
Knowledge and Information Systems (2024) 66:765–809
https://doi.org/10.1007/s10115-023-01952-0

REV IEW

A review and evaluation of elastic distance functions for time
series clustering

Christopher Holder1 ·Matthew Middlehurst1 · Anthony Bagnall1

Received: 11 May 2023 / Revised: 2 July 2023 / Accepted: 25 July 2023 /
Published online: 7 September 2023
© The Author(s) 2023

Abstract
Time series clustering is the act of grouping time series data without recourse to a label.
Algorithms that cluster time series can be classified into two groups: those that employ a
time series specific distance measure and those that derive features from time series. Both
approaches usually rely on traditional clustering algorithms such as k-means. Our focus is
on partitional clustering algorithms that employ elastic distance measures, i.e. distances that
perform some kind of realignment whilst measuring distance. We describe nine commonly
used elastic distance measures and compare their performance with k-means and k-medoids
clusterer. Our findings, based on experiments using the UCR time series archive, are surpris-
ing. We find that, generally, clustering with DTW distance is not better than using Euclidean
distance and that distance measures that employ editing in conjunction with warping are
significantly better than other approaches. We further observe that using k-medoids clusterer
rather than k-means improves the clusterings for all nine elastic distance measures. One func-
tion, the move–split–merge (MSM) distance, is the best performing algorithm of this study,
with time warp edit (TWE) distance a close second. Our conclusion is that MSM or TWE
with k-medoids clusterer should be considered as a good alternative to DTW for clustering
time series with elastic distance measures. We provide implementations, extensive results
and guidance on reproducing results on the associated GitHub repository.

Keywords Time series clustering · Dynamic time warping · Dynamic barycentre
averaging · Move–split–merge · Edit distance with real penalty · Time warp edit distance ·
Derivative dynamic time warping · Longest common subsequence · Edit distance on real
sequences · Weighted dynamic time warping · Weighted derivative dynamic time warping ·
k-Means · k-medoids clusterer

B Anthony Bagnall
ajb@uea.ac.uk

Christopher Holder
c.holder@uea.ac.uk

Matthew Middlehurst
m.middlehurst@uea.ac.uk

1 School of Computing Sciences, University of East Anglia, Norwich, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01952-0&domain=pdf
http://orcid.org/0000-0001-9571-3764
http://orcid.org/0000-0002-3293-8779
http://orcid.org/0000-0003-2360-8994

766 C. Holder et al.

1 Introduction

Clustering is an unsupervised analysis technique where a set of cases, defined as a vector of
continuous or discrete variables, are grouped to create clusterswhich contain cases considered
to be homogeneous, whereas cases in different clusters are considered heterogeneous [12].

Time series clustering is the act of grouping ordered, time series data without recourse to
a label. We use the acronym TSCL for time series clustering, to make a distinction between
TSCL and time series classification, which is commonly referred to as TSC. There has been
a wide range of algorithms proposed for TSCL. Our focus is specifically on clustering using
elastic distance measures, i.e. distance measures that use some form of realignment of the
series being compared. Our aim is to perform a comparative study of these algorithms that
follows the basic structure of bake offs in distance-based TSC [44], univariate TSC [8] and
multivariate TSC [60]. A huge number of alternative transformation-based, e.g. [42], deep
learning-based clustering algorithms, e.g. [39], and statistical model-based approaches [15]
have been proposed for TSCL. These approaches are not the focus of this research. Our
primary aim is to provide a detailed description, with examples, of nine commonly used
elastic distance measures and conduct extensive experimentation to compare their utility for
TSCL. k-means is by far the most popular clustering algorithm for TSCL (for example, [33]).
k-medoids clusterer is used much less frequently. Our secondary aim is to compare k-means
and k-medoid distance-based clustering for TSCL.

Clustering is often the starting point for exploratory data analysis and is widely performed
in all fields of data science [74]. However, clustering is harder to define than, for example,
classification. There is debate about what clustering means [31] and no accepted standard
definition ofwhat constitutes good clustering orwhat itmeans for cases to be homogeneous or
heterogeneous. For example, homogeneous could mean generated by some common under-
lying process or mean it has some hidden variable in common. A clustering of patients based
on some medical data might group all male patients in one cluster and all female patients in
another. The clusters are from one view homogeneous, but that does not mean it is necessar-
ily a good clustering. The interpretation of the usefulness of clustering a particular dataset
requires domain knowledge. This makes comparing algorithms over a range of problems
more difficult than performing a bake off of TSC algorithms. Nevertheless, there have been
numerous comparative studies (for example, [2, 33] and [39]) which take TSC problems from
the UCR archive [18] and then evaluate clusterings based on how well they recreate class
labels.We aim to add to this body of knowledgewith a detailed description and a reproducible
evaluation of clustering with elastic distance measures (described in Sect. 3) following a sim-
ilar methodology. We do this in the context of partitional clustering algorithms (see Sect. 2).
We stress that our findings relate only to performance on the UCR univariate datasets and
that our conclusions should be taken in that context. We think that our findings are useful for
practitioners wanting a benchmark for a TSCL problem, but there are always use cases for
different approaches.

Elastic distance measures are significantly more accurate on average than Euclidean dis-
tance for TSC when used with a one nearest neighbour classifier [44]. We evaluate whether
this improvement translates to centroid-based clustering. Following experiments presented in
Sect. 5.1, we conclude that, somewhat surprisingly, this is not the case with k-means cluster-
ing. Using standard default parameters, only one elastic distancemeasure, move–split–merge
(MSM) [67], is significantly better than Euclidean distance, and five of those considered are
significantly worse, including the most popular approach, dynamic time warping (DTW).
The pattern of results is the same if we cluster the raw data or normalise it first. We repeat our

123

A review and evaluation of elastic distance functions… 767

experiments using k-medoids clusterer (see Sect. 5.2) and find that clustering performance is
improved for all distances except Euclidean, and DTW is no longer significantly worse than
ED. With both k-means and k-medoids clusterer, the move–split–merge distance function
[67] performs best. We evaluate whether these results could be an artefact of our clustering
algorithm configuration in Sect. 5.3 by comparing alternative cluster initialisation algorithms
and finding the same pattern of results in all cases. k-means with DTW is a very popular
benchmark for TSCL (for example, see [33]), so the findings in Sect. 5.1 are perhaps counter
to the received wisdom in the community. We investigate the performance of DTW under
additional scenarios in Sects. 5.4.2 and 5.4. We try alternative parameter settings and use an
unsupervised tuning algorithm for thewindow size.We show that reducing thewindow size to
5% improves k-means DTW, but only to the point where it is no longer worse than Euclidean
distance. We also find that tuning does not improve the 5% window performance. We then
explore using dynamic time warping with barycentre averaging (DBA) to improve k-means
[55]. DBA finds centroids by aligning cluster members and averaging over values warped
to each location. We reproduce the reported improvement that DBA brings to DTW with
k-means, but we observe that the improvement is not enough to make it better than Euclidean
distance, and it comes with heavy computational overhead. Finally, we assess whether tuning
our best performing distance functions and find that we cannot on average improve on using
the default parameters. In Sect. 6, we look more closely at the performance of the distance
functions for data with different characteristics. We findMSM does relatively better on prob-
lems with a large number of classes and a larger training set size. We also observe that it does
better in problem domains where we would expect some phase shift within clusters, such as
ECG and electric device power usage problems. Our first conclusion in Sect. 7 is that elastic
distances perform better on the UCR archive when used with k-medoids clusterer rather
than with k-means clustering. Using medoids (data points in the training data) rather than
centroids (averaged cluster members) overcomes the mismatch between simple averaging
and elastic distances that barycentre averaging is designed to mitigate against, but with far
less computational overhead. Our second observation is that MSM is the best performing
distance function on the UCR archive. MSM explicitly penalises longer warpings, and we
observe that all distance functions that do this perform better on the UCR archive. We hope
this work will raise the profile of MSM in the TSCL community.

We have provided optimised scikit-learn compatible Python implementations for the dis-
tances and clusterers in the aeon toolkit,1 and a repository with an associated webpage2

which provides notebooks on using distances and clusterers and contains all our results with
guidance on how to reproduce them.

The remainder of this paper is structured as follows: Sect. 2 describes the general TSCL
problem, provides a brief literature review and gives a detailed description of nine elastic
distance measures used in our experiments. For more general background on clustering, we
direct the reader to [32, 62]. For background into elastic distances for classification, we
recommend [1, 65].

The methodology we use in our experiments is outlined in Sect. 4. The results on UCR
datasets are presented in Sect. 5, and these are further analysed in Sect. 6. Finally, Sect. 7
concludes and signposts the future direction of our research.

1 https://github.com/aeon-toolkit/aeon.
2 https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/
distance_based_clustering.html.

123

https://github.com/aeon-toolkit/aeon
https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/distance_based_clustering.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/distance_based_clustering.html

768 C. Holder et al.

2 Time series clustering background and literature review

Atime series x is a sequenceofm observations, (x1, . . . , xm).Weassumeall series are equal in
length. For univariate time series, xi are scalars and formultivariate time series, xi are vectors.
A time series data set, D = {x1, x2, . . . , xn}, is a set of n time series cases. A clustering
is some form of a grouping of cases. Broadly speaking, clustering algorithms are either
partitional or hierarchical. Partitional clustering algorithms assign (possibly probabilistic)
cluster membership to each time series, usually through an iterative heuristic process of
optimising some objective function that measures homogeneity. Given a dataset of n time
series, D, the partitional time series clustering problem is to partition D into k clusters,
C = {C1,C2, . . . ,Ck} where k is the number of clusters. It is usually assumed that the
number of clusters is set prior to the optimisation heuristic. If k is not set, it is commonly
found through somewrappermethod.We assume k is fixed in advance for all our experiments.

Clustering algorithms can be split into those that work directly with the time series, and
those that employ a transformation to derive features prior to clustering. The focus of this
study is on non-probabilistic partitional clustering algorithms that work directly with time
series.

2.1 Partitional time series clustering algorithms

Partition-based clustering algorithms share the same basic components. Firstly, the algorithm
selects example cases (which we call exemplars) that are meant to characterise a cluster. This
is known as the initialisation stage. After the initial exemplars are selected, an update stage
begins where the exemplars are iteratively refined until some convergence condition is met.

One such partition-based algorithm is k-means [47], also known as Lloyd’s algorithm
[46]. It is the most well-known and popular partitional clustering algorithm, in both standard
clustering and time series clustering. The algorithm uses k centroids as exemplars for each
cluster. A centroid is a summary of the members of a cluster found through the update oper-
ation, which for standard k-means involves averaging each time point over cluster members.
Each case is assigned to the cluster of its closest centroid, as defined by a distance measure.

Many enhancements to the core algorithm have been proposed. One of the most effective
refinements is changing how the exemplars are initialised. By default, the initial centroids for
k-means are chosen randomly, either by randomly assigning cluster membership and then
averaging or by choosing random instances from the training data as initial clusters. However,
this risks choosing centroids that are in fact in the same cluster, making it harder to split
the clusters. To address this problem, forms of restart and selection are often employed. For
example, [13] propose restarting k-means over subsamples of the data and using the resulting
centroids to seed the full run. Another solution is to run the algorithmmultiple times and keep
the model that yields the best result according to some unsupervised performance measure.

k-means assumes the number of clusters, k is set a priori. There are a range of methods
of finding k. These often involve iteratively increasing the number of clusters until some
stopping condition is met. This can involve some form of elbow finding or unsupervised
qualitymeasure, such as the silhouette value [45]. Time series-specific enhancements concern
the distancemetric used and the averaging technique to recalculate centroids.Averaging series
matched with an elastic distance measure will mean that, often, the characteristics that made
the series similar are lost in the centroid. [55] describe an alternative averaging method based
on pairwise DTW. This is described in detail in Sect. 3.8.

123

A review and evaluation of elastic distance functions… 769

k-medoids clusterer is an alternative clustering algorithm which uses cases, or medoids,
as cluster exemplars. One benefit of using instances as cluster centres is that the pairwise
distance matrix of the training data is sufficient to fit the model, and this can be calculated
before the iterative partitioning. This is particularly important when performing the update
operation, which is themain difference between k-means and k-medoids clusterer; k-medoids
clusterer chooses a cluster member as the exemplar rather than average. The medoid is the
case with the minimum total distance to the other members of the cluster. Refinements such
as Partition Around Medoids (PAM) [40] avoid the complete enumeration of total distances
through a swapping heuristic.

Both of our k-means and k-medoids clusterers extend an implementation of the Lloyds
algorithm and employ the same stopping condition. The iterative process stops when cluster
membership does not change, or when the inertia is below a certain tolerance (convergence)
[27]. The inertia is a value that is used to determine how coherent different clusters are and
equals the sum of distances between each case and the centre of its assigned cluster. If the
difference in inertia between two iterations is below the (very small) threshold, convergence
is assumed and the iterations stop.

Partitional clustering algorithms both suffer from the problem of initialising the clusters.
The initialisation problem is twofold: defining the accurate cluster numbers to be generated
from the given dataset and solving the problem of locating the position of initial centroids
[27]. Whist there are numerous proposals on how to select the value of k (for example,
[51] use medoids initialisation, [22] PCA initialisation, [29] propose cluster elimination and
division initialisation), we follow related comparative studies [33] and assume the number of
clusters is known and equal to the number of classes in a classification dataset. The second
problem of finding the initial cluster centres is important because poor initial centres can lead
to convergence to local optima and worse clustering performance [70]. We consider three
commonly used initialisation algorithms in our experimentation.

The most common initialisation technique is random initialisation [47]. This technique
consists of choosing the initial centres randomly from the dataset. The rationale behind this
is that random selection is likely to pick points from dense regions. Rerunning the model
multiple times with random initialisation and taking the best clustering (as measured by
inertia) is the most common way of initialising k-means [14] and is used in the majority of
experiments. However, we also consider Forgy’s method [24] which initialises centres by
assigning each data point in the dataset to k clusters uniformly at random. The centres are
then given by the centroids of these initial clusters. A drawback of this method is it has no
theoretical bases and as such random clusters have no internal homogeneity [5]. Finally, we
consider the k-means++ algorithm [7]. k-means++ tries to disperse the clusters by selecting
to bias towards separate centres. The first centre is randomly selected from the train data.
Subsequent centres are selected with probability inversely proportional to the minimum
distance between cases and previously selected centres. If md(x) denotes the minimum
distance from a case x and previously selected centres, then the probability of selecting x as
the next centre is defined as

md(x)2
∑n

j=1 md(x j)2
. (1)

2.2 Literature review

Our focus is on elastic distances-based clustering, but there are many other approaches to
TSCL. The most popular TSCL approaches are summarised in Fig. 1.

123

770 C. Holder et al.

Fig. 1 Time series clustering taxonomy. The following models are included: K-means [47], K-spectral cen-
troid [69], K-DBA [55], Kernel K-means [21], K-shapes [53], K-multishapes [54], PAM [40], CLARA [36],
CLARANS [52], Alternate [46], DBSCAN [23], HDBSCAN [49], OPTICS [6], BIRCH [73], Agglomera-
tive [35], Feature K-means [59], Feature K-medoids clusterer [59], U-shapelets [71], USSL [72], RSFS [64],
NDFS [43], Deep learning and dimensionality reduction approaches see [39]

The k-Shape algorithm [53] and its extension k-multishapes (k-MS) [54] are a variation
of the k-means algorithm that uses cross correlation to compute the similarity between time
series. Cross-correlation is ameasure of similarity that compares points of time-lagged signals
one to one. k-MS algorithm is a extends k-shapes by computingmultiple centroids per cluster.

K-spectral centroid (KSc) [69] computes the distance between time series using shifted
ranges of lags with k-means. Kernel k-means [21] operates in the ReproducingKernel Hilbert
Space associatedwith the chosen kernel. Further kernel based techniques include using Fisher
kernels with hidden Markov models [68].

Similarity-based techniques for TSCL will compute similarity based on raw time series.
However, working with raw time series is a non-trivial task due to the challenges that raw
time series present (high dimensionality, missing values, variable length, etc.).

Another common way to cluster time series is to perform some form of feature extraction
and then cluster the features. For example, [59] used a standard k-means clusterer on statistical
features (skew, standard deviations, mean etc.) extracted from an electricity usage time series
dataset. k-medoids clusterer has also been used with features extracted from time series
using piecewise aggregate approximation [41]. Further unique feature extraction techniques
specifically designed for TSCL include u-shapelets [71], Unsupervised Salient Subsequence
Learning (USSL) [72], robust spectral learning for unsupervised feature selection (RSFS)
[64] and nonnegative discriminative feature selection (NDFS) [43].

Finally, one of the most recent developments in the TSCL is the use of deep learning. A
good review of deep learning-based time series clustering is found in [39].

3 Time series distancemeasures

Suppose we want to measure the distance between two equal lengths, univariate time series,
a = {a1, a2, . . . , am} and b = {b1, b2, . . . , bm}. The Euclidean distance ded is the L2 norm
between series,

123

A review and evaluation of elastic distance functions… 771

Table 1 List of the ten distance
functions reviewed

Distance Acronym Definition

Euclidean distance ED Eq.2

Dynamic time warping [58] DTW Sect. 3.1

Derivative DTW [37] DDTW Sect. 3.2

Weighted DTW [34] WDTW Sect. 3.3

Derivative WDTW DWDTW Sect. 3.3

Longest common subsequence LCSS Sect. 3.4

Edit distance with real penalty [16] ERP Sect. 3.6

Edit distance on real sequences [17] EDR Sect. 3.5

Move–split–merge [67] MSM Sect. 3.7

Time warp edit [48] TWE Sect. 3.7

ded(a,b) =
√
√
√
√

m∑

i=1

(ai − bi)2. (2)

ded is a standard starting point for distance-based analysis. It puts no priority on the ordering
of the series and, when used in TSC, is a poor benchmark for distance-based algorithms and a
very long way from state of the art [50]. Elastic distance measures allow for possible error in
offset by attempting to optimally align two series based on distorting indices or editing series.
These have been shown to significantly improve k-nearest neighbour classifiers in comparison
with ded [44]. Our aim is to see if we observe the same improvement with clustering. Table 1
lists the ten distance functions we describe.

3.1 Dynamic time warping

Dynamic time warping (DTW) [58] is the most widely researched and used elastic distance
measure. It mitigates distortions in the time axis by realigning (warping) the series to best
match each other. Let M(a,b) be the m ×m pointwise distance matrix between series a and
b, where Mi, j = (ai − b j)

2. A warping path

P =< (e1, f1), (e2, f2), . . . , (es, fs) >

is a set of pairs of indices that define a traversal of matrix M . A valid warping path must
start at location (1, 1), end at point (m,m) and not backtrack, i.e. 0 ≤ ei+1 − ei ≤ 1 and
0 ≤ fi+1 − fi ≤ 1 for all 1 < i < m. The DTW distance between series is the path through
M that minimises the total distance. The distance for any path P of length s is

DP (a,b, M) =
s∑

i=1

Mei , fi . (3)

If P is the space of all possible paths, the DTW path P∗ is the path that has the minimum
distance, and hence, the DTW distance between series is

ddtw(a,b) = DP∗(a,b, M). (4)

123

772 C. Holder et al.

Fig. 2 Two most common bounding techniques [57]

The optimal warping path P∗ can be found exactly through a dynamic programming
formulation described in Algorithm 1. This can be a time-consuming operation, and it is
common to put a restriction on the amount ofwarping allowed. Figure2describes the twomost
frequently used bounding techniques, the Sakoe–Chiba band [61] and Itakura parallelogram
[30]. InFig. 2, each individual square represents an element ofmatrixM .Applying a bounding
constraint (represented by the darker squares in Fig. 2) reduces the required computation.
The Sakoe–Chiba band creates a warping path window that has the same width along the
diagonal of M . The Itakura parallelogram allows for less warping at the start or end of the
series than in the middle. Algorithm 1 assumes a Sakoe–Chiba band.

Algorithm 1 DTW (a,b, (both series of length m), w (window proportion, default value
w ← 1), M (pointwise distance matrix))
1: Let C be an (m + 1) × (m + 1) matrix initialised to zero, indexed from zero.
2: for i ← 1 to m do
3: for j ← 1 to m do
4: if |i − j | < w · m then
5: Ci, j ← Mi, j + min(Ci−1, j−1,Ci−1, j ,Ci, j−1)

return Cm,m

The DTW distance with Sakoe–Chiba window w can be expressed as Eq.5.

ddtw(a,b) = DP∗(a,b, M) = DTW (a,b, w, M). (5)

More general bands can be imposed in implementation by setting values outside the band
in the matrix, M , to infinity. Figure3 helps explain how the DTW calculations are arrived
at. Euclidean distance is simply the sum of the diagonals of the Matrix M , in Fig. 3a. DTW
constructs C using M and previously found values. For example, C1,1 = M1,1 = 0.6 and
C1,2 is the minimum ofC1,1,C0,1 andC0,2 plus M1,2.C0,2 andC0,1 are initialised to infinity,
so the best path to get to C1,2 has distance C1,1 + M1,2 which equals 0.6+5.25 = 5.85.
Similarly, cell C10,10 is the minimum of the three cells C9,9,C10,9,C9,10 plus the pointwise
distance M10,10. The optimal path is the trace back through the minimum values (shown in

123

A review and evaluation of elastic distance functions… 773

Fig. 3 An example of Euclidean and DTW distance functions for two series. The left hand matrix, (a), is the
pointwise distance between the series (matrix M in Equation 5). The Euclidean distance is the sum of the
diagonal path. The right hand matrix, (b), shows the DTW distances (matrixC in Equation 5) and the resulting
warping path when the window size is unconstrained

Fig. 4 An example of constraining the DTW window. Using the same series as Figure 3, (a) shows the DTW
distance matrix when using a bounding window that constrains warping to 20% of the series. (b) shows the
resulting alignment

white in Fig. 3b). Figure4 gives a demonstration of the effect of constraining the warping
path on DTW using the same two series from Fig. 3. The relatively extreme warping from
point 0 to point 5 evident in Fig. 3a is constrained when the maximum warping allowed is 2
places (w = 0.2) in Fig. 4.

123

774 C. Holder et al.

3.2 Derivative dynamic time warping

Keogh and Pazzani [37] proposed a modification of DTW called derivative dynamic time
warping (DDTW) that first transforms the series into a differential series. The difference
series of a, a′ = {a′

2, a
′
3, . . . , a

′
m−1} where a′

i is defined as the average of the slopes between
ai−1 and ai and ai and ai+1, i.e.

a′
i = (ai − ai−1) + (ai+1 − ai−1)/2

2
(6)

for 1 < i < m. The DDTW is then simply the DTW of the differenced series,

dddtw(a,b) = ddtw(a′,b′). (7)

3.3 Weighted dynamic time warping

A weighted form of DTW (WDTW) was proposed by [34]. WDTW adds a multiplicative
weight penalty based on the warping distance between points in the warping path. It is a
smooth alternative to the cut-off point approach of using a warping window. When creating
the distance matrix M , a weight penaltyw(|i− j |) for a warping distance of |i− j | is applied,
so that

Mw
i, j = w(|i − j |) · (ai − b j)

2. (8)

A logistic weight function is proposed in [34], so that a warping of a places imposes a
weighting of

w(a) = wmax

1 + e−g·(a−m/2)
(9)

where wmax is an upper bound on the weight (set to 1), m is the series length and g is a
parameter that controls the penalty level for large warpings. The larger g is, the greater the
penalty for warping. Note that WDTW does not benefit from the reduced search space a
window induces. The WDTW distance is then

dwdtw(a,b) = DP∗(a,b, Mw) = DTW (a,b, Mw). (10)

Figure5 shows the warping resulting from two parameter values. For this example, g = 0.2
gives the same warping as full window DTW, but g = 0.3 is more constrained.

We also investigate the derivative weighted distance (WDDTW),

dwddtw(a,b) = dwdtw(a′,b′). (11)

3.4 Longest common subsequence

DTW is usually expressed as a mechanism of finding an alignment so that points are warped
onto each other to form a path. An alternative way of looking at the process is as a mecha-
nism of forming a common series between the two input series. With this view, the warping
operation can be seen as inserting a gap in one series or removing an element from another
series. This way of thinking derives from approaches for aligning sequences of discrete vari-
ables, such as strings or DNA. The Longest Common Subsequence (LCSS) distance for time
series is derived from a solution to the problem of finding the longest common subsequence
between two discrete series through edit operations. For example, if two discrete series are

123

A review and evaluation of elastic distance functions… 775

Fig. 5 Examples of the weighted DTW cost matrix C and resulting alignment for two weight parameters

abaacb and bcacab, the LCSS is baab. Unlike DTW, the LCSS does not provide a path
from (1, 1) to (m,m). Instead, it describes edit operations to form a final sequence, and these
operations are given a certain cost. So, for example, to edit abaacb into the LCSS baab
requires two deletion operations. For DTW, you can then think of the choice between the
threewarping paths in line 5 of Eq.5 asCi−1, j being a deletion in seriesb,Ci, j−1 as a deletion
in series a andCi−1, j−1 as a match. The warping path shown in Fig. 4 is a sequence of pairs<

(1, 1), (2, 1), (3, 2), (4, 3), (4, 4), (5, 5), (6, 5), (7, 5), (8, 6), (8, 7), (8, 8), (8, 9), (9, 10),
(10, 10) > can instead be expressed as an edited series < (1, 1), (3, 2), (4, 3), (5, 5),
(8, 6), (9, 10) >. With this representation the warping operations are in fact deletions (or
gaps) in series a in positions 2, 6, 7 and 10 and in b in positions 4, 7, 8 and 9. With discrete
series, the matches in the common subsequence have the same value. Thus, each pair in the
subsequence would be, for example, a letter in common for the two series. Obviously, actual
matches in real-valued series will be rare. The discrete LCSS algorithm can be extended to
consider real-valued time series by using a distance threshold ε, which defines the maximum
difference between a pair of values that is allowed for them to be considered a match. The
length of the LCSS between two series a and b can be found using Algorithm 2. If two cells
are considered the same (line 4), the previously considered LCSS is increased by one. If not,
then the LCSS seen so far is carried forward.

Algorithm 2 LCSS (a,b , (both series of length m), ε (equality threshold))
1: Let L be a (m + 1) × (m + 1) matrix initialised to zero, indexed from zero.
2: for i ← 1 to m do
3: for j ← 1 to m do
4: if |ai − b j | < ε then
5: Li, j ← Li−1, j−1 + 1
6: else
7: Li, j ← max(Li−1, j , Li, j−1)

return Lm,m

123

776 C. Holder et al.

Fig. 6 An example of the LCSS
cost matrix with ε = 1, where the
white cells are members of the
LCSS

Fig. 7 EDR and ERP example paths

The LCSS distance between a and b is

dLCSS(a,b) = 1 − LCSS(a,b)

m
. (12)

Figure 6 shows the cost match between our two example series. The longest sequence of
matches is seven. These are the pairs < (2, 1), (3, 2), (4, 4), (5, 5), (6, 8), (8, 8), (9, 10) >.

3.5 Edit distance on real sequences (EDR)

LCSSwas adapted in [17], where the edit distance on real sequences (EDR) is described. Like
LCSS,EDRuses a distance threshold to definewhen two elements of a seriesmatch.However,
rather than count matches and look for the longest sequence, ERP applies a (constant) penalty
for non-matching elements where deletions, or gaps, are created in the alignment. Given a

123

A review and evaluation of elastic distance functions… 777

distance threshold, ε, the EDR distance between two points in series a and b is given by
Algorithm 3. The EDR distance between a and b is then defined by Eq.13.

Algorithm 3 EDR (a,b , (both series of length m), ε (equality threshold)
1: Let E be an (m + 1) × (m + 1) matrix initialised to zero, indexed from zero.
2: for i ← 1 to m do
3: for j ← 1 to m do
4: if |ai − b j | < ε then
5: c ← 0
6: else
7: c ← 1
8: match ← Ei−1, j−1 + c
9: insert ← Ei−1, j + 1
10: delete ← Ei, j−1 + 1
11: Ei, j ← min(match, insert, delete)

return Em,m

dEDR(a,b) = EDR(a,b, w, ε) (13)

At any step, elastic distances can use one of three costs: diagonal, horizontal or vertical, in
forming an alignment. In terms of forming a subsequence from series a, we can characterise
these as operations such as match (diagonal), deletion (horizontal) and insertion (vertical).
Insertion toa can also be characterised as deletion fromb, butwe retain thematch/delete/insert
terminology for consistency and clarity. EDRdoes not satisfy triangular inequality, as equality
is relaxed by assuming elements are equal when the distance between them is less than or
equal to ε. EDR is very similar to LCSS, but it directly finds a distance rather than simply
counting matches, thus removing the need for the subtraction in Eq.12. The resulting cost
matrix shown in Fig. 7a can easily be used to find either an alignment path or a common
subsequence. EDR then characterises the three operations in DTW

3.6 Edit distance with real penalty (ERP)

An alternative to EDR was proposed in [16], where edit distance with real penalty (ERP)
was introduced. LCSS produces a subsequence that can have gaps between elements. For
example, there is a gap between (3,2) and (4,4) in the subsequence shown in Fig. 6. ERP
imposes a penalty for when gaps occur based on the distance to a constant parameter g. ERP
uses d(a, b) = √

((a − b)2) for the pointwise distance rather than d(a, b) = (a − b)2 used
to find M for DTW. ERP calculates a cost matrix E that is more like DTW than LCSS:
it describes a path alignment of two series based on edits rather than warping. The ERP
distance between two series is described in Algorithm 4. The edge terms are initialised to a
large constant value (lines 5 and 7). The cost matrix E is then either the cost of matching,
Ei−1, j−1 + d(ai , b j), where d(ai , b j) is the distance between two points or the cost of an
inserting/deleting a term on either axis (Ei−1, j + d(ai , g) or Ei, j−1 + d(g, b j)). The ERP
distance between a and b is given by Eq.14.

dERP(a,b) = ERP(a,b, g, d) (14)

ERP satisfies triangular inequality and is a metric. Figure7b shows the cost matrix and
resulting alignment for our example series with g = 0. E1,1 is 0.774, which is simply the

123

778 C. Holder et al.

Algorithm 4 ERP (a,b (both series of length m), g, (penalty value), d , (pointwise distance
function))
1: Let E be an (m + 1) × (m + 1) matrix initialised to zero, indexed from zero.
2: for i ← 1 to m do
3: for j ← 1 to m do
4: if i = 0 then
5: Ei, j ← ∑m

k=1 d(bk , g)
6: else if j = 0 then
7: Ei, j ← ∑m

k=1 d(ak , g)
8: else
9: match ← Ei−1, j−1 + d(ai , b j)
10: insert ← Ei−1, j + d(ai , g)
11: delete ← Ei, j−1 + d(g, b j)
12: Ei, j ← min(match, insert, delete)

return Em,m

Fig. 8 MSM and TWE example paths

square root ofM1,1. E2,1 is theminimumof the two edge cases to the left (large constants) and
E1,1+d(b1, g), where b1 = 0.42, so d(0.17, 1) = 0.97.Hence, E2,1 = 0.774+0.424 = 1.2.

3.7 Move–split–merge (MSM)

cost(x, y, z, c) =
{
c if y ≤ x ≤ z or y ≥ x ≥ z
c + min(|x − y|, |x − z|) otherwise. (15)

Move–split–merge (MSM) [67] is a distance measure that is conceptually similar to ERP.
The core motivation for MSM is that the cost of insertion/deletion in ERP are based on the
distance of the value from some constant value, and thus it prefers inserting and deleting
values close to g compared to other values. Algorithm 5 shows that the major difference is
in the deletion/insertion operations on lines 10 and 11. The move operation in MSM uses
the absolute difference rather than the squared distance for matching in ERP. Insert cost in

123

A review and evaluation of elastic distance functions… 779

Algorithm 5MSM(a,b (both series of length m), c (minimum cost), d , (pointwise distance
function))
1: Let D be an m × m matrix initialised to zero.
2: D1,1 = d(a1, b1)
3: for i ← 2 to m do
4: Di,1 = Di−1,1 + cost(ai , ai−1, b1, c)

5: for i ← 2 to m do
6: D1,i = D1,i−1 + cost(bi , a1, b + i − 1, c)

7: for i ← 2 to m do
8: for j ← 2 to n do
9: match ← Di−1, j−1 + d(ai , b j)
10: insert ← Di−1, j + cost(ai , ai−1, b j , c)
11: delete ← Di, j−1 + cost(b j , b j−1, ai , c)
12: Di, j ← min(match, insert, delete)

return Dm,m

ERP d(ai , g) is replaced by split operation C(ai , ai−1, b j , c), where C is the cost function
given in Eq.15. If the value being inserted, b j , is between the two values ai and ai−1 being
split, the cost is a constant value c. If not, the cost is c plus the minimum deviation from
the furthest point ai and the previous point ai−1 or b j . The delete cost of ERP d(g, b j) is
replaced by the merge cost C(b j , b j−1, ai , c), which is simply the same operation on the
second series. Thus, the cost of splitting and merging values depends on the value itself and
adjacent values, rather than treating all insertions and deletions equally as with ERP. The
MSM distance between a and b is given by Eq.16 and illustrated in Fig. 8b. MSM satisfies
triangular inequality and is a metric.

dMSM(a,b) = MSM(a,b, c) (16)

3.7.1 Time warp edit (TWE)

Introduced in [48], time warp edit (TWE) distance is an elastic distance measure described in
Algorithm 6. It encompasses characteristics from both warping and editing approaches. The
warping, called stiffness, is controlled by a parameter ν. Stiffness enforces a multiplicative
penalty on the distance between matched points in a way that is similar to WDTW, where
ν = 0 gives no warping penalty. The stiffness is only weighted this way when considering
the match option (line 11). For the delete and insert operations (lines 12 and 13), a constant
stiffness (ν) and edit (λ) penalty are applied since the warping is considered from consecutive
points in the same series. An example is shown in Fig. 8a.

dTWE(a,b) = TWE(a,b, ν, λ) (17)

A summaryof distance functionparameters and their default values in our implementations
is given in Table 2. DTW is sensitive to the window parameter [19] and large windows can
cause pathological warpings. Based on experimental results [58], we set the default warping
window to 0.2. WDTW uses a default scale parameter value for g of 0.05, based on results
reported in [34]. LCSS and EDR both have an ε parameter that is a threshold for similarity.
If the difference in two random variables is below ε, the observations are considered a
match. The variability in parameter effects depending on the values of the series is one of
the arguments for normalising all series. We set the default ε to 0.05. MSM has a single
parameter, c, to represent the cost of the move–split–merge operation. This is set to 1 based

123

780 C. Holder et al.

Algorithm 6 TWE(a,b (both series of length m), λ (edit cost), ν (warping penalty factor),
d , (pointwise distance function))
1: Let D be an m + 1 × n + 1 matrix initialised to 0
2: D0,0 = 0
3: for i ← 1 to m do
4: Di,0 = ∞
5: D0,i = ∞
6: for i ← 1 to m do
7: for j ← 1 to n do
8: match = D(i − 1, j − 1) + d(ai , b j) + d(ai−1, b j−1) + 2ν(|i − j |)
9: delete = D(i − 1, j) + d(ai , ai−1) + λ + ν

10: insert = D(i, j − 1) + d(b j , b j−1) + λ + ν

11: D(i, j) =min(match, insert, delete)
return D(m, n)

Table 2 Summary of distance functions, their parameters and the default values

Acronym Metric Parameters Default

DTW (Eq.5) No Window w ∈ [0, 1] w = 0.2

DDTW (Eq.7) No Window w ∈ [0, 1] w = 0.2

WDTW (Eq.10) No g ∈ [0,∞) g = 0.05

DWDTW (Eq.11) No g ∈ [0,∞) g = 0.05

LCSS (Eq.12) No xε ∈ [0, ∞) ε = 0.05

ERP (Eq.14) Yes g ∈ [0 . . . 1] g = 0.05

EDR (Eq.13) No ε ∈ [0, ∞) ε = 0.05

MSM (Eq.16) Yes c ∈ [0,∞) c = 1

TWE (Eq.17) Yes ν, λ ∈ [0, ∞) ν = 0.05, λ = 1

on the original paper. TWE λ is analogous to the c parameter in MSM, so we also set it to
one, whereas ν is related to the weighting parameter of WDTW, so we set it to 0.05.

3.8 Averaging time series

k-means clustering requires characterising a set of time series to form an exemplar. The
standard approach for k-means is simply to find the mean of the current members of a cluster
over time points. This is appropriate if the distance function is Euclidean distance since
the average centroid is the series with the minimal Euclidean distance to members of the
cluster. However, if cluster membership is assigned based on an elastic distance measure, the
average centroid may misrepresent the elements of a cluster; it is unlikely to be the series that
minimises the elastic distance to cluster members. Dynamic time warping with barycentre
averaging (DBA) [55] (see Algorithm 7) was proposed to overcome this limitation in the
context of DTW.

DBA is a heuristic to find a series that minimises the elastic distance to cluster members
rather than the Euclidean distance. Starting with some initial centre, DBA works by first
finding the warping path of series in the cluster onto the centre. It then updates the centre,
by finding which points were warped onto each element of the centre for all elements of the
cluster, then recalculating the centre as the average of these warped points.

123

A review and evaluation of elastic distance functions… 781

Algorithm 7 DTW Barycentre Averaging (c, the initial average sequence, Xp, p time series
to average.
1: Let dtw_path be a function that returns the a list of tuples that contain the indexes of the warping path

between two time series.
2: Let W be a list of empty lists, where Wi stores the values in Xp of points warped onto centre point ci .
3: for x ∈ Xp do
4: P ← dtw_path(x, c)
5: for (i, j) ∈ P do
6: Wi ← WiUx j
7: for i ← 1 to m do
8: ci ← mean(Wi)

return c

Suppose function f (a,b) returns the warping path of indexes

P =< (e1, f1), (e2, f2), . . . , (es, fs) >

generated by dynamic time warping. Given an initial centre c =< c1, . . . , cm >, DBA is
described by Algorithm 7. It warps each series onto c (line 4), then from the warping path
associates the value in the series with the value in the barycentre (lines 5 and 6). Once finished
for all series, the average of values warped to each index of the centroid is taken. This is
meant to better characterise the cluster members in the iterative partitioning of algorithms.

4 Methodology

Guided by related research, we specify the data we use, how we handle the data and the
performance measures and hypothesis tests used to compare algorithms.

4.1 Data

We experiment with time series data in the University of California, Riverside (UCR) archive
[18].3 We restrict our attention to univariate time series, and in all experiments, we use 112
of the 128 datasets from the UCR time series archive. We exclude datasets containing series
of unequal length or missing values. We also remove the Fungi data, which only provides a
single train case for each class label. We report results using the six performance measures
described in Sect. 4.2 on both the training sample and the test set.

Using the class labels to assess performance on some of these data may be unfair. For
some problems, clustering algorithms naturally find clusters that are independent of the class
labels but are nevertheless valid. For example, the GunPoint data set was created by a man
and a woman drawing a gun from their belt or pretending to draw a gun. The class labels are
Gun/No Gun. However, many clusterers find the Man/Woman clusters rather than Gun/No
Gun. Without supervision, this is a perfectly valid clustering, but it will score approximately
50% accuracy since the man and woman cases are split evenly between Gun/No Gun. This
is an inherent problem with attempting to evaluate exploratory, unsupervised algorithms by
comparing them with what we know to be true a priori: if a clustering simply finds what we
already know, its utility is limited. Furthermore, as observed in [39], some of the datasets

3 https://timeseriesclassification.com/.

123

https://timeseriesclassification.com/

782 C. Holder et al.

Table 3 Six clustering
performance measures used in
experimentation

Measure Acronym

Clustering accuracy CL-ACC

Rand index RI

Adjusted Rand index ARI

Mutual information MI

Adjusted mutual information AMI

Davies–Bouldin score DB

have the same time series but with different labels. We aim to mitigate against these problems
by using a large number of problems.

There are further problems with using the UCR data for algorithm analysis (see [26]):
many of the data have been preprocessed with expert knowledge; the train/test sets have
been hand crafted in some instances; there are no missing values in the data we use; all data
are sampled at the same frequency; and the train sets are relatively small and the types of
problem represent the research interests of the contributors. It is not a perfect model of the
real world, nor representative of the type of problem faced bymany data scientists in practice.
Nevertheless, these faults should be put in context of the wider machine learning research. It
is still common to see papers use the same 20 datasets from the UCI archive that have been
employed since last century. We believe that bake offs using the UCR data still have value,
but that we should continue to look to expand and diversify the archive.

4.2 Clusteringmetrics

Table 3 summarises the 6 performancemeasuresweuse in our evaluation.Clustering accuracy
(CL-ACC), like classification accuracy, is the number of correct predictions divided by the
total number of cases. To determine whether a cluster prediction is correct, each cluster has
to be assigned to its best matching class value. This can be done naively, taking the maximum
accuracy from every permutation of cluster and class value assignment Sk .

CL-ACC(y, ŷ) = max
s∈Sk

1

|y|
|y|∑

i=1

{
1, yi = s(ŷi)

0, otherwise
(18)

Checking every permutation like this is prohibitively expensive, however, and can be done
more efficiently using combinatorial optimisation algorithms for the assignment problem. A
contingency matrix of cluster assignments and class values is created and turned into a cost
matrix by subtracting each value of the contingencymatrix from themaximumvalue. Clusters
are then assigned using an algorithm such as the Hungarian algorithm [38] on the cost matrix.
If the class value of a case matches the assigned class value of its cluster, the prediction is
deemed correct, else it is incorrect. As classes can only have one assigned cluster each, all
cases in unassigned clusters due to a difference in a number of clusters and class values are
counted as incorrect.

The Rand index (RI) works by measuring the similarity between two sets of labels. This
could be between the labels produced by different clustering models (thereby allowing direct
comparison) or between the ground truth labels and those the model produced. The rand
index is the number of pairs that agree on a label divided by the total number of pairs.

123

A review and evaluation of elastic distance functions… 783

One of the limiting factors of RI is that the score is inflated, especially when the number
of clusters is increased. The adjusted Rand index (ARI) compensates for this by adjusting
the RI based on the expected scores on a purely random model.

The mutual information (MI) is a function that measures the agreement of the two clus-
terings or a clustering and a true labelling, based on entropy. Normalised mutual information
(NMI) rescales MI onto [0, 1], and adjusted mutual information (AMI) adjusts the MI to
account for the class distribution.

The Davies–Bouldin index is an unsupervised measure we employ for tuning clusterers.
It compares the between cluster variation with the inter cluster variation, with a higher score
awarded to a clustering where there is good separation between clusters.

4.3 Related clustering comparisons

There have been several reviews and summaries of the TSCL field that compare algorithms
on the UCR datasets, and we use these to guide our methodology. [9] compares five DTW
and ED clusterers on 5 UCR datasets using the Rand Index. [33] compared eight variants
of k-means, k-medoids clusterer and density peaks on the same 112 UCR data we also use.
They combined train and test data, used raw series and evaluated algorithmswith the adjusted
Rand index. [2, 4] and [3] are literature reviews for TSCL that do not include results. [72]
compares 10 clusterers on 36 time series from the UCR archive. They use Rand index and
normalised mutual information to compare algorithms. They used the provided train and test
splits on the raw data. [39] compared a range of deep learning-based algorithms on the UCR
data using normalised mutual information, adjusted Rand index and accuracy as assessment
criteria.

There are two important decisions to make about experimental design: whether to nor-
malise all series to zero mean and unit variance and whether to merge the train and test data
or train and test on separate data samples. The issue of whether to always normalise is an
open question for TSC, since some discriminatory features may be in the scale or variance.
Some argue that normalisation should always occur. For example, a 2012 paper that has been
cited over 1000 times states that “In order to make meaningful comparisons between two time
series, both must be normalised” [56]. However, in TSC whether to normalise or not is often
treated as a parameter. We wish to control as many factors as possible in our experiments, so
we perform identical experiments with both raw and normalised data.

Evaluating on unseen test data is essential for any classification comparison. The issue
is less clear cut with clustering, which is used more as an exploratory tool than a predictive
model. Many comparative studies (e.g. [33]) have combined the train and test data and
performed evaluation on a single data set. More recent research has followed the required
protocol for classification of evaluating estimators on data not used in training (e.g. [39]). We
perform all training on the default train split provided in the archive and present the results
on both the train set and test set. We have implemented the distance functions and clustering
algorithms in the aeon toolkit. Details of the implementation and guidance on reproducing
results are provided in “Appendix A”.

To compare multiple clusterers on multiple datasets, we use the rank ordering of the algo-
rithms for any given performance measure. We use an adaptation of the critical difference
diagram [20], replacing the post hoc Nemenyi test with a comparison of all classifiers using
pairwise Wilcoxon signed-rank tests, and cliques formed using the Holm correction recom-
mended by [11, 25]. We use α = 0.05 for all hypothesis tests. Critical difference diagrams
such as those shown in Fig. 9 display the algorithms ordered by the average rank of the statis-

123

784 C. Holder et al.

tic in question and the groups of algorithms between which there is no significant difference
(cliques). So, for example, in Fig. 9c, MSM has the lowest average rank of 3.8973 and is not
in a clique, so has significantly better ARI than the other algorithms. TWE, ERP, WDTW
and ED are all grouped into a clique, which means there is no pairwise significant difference
between them. LCSS, EDR, WDDTW and DTW form another clique, and DDTW is signif-
icantly worse than all other algorithms (Fig. 10). For consistency with some of the related
research, Fig. 11 shows the same results on train data. The pattern of results is the same as
on the test data, although there is less significance in the results.

5 Results

We report a sequence of five sets of experiments designed to detect differences in perfor-
mance between distance functions and between the two clustering algorithms, k-means and
k-medoids clusterer. Firstly, in Sect. 5.1 we compare k-means clustering using 10 different
distance functions. Secondly, in Sect. 5.2 we report the equivalent k-medoids clusterer results
and we address the question of whether the same pattern of performance seen in k-means
is observable in k-medoids clusterer. We also assess whether k-medoids clusterer is more
effective than k-means on the UCR data. We conduct experiments in Sects. 5.1 and5.2 on
both normalised and raw data. Thirdly, in Sect. 5.3 we evaluate the relative effect of the clus-
tering initialisation algorithm on the performance of the distance functions. Next, in Sect. 5.4
we investigate the performance of DTW in more detail, exploring the effect of the warping
window on the clustering. Finally, in Sect. 5.5 we see whether we can improve performance
through tuning distance parameters.

5.1 Elastic distances with k-means

The first set of experiments involves comparing alternative distance functions with k-means
clustering using the arithmetic mean of series to find the centroids. Our primary aim is to
investigate whether there are any significant differences between the measures when used
on the UCR univariate classification datasets with both raw and normalised data. For each
experiment, we ran k-means clustering with the default aeon parameters (random initiali-
sation, maximum 300 iterations, 10 restarts, centroid averaging method is the mean) with
Euclidean distance and the nine elastic distance measures, set up with the default parameters
listed in Table 2. Figure9 shows the summarised results on the test data using normalised
data. Figure10 displays the same results found using the raw data. Full results are available
on the accompanying website, and implementation details with code examples are provided
in “Appendix A” and on the associated GitHub repository.

The two derivative approaches are both significantly worse than their alternatives using
the raw data, suggesting that clusters in the time domain better reflect the true classes. LCSS
and EDR also perform poorly on all tests. This implies the simple edit thresholding is not
sensitive enough to find clustering that represents the class labels. The best overall performing
measures are MSM and TWE. These measures are similar, in that they combine elements of
both warping and editing.

123

A review and evaluation of elastic distance functions… 785

10 9 8 7 6 5 4 3 2 1

4.0045 msm
4.6473 wdtw
4.6652 twe
4.9152 erp
4.9688 ed5.933dtw

5.9688wddtw
6.3795edr
6.4152lcss
7.1027ddtw

10 9 8 7 6 5 4 3 2 1

4.1071 msm
4.5759 twe
4.7232 wdtw

4.75 ed
5.1339 erp5.9821wddtw

6.0179edr
6.125dtw
6.3214lcss
7.2634ddtw

)IR(xednIdnaR)b(ycaruccA)a(

10 9 8 7 6 5 4 3 2 1

3.8973 msm
4.7589 twe
4.8571 erp
4.8616 wdtw
4.9777 ed5.7946dtw

5.9286wddtw
6.2768edr
6.5893lcss
7.058ddtw

10 9 8 7 6 5 4 3 2 1

3.4911 msm
4.1027 twe
4.3795 ed
4.7188 wdtw
4.9286 erp5.8973dtw

6.308wddtw
6.6786edr
7.0134lcss
7.4821ddtw

(c) Adjusted RI (d) Mutual Information (MI)

10 9 8 7 6 5 4 3 2 1

3.6696 msm
4.5893 twe
4.8393 wdtw
4.8438 ed
4.8929 erp5.7009dtw

6.0491wddtw
6.6295edr
6.7232lcss
7.0625ddtw

10 9 8 7 6 5 4 3 2 1

3.5982 msm
4.2991 twe
4.5402 ed
4.7277 wdtw
4.9688 erp5.7232dtw

6.1027wddtw
6.5804edr
7.0759lcss
7.3839ddtw

(e) Adjusted MI (f) Normalised MI

Fig. 9 Critical difference diagrams for k-means clustering using nine different elastic distance functions on
112 normalised UCR problems (normalised data) using six performance measures. Results are on the test data

5.2 Elastic distances with k-medoids clusterer

Using standard centroids means that the averaging method is not related to the distance
measure used unless employing Euclidean distance. This disconnect between the clustering
stages may account for the poor performance of many of the distance measures, in particular
relative to k-means with Euclidean distance. Figure12 shows the ranked performance sum-
mary for ten distance measures using k-medoids clusterer rather than k-means. The pattern
of performance is broadly the same as with k-means (Fig. 9) with some notable differences:
DTW is now no longer worse than Euclidean; ERP performs much better, and there is no
overall difference between ERP, TWE and MSM as the top performing algorithms. The top
performing distance functions all involve an explicit penalty for warping. As with k-means,
this indicates that regularisation on path length produces better clusters on average. Figure13
shows the equivalent results when using the raw data.

Also of interest is the relative performance between k-means and k-medoids clusterer.
Table 4 lists the average accuracy over all problems of k-means, k-medoids clusterer and

123

786 C. Holder et al.

Ta
bl
e
4

A
cc
ur
ac
y
an
d
D
av
ie
s–
B
ou

ld
in

av
er
ag
ed

ov
er

11
2
pr
ob

le
m
s
fo
r
k-
m
ea
ns

an
d
k-
m
ed
oi
ds

cl
us
te
ri
ng

on
no
rm

al
is
ed

da
ta

A
cc
ur
ac
y

D
av
ie
s–
B
ou
ld
in

D
is
ta
nc
e

k-
M
ea
ns

(%
)

k-
m
ed
oi
ds

cl
us
te
re
r
(%

)
D
if
fe
re
nc
e
(%

)
k-
M
ea
ns

k-
m
ed
oi
ds

cl
us
te
re
r

D
if
fe
re
nc
e

M
SM

54
.1
6

55
.6
9

1.
54

2.
43

4
4.
00

2
1.
56

8

T
W
E

52
.8
5

55
.6
3

2.
78

2.
33

7
3.
52

6
1.
18

9

E
R
P

50
.8
9

54
.8
3

3.
94

2.
81

1
3.
88

7
1.
07

6

W
D
T
W

52
.2
5

53
.5
8

1.
33

2.
43

7
3.
44

7
1.
01

D
T
W

49
.0
8

52
.9
6

3.
88

2.
60

2
3.
98

2
1.
38

E
D

51
.7
8

51
.4
0

−0
.3
8

2.
23

6
2.
36

6
0.
13

D
D
T
W

42
.5
7

50
.2
2

7.
65

3.
86

6
6.
07

3
2.
20

7

W
D
D
T
W

46
.9
9

49
.5
5

2.
57

4.
65

3
5.
55

1
0.
89

8

L
C
SS

45
.7
6

49
.8
8

4.
13

5.
62

4
6.
46

7
0.
84

3

E
D
R

45
.2
0

49
.7
0

4.
50

6.
71

1
6.
93

6
0.
22

5

B
ol
d
in

th
e
ta
bl
e
ar
e
th
e
be
st
pe
rf
or
m
in
g
al
go

ri
th
m

123

A review and evaluation of elastic distance functions… 787

10 9 8 7 6 5 4 3 2 1

4.0607 msm
4.6822 wdtw
4.715 twe
4.729 erp

4.9579 ed5.8785dtw
5.9159wddtw
6.3458edr
6.4673lcss
7.2477ddtw

10 9 8 7 6 5 4 3 2 1

4.2477 msm
4.5561 twe
4.6262 ed
4.6636 wdtw
4.8645 erp5.9579wddtw

6.0187dtw
6.1776edr
6.4907lcss
7.3972ddtw

)IR(xednIdnaR)b(ycaruccA)a(

10 9 8 7 6 5 4 3 2 1

4.1028 msm
4.6822 wdtw
4.715 erp

4.8131 twe
4.9953 ed5.6916dtw

6wddtw
6.2336edr
6.528lcss
7.2383ddtw

10 9 8 7 6 5 4 3 2 1

3.5888 msm
4.0701 twe
4.3131 ed
4.715 erp

4.8037 wdtw5.9065dtw
6.2617wddtw
6.7804edr
6.9486lcss
7.6121ddtw

(c) Adjusted RI (d) Mutual Information (MI)

10 9 8 7 6 5 4 3 2 1

3.785 msm
4.4393 twe
4.7804 erp
4.7991 ed
4.8178 wdtw5.6449dtw

6.0093wddtw
6.6636edr
6.8131lcss
7.2477ddtw

10 9 8 7 6 5 4 3 2 1

3.6449 msm
4.1729 twe
4.5093 ed
4.7944 wdtw
4.8037 erp5.6776dtw

6.0093wddtw
6.7523edr
7.1075lcss
7.528ddtw

(e) Adjusted MI (f) Normalised MI

Fig. 10 Critical difference diagrams for k-means clustering using nine different elastic distance functions on
112 UCR problems (raw data) using six performance measures. Results are on derived from the test files

single cluster predictions for the ten distance measures. Accuracy increases for all distances
except Euclidean. This indicates that k-medoids clusterer is a stronger benchmark for TSCL
algorithms than k-means on the UCR data, irrespective of distance measure. Table 4 also
shows the aggregated unsupervised Davies–Bouldin (DB) scores for k-means and k-medoids
clusterer which we later use in tuning. Small values are better for DB, so the results tell a
different picture. We believe this is because DB is closely related to k-means, in that it
averages distances within a cluster. k-means is designed to optimise a measure similar to DB.
However, Table 4 illustrates this does not always lead to more accurate clustering algorithms.

5.3 Clustering algorithm initialisation

One source of variation could be our implementation and parameterisation of the clustering
algorithms. Both implementations of k-means and k-medoids clusterer are simple algorithms
basedon the scikit-learn implementation of k-means. The three possible parameters thatmight
affect performance are the maximum number of iterations given to the clustering algorithm

123

788 C. Holder et al.

10 9 8 7 6 5 4 3 2 1

3.933 msm
4.6473 twe
4.6607 ed
4.7589 wdtw
5.2098 erp5.7991dtw

6.0893wddtw

6.3571lcss

6.3973edr

7.1473ddtw

10 9 8 7 6 5 4 3 2 1

4.0759 msm
4.3304 twe
4.5714 ed
4.692 wdtw

5.3839 erp6dtw

6.1027wddtw

6.1027lcss

6.4554edr

7.2857ddtw

xednIdnaR)b(ycaruccA)a(

10 9 8 7 6 5 4 3 2 1

3.9821 msm
4.7009 twe
4.7634 ed
4.8795 wdtw
5.0268 erp5.7188dtw

6.0134wddtw

6.3304lcss

6.3438edr

7.2411ddtw

10 9 8 7 6 5 4 3 2 1

3.9821 msm
4.4509 twe
4.7188 ed
4.8527 wdtw
4.9554 erp5.6607dtw

6.2098wddtw

6.4509lcss

6.5804edr

7.1384ddtw

SIMA)d(SIRA)c(

10 9 8 7 6 5 4 3 2 1

3.8125 msm
4.0313 twe
4.2366 ed
4.8125 wdtw
5.0804 erp5.9464dtw

6.3348wddtw

6.5625lcss

6.6339edr

7.5491ddtw

10 9 8 7 6 5 4 3 2 1

3.9107 msm
4.1741 twe
4.4152 ed
4.8705 wdtw
4.9866 erp5.7054dtw

6.2723wddtw

6.5313lcss

6.7723edr

7.3616ddtw

(e) Mutual Information (f) NMIS

Fig. 11 Train results for k-means clustering with 10 different distance measures using normalised data

(defaults to 300), the initialisation algorithm (default to random) and the number of initial-
isation restarts (defaults to 10). Changing the maximum number of iterations is unlikely to
improve performance. For most datasets/distances, convergence happens in under 20 iter-
ations. Given tslearn defaults to 30 iterations, increasing beyond 300 is unlikely to have a
significant effect. Restarting 10 times is computationally intensive, and increasing this further
is also unlikely to improve performance. On the other hand, clustering using the alternating
k-medoids clusterer algorithm is known to suffer from the initialisation problem [27] (see
Sect. 2.1). We evaluate whether the difference in performance we have observed could have
been caused by the initialisation algorithm. We repeat our experiments on the normalised
data for DTW, Euclidean and MSM using random, Forgy and kmeans++ initialisation with
both k-means and k-medoids clusterer. Our primary interest is the variation caused by the
distance function, so we present the relative performance of the three distances for alternative
initialisation techniques in Fig. 14. The ordering is the same throughout: MSM is better than
ED, which is better than DTW. We conclude that the results observed in Sects. 5.1 and5.2
are broadly independent of the initialisation algorithm.

123

A review and evaluation of elastic distance functions… 789

10 9 8 7 6 5 4 3 2 1

4.1696 msm
4.4375 twe
4.6384 erp
4.9643 wdtw
5.6964 dtw5.8839ed

5.9286ddtw
6.1696wddtw
6.4554lcss
6.6563edr

10 9 8 7 6 5 4 3 2 1

4.3884 twe
4.4821 msm
5.0357 erp
5.058 wdtw

5.4464 ed5.7321dtw
6.0446edr
6.1518ddtw
6.3125lcss
6.3482wddtw

xednIdnaR)b(ycaruccA)a(

10 9 8 7 6 5 4 3 2 1

4.1473 msm
4.4375 twe
4.5938 erp
5.0402 wdtw
5.3438 dtw5.875ed

6.125ddtw
6.3036wddtw
6.5268lcss
6.6071edr

10 9 8 7 6 5 4 3 2 1

4.1384 msm
4.3929 twe
4.4643 erp
5.0759 wdtw
5.3259 dtw5.9732ddtw

6.0313ed
6.3393wddtw
6.5714lcss
6.6875edr

SIMA)d(SIRA)c(

10 9 8 7 6 5 4 3 2 1

4.1518 msm
4.2723 twe
4.558 erp

4.9241 wdtw
5.5045 dtw5.7857ed

6.0848ddtw
6.2366wddtw
6.6875edr
6.7946lcss

10 9 8 7 6 5 4 3 2 1

4.1786 msm
4.308 twe

4.5223 erp
5.0134 wdtw
5.3973 dtw5.9821ed

5.9911ddtw
6.25wddtw
6.6339lcss
6.7232edr

(e) Mutual Information (f) NMIS

Fig. 12 Critical difference diagrams for k-medoids clustering with ten distance measures assessed on the test
data (normalised data)

10 9 8 7 6 5 4 3 2 1

4.1892 msm
4.4369 erp
4.8018 wdtw
5.036 twe

5.4595 dtw5.7162ed
5.9459ddtw
5.9865wddtw
6.6081lcss
6.8198edr

10 9 8 7 6 5 4 3 2 1

4.4324 msm
4.7297 twe
4.8649 wdtw
4.8874 erp
5.4459 ed5.6081dtw

6.1396ddtw
6.2928lcss
6.2928wddtw
6.3063edr

xednIdnaR)b(ycaruccA)a(

Fig. 13 Critical difference diagrams for k-medoids clustering with ten distance measures assessed on the test
data (raw data)

123

790 C. Holder et al.

3 2 1

1.6473 msm
1.9375 euclidean

2.4152dtw

3 2 1

1.6696 msm
2.1384 dtw

2.192euclidean

(a) Random k modnaR)b(snaem- k-medoids

3 2 1

1.651 msm
2.0313 euclidean

2.3177dtw

3 2 1

1.655 msm
2.085 dtw

2.26euclidean

(c) Forgy k ygroF)d(snaem- k-medoids

3 2 1

1.635 msm
2.015 euclidean

2.35dtw

3 2 1

1.7292 msm
2.0677 dtw

2.2031euclidean

(e) kmeans++ k ++snaemk)f(snaem- k-medoids

Fig. 14 Critical difference diagrams for alternative clustering initialisation algorithms

5.4 DTWwarping window

In Sect. 5.1, we observed that DTWwith a window of 20% of the series length is significantly
worse than ED. k-means with DTW is widely used as a base line for time series clustering
[33]. ED is a special case of DTW with window size of zero, so the finding is counter to our
expectations and merits further investigation. It is even more notable when we observe that
WDTW is significantly better than DTW. WDTW, MSM, TWE and ERP all give an explicit
penalty for warping. TheDTWpenalty for warping is implicit (warpingmeans a longer path),
and the results indicate that this allows for more warping than is desirable for clustering.

To test whether this result was an artefact of our implementation, we reran the clustering
experiments using the Java toolkit tsml4 version of DTW in conjunction with the WEKA
k-means clusterer, and found no significant difference in the results. Furthermore, we have
checked that the aeon DTW distance implementation produces the same distances as other
implementations listed in Table 15. Begum et al. [10] also found that for clustering, ED
outperforms DTW.

If our implementation is correct, then perhaps the poor performance is due to our experi-
mental set up.Window size is the key parameter for k-meansDTW.We initially experimented
with k-means with full window and found it performed worse than DTW constrained to 20%
(often called cDTW [19]). However, a window size of 5% is also popular in the literature
[53]. We first repeat our experiments with a 5% window size. We then assess whether tuning
the window size improves performance. Finally, we examine whether using an alternative
averaging algorithm for DTW makes a significant difference to DTW.

4 https://github.com/time-series-machine-learning/tsml-java.

123

https://github.com/time-series-machine-learning/tsml-java

A review and evaluation of elastic distance functions… 791

6 5 4 3 2 1

2.7887 msm
3.2268 dtw-ba
3.4845 dtw53.5412ed

3.7474dtw-t
4.2113dtw20

6 5 4 3 2 1

2.7474 msm
3.1753 dtw-ba
3.5258 dtw53.5722ed

3.6598dtw-t
4.3196dtw20

(a) Adjusted Rand Index (b) Normalised Mutual Information

Fig. 15 Critical difference diagrams for k-means clustering with the following DTW variants: DTW 20%
window (dtw20); 5%window (dtw5); and a tunedwindow (dtw-t) and centres foundwith barycentre averaging
(dtw-ba). Euclidean distance (ed) and move–split–merge (msm) are also included for reference

5.4.1 Smaller maximumDTWwarping window

Figure 15 demonstrates that using a smaller maximumwarping window improves the perfor-
mance of k-means DTW to the point that it is no longer significantly worse than k-means with
ED. Figure16 shows the scatter plots of the accuracy and rand index of DTW with window
size 5% against a 20% window and against ED. A smaller window is better, but using no
window is equally as effective. DTW with a small window is a better approximation of ED.
These results suggest DTW is not adding much value to the clustering on the UCR data.

5.4.2 Tuning the DTWwarping window

Tuning significantly improves the performance of DTW 1-NN classification, so it is possible
that it may also improve DTW-based clustering. To tune a clusterer we need an unsuper-
vised cluster assessment algorithm. We use the Davies–Bouldin score since it is popular and
available in scikit-learn. We evaluate DTW for twenty possible windows on even intervals
in the range [0, 1) and use the window with the lowest Davies–Bouldin score for our final
clustering (favouring small windows if scores are tied).

Figure 17 shows that tuning in this way (dtw-t) is better than using a fixed window of size
20% (dtw20), but does not improve on DTW with a fixed window of size 5% (dtw5). The
tuned clusterer is not significantly worse than ED and is significantly worse than MSM. It
is possible that a more fine grained tuning would yield better performance. However, tuning
takes significant computation and it appears that all the extra effort is simply achieving a
better approximation of ED.

5.4.3 k-means DBA

Using medoids mitigates the problem of averaging centres with k-means. DTW barycentre
averaging (DBA), described in Sect. 3.8, has also been proposed as a means of improving
centroid finding for k-meansDTW.We have repeated our experiments with the same k-means
set up, but centroids were found with the original DBA described in Algorithm 7. Figure18a
shows that DBA does indeed significantly improve DTW, a result that reproduces the findings
in [55].

However, Fig. 18a illustrates that it is not significantly different to k-medoids clusterer
DTW. Furthermore, Fig. 19 shows that k-means with DBA is significantly worse than the
top clique, composed of k-medoids clusterer MSM, k-means MSM and k-medoids clusterer
TWE.

123

792 C. Holder et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dtw20 CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
dt

w
5

C
L-

A
C

C

dtw5
is better here

dtw20
is better here

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
dtw20 ARI

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

dt
w

5
A

R
I

dtw5
is better here

dtw20
is better here

(a) dtw5 vs dtw20 Accuracy (b) Rand Index

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dtw5 CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ed
 C

L-
A

C
C

ed
is better here

dtw5
is better here

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
dtw5 ARI

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ed
 A

R
I

ed
is better here

dtw5
is better here

(c) dtw5 vs ed Accuracy (d) Rand Index

Fig. 16 Scatter plots of accuracy and rand index for 5% window DTW versus 20% window and Euclidean
distance

Our implementation of DBA is faithful to the original (Fig. 20). An alternative version
of DBA was described in [63]. This version is implemented in the tslearn toolkit. We have
wrapped the tslearn k-means DBA algorithm into the aeon toolkit and reran this version.
Figure21 compares the performance of two DBA versions with MSM k-medoids clusterer
and k-means.

Table 5 summarises the time taken to run experiments. We ran experiments on our HPC
cluster, so timing results are indicative only. The differences are fairly small. However, we
note that of the two best performing algorithms, k-medoids clusterer MSM and TWE, k-
medoids clusterer MSM is the faster.

5.5 Tuning the distance functions

Clustering performance could also be improved by tuning the distance functions (as we
did with DTW in Sect. 5.4.2). We tune four distance functions using k-medoids clustering on
parameter ranges given in Table 6 to determine whether it improved performance. The choice
of ranges is taken from [44] which in turn took suggested ranges from the original papers.
Tuning is also a way of demonstrating the sensitivity of a distance measure to the parameters:

123

A review and evaluation of elastic distance functions… 793

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dtw-t CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
dt

w
5

C
L-

A
C

C

dtw5
is better here

dtw-t
is better here

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
dtw-t ARI

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

dt
w

5
A

R
I

dtw5
is better here

dtw-t
is better here

xednIdnaR)b(dtw 5% (dtw5) vs dtw tuned (dtw-t)
tuned accuracy

)a(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dtw-t CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ed
 C

L-
A

C
C

ed
is better here

dtw-t
is better here

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
dtw-t ARI

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ed
 A

R
I

ed
is better here

dtw-t
is better here

(c) Euclidean distance (ed) vs dtw tuned
(dtw-t) tuned accuracy

(d) Rand Index

Fig. 17 Scatter plots of accuracy and rand index for tuned DTW versus 5% window and Euclidean distance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
kmeans-dtw CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

km
ea

ns
-d

tw
-d

ba
 C

L-
A

C
C

kmeans-dtw-dba
is better here

kmeans-dtw
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
kmeans-dtw-dba CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

km
ed

oi
ds

-d
tw

 C
L-

A
C

C

kmedoids-dtw
is better here

kmeans-dtw-dba
is better here

(a) DBA wins 68 and loses 36 (8 ties) (b) DBA wins 57 and loses 44 (11 ties)

Fig. 18 Scatter plots of accuracy for DTW-based k-means, with DBA against standard averaging (a) and
against k-medoids clusterer (b)

123

794 C. Holder et al.

9 8 7 6 5 4 3 2 1

4.0721 kmedoids-msm
4.2477 kmeans-msm
4.2883 kmedoids-twe
4.8243 kmeans-twe
5.1261 kmeans-ed

5.1306dtw-dba
5.2973kmedoids-dtw
5.6036kmedoids-ed
6.4099kmeans-dtw

9 8 7 6 5 4 3 2 1

4.2432 kmedoids-twe
4.3198 kmedoids-msm
4.3333 kmeans-msm
4.8063 kmeans-twe
4.964 kmeans-ed

5.018dtw-dba
5.3018kmedoids-ed
5.3378kmedoids-dtw
6.6757kmeans-dtw

xednIdnaR)b(ycaruccA)a(
9 8 7 6 5 4 3 2 1

4.0495 kmedoids-msm
4.1577 kmeans-msm
4.3874 kmedoids-twe
4.7523 dtw-dba
5.0586 kmeans-twe

5.1036kmedoids-dtw
5.1802kmeans-ed
5.8514kmedoids-ed
6.4595kmeans-dtw

9 8 7 6 5 4 3 2 1

4.1081 kmeans-msm
4.1126 kmedoids-msm
4.3063 kmedoids-twe
4.5721 dtw-dba
5.0586 kmedoids-dtw

5.1126kmeans-twe
5.2432kmeans-ed
6.1396kmedoids-ed
6.3468kmeans-dtw

SIMA)d(SIRA)c(
9 8 7 6 5 4 3 2 1

4.1216 kmedoids-msm
4.1532 kmedoids-twe
4.2703 kmeans-msm
4.7928 kmeans-twe
4.8649 dtw-dba

5.036kmeans-ed
5.2207kmedoids-dtw
5.7793kmedoids-ed
6.7613kmeans-dtw

9 8 7 6 5 4 3 2 1

4.1306 kmedoids-msm
4.1622 kmedoids-twe
4.2523 kmeans-msm
4.6982 dtw-dba
5.018 kmeans-twe

5.0225kmedoids-dtw
5.2072kmeans-ed
5.9505kmedoids-ed
6.5586kmeans-dtw

(e) Mutual Information (f) NMIS

Fig. 19 Critical difference diagrams for the best performing k-means and k-medoids clusterer distances, and
k-means with DBA (dtw-dba)

Fig. 20 Heat map, as described in [28], summarising the results used to generate Fig. 19

4 3 2 1

2.2245 kmedoids-msm
2.3418 kmeans-msm2.551tslearn-dba

2.8827aeon-dba

4 3 2 1

2.2602 kmedoids-msm
2.3622 kmeans-msm2.6786tslearn-dba

2.699aeon-dba

(b) Adjusted Rand Index(a) Accuracy

Fig. 21 Comparison of performance of two DBA implementations and k-medoids clusterer and k-means with
MSM distance

123

A review and evaluation of elastic distance functions… 795

Table 5 Run time (in hours)
average, maximum and total over
112 problems

Distance Mean Max Total

ED 0.003 0.046 0.341

DTW 3.272 53.579 366.514

WDTW 4.811 95.916 538.815

MSM 4.536 70.406 508.059

EDR 5.044 81.628 564.926

LCSS 5.063 82.803 567.047

DDTW 5.393 85.351 603.973

ERP 5.480 90.075 613.765

WDDTW 5.196 86.864 581.994

TWE 6.417 117.22 718.650

aeon-dba 8.112 116.62 900.514

tslearn-dba 9.724 159.79 1080.43

Table 6 Parameter ranges for
tuning distance functions with
k-means

Distance Tuned parameter values

DTW w ∈ {0.0, 0.01, . . . , 0.19}
WDTW g ∈ {0.0, 0.05, . . . , 0.95}
MSM c ∈ {0.0, 0.25, . . . , 4.75}
ERP g ∈ {0.0, 0.2, . . . , 1.8}
20 parameter values or parameter value ranges are evaluated for each
function on an evenly spaced grid

if tuning makes no significant difference to using the default parameters, we would consider
the clusterer robust to the parameter and the default value an appropriate one.

6 Performance analysis

The UCR archive is a diverse collection of datasets, and whilst overall performance gives
some indication as to good default benchmarks to use, it does not provide insight into the
best approaches for data characteristics or the data domain.

The range of the number of classes/clusters in the archive is from 2 to 60. To aid analysis,
we group datasets into four groups of datasets with: 2 clusters (Group A, consisting of 40
datasets); 3–5 clusters (Group B with 33 datasets); 6–10 clusters (Group C, 19 datasets);
and 11 or more clusters (Group D, 13 datasets). Table 7 shows the average accuracy rank
by group for the k-means and k-medoids clusterer results on normalised data presented in
Sect. 5. MSM and TWE both improve relatively with more clusters. The two edit distance
algorithms EDR and LCSS get worsewithmore clusters as do the derivativemethods, leading
to an improvement in ED.

Series length varies from 15 to 3000.We can group these into problems with series lengths
less than 200 (Group A, 40 problems), 201–500 (Group B, 31 problems), 501–1000 (Group
C, 20 problems) and >1000 (Group D, 21 problems). Table 8 breaks down the ranks by
series length. There is no discernable pattern with series length. It does not seem to be a
major factor in performance.

123

796 C. Holder et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dtw CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
dt

w
-t

C
L-

A
C

C

dtw-t
is better here

dtw
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wdtw CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
dt

w
-t

C
L-

A
C

C

wdtw-t
is better here

wdtw
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
erp CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
p-

t C
L-

A
C

C

erp-t
is better here

erp
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
msm CL-ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
sm

-t
C

L-
A

C
C

msm-t
is better here

msm
is better here

Fig. 22 Scatter plots of tuned versus untuned k-means clustering algorithms

Table 7 Average rank performance split by the number of clusters

k-means k-medoids clusterer

A B C D A B C D

MSM 4.85 4.29 2.92 2.9 4.75 4.32 3.97 3.08

WDTW 5.83 4.23 4.39 3.33 4.66 4.52 4.19 4.15

TWE 5.7 4.86 4.22 2.85 4.55 4.61 4.5 4.98

ERP 4.78 5.14 3.94 5.75 6.08 4.82 3.39 4.18

ED 5.53 5.21 5 3.33 6.41 5.55 4.83 5.18

DTW 6.04 5.83 5.53 6.15 5.69 6.06 6.42 5.33

WDDTW 5.46 6.45 6.06 5.95 5.44 5.68 6.75 6.58

EDR 5.55 5.79 7.75 7.85 5.65 6.32 6.64 6.5

LCSS 5.69 5.82 7.39 8 5.78 6.5 6.75 7.6

DDTW 5.59 7.38 7.81 8.9 6 6.64 7.56 7.45

Bold in the table are the best performing algorithm

123

A review and evaluation of elastic distance functions… 797

Table 8 Average rank
performance split by the length of
the series

k-means k-medoids clusterer

A B C D A B C D

MSM 3.81 3.91 4.72 4.05 4.30 3.81 4.58 4.07

WDTW 5.30 4.06 4.86 3.90 4.58 5.02 3.53 4.19

TWE 5.03 4.47 5.56 3.45 4.01 4.58 4.40 6.14

ERP 4.79 4.80 4.86 5.50 5.06 4.56 5.90 4.48

ED 5.08 4.89 5.14 4.48 5.61 5.34 5.73 6.36

DTW 5.44 6.42 6.28 5.70 6.01 6.39 5.58 5.19

WDDTW 5.66 6.48 6.67 5.20 5.80 6.19 6.15 5.57

EDR 6.73 6.17 5.03 7.23 5.60 5.92 7.60 6.26

LCSS 6.60 6.18 5.28 7.48 6.85 6.63 5.53 6.33

DDTW 6.58 7.61 6.61 8.03 7.18 6.56 6.03 6.40

Bold in the table are the best performing algorithm

Table 9 Average rank
performance split by the length of
the number of training cases

k-means k-medoids clusterer

A B C D A B C D

MSM 4.45 3.94 3.31 3.83 4.79 4.20 3.63 3.61

WDTW 4.84 5.11 4.03 3.88 4.96 3.92 4.60 4.04

TWE 5.25 4.86 3.67 4.08 4.59 5.04 4.50 4.52

ERP 4.51 5.18 4.97 5.33 5.66 5.02 4.23 4.35

ED 5.44 5.52 3.94 3.98 5.94 6.64 4.73 5.35

DTW 6.40 5.45 5.89 5.70 6.50 5.62 6.25 4.54

WDDTW 6.00 5.29 6.53 6.73 5.85 6.16 5.65 6.30

EDR 5.28 6.97 7.44 6.65 5.45 6.62 6.62 6.72

LCSS 5.83 6.32 7.28 6.80 5.49 5.68 7.15 8.11

DDTW 7.01 6.36 7.94 8.05 5.78 6.10 7.63 7.46

Bold in the table are the best performing algorithm

Train set size may also influence performance. The UCR data range in the train set size
from 16 to 8926. We spit data into the following four groups: less than 100 training cases
(Group A, 41 datasets); between 100 and 299 train cases (Group B, 24 datasets); 300 to
499 cases (Group C, 25 datasets); and 500 or more cases (Group D, 22 datasets). Table 9
summarises the ranks of the distance functions split into these groups. As the number of
training cases increases, the relative difference between MSM, WDTW and TWE increases.
This is more pronounced with k-medoids clusterer MSM, which is clearly better with 300 or
more training instances.

Finally, the datasets have been classified as coming from different problem types. Table 10
describes the seven categories. These categories are useful, but not definitive. For example,
there is an overlap between DEVICE, SENSOR and MOTION. However, breaking down by
problem type can yield insights. Tables 11 and 12 show the breakdown of ranks by these
problem types. MSM performs best on DEVICE, ECG, IMAGE and SIMULATED. These
are all categories where some phase shift within the class would be expected. ED is the best at
SPECTRO. Spectrograms are ordered series in the frequency domain, and we would expect
the complexity of these problems to arise through noise and dimension rather than phase

123

798 C. Holder et al.

Table 10 Dataset categories

Category Number Meaning

DEVICE 10 Household device electricity usage

ECG 7 Single-channel electrocardiogram

IMAGE 32 Images mapped onto 1-D series

MOTION 18 Single-channel activity recognition

SENSOR 24 Non-human sensor devices

SIMULATED 9 Simulated data

SPECTRO 12 One dimensional spectrogram

Table 11 Average rank performance of k-means on problems split by the problem domain

DEVICE ECG IMAGE MOTION SENSOR SIMULATED SPECTRO

MSM 3.35 2.71 3.76 3.57 4.90 3.33 5.55

WDTW 4.50 5.29 4.55 4.41 4.82 3.56 5.68

TWE 5.00 4.64 4.88 4.00 4.98 4.78 4.91

ERP 3.75 3.57 3.83 5.95 4.86 5.78 5.59

ED 6.10 5.93 5.71 3.57 5.66 4.61 4.32

DTW 6.65 7.07 6.00 6.26 5.72 4.00 5.64

WDDTW 6.95 6.79 5.83 6.34 5.02 6.78 5.32

EDR 6.40 4.36 6.95 7.05 6.02 7.11 5.00

LCSS 5.00 6.14 7.17 6.88 6.08 5.94 6.36

DDTW 7.30 8.50 6.31 6.97 6.94 9.11 6.64

Bold in the table are the best performing algorithm

shift. ED also does surprisingly well at MOTION problems with k-means, but less well with
k-medoids clusterer.

The results show that MSM is generally the best performing algorithm. Given the preva-
lence of DTW-based clustering, this is perhaps surprising and the reasons to merit further
investigation.

One explanation could be it is an artefact of the clustering algorithm. There aremany exam-
ples of where hierarchical clustering with DTW seems to produce more intuitive clusterings
than Euclidean distance [19]. Partitioning clustering has the advantage over hierarchical clus-
tering in that it can be applied to group unseen test data. This is important because clustering
often plays a component role in machine learning (e.g. dimensionality reduction). Evalua-
tion of distance functions for hierarchical clustering is also more complex, and we consider
it future work.

Another possible explanation for the results is that they are an artefact of the datasets
used in the evaluation. There are many known limitations of the UCR data (see [26]). The
data have been preprocessed in ways that may favour Euclidean distance-based clustering.
Whilst it is important to acknowledge this, we also note we are following almost every other
paper referenced in using the UCR data. By highlighting the fact that standard DTW does
not cluster well, we are not arguing that it should never be used. Our aim is discourage its use
as a straw man for new algorithms evaluated on UCR data and to highlight that there may be
better alternatives.

123

A review and evaluation of elastic distance functions… 799

Table 12 Average rank performance of k-medoids clusterer on problems split by the problem domain

DEVICE ECG IMAGE MOTION SENSOR SIMULATED SPECTRO

MSM 3.30 2.86 3.64 4.07 5.34 4.06 4.50

WDTW 3.00 4.71 4.57 4.12 5.10 4.44 4.64

TWE 2.80 4.71 4.48 4.76 4.82 4.39 6.05

ERP 6.05 5.07 5.29 4.64 5.18 3.67 4.73

ED 5.45 6.57 6.36 5.86 5.78 4.11 4.77

DTW 7.90 6.14 6.62 4.91 5.28 7.39 5.18

WDDTW 6.70 6.71 5.76 5.86 5.48 6.56 5.73

EDR 7.75 5.86 5.07 6.45 6.06 6.00 6.68

LCSS 5.90 6.43 6.10 7.40 5.76 7.17 6.18

DDTW 6.15 5.93 7.12 6.93 6.20 7.22 6.55

Bold in the table are the best performing algorithm

Table 13 Average number of moves on and off diagonal for three distances

Distance Average path Diagonal moves Insert/Delete Average percentage

DTW (20% window) 863 230 633 145

DTW (5% window) 690 326 363 132

MSM 576 499 77 104.5

TWE 591 484 107 1.08

Results are averaged over all distance calculations and all data sets. The average series length is 551

We think the true cause of the difference betweenDTWandMSM is in thewarping penalty
mechanism. All elastic distances implicitly penalise warpings simply becausemore distances
are included in the calculation. However, both MSM and TWE also explicitly penalise for
moving off the diagonal with a data driven cost term. We think that this disincentive to
warp reduces the pathological warping made more likely in an unsupervised setting such as
clustering.

To test this hypothesis,we re-run experiments recording the number of diagonal, horizontal
and vertical moves for DTW (5% and 20% warping window), MSM and TWE for each
instance to its best cluster centre using k-means. The number of horizontal moves always
equals the number of vertical moves since we insist on the final alignment matching at the
end. We average moves over all calculations and then over all datasets. Table 13 summarises
the number of diagonal and off diagonal moves. DTW is making a surprising number of
moves off diagonal. The average series length is 551, but the average DTW warping path is
863 with a 20% window and 690 with a 5% window. On average, the DTW warping path is
145% of the series length. MSM and TWE do far fewer off diagonal moves. There is still
much more warping with a 5% window than seen with MSM. This implies DTW is moving
back and forward off the diagonal far more than MSM. The notion that “a little warping is
a good thing, but too much warping is a bad thing” is known for both classification [58] and
clustering [19]. These results suggest that too much warping can also mean repeated small
warpings rather than single long pathological warpings. Alignments with many gaps seem
to result in inferior clustering (Fig. 22).

123

800 C. Holder et al.

(a) DTW alignment path (b) MSM alignment path

Fig. 23 Example warping paths for DTW and MSM on two cases from the Fish dataset

Table 14 Proportion of off
diagonal moves in each 10%
segment of series across all
datasets

Decile (%) DTW (%) MSM (%) TWE (%)

0–10 9.37 18.64 10.53

10–20 9.96 9.45 8.86

20–30 9.85 8.73 9.73

30–40 10.27 9.82 11.15

40–50 10.41 9.88 10.90

50–60 10.42 10.58 11.39

60–70 9.93 12.05 12.53

70–80 10.41 9.08 10.34

80–90 10.38 6.54 7.92

90–100 8.98 5.23 6.66

Warping some of the time is often desirable, but DTW tends to do it too often. An example
of this can be found by investigating the Fish dataset. For the Fish dataset, MSM k-means
performs better across all metrics compared to DTW k-means. When we investigated the
warping paths for the Fish dataset, we found significant differences in the amount of warping
occurring in DTW compared toMSM. Figure23 shows two alignment paths produced (DTW
on the left, MSMon the right), between two time series in the Fish dataset. It shows that DTW
is making many more small warps off the centre, whereas MSMmakes smaller adjustments.
The colours represent a heat map for the cost matrix, with lighter values representing a high
value and a darker value representing a low value. Previous experiments showed that neither
restricting the window nor tuning the window size reduced this over warping in a way that
bridged the gap between DTW andMSM. Another possible reason for the poor performance
of DTW could be a tendency to over warp series at the beginning or end of the series whilst
remaining within the band. This has been shown to effect performance [66].

There are two mechanisms to constrain DTWwarping at the end or the beginning. Firstly,
the warping band can be made smaller at the beginning or end using, for example, a parallel-
ogram band [30] rather than a uniform band. Secondly, the prefix/suffix invariant technique

123

A review and evaluation of elastic distance functions… 801

[66] can be employed. The latter is designed specifically for data that has not been prepro-
cessed and hence is not suitable for the UCR data. We have run DTW using both PSI and a
parallelogram band, but neither significantly improved standard DTW. To find out why, we
recorded which decile moves off the diagonal were happening for DTW, MSM and TWE.
We already know DTW warps more than MSM, so Table 14 shows the proportion of warps
for DTW, MSM and TWE normalised for the total number of shifts. It shows DTW is fairly
consistently warping all along the series but surprisingly MSM is proportionately warping
muchmore in the first decile andmuch less in the ninth and 10th.We are not sure exactly why
this happens. It runs counter to the intuition that bad warpings may happen at the beginning.

7 Conclusions

We have described nine elastic time series distance measures and compared them when used
to cluster the time series of the UCR archive with both k-means and k-medoids clusterer.
There are a wealth of other time series clustering algorithms that we have not evaluated.
We have opted to provide an in depth description, with examples and associated code and a
tightly constrained bake off, rather than attempt to include all variants of, for example, deep
learning and transformation-based time series clusterers. Distance-based approaches are still
very popular, and we believe our experimental observations will help practitioners choose
distance-based TSCL more effectively.

Our first conclusion is that k-medoids clusterer is more effective than k-means for TSCL
with elastic distance measures on the UCR datasets. Standard k-means has the inherent
problem that cluster centres are formed by averaging series, which takes no account of
distortions that elastic distances are designed to compensate for. DBA does adjust for this
problem with k-means, but it is designed specifically for DTW and it comes with a high
computational overhead compared to k-medoids clusterer. The improved version of DBA
[63] implemented in tslearn is significantly better than the original but is not different to either
MSM clusterers, and it takes approximately twice as long to run. There is little difference in
run time between the k-means with averaging and k-medoids clusterer: k-medoids clusterer
is faster but uses more memory.

Our second conclusion based on these experiments on UCR data is that without any data
specific prior knowledge as to the best approach, k-medoids clusterer with either MSM or
TWEare good benchmark approaches for distance-based clustering of time series, withMSM
preferred because of the lower run time. MSM is the top ranked distance measure on nearly
all measures and configurations of both clusterers. We believe it is not widely known and
that MSM and TWE should be included when assessing new clustering algorithms, although
the tslearn version of DBA is also a good benchmark. TWE is slightly slower than the other
distances. However, run time and memory were not a major constraint for these experiments.

More specifically, we conducted the following experiments:

1. In Sect. 5.1, we compare the 10 distance functions listed in Table 1 using k-means clus-
tering and find that MSM produced significantly better clusters with five of the six
performance measures and that five of the nine elastic measures perform worse than
Euclidean distance. We find the same pattern of results with both normalised data (Fig. 9)
and raw data (Fig. 10).

2. We repeat the experiments using k-medoids clusterer in Sect. 5.2. We find that, on the
train data, TWE and MSM form a top clique, and that ERP performs much better. We

123

802 C. Holder et al.

observe a similar pattern of results on the train data and show that, overall, k-medoids
clusterer is better than k-means, independent of elastic distance used.

3. In Sect. 5.3, we assess the impact of using alternative cluster initialisation algorithms and
found that MSM still outperforms ED and DTW for three initialisation algorithms with
both k-means and k-medoids clusterer.

4. In Sect. 5.4, we explore variants ofDTW to determine if we could find outwhy it performs
so poorly. We compare different fixed window sizes and find that whilst smaller windows
better approximate ED, they do not improve performance. We find tuning DTW does not
improve performance. We then look at barycentre averaging for k-means and show that
whilst it significantly improved k-means, it requires a specific refinement described in
[63] to gain equivalence.

5. Finally, in Sect. 5.5 we tried tuning the distance functions using the DB measure and
found it did not improve performance.

We have released all our results and code in a dedicated repository. We would welcome
contributors of new distance functions to aeon and would be happy to extend the evaluation
to include them. Our next stage is to extend the bake off to consider clustering algorithms
not based on elastic distances and to investigate alternative medoids-based approaches such
as partitioning around the medoids [40]. Furthermore, we have not yet investigated the effect
of having to set the number of clusters, k. A future experiment will involve testing whether
the relative performance remains the same when using standard techniques for setting k.
There are also several possible directions for algorithmic advancement highlighted by this
research: we will try combining the clusterings through an ensemble in a manner similar
to the elastic ensemble for classification [44]. Clustering ensembles are more complex than
classification ensembles, requiring some form of alignment of labelling. Nevertheless, it
seems reasonably likely that there may be some improvements from doing so. These are just
some of the numerous open issues in TSCL research. Our study aims to put future research
on a sound basis to facilitate the accurate assessment of algorithmic improvements in a fully
reproducible manner.

Acknowledgements This work is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) Grant Number EP/W030756/1. The experiments were carried out on the High Performance Com-
puting Cluster supported by the Research and Specialist Computing Support service at the University of East
Anglia. We would like to thank all those donating to and maintaining the time series archives we have used
and to everyone who has contributed to open source implementations of the algorithms.

Author Contributions CH implemented the clustering algorithms and distance functions in the aeon toolkit.
All authors jointly ran experiments, collated results and drew figures. All authors contributed to writing and
reviewing the manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

A review and evaluation of elastic distance functions… 803

A Appendix: Full results and code examples

We have implemented the nine distance functions used in the evaluation in the Python scikit-
learn compatible package aeon.5 The distance functions are all implemented using Numba
tool,6 which uses just in time compilation to dynamically convert Python to C. There are of
course numerous open source packages that offer some form of elastic distance functions,
most common variants of DTW. Table 15 lists some of the most popular packages with DTW
implementations and summarises which other elastic distance measures they contain. We
have confirmed the equivalence of DTW results with these packages.

The time taken to perform 200 DTW distance calculations on random series of lengths
1000 to 10,000 on a desktop PC is shown in Table 16. aeon is better than any other package
with dtw-python being significantly slower than other packages. aeon offers the widest range
of elastic distance measures with equivalent run time to the other packages.

Distance functions can be used directly, either by explicitly importing them or by using
the distance factory provided. A Jupyter notebook with example usages is available on the
associated repository7 Listing 1 shows how to calculate the DTW distance and alignment
path for the series used in Fig. 3. It also shows how to use the factory to get and call a distance
function. The distance factory avoids the repeated Numba compilation of distance functions
that can occur with different parameters, so it is our recommended method for creating a
distance function. There is also the option to find the pairwise distance matrix.

1 from aeon.distances import (
2 distance , pairwise_distance , alignment_path ,

dtw_distance , dtw_alignment_path ,
3 dtw_pairwise_distance
4)
5 import numpy as np
6

7 a = np.array(
8 [0.018 , 1.537 , -0.141, -0.761, -0.177, -2.192, -0.193,

-0.465, -0.944, -0.240])
9 b = np.array(

10 [-0.755, 0.446 , 1.198 , 0.171 , 0.564 , 0.689 , 1.794 ,
0.066 , 0.288 , 1.634])

11

12 # Call a specific distance function directly
13 d1 = dtw_distance(a, b)
14 d2 = dtw_distance(a, b, window =0.2)
15 # Call a distance using a metric string. Valid metrics are:
16 # ’dtw ’, ’ddtw ’, ’wdtw ’, ’wddtw ’, ’twe ’, ’msm ’, ’lcss ’, ’erp

’, ’edr ’, ’euclidean ’, ’squared ’
17 d3 = distance(a, b, metric=’dtw’, window =0.2)
18 # Call a specific alignment path function directly
19 p1 = dtw_alignment_path(a, b)
20 p2 = dtw_alignment_path(a, b, window =0.2)
21 # Call an alignment path using a metric string. Valid

metrics are same as above.
22 p3 = alignment_path (a, b, metric=’dtw’, window =0.2)
23

24 # Pairwise distance between two time
25 pair = np.array([a, b])

5 https://github.com/aeon-toolkit/aeon.
6 https://numba.pydata.org/.
7 https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/
alignment_and_paths_figures.html.

123

https://github.com/aeon-toolkit/aeon
https://numba.pydata.org/
https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/alignment_and_paths_figures.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/alignment_and_paths_figures.html

804 C. Holder et al.

Ta
bl
e
15

Su
m
m
ar
y
of

el
as
tic

di
st
an
ce

fu
nc
tio

n
av
ai
la
bi
lit
y
in

fiv
e
Py

th
on

pa
ck
ag
es

Pa
ck
ag
e

D
T
W

W
D
T
W

D
D
T
W

W
D
D
T
W

E
D
R

E
R
P

M
SM

L
C
SS

T
W
E

PS
I
D
T
W

U
ni
va
ri
at
e

ae
on

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

sk
tim

e
Y

Y
Y

Y
Y

Y
Y

Y
Y

N

ts
le
ar
n

Y
Y

N
N

N
N

N
N

N
N

dt
w
-p
yt
ho

n
Y

N
N

N
N

N
N

N
N

N

ru
st
-d
tw

Y
N

N
N

N
N

N
N

N
N

M
ul
ti
va
ri
at
e

ae
on

Y
Y

Y
Y

Y
Y

N
Y

Y
Y

sk
tim

e
Y

Y
Y

Y
Y

Y
N

Y
Y

N

ts
le
ar
n

N
N

N
N

N
N

N
N

N
N

dt
w
-p
yt
ho

n
N

N
N

N
N

N
N

N
N

N

ru
st
-d
tw

N
N

N
N

N
N

N
N

N
N

123

A review and evaluation of elastic distance functions… 805

Table 16 Time (in seconds) to
perform 200 full window DTW
distance calculations with
random series of length 1000 to
10,000

Length aeon sktime tslearn dtw-python rust-dtw

1000 0.82 1.89 2.10 8.09 1.55

2000 3.04 6.50 6.25 31.38 6.00

3000 7.33 14.65 13.54 69.31 13.44

4000 12.68 25.07 25.97 121.33 24.00

5000 20.10 38.96 37.39 191.91 37.42

6000 29.03 57.26 54.44 272.14 55.24

7000 39.83 73.10 73.59 342.45 71.57

8000 52.48 92.25 91.94 451.83 93.49

9000 66.02 123.11 117.81 583.75 119.54

10,000 81.38 175.20 163.55 780.52 167.74

26 # Call a specific pairwise distance function directly
27 pw_1 = dtw_pairwise_distance (pair)
28 pw_2 = dtw_pairwise_distance (pair , window =0.2)
29 # Call a specific pairwise distance using a metric string.

Valid metrics are same as above.
30 pw_dist = pairwise_distance (pair , metric="dtw", window =0.2)
31 pw_dist_equi = pairwise_distance (pair , pair , metric="dtw")

Listing 1 A simple example of finding distances and alignments in aeon

We have implemented the k-means and k-medoids clusterers in aeon. These can be easily
used and configured, as shown in Listing 2.

1 from aeon.clustering.k_means import TimeSeriesKMeans
2 from aeon.clustering.k_medoids import TimeSeriesKMedoids
3 from aeon.datasets import load_unit_test
4 trainX , trainY = load_unit_test(split="test",return_type="

np2D")
5 testX , testY = load_unit_test (split="train",return_type="

np2D")
6 clst1 = TimeSeriesKMeans ()
7 clst2 = TimeSeriesKMeans(
8 averaging_method="dba",
9 metric="dtw",

10 distance_params ={"window":0.1},
11 n_clusters =2,
12 random_state =1,
13)
14 clst3 = TimeSeriesKMedoids ()
15 clst4 = TimeSeriesKMedoids(
16 metric="dtw",
17 distance_params ={"window": 0.2},
18 n_clusters=len(set(trainY)),
19 random_state= 1,
20)
21 clst1.fit(trainX)
22 pred = clst1.predict(testX)
23 print(pred)

Listing 2 An example of using K-means and K-medoids clusterer in aeon

123

806 C. Holder et al.

To conduct an experiment, we generate results in a standard format. This is given below,
but additionally, a notebook has been produced for ease of use. 8

1 from scikit_time.benchmarking.experiments import
run_clustering_experiment

2

3 run_clustering_experiment (
4 trainX ,
5 clst1 ,
6 results_path="_contrib/temp/",
7 trainY=trainY ,
8 testX=testX ,
9 testY=testY ,

10 cls_name="kmeans",
11 dataset_name="UnitTest",
12 resample_id =0,
13 overwrite=False ,
14)

Listing 3 An example of running an experiment in aeon. Random state is set to 1 throughout our experiments
to faciliate reproducibility. label

Currently, we collate these results files using the associated Java package tsml.9 An exam-
ple of this is available on this paper’s repository.

References

1. Abanda A, Mori U, Lozano J (2019) A review on distance based time series classification. Data Min
Knowl Disc 33(2):378–412

2. Aghabozorgi S, Seyed Shirkhorshidi A, Ying Wah T (2015) Time-series clustering—a decade review. Inf
Syst 53:16–38

3. Ali M, Alqahtani A, Jones MW, Xie X (2019) Clustering and classification for time series data in visual
analytics: a survey. IEEE Access 7:181314–181338

4. Alqahtani A, Ali M, Xie X, Jones MW (2021) Deep time-series clustering: a review. Electronics
5. Anderberg M (1973) Cluster analysis for applications. Probability and mathematical statistics a series of

monographs and textbooks. Academic Press
6. Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) Optics: ordering points to identify the clustering

structure. SIGMOD Rec 28(2):49–60
7. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the

eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’07, pp. 1027–1035. Society
for Industrial and Applied Mathematics

8. Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances. DataMin Knowl Disc 31(3):606–660

9. Begum N, Ulanova L, Wang J, Keogh E (2015) Accelerating dynamic time warping clustering with a
novel admissible pruning strategy. In: Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, KDD ’15, pp 49–58. Association for Computing Machinery,
New York

10. Begum N, Ulanova L, Wang J, Keogh E (2015) Accelerating dynamic time warping clustering with a
novel admissible pruning strategy. KDD ’15, pp 49–58. Association for ComputingMachinery, NewYork

11. Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J
Mach Learn Res 17:1–10

12. Bonner RE (1964) On some clustering techniques. IBM J Res Dev 8(1):22–32
13. Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. In: Proceedings of the fifth

international conference on machine learning, pp 91–99

8 https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/
distance_based_clustering.html.
9 https://github.com/time-series-machine-learning/tsml-java.

123

https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/distance_based_clustering.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/distance_based_clustering/distance_based_clustering.html
https://github.com/time-series-machine-learning/tsml-java

A review and evaluation of elastic distance functions… 807

14. Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. In: Proceedings of the fif-
teenth international conference on machine learning, ICML ’98, pp 91-99. Morgan Kaufmann Publishers
Inc, San Francisco

15. Caiado J, Maharaj E, D’Urso P (2015) Time series clustering. In: Handbook of cluster analysis, pp
241–264

16. Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: Proceedings of the 30th
international conference on very large data bases

17. Chen L, Ozsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In:
Proceedings of the ACM SIGMOD international conference on management of data

18. Dau H, Bagnall A, Kamgar K, Yeh M, Zhu Y, Gharghabi S, Ratanamahatana C, Chotirat A, Keogh E
(2019) The UCR time series archive. IEEE/CAA J Automatica Sinica 6(6):1293–1305

19. Dau H, Silva D, Petitjean F, Forestier G, Bagnall A, Keogh E (2018) Optimizing dynamic time warping’s
window width for time series data mining applications. Data Min Knowl Disc 32(4):1074–1120

20. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
21. Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. In: Pro-

ceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining,
KDD ’04, pp 551–556. Association for Computing Machinery, New York

22. Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings of the
twenty-first international conference on machine learning, ICML ’04, pp 29. Association for Computing
Machinery, New York

23. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the second international conference on knowledge
discovery and data mining, KDD’96, pp 226-231. AAAI Press

24. Forgy E (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications.
Biometrics 21:768–769

25. García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons. J Mach Learn Res 9:2677–2694

26. Hu B, Chen Y, Keogh E (2016) Classification of streaming time series under more realistic assumptions.
Data Min Knowl Disc 30(2):403–437

27. Ikotun AM, Ezugwu AE, Abualigah L, Abuhaija B, Heming J (2023) K-means clustering algorithms: a
comprehensive review, variants analysis, and advances in the era of big data. Inf Sci 622:178–210

28. Ismail-Fawaz A, Dempster A, Tan CW, Herrmann M, Miller L, Schmidt D, Berretti S, Weber J, Devanne
M, Forestier G, Webb G (2023) An approach to multiple comparison benchmark evaluations that is stable
under manipulation of the comparate set. arXiv preprint arXiv:2305.11921

29. Ismkhan H (2018) I-k-means-+: an iterative clustering algorithm based on an enhanced version of the
k-means. Pattern Recogn 79:402–413

30. Itakura F (1975)Minimumprediction residual principle applied to speech recognition. IEEETransAcoust
Speech Signal Process 23(1):67–72

31. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc.
32. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323
33. Javed A, Lee BS, Rizzo D (2020) A benchmark study on time series clustering. Mach Learn Appl 1
34. Jeong Y, Jeong M, Omitaomu O (2011) Weighted dynamic time warping for time series classification.

Pattern Recogn 44:2231–2240
35. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J AmStat Assoc 58(301):236–

244
36. Kaufman L, Rousseeuw PJ (1986) Clustering large data sets. In: Pattern recognition in practice, pp

425–437. Elsevier, Amsterdam
37. Keogh E, Pazzani M (2001) Derivative dynamic time warping. In: Proceedings of the 1st SIAM interna-

tional conference on data mining
38. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2(1–2):83–97
39. Lafabregue B, Weber J, Gancarski P, Forestier G (2022) End-to-end deep representation learning for time

series clustering: a comparative study. Data Min Knowl Disc 36:29–81
40. Leonard Kaufman PJR (1990) Partitioning around medoids (program PAM), chapter 2, pp 68–125. Wiley
41. Li G, Bräysy O, Jiang L, Wu Z, Wang Y (2013) Finding time series discord based on bit representation

clustering. Knowl-Based Syst 54:243–254
42. Li X, Lin J, Zhao L (2021) Time series clustering in linear time complexity. Data Min Knowl Disc

35(3):2369–2388
43. Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral

analysis. In Proceedings of the twenty-sixth AAAI conference on artificial intelligence, AAAI’12, pp
1026–1032. AAAI Press

123

http://arxiv.org/abs/2305.11921

808 C. Holder et al.

44. Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data
Min Knowl Disc 29:565–592

45. Lletı R, Ortiz MC, Sarabia LA, Sánchez MS (2004) Selecting variables for k-means cluster analysis by
using a genetic algorithm that optimises the silhouettes. Anal Chim Acta 515(1):87–100

46. Lloyd SP (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28:129–136
47. MacQueen J et al. (1967) Some methods for classification and analysis of multivariate observations. In:

Proceedings of the fifth Berkeley symposium onmathematical statistics and probability, vol 1, pp 281–297
48. Marteau P (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans

Pattern Anal Mach Intell 31(2):306–318
49. McInnes L, Healy J (2017) Accelerated hierarchical density based clustering. In: 2017 IEEE international

conference on data mining workshops (ICDMW), pp 33–42
50. Middlehurst M, Large J, Flynn M, Lines J, Bostrom A, Bagnall A (2021) HIVE-COTE 2.0: a new meta

ensemble for time series classification. Mach Learn 110:3211–3243
51. Newling J, Fleuret F (2017) K-medoids for k-means seeding. In: Advances in neural information pro-

cessing systems, vol 30. Curran Associates, Inc
52. Ng R, Han J (2002) CLARANS: a method for clustering objects for spatial data mining. IEEE Trans

Knowl Data Eng 14:1003–1016
53. Paparrizos J, Gravano L (2015) k-shape: efficient and accurate clustering of time series. In: Proceedings

of the 2015 ACM SIGMOD international conference on management of data, pp 1855–1870
54. Paparrizos J, Gravano L (2017) Fast and accurate time-series clustering. ACM Trans Database Syst

(TODS) 42(2):1–49
55. Petitjean F, Ketterlin A, Gancarski P (2011) A global averaging method for dynamic time warping, with

applications to clustering. Pattern Recogn 44:678
56. Rakthanmanon T, Bilson J, Campana L, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E

(2013) Addressing big data time series: mining trillions of time series subsequences under dynamic time
warping. ACM Trans Knowl Discov Data 7(3)

57. Ratanamahatana C, Keogh E (2004) Everything you know about dynamic time warping is wrong. In:
Proceedings of the 3rd workshop on mining temporal and sequential data

58. Ratanamahatana C, Keogh E (2005) Three myths about dynamic time warping data mining. In: Proceed-
ings of the 5th SIAM international conference on data mining

59. Räsänen T, Kolehmainen M (2009) Feature-based clustering for electricity use time series data. vol 5495,
pp 401–412

60. Ruiz AP, Flynn M, Large J, Middlehurst M, Bagnall A (2021) The great multivariate time series classifi-
cation bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl
Disc 35(2):401–449

61. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition.
IEEE Trans Acoust Speech Signal Process 26(1):43–49

62. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin C-T (2017) A review
of clustering techniques and developments. Neurocomputing 267:664–681

63. Schultz D, Jain BJ (2017) Nonsmooth analysis and subgradient methods for averaging in dynamic time
warping spaces. CoRR, arXiv:1701.06393

64. Shi L, Du L, Shen Y-D (2014) Robust spectral learning for unsupervised feature selection. In: 2014 IEEE
international conference on data mining, pp 977–982

65. Shifaz A, Pelletier C, Petitjean F,Webb G (2023) Elastic similarity and distance measures for multivariate
time series. Knowl Inf Syst 65(6)

66. Silva D, Batista G, Keogh E (2016) Prefix and suffix invariant dynamic time warping. In: IEEE Interna-
tional conference on data mining

67. Stefan A, Athitsos V, Das G (2013) The move–split–merge metric for time series. IEEE Trans Knowl
Data Eng 25(6):1425–1438

68. van der Maaten L (2011) Learning discriminative fisher kernels. In: Proceedings of the 28th international
conference on international conference onmachine learning, ICML’11, pp 217–224. Omnipress,Madison

69. Yang J, Leskovec J (2011) Patterns of temporal variation in online media. In: Proceedings of the fourth
ACM international conference on web search and data mining, WSDM ’11, pp 177–186. Association for
Computing Machinery, New York

70. Yang J, Wang Y-K, Yao X, Lin C-T (2019) Adaptive initialization method for k-means algorithm
71. Zakaria J, Mueen A, Keogh E (2012) Clustering time series using unsupervised-shapelets. In: 2012 IEEE

12th international conference on data mining, pp 785–794
72. Zhang Q,Wu J, Zhang P, Long G, Zhang C (2019) Salient subsequence learning for time series clustering.

IEEE Trans Pattern Anal Mach Intell 41(9):2193–2207

123

http://arxiv.org/abs/1701.06393

A review and evaluation of elastic distance functions… 809

73. Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large
databases. SIGMOD Rec 25(2):103–114

74. Zolhavarieh S, Aghabozorgi S, Teh YW (2014) A review of subsequence time series clustering. SciWorld
J 2014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Christopher Holder received his BSc degree in Computer Science in
2020 from the University of East Anglia (UEA), Norwich, UK. He is
currently pursuing his PhD, with a primary research focus on time series
clustering. He is also involved with the development and open-sourcing
of time series machine learning algorithms to facilitate advancements in
the field.

Matthew Middlehurst received the BSc degree in Computer Science in
2018 and the PhD degree in Computer Science in 2023 from the Uni-
versity of East Anglia (UEA), Norwich, UK. He is working as a Senior
Research Associate at UEA in the time series machine learning group.
His research interests are primarily time series classification related,
with recent expansion to time series clustering and time series extrinsic
regression. He is interested in the provision and maintenance of open-
source software for researchers in time-series-based fields.

Anthony Bagnall received the PhD degree in Computer Science from the
University of East Anglia (UEA), Norwich, UK, in 2001. He was a Pro-
fessor of Computer Science at UEA from 2018-2023. He has recently
moved to an equivalent position in the Electronics and Computer Sci-
ence department at the University of Southampton. His primary research
interest is in time series machine learning, with a historic focus on clas-
sification, but more recently looking at clustering and regression. He has
a side interest in ensemble design.

123

	A review and evaluation of elastic distance functions for time series clustering
	Abstract
	1 Introduction
	2 Time series clustering background and literature review
	2.1 Partitional time series clustering algorithms
	2.2 Literature review

	3 Time series distance measures
	3.1 Dynamic time warping
	3.2 Derivative dynamic time warping
	3.3 Weighted dynamic time warping
	3.4 Longest common subsequence
	3.5 Edit distance on real sequences (EDR)
	3.6 Edit distance with real penalty (ERP)
	3.7 Move–split–merge (MSM)
	3.7.1 Time warp edit (TWE)

	3.8 Averaging time series

	4 Methodology
	4.1 Data
	4.2 Clustering metrics
	4.3 Related clustering comparisons

	5 Results
	5.1 Elastic distances with k-means
	5.2 Elastic distances with k-medoids clusterer
	5.3 Clustering algorithm initialisation
	5.4 DTW warping window
	5.4.1 Smaller maximum DTW warping window
	5.4.2 Tuning the DTW warping window
	5.4.3 k-means DBA

	5.5 Tuning the distance functions

	6 Performance analysis
	7 Conclusions
	Acknowledgements
	A Appendix: Full results and code examples
	References

