boundaries, we derive an kernel extension
of pdMISVM method in this subsection.

We begin by replacing all bags Xi in Eq. (6) by their corresponding feature matrices
φ(Xi ) = �i ∈ R

dφ×ni , which gives

min
W,b

1

2

K∑
m=1

‖wm‖22 + C
N∑

i=1

K∑
m=1

(1 − [max(wT
m�i + 1bm)

− max(wT
y �i + 1by)]ym

i )

(26)

where φ is an arbitrary kernel function. Then, by introducing constraints to decouplewm and
bm in Eq. (7) and incorporating them into the objective, we derive the following Lagrangian
formulation

Lμ = 1

2

K∑
m=1

‖wm‖22 +
N∑

i=1

K∑
m=1

C
(
ym

i em
i

)
+

+ μ

2

N∑
i=1

K∑
m=1

[ (
em

i − (ym
i − qm

i + rm
i − λm

i /μ)
)2

+ (
qm

i − max
(
tmi

) + σm
i /μ

)2 +
∥∥∥tmi −

(
wT

m�i + 1bm

)
+ θm

i /μ

∥∥∥2
2

+ (
rm

i − max
(
um

i

) + ωm
i /μ

)2 +
∥∥∥um

i −
(
wT

y �i ) + 1by

)
+ ξm

i /μ

∥∥∥2
2

]
.

(27)
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We pause here to recognize that, while the number of columns in each �i is equal to the
number of instances inside the original bagXi , the number of rows, i.e.„ dφ , can be arbitrarily
(even infinitely) large. Motivated by [36], we work to derive each update of our algorithm
with respect to each primal variable in Eq. (27) without explicitly calculating wm .

2.5.1 The Kernel extension of our method with exact solutions

We updateW by discarding all terms in Eq. (27) that do not containW and decoupling across
columns, which gives the following K problems

wm = argmin
wm

1

2
‖wm‖22 + μ

2

N∑
i=1

[∥∥tmi − wT
m�i + 1bm + θm

i /μ
∥∥2
2

]

+
N ′∑

i ′=1

K∑
m′=1

[μ

2

∥∥um′
i ′ − wT

m�i ′ + 1bm + ξm′
i ′ /μ

∥∥2
2

]
,

(28)

where i ′ indicates the corresponding column blocks of � = [�1 . . . �N ] ∈ R
dφ×(n1+···+nN )

that belong to them-th class. Equation (28) can be differentiated with respect towm , set equal
to zero, and solved for each wm

wT
m =

( [(
tm − 1bm + θm/μ

)
�T

] + ∑K
m′=1

[
(um′

′ − 1bm + ξm′
′ /μ)�T′

])

∗
(
I/μ + ��T + K�′�T′

)−1
,

(29)

where �′ = [�1′ . . . �N ′ ]. Equation (29) can be written in the matrix form

wT
m = vmD�̂

T ∗
(
I/μ + �̂D�̂

T
)−1

, (30)

where vm = [tm − 1bm + θm/μ 1/K
∑K

m′=1(u
m′
′ − 1bm + ξm′

′ /μ)], D = [I 0; 0 K I] and
�̂ = [� �′ ]. Since the kernel function applied to each Xi may return feature vectors that
are infinitely long, it may be impossible to calculate the inverse required to express wm in
Eq. (30). In order to solve this issue we use the following method introduced in [36]

(P−1 + mTR−1m)−1mTR−1 = PmT (mPmT + R)−1

to rewrite wT
m equivalently, as

wT
m = vm(�̂

T
�̂ + D−1/μ)−1�̂

T
. (31)

The updated expression in Eq. (31) can then be used to update wT
mφ(Xi )

wT
m� = vm(�̂

T
�̂ + D−1/μ)−1�̂

T
�, (32)

and calculate ‖wm‖22 = tr
(
wT

mwm
)
by

‖wm‖22 = tr
(
vm(�̂

T
�̂ + D−1/μ)−1�̂

T
�̂(�̂

T
�̂ + D−1/μ)−1vT

m

)
, (33)

without directly computing wm . These two expressions are computationally tractable as
the kernel expressions occur as an inner product in both cases. The updates for the other
primal variables b,E,Q,R,T and U are the same as Algorithm 2.1, except each instance
of wmXi and wyXi are replaced by the corresponding columns of Eq. (32). We outline the
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update steps for the pdMISVMmethod with kernel in Algorithm 2.2. The time complexity of
Algorithm2.2 O

(
(n1 + · · · + nN )2

)
. The complexity comes from themultiplication between

vm ∈ R
n1+···+nN +n1′+···+nN ′ and matrix and calculating (�̂

T
�̂ +D−1/μ)−1 in Eq. (32) and

Eq. (33).

Algorithm 2.2 The pdMISVM method with kernel to optimize Eq. (27)

1: Data: X ∈ R
D×(n1+···+nN ) and Y ∈ {−1, 1}K×N .

2: Hyperparameters: C > 0, μ > 0, ρ > 1 and tolerance > 0, and kernel function φ.

3: Initialize: primal variables WT �, b,E,Q,R,T,U, dual variables �, �, �, �, 	 and calculate �̂
T
�̂,

�̂
T
� for each class using φ.

4: while residual > tolerance do
5: for m ∈ K do
6: Update wT

m� ∈ WT � by Eq. (32), or wm ∈ W by Eq. (34) (inexact).
7: end for

8:
Update b,E,Q,R,T,U, �, �, �, �, 	 by Algorithm 2.1 where each Xi

and Xi ′ are replaced by �i and �i ′ , respectively.
9: Update μ = ρμ

10: end while
11: return (wT

m�, . . . ,wT
K �) ∈ WT � and (b1, . . . , bK ) ∈ b.

2.5.2 The Kernel extension of our method with inexact solutions

Our exact kernel method in Eqs. (32) and (33) scales quadratically as the number of instances
increases. To effectively deal with the large number of instances in the dataset, we can use
the optimal line search method in Eq. (25) for the kernel version of our method by replacing
Xi with �i :

wm = wm − sm∇wm , (34)

where

∇T
wm

= wT
m − μ

N∑
i=1

[tmi − wT
m�i − 1bm + θm

i /μ]�T
i

− μ

N ′∑
i ′=1

K∑
m′=1

[um′
i ′ − wT

m�i ′ − 1bm + ξm′
i ′ /μ]�T

i ′ ,

(35)

and

sm =
(
wT

m − μ
∑N

i=1 t̂
m
i �T

i − μ
∑N ′

i ′=1
∑K

m′=1 û
m′
i ′ �T

i ′
)

∇wm∥∥∇wm

∥∥2
2 + μ

∑N
i=1

∥∥∇T
wm

�i
∥∥2
2
+ μK

∑N ′
i ′=1

∥∥∇T
wm

�i ′
∥∥2
2

. (36)

The computational complexity of inexact kernel method in Eq. (34) is O((n1 + · · · +
nN ) ·dφ), which is apparently more computationally efficient than Eq. (32) when the number
of instances is larger than the number of kernel features dφ . However, the inexact kernel
pdMISVM is not applicable to the kernel function of an infinite number of features such
as radial basis function. Therefore in our experiments, in contrast to using the radial basis
function (RBF) for the exact method, the kernel extension of our method with exact solution
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employs the degree-2 polynomial function (poly) kernel. In case of degree-2 polynomial
kernel K (x, y) = (xT y + c)2, the complexity becomes O((n1 + · · · + nN ) · d2), since the
feature map φ is given by:

φ(x) = [x2n , . . . , x21 ,
√
2xn xn−1, · · · ,

√
2xn x1,

√
2xn−1xn−2, · · · ,

√
2xn−1x1,

· · · ,
√
2x2x1,

√
2cxn, · · · ,

√
2cx1, c].

(37)

Apparently, our inexact method that scales to the number of features is especially useful to
kernel features, because the kernel feature map usually increases the dimensionality.

3 Experiments

In this section we explore the performance of our linear/kernel and exact/inexact pdMISVM
implementations. We first test our method against an array of standard MIL benchmark
datasets to explore how our implementations compare against other recent MIL methods.
We follow the baseline experiments with an investigation into increasingly complex natural
scene data to determine the performance characteristics of our approach. Then, we conduct
experimentswith synthetic data to illustrate the scalability of our approach and experimentally
verify the expected computational complexity/performance characteristics of our approach
compared to others. We follow with a discussion of the interpretability of our method on
three multi-instance datasets derived from two well-known baseline datasets.

3.1 Experimental settings and datasets

As discussed in Sect. 2.5.1, because it is not possible to directly access the kernel features
of radial basis function (RBF), we use the degree-2 polynomial kernel (poly) for our inexact
kernel method. We compare our methods of linear/kernel and exact/inexact versions against
ten recentMIL learning algorithms: (1) a single-instance learning (SIL) approach that assigns
the bags’ labels to all instances during training and returns the maximum response for each
bag/class-pair at test time for the testing bags’ instances; (2) the miSVM and (3) MISVM
algorithms [1] that assume that at least one instance per bag is positive to classify a bag
as positive; (4) the NSK algorithm [25], a bag-based method, that maps the entire bag to
a single-instance by way of a kernel function; (5) the sMIL and (6) sbMIL [2] algorithms
which expect that only a small number of instances within a bag are classified as positive
and combine instance-level and bag-level relationships to make a prediction. We also com-
pare our approach against two end-to-end MIL algorithms, (7) miNet and (8) MINet [26],
based on deep neural-networks (DNN). Finally, the twoDNNMILmodels using the attention
mechanism are compared: (9) Attention-based deep multiple instance learning (AMIL) [16]
calculates the parameterized attention (importance) score for each instance to generate the
probability distribution of bag labels; (10) loss-based attention for deep multiple instance
learning (LAMIL) [37] proposes to learn the instance scores and predictions jointly by inte-
grating the attention mechanism with the loss function. These two attention-based DNN
methods have demonstrated the state-of-the-art classification performance in MIL.

These methods are compared against the proposed pdMISVM (Ours) method, and the
inexact variation, described in Algorithm 2.1 and Algorithm 2.2. The grid search and perfor-
mance calculations for eachmethod-dataset pair are conducted using theMLJ library [38] and
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are included with our code.1 All experiments were run on an Intel Xeon processor running at
2.20GHz using 126GB of RAM, running Ubuntu 18.04.4 LTS. The competing SVM-based
methods are implemented using a library2 written by Doran et.al. [39], while the DNNmeth-
ods are implemented using the code3 provided as a companion to the paper [16, 26, 37].
Methods that take longer than one-thousand seconds to train during a single cross-validation
are considered “timed-out” (T/O) and their performance metrics are not provided.

Each method is compared against a synthetic dataset and ten multi-instance datasets that
are normalized to have zero mean and unit variance. The synthetic dataset contains 10 to
1,000 bags with three to five instances per bag and 10 to 1,000 features per instance. The
first instance per bag is constructed from two normally distributed clusters with a standard
deviation of one; the second to fifth instances per bag contain uniform random noise.

The MUSK-2 [9], Elephant, Fox, Colon [40], and Tiger [1] datasets are standard small-
scale MIL evaluation datasets and are widely cited in MIL literature as benchmarks. The
MUSK-2 dataset is designed to classify chemical compounds as either “musk” or “non-musk”
which describes the chemical properties of a given compound; bags within this dataset are
representative of the possible conformations of the labeled compound. The MUSK-2 dataset
contains 39 positive and 63 negative bags with 166 features per instance. The Elephant,
Fox and Tiger datasets are derived from the Corel image dataset [41] and each contain
100 positive and 100 negative bags with 143 non-zero features per instance. The Colon
[40] consists of 25,000 histopathological images (instances) generated from 750 lung tissue
images (bags). There are 5 classes of lungbenign tissue, lung adenocarcinoma, lung squamous
cell carcinoma, colon adenocarcinoma, and colon benign tissue in Colon dataset.

The MNIST-bags [16] dataset contains 100 positive and 100 negative bags where a bag is
made up of a random number of 28 × 28 greyscale images taken from the MNIST dataset.
A bag is given a positive label if it contains a ‘9’ and negative label if it does not. For our
experiments the average number of bags is ten, thus the witness rate for positive bags is
10%, on average. This low witness rate makes this a challenging dataset for the chosen MIL
algorithms.

The SIVAL dataset was specifically designed for content-based image retrieval (CBIR)
and contains natural scene images consisting of 25 categories with 60 images per category
for a total of 1500 bags. In this work, we use the processed dataset provided in the initial
work of Rahmani et.al. [42] and create a new dataset derived from the raw SIVAL images.
In the original processed SIVAL dataset, the images are segmented into 30 or 31 instances,
depending on the picture, consisting of 30 features each. In total, there are 47,414 instances
across the entire SIVALdataset. In order to explore the prediction and runtime performance of
the compared methods, we construct a few subsets of this dataset containing a predetermined
number of classes. Specifically, we construct the SIVAL-3, SIVAL-5, SIVAL-10, SIVAL-15,
and SIVAL-25 datasets each containing three, five, ten, fifteen, and twenty-five classes from
the SIVAL dataset, of 180, 300, 600, 900, and 1500 bags.

In addition, we construct the “SIVAL-25-deep” dataset, which is inspired by the “hybrid”
approach detailed by Zheng et.al., [43], which investigates the ongoing shift from SIFT-
based descriptors [44] to convolutional neural networks for generating image descriptors.
To create this multi-instance dataset, we extract patches from the raw SIVAL images using
the EdgeBox [45] proposal generator (eta=0.2, minScore=0.04, maxBoxes=200)

1 https://github.com/minds-mines/pdMISVM.jl.
2 https://github.com/garydoranjr/misvm.
3 https://github.com/yanyongluan/MINNs.
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provided in the OpenCV library. 4 These extracted patches are fed into a pre-trained AlexNet
[46] convolutional neural network where the second to last fully connected layer (F10) is
used to represent each instance by 4,096 features. We note that more complex/newer deep
neural architectures, and other proposal generators, c ould be used to create this patch-level
embedding but leave this to future work. This process is repeated for every image (where
object proposals are detected by EdgeBox) and results in 1,463 bags for a total of 80,561
instances. The SIVAL-25-deep dataset is our attempt at a modernization of the standard
SIVAL dataset; the pipeline used to generate this benchmark is provided with our code.

3.2 Classification performance

In Tables 1 and 2 we provide the classification performance of our approach compared
against the other competing MIL algorithms described above in Sect. 3.1. Our goal is to
verify that our approach matches the performance of the other MIL algorithms. For each
dataset-method pair we report the accuracy (ACC) and balanced accuracy (BACC) results
across ten sixfold cross validation experiments. We can see from Table 1 that our method
gives comparable performance on theMUSK-2, Elephant, and Tiger datasets; this applies for
both the exact and inexact implementations. Interestingly, the inexact linear version of our
approach outperforms all other methods on both the Fox andMNIST-Bags datasets. That can
be naturally explained by the previous study [47] which has shown some implementations of
SVM obtain the highest accuracy before their objectives reach their minimum. In the Colon
dataset, our kernel versions show superior performance in classifying the different shapes of
tissues, which shows the benefits of kernel functions in our model.

In Table 2 our exact linear pdMISVM only slightly outperforms the next best performing
method on the SIVAL-3 dataset; this impressive performance result does not hold for the inex-
act version. Although, the inexact method performs better (in comparison) when the number
of classes/bags increase. The inexact linear methods shows surprisingly impressive results
on SIVAL-25-deep dataset which are recorded just within the time-budget; this significant
performance improvement can be seen very clearly in the comparison between the confusion
matrices in Figs. 2 and 3. In comparison of training times (TT) between our exact and inexact
kernel pdMISVM, we can clearly see that the inexact version scales to the increasing number
of bags (the number of bags increases in the order of SIVAL-3, 5, 10, 15, and 25) better than
the exact version. This empirically verifies the analytical complexity discussed in Sect. 2.5.
It is clear from these results that the exact/inexact and linear/kernel methods are capable of
providing competitive performance results on a variety of multi-instance datasets.

3.3 Bag/feature scalability

The key contribution of this work is that the derived algorithms described in Sects. 2.3 and 2.4
scale to large datasets. This can be clearly seen in the SIVAL-25 column of Table 2 where
our methods are the only ones that are able to fit a model within one-thousand seconds. In
order to further validate this finding, in Fig. 4 we report training time results on a synthetic
multi-instance dataset where we increase the number of bags as described in Sect. 3.1. In this
timing experiment, we use the degree-2 polynomial function for both of exact/inexact kernel
methods to compare them fairly. Our linear-exact, linear-inexact, and poly-inexact methods
scale well with respect to the number of bags which shows the importance of our primal–

4 https://github.com/opencv/opencv.
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Fig. 2 Confusionmatrix of the exact linear pdMISVM tested on the original SIVAL-25 dataset with 30 features
per-instance. Results are derived from a sixfold cross-validation experiment across all 1500 bags

dual derivation. However, the training time of our poly-exact model increases rapidly as the
number of instances increases, demonstrating the usefulness of our inexact kernel method.
This conclusion is especially clear when our method is compared against SVM-based MIL
methods which rely on repeatedly solving quadratic programming problems.

Although the initial pdMISVMderivation scales well with respect to bags, it does not scale
to the number of features when it is large. This is due to the fact that the update for each wk

in Eq. (10) requires solving a least squares problem which scales quadratically as the number
of features increase. To address this limitation, we proposed an optimal line search method
to improve the scalability of our approach in Eq. (25). We conduct a timing experiment
using synthetic data where the number of features is increased to see if our methods provide
improved runtime performance. We can see in Fig. 5 that the proposed linear-inexact and
poly-exact methods significantly reduce the training time of our approach as the number of
features increase. We note that in our exact kernel method, we don’t need to directly access
the kernel features as discussed in Sect. 2.5.2.
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Fig. 3 Confusionmatrix of the inexact linear pdMISVMapproach tested on the SIVAL-25-deep dataset created
from the patch-wise application of a convolutional neural network as a pre-processing step. Results are derived
from a sixfold cross-validation experiment across all 1463 bags

3.4 Model interpretability

In addition to the promising predictive performance and scalability of our method, we note
that instance-based methods such as ours come with an additional benefit: interpretability.
Instance-based methods such as miSVM, MISVM, and the proposed pdMISVM method,
identify an explicit instance within a bag that is responsible for the predicted label. We
use this phenomenon to explore the limitations of our method on the MNIST-bags dataset
and showcase patches identified during the SIVAL experiment across a number of different
classes.

For the MNIST-bags dataset we plot the learned positive and negative class coefficients
associated with the two learned hyperplanes in Fig. 6 (e.g., w1 and w2). In addition, we
plot four randomly chosen testing bags and what instance was chosen by the multi-instance
decision function for the positive class hyperplane in Fig. 7. On the left-hand side of Fig. 6,
we can see that our method can roughly detect the loop at the top of the ‘9’ although it is clear
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Fig. 4 Time to train our method and other MIL methods on synthetic multi-instance data where the number
of bags increase. Both the linear-exact and linear-inexact methods end up training faster than the competing
methods once the number of synthetic bags is greater than eight-hundred

Fig. 5 Elapsed time to train the linear/kernel and exact/inexact methods on synthetic multi-instance data as
the number of features is varied. As expected, the linear-exact and poly-inexact methods perform poorly as
the number of features increases, but the linear-inexact and poly-exact method continues to scale linearly and
almost constantly

from this interpretation that our approach will not be able to handle evenmoderate translation
or rotation if it is only provided with raw-pixel values. Additionally, even though our method
correctly classifies the first bag, it incorrectly identifies the ‘4’ as the witness instance; we
can see that a ‘4’ appears to be contaminating the learned coefficients displayed in Fig. 6.
In order to solve this problem it is likely that additional preprocessing will be required to
extract more descriptive features from instances within the MNIST-bags dataset beyond raw
pixels for our method to be effective.

In order to illustrate how effective feature extraction can aid in the interpretability of our
method, we extend our discussion to the SIVAL-25 and SIVAL-25-deep datasets. In Fig. 8,
we provide image patches identified by our approach on images chosen from the SIVAL-25
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Fig. 6 Learned class-specific hyperplanes of the pdMISVM method on the MNIST-bags dataset plotted in a
28 × 28 grid. Left: Learned coefficients for predicting whether a bag contains the MNIST handwritten digit
‘9’. Right: The learned coefficients for predicting whether a bag does not contain the MNIST digit ‘9’

dataset. We can see that our method identifies distinctive visual characteristics in each of
the classes. For example, the bag representing a “Banana” is identified by a distinctive patch
along the length of the fruit while in the “Apple” image our approach identifies the round
patch on top of the fruit. Similarly, in Fig. 9 we present the neural-network embedded patches
extracted via the EdgeBox detection algorithm and the identified patches. We can clearly see
in Fig. 9 that our approach is able to accurately localize the most distinctive parts of the
object, at the patch level, within the image. For example, the medal is recognized by the
“gold” part while the “bowl” of the spoon is recognized.

Remarkably, the results in Figs. 8 and 9 show that when our method is given a set of
sufficiently descriptive object proposals/patches, paired with a bag-level label, our method
can accurately locate objects within an image. This is one of the significant advantages of
instance-based MIL methods over traditional single-instance learning methods that require
all instances to be labeled.We anticipate that this framework could be extended to investigate
and interpret the effectiveness of pre-trained neural networks on an assortment of datasets
that can be formulated as MIL problems. We plan to further investigate different aspects of
our approach under different object proposal methods [48, 49], neural architectures [50], and
applications [13, 14, 51].

3.5 Capability to learn nonlinear decision boundaries

As an important extension of our pdMISVMmethod to deal with nonlinearly separable data,
we introduced the kernel versions of our exact and inexact methods. In this subsection, we
evaluate their classification performances.

We implement the kernel version of the pdMISVM method and compare it against the
linear version in Fig. 10. We can see this extension successfully extends our approach to
correctly classify data that is not linearly separable. In this paper, we propose two versions
of kernel pdMISVM which scales to the number of instances or features, which enable to
efficiently learn the nonlinear decision boundaries from the large dataset.

3.6 A case study on neuroimaging data

While we have demonstrated the effectiveness of our new pdMISVMmethod from a number
of perspectives in the previous subsections, in this subsection we apply our new methods on
a medical imaging dataset to verify its capability to solve real-world problems.
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Fig. 7 Instance identification results on the first five testing bags of our method on the MNIST-bags dataset
with the detectors in Fig. 6. Our approach correctly classifies the first, second and third bags. Although the
first bag is classified correctly the “9”s are not properly identified

Fig. 8 Instance identification on the SIVAL-25 dataset across different classes. In each set of three pictures
the leftmost is the original image, the middle shows the bag of patches extracted by the original authors, and
the final image highlights the patch identified by our approach for classifying the image

3.6.1 Comparisons of the classification capabilities

Alzheimer’s disease (AD) is a serious neurodegenerative condition in which people suffer
from the deterioration of cognitive functions. To verify the capability of our new methods
to solve real-world problems, we apply them to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [52] dataset which provides the comprehensive neuroimagings such as
voxel-Based Morphometry (VBM) and FreeSurfer (FS). We collect the magnetic resonance
imaging (MRI) scans and their diagnosis in Alzheimer’s disease, mild cognitive decline,
and healthy condition of 821 participants from ADNI database5. We perform VBM and
FS automated parcellation on the MRIs following [53] and extract mean modulated gray
matter measures for 90 target regions of interest (ROI). Because the different number of MRI

5 https://adni.loni.usc.edu.
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Fig. 9 Instance identification on the SIVAL-25-deep dataset across different classes. In each set of three
pictures the leftmost is the original image, the middle shows the bag of patches extracted by the EdgeBox
detector, and the final image highlights the patch identified by our approach for classifying the image

Fig. 10 The predictions of linear and RBF kernel (exact) pdMISVM on synthetic multi-instance data. Each
bag in the training dataset X has up to three instances, where only the first instance determines the correct
classification. The kernel extension of our approach is able to correctly learn a nonlinear decision boundary
to separate the two classes

scans have been captured across the participants, it is difficult to directly apply the standard
statistical methods to all of the neuroimagings provided. In this case study, we formulate each
neuroimaging as an instance and each participant as a bag to predict their AD diagnosis.

In Table 3, we report the classification performances of ours and the other competing
models. Although the deep learningmodels (miNet,MINet, AMIL, and LAMIL) have shown
the promising performances, they require the significant amount of training time. On the other
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Table 3 Classification and train-time (seconds) performanceof ourmethod and tenotherMIL learningmethods
on ADNI dataset

FS

Model ACC BACC TT

SIL 0.456±0.076 0.493±0.091 14.07

miSVM 0.668±0.076 0.68±0.071 93.17

MISVM 0.776±0.058 0.761±0.036 51.83

NSK 0.484±0.083 0.481±0.073 0.93

sMIL 0.406±0.075 0.435±0.078 7.42

sbMIL 0.593±0.077 0.628±0.081 32.81

miNet 0.658±0.053 0.671±0.045 59.09

MINet 0.687±0.101 0.691±0.071 48.08

AMIL 0.729±0.071 0.735±0.064 428.07

LAMIL 0.802±0.106 0.79±0.083 794.52

Ours (linear, exact) 0.784±0.082 0.796±0.084 1.85

Ours (linear, inexact) 0.790±0.091 0.802 ± 0.083 2.14

Ours (RBF, exact) 0.755±0.083 0.784±0.090 3.62

Ours (poly, inexact) 0.795 ± 0.064 0.803±0.075 6.14

VBM

Model ACC BACC TT

SIL 0.392±0.043 0.427±0.058 16.81

miSVM 0.584±0.050 0.617±0.042 81.91

MISVM 0.690±0.050 0.717±0.049 68.38

NSK 0.547±0.088 0.551±0.089 6.27

sMIL 0.483±0.091 0.510±0.019 8.08

sbMIL 0.608±0.070 0.616±0.024 29.14

miNet 0.703±0.081 0.694±0.073 58.17

MINet 0.714±0.062 0.738±0.059 40.50

AMIL 0.765±0.117 0.783±0.091 378.05

LAMIL 0.809 ± 0.074 0.815 ± 0.090 290.37

Ours (linear, exact) 0.808±0.077 0.813±0.084 1.46

Ours (linear, inexact) 0.814±0.058 0.809±0.041 1.91

Ours (RBF, exact) 0.747±0.049 0.763±0.072 3.84

Ours (poly, inexact) 0.803±0.065 0.818±0.076 5.85

The reported accuracy and standard deviations are calculated across ten sixfold cross-validation experiments.
Best results are marked in bold, second best in italics

hands, four variations of our models show the comparable performance with a few seconds
of training time.

3.6.2 Identification of brain regions

Likewise we analyze the hyperplane in Fig. 6 from MNIST digits dataset, we analyze the
hyperplane to identify the brain regions exhibiting AD risk factors. Since the p-th feature of
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Fig. 11 Visualization of contributions of the brain regions to the AD diagnosis classification. The brain regions
of the larger contribution are plotted with the darker colors. The top four AD relevant regions are identified
in FS: left thalamus, left lateral ventrical, right caudate, and brodmann area 44, in VBM: left thalamus, left
hippocampus, right medial occipital, and left amygdala

each instance is multiplied with the p-th weight of wm to contribute to the response for the
m-th class, we calculate the contribution of p-th feature as the summation of p-th weight of
hyperplanes

∑K
m=1 ‖w p

m‖. Each feature of instance (neuroimage) represents each ROI in the
brain, therefore we visualize the disease relevance of each brain region in Fig. 11.

The brain regions identified by our method (linear, exact) have been appeared in the
previous medical literatures. For example, the pathological changes in the Brodmann area 44
(Broca’s area) involves in the comprehension and production of verbs and communication
[54]. Based on the previous study [55], the larger ventricular volume is the risk factor of
dementia related disease in the future. The change in venticular volume is also associated
with the cognitive decline and dementia [55, 56]. The atrophy of the caudate nucleus is also
related to the cognitive decline [57]. The previous study [58] found that the anterior thalamus
plays an important role in generating attention, and it is in charge of declarative memory
functioning. The hippocampus is particularly susceptible to damage from AD and involves
long-term memory and spatial navigation in AD patients [59]. The amygdala region, which
is related to the emotional response, can also be easily damaged by AD [60]. The identified
brain regions in this case study are well represented in the previous AD studies, and support
the correctness of our methods by providing the further interpretability.

4 Conclusion

In this work, we propose a primal–dual multi-instance SVM method that is able to scale to
large multi-instance datasets. Our SVM-based approach is able to handle data that grows in
terms of bags aswell as features since it avoids solving a quadratic programming problem that
limits the adoption of traditional SVM-based MIL techniques. Throughout the manuscript,
we provide detailed derivations, implementations, and experimental results which illustrate
the utility of our approach on both synthetic and real-world datasets. In addition, we provide
the kernel extensions of our approach which scale to the number of instances or features.
Our experimental results on synthetic multi-instance data validate our kernel extension suc-
cessfully learn the nonlinear decision boundaries. Finally, we investigate the interpretability
of our method on benchmark multi-instance datasets and develop an extension to the ADNI
dataset as part of this study. From theADNI dataset, ourmethod identifies the disease relevant
brain regions which are in nice accordance with the existing medical studies.
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