
Knowledge and Information Systems (2023) 65:4185–4212
https://doi.org/10.1007/s10115-023-01899-2

REGULAR PAPER

Accelerating massive queries of approximate nearest
neighbor search on high-dimensional data

Yingfan Liu1 · Chaowei Song1 · Hong Cheng2 · Xiaofang Xia1 · Jiangtao Cui1

Received: 5 January 2022 / Revised: 20 April 2023 / Accepted: 26 April 2023 /
Published online: 19 May 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Approximate nearest neighbor (ANN) search on high-dimensional data is a fundamental
operation in many applications. In this paper, we study massive queries of ANN (MQ-ANN)
search,whichdealswith a largenumber of queries simultaneously.To improve the throughput,
we combine the parallel capacity of multi-core CPUs and the filtering power of the state-of-
the-art index methods, i.e., proximity graphs. However, there are no solutions that exploit
proximity graphs to handle MQ-ANN in parallel, except the one called query view, which
simply assigns each query to a hardware thread but suffers from numerous cache misses.
As the first attempt, we design efficient methods for MQ-ANN with proximity graphs and
propose a novel schedulingmechanism called bridge view, which shares the same data access
across multiple queries in order to reduce cache misses. Moreover, we extend our method to
deal with MQ-ANN on large-scale data sets (e.g. 108 points). Finally, we conduct extensive
experiments on real data sets to demonstrate the advantages of our method. According to our
experimental results, bridge view significantly outperforms query view in various settings.
In particular, bridge view with 8 hardware threads even outperforms query view with 24
hardware threads.

Keywords Massive queries · Approximate nearest neighbor search · High-dimensional
data · Proximity graphs · Parallel algorithms

B Yingfan Liu
liuyingfan@xidian.edu.cn

Chaowei Song
chwsong@foxmail.com

Hong Cheng
hcheng@se.cuhk.edu.hk

Xiaofang Xia
xiaofangxia89@gmail.com

Jiangtao Cui
cuijt@xidian.edu.cn

1 School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China

2 The Chinese University of Hong Kong, Hong Kong, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01899-2&domain=pdf
http://orcid.org/0000-0002-3743-5249

4186 Y. Liu et al.

1 Introduction

Approximate Nearest Neighbor (ANN) search on high-dimensional data is a fundamental
operation in many applications such as multimedia retrieval, data mining and machine learn-
ing. Given a data set D ⊂ R

d and a query vector q ∈ R
d , ANN search returns a point in

D, which is sufficiently close to q . A typical solution to ANN search builds an index offline
and then accelerates the search process for the online queries with the index. During the
past decades, many index methods have been developed, including locality sensitive hashing
(LSH) based methods [1, 2], tree structures [3] and inverted index based methods [4, 5].
Recently, proximity graphs become more and more popular, due to their superior search per-
formance [6–8]. Hence, a few proximity graphs were proposed, including DPG [8], HNSW
[9] and NSG [10]. A proximity graph treats each point u ∈ D as a graph vertex1 and then
builds edges between u and its close neighbors in D, which are selected according to specific
neighbor selection strategy.

In this paper, we focus on an important variant of ANN search, i.e., massive queries of
ANN (MQ-ANN). Unlike ANN that deals with a single query, MQ-ANN has to deal with a
query set Q with massive queries (e.g. millions or even more) simultaneously and conduct
ANN search for each query q ∈ Q. In this case, we usually use the throughput, i.e., the
number of queries processed per second, as the measure of efficiency, while we care about
the latency for each query in ANN search. MQ-ANN could be treated as a key component
of several important operations. Large K-Means on large-scale data, e.g. clustering 1 billion
high-dimensional vectors into a million clusters [11], involves MQ-ANN in each iteration
in order to assign each point to the closest cluster centroid. KNN Join [12] with a large data
set and a large query set conducts MQ-ANN after building an index to accelerate the search
process. Moreover, K-nearest neighbor graph construction [13, 14] could be considered as a
special case of KNN Join, where the query set is the data set itself.

In order to improve the throughput of MQ-ANN, a direct idea is to combine the parallel
capacity of a modern server and the pruning power of an efficient index method. First, a
modern server is equipped with multi-core CPUs, which have tens or even hundreds of
hardware threads. Second, proximity graphs present strong pruning power, which is able
to return highly accurate results (recall > 0.9) by only accessing a small part (< 0.5%)
of D [8]. However, there are no specific methods designed for MQ-ANN with proximity
graphs in parallel, except the naive method, called query view, which assigns each query to
a single hardware thread to exploit the parallelism. To the best of our knowledge, this work is
the first attempt to design efficient MQ-ANN approaches that combine multi-core CPUs and
proximity graphs.

First, let us brief ANN search with a proximity graph. Given a query q , the search process
maintains a candidate pool pool with a limited size, which contains the closest neighbors of
q found so far. pool is initialized with an entering point ep (randomly selected or specified in
advance). Then, it iteratively extracts a vertex u, which is the closest but unexpanded vertex
from the current pool, and then expands u, which treats all the neighbors of u in G as the
candidates of q to refine pool. On average, each vertex in G has tens of neighbors [10].
Once the termination condition is triggered, the iterative process ends and the first neighbor
of pool is returned as the ANN of q . Hence, the essential operations of the search process
are to expand a series of selected vertices in a greedy manner.

However, due to the nature of the graph structure, ANN search with proximity graph
leads to numerous cache misses. Note that the expansion on a vertex u accesses both the

1 We interchangeably use point, vector and vertex in this work.

123

Accelerating massive queries of approximate nearest neighbor… 4187

Fig. 1 Illustrating cache misses during the expansion on a vertex u. The thread needs to access the edge set
E(u) and the corresponding vectors in E(u). However, those data are probably not in the cache, since D and
G require far more space than the size of cache. Hence, the access to them causes cache misses

adjacency list E(u) and the corresponding vectors in E(u). Since those vectors in E(u)

could not be stored in a consecutive area and the cache is too small to hold the data set D, the
accesses to them are probably in a randommanner with many cache misses. We illustrate this
phenomenon in Fig. 1, where a single hardware thread deals with ANN search for q and u is
the vertex to be expanded. Before the expansion, q and pool have been loaded in the cache.
To conduct the expansion, the thread first loads E(u) in the cache with one cache miss and
then fetches the corresponding vectors from the main memory with 4 cache misses. Further,
consider that each query usually expands tens or hundreds of vertices, and thus the search
process for a single query will cause a large number of cache misses.

Second, let us focus on efficient parallel solutions to MQ-ANN. The current solution
(query view) simply assigns each query to a hardware thread, in order to exploit the parallel
power, but suffers from numerous cache misses. This is mainly caused by the nature of ANN
search with proximity graph. What’s worse, each thread has less cache available on average,
since the cache is shared by the threads. We illustrate the memory hierarchy of a multi-core
CPU in Fig. 2, where the CPU has two cores or hardware threads. Both L1 cache (L1I and
L1D) and L2 cache are only accessed by their corresponding hardware thread, while L3
cache is shared by all hardware threads in the CPU. In modern CPUs, there are usually tens
or even more cores, which leads to less L3 cache available for each core.

In this work, we propose a new method, called bridge view, which is able to reduce
cache misses by a large margin. The key idea is to share the access to the neighborhood
of the same vertex among queries, like MS-BFS [15].2 Unlike query view that deals with
massive queries independently, bridge view handles those queries simultaneously by a smart
scheduling mechanism. Our approach is based on the fact that a vertex u on G may be
expanded by multiple queries. In particular, MQ-ANN has to deal with massive queries and
thus each vertex may be expanded multiple times. Hence, we assign those expansions on the

2 We discuss the difference between our solution and MS-BFS in Sect. 6.4.

123

4188 Y. Liu et al.

Fig. 2 Illustrating the memory hierarchy of a multi-core CPU

same vertex u to the same hardware thread, since they share the same access to E(u) and
the vectors in E(u). Moreover, L2 cache in modern multi-core CPUs is large enough to hold
both the edge set and the corresponding vectors for most vertices, as shown in Sect. 3.1. By
this means, the queries after the first one will probably find the data required in the cache.
As a result, bridge view obviously reduces cache misses.

Moreover, we extend bridge view to deal with MQ-ANN on large-scale D (e.g. 108

vectors). However, directly building proximity graph on those large data is of expensive
cost. To reduce the building cost, the large-scale data is partitioned into a series of disjoint
moderate-scale data and then build a proximity graph for each partition. Bridge view is
able to enhance those partition based methods, since they all contain the same process, i.e.,
MQ-ANN on moderate-scale data.

To demonstrate the effectiveness of our approach, we conduct extensive experiments on
bothmoderate-scale and large-scale data setswith three state-of-the-art proximity graphs, i.e.,
DPG [8], HNSW [9] and NSG [10]. According to our experimental results, our approach sig-
nificantly outperforms query view in various settings.Moreover, bridge viewwith 8 hardware
threads even outperforms query view with 24 hardware threads. Further, the performance of
our method will be further enhanced with more threads and more queries, which is pretty
suitable for MQ-ANN with multi-core CPUs. As to the experiments on large-scale data,
bridge view obviously outperforms query view. Hence, our method also enhances MQ-ANN
on large-scale data.

The contributions of this paper is listed as follows:

• As the first attempt to study MQ-ANNwith proximity graphs, we propose a new method
called bridge view, which is applicable to all proximity graphs.

• We extend bridge view to deal with large-scale data by dividing the large data into a
series of moderate-scale data.

• We conduct extensive experiments to demonstrate the superiority of bridge view over the
existing method, i.e., query view.

The rest of this paper is organized as follows. In Sect. 2, we show the preliminaries. In
Sect. 3, we present our approach. In Sect. 4, we discuss the extensions of our method on
large-scale data. In Sect. 5, we discuss our experiments. In Sect. 6, we list the related works.
Finally, we conclude this paper in Sect. 7.

123

Accelerating massive queries of approximate nearest neighbor… 4189

2 Preliminaries

In this section, we first formally define our problem and then present more details about
proximity graphs, on which our solution is built. Finally, we discuss the motivation for this
work.

2.1 Problem l

Definition 1 (ANN). Given a data set D ⊂ R
d with n points and a query q ∈ R

d , ANN
search returns a point p ∈ D, which is sufficiently close to q .

ANN search could easily be extended to k-ANN search, where k close points to q in D
will be returned. For simplicity, we just use ANN search to represent both cases in this paper.
Besides, we take the widely used Euclidean distance as the distance measure between two
vectors.

Definition 2 (MQ-ANN). Given a data set D ⊂ R
d with n points and a query set Q ⊂ R

d

with nq points, MQ-ANN returns the ANN for each q ∈ Q in D.

We can see that ANN search only considers a single query, whileMQ-ANN takes multiple
queries into consideration simultaneously. Moreover, the number nq of queries in Q is large
(e.g. millions or even more). In the paper, we design efficient solutions to MQ-ANN, which
combine the parallel capacity ofmulti-core CPUs and the filtering power of proximity graphs.

2.2 Proximity graphs

In this part, we discuss proximity graphs, which are the building bricks of our solution.
Using proximity graphs to deal with ANN search contains two key steps, i.e., (1) building a
proximity graph G offline and (2) accelerating ANN search with G online.

Offline building a proximity graph Given a high-dimensional data set D, a proximity
graph G treats each point u ∈ D as a graph vertex. During the construction of G, a set of
close neighbors E(u) is selected for each u ∈ D according to the specific strategy of neighbor
selection. For each neighbor v ∈ E(u), a directed edge will be created from u to v. G is
represented by adjacency lists, and thus E(u) forms the adjacency list of u. We illustrate such
a proximity graph with 8 vertices in Fig. 3.

Different proximity graphs share the same vertex set, but various edge set. For each
u ∈ D, E(u) is generated by distinct strategies of neighbor selection among proximity
graphs. To be specific, KGraph [16] simply builds directed edges between u and its k nearest
neighbors (KNN), while SW [17] creates undirected edges between u and its KNN. DPG,
HNSW and NSG take the edge diversification strategy to select diverse neighbors from a
set of closest neighbors for each vector u and then add both directed edges from u to those
neighbors and the reverse edges from those neighbors to u. HNSW and NSG limit the size
of E(u) to a specified value, while DPG has no such limitation. Even though different edge
set, each vertex usually has tens of out edges on average [10]. In this paper, we use three
state-of-the-art proximity graphs, i.e., NSG [10], HNSW [9] and DPG [8], in our experiments
as shown in Sect. 5. We have no assumption on the properties of proximity graphs, such as
connected or not.

Online ANN searchWith an offline built proximity graph G for the data set D, we show
how to find the ANN for a given query q in Algorithm 1 [10]. Except the basic parameters

123

4190 Y. Liu et al.

vector

vector

vector

vector

vector

vector

vector

vector

(a) D (b) G

Iteration 0

Iteration 1

Iteration 2

Iteration 3

unexpanded expanded

(c) pool

Fig. 3 Illustrating ANN search with a proximity graph, where k = 1 and e f Search = 2. D is the high-
dimensional data set. G is a proximity graph built on D, where each vector ui ∈ D is treated as a vertex in G.
In (c), we show the iterative process of ANN search with a proximity graph

Algorithm 1 Search_on_Graph
Require: G, D, q, k and e f Search;
Ensure: KNN of q in D;
1: L = max(k, e f Search) and i = 0;
2: initialize the candidate pool pool;
3: for each u ∈ D do
4: visi ted[u] = f alse;
5: end for
6: while i < e f Search do
7: u = pool[i] and mark u as expanded;
8: /* Procedure: expand(q, u,G)*/
9: for each v ∈ E(u) do
10: if visi ted[v] then
11: continue;
12: end if
13: /* Procedure: update(pool, v)*/
14: pool.add(v, dist(q, v));
15: sort pool in ascending order of dist(q, ·);
16: if pool.si ze() > L , then pool.resi ze(L);
17: visi ted[v] = true;
18: end for
19: i = index of the first unexpanded vertex u in pool;
20: end while
21: return the first k points in pool;

including the proximity graph G, the data set D, the query q and the number k of returned
neighbors, the search process requires another key parameter e f Search, which controls the
number of expanded vertices during the search process.

Essentially, the search process takes an iterative and greedy strategy to expand a series
of graph vertices. We use a data structure pool to store the L nearest neighbors of q found
so far, where L = max(k, e f Search), as defined in Line 1. Moreover, the candidate pool
pool is implemented by a sorted array, where its neighbors are sorted in ascending order
according to their distance to q . In Algorithm 1, pool plays two roles, i.e., (1) storing the
candidates of vertices to be expanded and (2) storing the best k-nearest neighbor found so far
since k ≤ L . We initialize pool in Line 2 according to the proximity graph. NSG and HNSW

123

Accelerating massive queries of approximate nearest neighbor… 4191

provide an entering point ep as the first element in pool, while DPG randomly selects a few
vertices from D to fill pool. Afterwards, it iteratively expands a series of vertices as in Line
6–20. First, it extracts the currently closest but unexpanded vertex u from the pool in Line
7, where i is its position in pool. The expansion on u, denoted as expand(q, u,G) (Line
9–18), treats each neighbor v ∈ E(u) as a candidate of KNN and then computes the distance
dist(q, v), followed by refining pool with v, denoted as update(pool, v) (Line 14–17).
After expanding the current u, it determines the next vertex to be expanded by its index in
pool in Line 19. Once the termination condition, that the first e f Search neighbors in pool
have been expanded, is triggered, the first k neighbors of pool is returned as the KNN of q ,
as in Line 21.

Since a candidate v could be the neighbor of multiple expanded vertices, it will be visited
more than once, which leads to repeated distance computations between q and v. To this end,
the method employs a bitmap visi ted that records whether or not a point has been visited.
visi ted is initialized as f alse for each vector, as in Line 3–5. For each candidate v, the
search process first checks visi ted[v] and just skips the visited one to avoid repeated distance
computation, as in Line 10–12. Otherwise, the search method conducts update(pool, v) and
marks v as visited, as in Line 13–17.

We illustrate the search process in Fig. 3, where we set k = 1 and e f Search = 2. Hence,
pool stores 2 nearest neighbors found so far. Let u1 be the entering point ep. Given a query
q , u1 is first added to pool, and u1 is first expanded, where the neighbors {u2, u4, u7} are
treated as candidates to refine pool and thus pool = {u1 : expanded, u7 : unexpanded}.
Afterwards, u7 is extracted from pool. The neighbors {u1, u3, u6} will be used to further
refine pool. However, u1 has been checked before and thus such a check with an expensive
distance computation should be avoided by checking visi ted[u1] first. After expanding u6,
the first e f Search = 2 neighbors of pool have been expanded, and thus the termination
condition is triggered. Finally, u6 is extracted from pool = {u6, u1} and returned as the
result of ANN search for q .

Notably, e f Search is the key parameter to the search performance. A large e f Search
indicates more vertices expanded as well as more candidates checked to refine pool, which
increases the probability of finding true KNN as well as the computational cost. To achieve
highly accurate (e.g., > 95% recall) results, e f Search is usually a quite small value from
tens to hundreds [8, 10], due to the strong power of proximity graphs. As a result, the search
process only accesses a small part of points in D for satisfied accuracy. We study the effect
of e f Search in Sect. 5.

2.3 Our motivation

Algorithm 2 Query View for MQ-ANN
Require: G, D, Q, k and e f Search;
Ensure: KNNs of each q ∈ Q in D;
1: N = ∅;
2: #pragma omp parallel for
3: for each q in Q do
4: Nk (q) = Search_on_Graph(G, D, q, k, e f Search);
5: N = N ∪ Nk (q);
6: end for
7: return N ;

123

4192 Y. Liu et al.

As shown in Algorithm 2, the existing solution called query view simply assigns a query
to each hardware thread so as to exploit the parallel computing power. This solution is easy to
implement, but causes a huge number of cache misses, which decreases its efficiency. Those
cache misses are brought out by the nature of the ANN search with a proximity graph, whose
main operations are to conduct expansions on a set of vertices. To expand such a vertex u,
the search process first visits its neighbor list E(u) and the corresponding vectors in E(u).
Moreover, those accesses are probably taken in a random manner, since those vectors cannot
be stored in a consecutive area and the cache. As a result, the access to each vector in E(u)

indicates a potential cache miss. This phenomenon has been illustrated in Fig. 1.
In this work, we aim at reducing those cache misses to improve the throughput for MQ-

ANN. Our solution is based on the observation that a vertex u ∈ D may be expanded by
multiple queries. Hence, we can share the access to both E(u) and the vectors in E(u) across
multiple queries. Especially, suppose that we have massive queries such as millions or even
more. If we assign the expansions on the same vertex u to the same thread, it will obviously
reduce the cache misses. After the expansion for the first query, the subsequent expansions
on u will find E(u) and the corresponding vectors in the cache.

3 Our solution: bridge view

In this section, we discuss our solution. Let us consider a typical search path q → u → v.
In this path, q is the query point, u is a vertex expanded by q and v ∈ E(u). Here, we call
u as the bridge vertex that connects the query q and its candidate v. We call the method
described in Algorithm 2 as query view, since it centers at the query point. In contrast, our
method centers at the bridge vertex and thus we call it bridge view. We first present a naive
version of our solution to introduce the key idea of our solution and then show a mature one
that works in practice. Moreover, we compare the pros and cons of two views.

3.1 A naive version

The key idea behind bridge view is to share the access to the neighborhood of the same
vertex across multiple queries. To better explain the idea, it is assumed that we know the
set X(q) of all vertices expanded by each q ∈ Q during the search process in advance.
Accordingly, we derive Y (u) = {q|u ∈ X(q)} for each u ∈ D. Bridge view simply assigns
all the expansions on the same vertex u to the same hardware thread. Note that Y (u) usually
contains multiple queries in MQ-ANN. After the expansion for the first query, we will find
the neighborhood including E(u) and the corresponding vectors in the cache with a high
probability for the remaining queries. Moreover, the neighborhood of most points in D could
be held by the cache in modern CPUs, as shown in the following. Hence, more queries Y (u)

contains, more cache misses will be reduced. For simplicity, we denote X = {X(q)|q ∈ Q}
and Y = {Y (u)|u ∈ D} in this work.

We illustrate the idea above in Fig. 4 with 8 queries and 8 points. Suppose that we have X
in advance. Then, bridge view easily derives the set Y from X as illustrated as Step 1. With
Y , bridge view simply assigns all the expansions on a single vertex to a hardware thread as
illustrated as Step 2. HT0 and HT1 process all the expansions on u1 and u5 respectively. Note
that there are 4 queries (q2, q3, q7 and q8) that will expand u1. When dealing with the first
expansion for q2, five data structures need to be loaded into the cache, including q2.pool, the
query vector q2, the edge set E(u1), the corresponding vectors in E(u1) and the set Y (u1).

123

Accelerating massive queries of approximate nearest neighbor… 4193

Fig. 4 Illustrating how bridge view reduces cache misses. The proximity graph G is the same one in Fig. 3.
With given X , Y is easily derived in Step 1. Then, two threads HT0 and HT1 process all expansions on u1 and
u5 respectively. After HT0 expands u1 for q2, subsequent expansions for q3, q7 and q8 will find E(u1) and
vectors in E(u1), which occupy a significant amount of space, still in cache. Thus, cache misses are obviously
reduced

Notably, all queries in Y (u1) share the same access to E(u1) and the vectors in E(u1), which
occupy much more space than a query vector and its candidate pool as shown in Table 1.
After expanding u1 for q2, HT0 finds E(u1) and the vectors in E(u1) still in the cache for
the remaining queries, which thus reduces the cache misses in a significant scale. Moreover,
those data structures are loaded into L3 cache, L2 cache and L1D cache successively. Since
the size of L1D cache is usually pretty small (e.g. 32 KB), we focus on L2 cache and L3
cache when discussing cache misses.

Fortunately, we find that L2 cache in modern multi-core CPUs is large enough to hold
the data required for a single expansion in most cases. Let us consider the CPU Intel Xeon
E5-2697 V3 CPU, used in our experiments, as an example. It has 14 cores, L2 cache of
size 14 × 256 KB and L3 cache of size 35 MB. Each piece of L2 cache with 256 KB is
exclusively used by its corresponding core, while L3 cache is shared by all the 14 cores.
Let us consider two well-known high-dimensional data sets, i.e., Sift and Gist, whose details
could be found in Sect. 5.1. First, we study the distribution of out-degrees, i.e., |E(u)|, on
three proximity graphs (NSG, HNSW and DPG). We show the results in Fig. 5. We can see
that Pr [|E(u)| ≤ 50] ≥ 0.8 in all cases. Moreover, Pr [|E(u)| ≤ 50] is at least 0.95 on NSG
and HNSW, because they set an upper bound on the out-degree for each vertex. However,
there are some vertices with many (hundreds or even thousands) neighbors on DPG, which
is caused by its strategy of neighbor selection [8].

To quantify the size of data structures required for a single expansion, we set |E(u) = 50|
and L = 100, which is the size of the candidate pool q.pool. We show the space required
by the data structures for such a single expansion in Table 1. We can see that the L2 cache
of size 256 KB is large enough to hold those data structures in our settings. As a result, once
they have been loaded into L2 cache, they will stay in L2 cache until all the expansions on
u are finished.

As to expanding large E(u), whose data structures cannot be fitted in the L2 cache or even
L3 cache, the idea discussed above will not work. To address this issue, we can evenly divide
the large edge set E(u) into several subsets and the expansion is divided into several sub-
expansions accordingly, in order that L2 cache is able to cover the data structures for each sub-

123

4194 Y. Liu et al.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

|E(u)|

cu
m
ul
at
iv
e
pr
ob

ab
ili
ty

NSG
HNSW
DPG

(a) Sift1M

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

|E(u)|

cu
m
ul
at
iv
e
pr
ob

ab
ili
ty

(b) Gist

Fig. 5 Illustrating the distribution of out-degree E(u) of proximity graphs

Table 1 Statistics of space
required for an expansion. Each
dimension of a vector is
represented by a float value with
4 bytes. Each neighbor in q.pool
requires 9 bytes (4 bytes for the
ID, 4 bytes for the distance value
and one byte recording
expanded/unexpanded)

Data Sift Gist

Size of E(u) 50 × 4 B 200 B

Dimensions 128 960

Size of vector q 0.5 KB 3.75 KB

Size of vectors in E(u) 25 KB 187.5 KB

Size of q.pool 900 B 900 B

Total size 26.57 KB 192.32 KB

expansion. During the expansion, bridge view conducts those sub-expansions successively
for all queries in Y (u). On the other hand, this issue could be relieved by the fact that L2
cache is increasingly larger and larger. For example, another CPU used in our experiments,
Intel(R) Xeon(R) Gold 6238, has L2 cache of 1 MB for each core, which is 3 times larger
than the other one.

To be formal, we show this naive idea in Algorithm 3. It contains two key steps. First, with
the given X contains each X(q), we derive Y (u) for each u ∈ D, as in Line 3–7. Second, we
simply assign all expansions on each vertex u to a hardware thread, in order to exploit the
parallel computing power of the multi-core CPUs, as in Line 8–13.

3.2 Amature version

The naive version is built on the assumption that we have the knowledge of X in advance.
Unfortunately, this is impossible in the real world, because X(q) is iteratively extracted
from the candidate pool one by one in a greedy manner, as shown in Algorithm 1. To deal
with this issue, we propose an iterative method to generate an approximate X(q). Note that
each member of X(q) is extracted as the currently first unexpanded vertex in the sorted
q.pool. In our approximate method, we extract at most S unexpanded vertices from q.pool
in each iteration. Those vertices are denoted as X̄i (q) for simplicity. The union set ∪i X̄i (q)

in all iterations forms an approximation of X(q), denoted as X̄(q). If S = 1, we have that
X̄(q) = X(q). With the given X̄i (q) for each q ∈ Q, ∀u ∈ D we can accordingly derive
the set Ȳi (u) of queries that will expand u in the i-th iteration. Larger S is, larger the size of

123

Accelerating massive queries of approximate nearest neighbor… 4195

Algorithm 3 The Naive Version of Bridge View
Require: G, D, Q, k and X
Ensure: KNNs of each q ∈ Q
1: Y (u) = ∅ for each u ∈ D;
2: N = ∅;
3: for each q in Q do
4: for each u in X(q) do
5: Y (u).add(q);
6: end for
7: end for
8: #pragma omp parallel for
9: for each u in D do
10: for each q in Y (u) do
11: conduct expand(q, u,G) to refine Nk (q);
12: end for
13: end for
14: for each q in Q do
15: N = N ∪ Nk (q);
16: end for
17: return N ;

Ȳi (u) for each u will be on average, which reduces more cache misses. On the other hand,
a large S decreases the quality of Ȳi (u) for each u. Hence, S should be carefully selected.
However, the performance of bridge view is slightly sensitive to S and a small value (e.g. 10)
will be enough for a good performance, as discussed in Sect. 5.2.3.

We show the mature version of bridge view in Algorithm 4. Like ANN search in Algo-
rithm 2, bridge view requires the inputs including the proximity graph G, the data set D,
the query set Q, the number k of returned neighbors and the search parameter e f Search.
In addition, it requires another parameter S, which determines the maximum number of
unexpanded vertices from q.pool for each q ∈ Q.

In general, bridge view contains three parts, i.e., initialization (Line 1–5), main loop
(Line 6–9) and result extraction (Line 10–14). In initialization, bridge view initializes
the key parameters and the key data structure, i.e., q.pool for each q ∈ Q, which has
the same meaning as pool used in Algorithm 1. We set the result set N empty in Line
1. Like Algorithm 1, we determine the capacity of each candidate pool q.pool as L =
max(k, e f Search). In Line 3–5, bridge view initializes each q.pool and guarantees that it
contains at least S unexpanded neighbors after the initialization. In both HNSW and NSG,
which contain an entering point ep, we add ep to q.pool and conduct the iterative process
of expanding close vertices until there are at least S unexpanded neighbors in q.pool. Since
S is set as a small value (e.g. 10), the initialization could be finished after expanding ep that
contains usually tens of neighbors. As to DPG, we randomly select S points like the ANN
search algorithm [8].

After initialization, bridge view conducts the main loop, as shown in Line 6–9. We can
see that each iteration has three procedures, i.e., ASSIGN (Line 17–30), CONNECT (Line
32–41) and IsTerminated (Line 6). In ASSIGN, bridge view computes the set Ȳi (u) for
each u ∈ D in this iteration. To achieve this goal, it retrieves q.pool for each q to collect
at most S unexpanded vertices and then adds those vertices to Ȳi (u) accordingly, as in Line
22–28. In CONNECT, bridge view assigns all the expansions on the same vertex to a single
hardware thread, as shown in Line 32–41. Each expansion connects each query q ∈ Ȳi (u) and
its candidates in E(u), to refine q.pool as in Line 37. Note that both ASSIGN and CONNECT

123

4196 Y. Liu et al.

Algorithm 4 The Mature Version of Bridge View
Require: G, D, Q, k, e f Search and S
Ensure: KNNs for each q ∈ Q
1: N = ∅;
2: /* Initialization of Bridge View */
3: for each q in Q do
4: initialize q.pool;
5: end for
6: while !IsTerminated() do
7: ASSIGN();
8: CONNECT();
9: end while
10: #pragma omp parallel for
11: for each q in Q do
12: extract the first k points in q.pool to form Nk (q);
13: N = N ∪ Nk (q);
14: end for
15: return N ;
16:
 the procedure of ASSIGN
17: proecedure ASSIGN()
18: Ȳi (u) = ∅ for each u ∈ D;
19: #pragma omp parallel for
20: for each q in Q do
21: num = 0;
22: for i : 0 → e f Search − 1 do
23: u = q.pool[i];
24: if (u is unexpanded) & (num < S) then
25: Ȳi (u).add(q) and mark u as expanded;
26: num++;
27: end if
28: end for
29: end for
30: return;
31:
 the procedure of CONNECT
32: proecedure CONNECT()
33: #pragma omp parallel for
34: for each u in D do
35: for each q in Ȳi (u) do
36: for each v in E(u) do
37: update(q.pool, v);
38: end for
39: end for
40: end for
41: return;

could be done in parallel, as shown in Line 19 and Line 33 respectively. However, ASSIGN
centers at each query, while CONNECT centers at each graph vertex.

Besides, the main loop needs a termination condition, which is implemented by the
procedure IsTerminated. A simple and naive one could be that none expanded vertex has
been found in the ASSIGN procedure. This condition means that the first e f Search vertices
in each q.pool has been expanded, which is just the termination condition in Algorithm 1.
However, this condition will waste much cost in the later iterations, where only a small
number of unexpanded vertices are found with the same cost in ASSIGN. This condition
decreases the efficiency of bridge view. To relieve this issue, we set an early termination
condition by monitoring the number #total_num_unexp of unexpanded vertices extracted
in each iteration. Due to the parameter S, bridge extracts at most S unexpanded vertices in

123

Accelerating massive queries of approximate nearest neighbor… 4197

each iteration and thus there are at most nq × S unexpanded vertices found in each iteration.
We can set the early termination condition as #total_num_unexp ≤ � × nq × S, where
� ∈ [0, 1) is a threshold specified in advance. In this way, bridge view just terminates when
there are not enough unexpanded vertices found in the last iteration.

As to result extraction, we just extract k close neighbors from q.pool for each query q ,
as shown in Line 14 to 17. Bridge view returns those neighbors as the results of MQ-ANN
and ends the whole process.

3.3 Comparing two views

In this part, we discuss the pros and cons of two views. Generally speaking, bridge view is
able to reduce the cache misses in a significant scale, but at the expense of repeated distance
computations and more memory. By contrast, query view is memory-efficient and has no
repeated distance computations, but suffers from numerous cache misses as well as low
throughput.

For a query q , some candidates may appear in the neighborhood of multiple expanded
vertices, which will lead to multiple repeated distance computations if ignoring this issue.
As shown in Fig. 3, u4 ∈ E(u1) and u4 ∈ E(u6). The distance between q and u4 has been
computed after expanding u1. If we ignore this fact, the same distance will be computed
when expanding u6 subsequently. Query view addresses this issue by the bitmap visi ted
for q as shown in Algorithm 1. In fact, visi ted is a bitmap of n bits and each bit records
whether or not the corresponding point has been accessed. In the search process for q , query
view allocates the space for visi ted in the beginning and frees it at the end. Hence, it only
requires additional O(n × T) memory space, where T is the number of hardware threads.
Since T is usually tens in a modern server, O(n × T) additional space could be tolerated,
especially considering the data D of space O(n × d), where d usually ranges between tens
and thousands.

Unfortunately, this simple strategy is not practically useful for bridge view. Since bridge
view deals with all the queries in the meantime, it cannot afford the bitmaps for all queries,
which requires O(n × nq) space. Since nq could be far larger than hundreds, the required
space will be huge. However, each distance computation in bridge view costs significantly
less than query view on average, since our method accesses the vectors faster due to far fewer
cache misses as demonstrated in Sect. 5.2.2.

Moreover, bridge view requires more memory space than query view, even without those
bitmaps. This is mainly caused by the fact that bridge view deals with all the queries simul-
taneously. As a result, we have to store q.pool for each query q and Ȳi (u) for each bridge
vertex u. The total space for all candidate pools is O(nq × L), while the total space for Ȳi (·)
is O(n × S). L is affected by e f Search that is usually large enough (tens or hundreds) to
achieve high accuracy. In contrast, query view only needs to keep at most T candidate pools
in the memory, since there are at most T queries simultaneously.

In addition, the number nq of queries in Q has no effect on the performance of query view,
since all the queries are processed independently. But, bridge view will benefit from a larger
nq , as demonstrated in Sect. 5.2.3. This is because a larger nq will increase the average size
of Ȳi (u) for each bridge vertex u and thus lead to more cache misses reduced for expansions
on u.

123

4198 Y. Liu et al.

Algorithm 5 Single Query of Partition Based Methods
Require: {G1, . . . ,Gnpar }, {D1, D2, ..., Dnpar }, q, k and e f Search
Ensure: KNNs of q
1: #pragma omp parallel for
2: for 1 ≤ i ≤ n par do
3: Ni

k (q) = Search_on_Graph(Gi , Di , q, k, e f Search);
4: end for
5: /* the merge operation */
6: find the best k neighbors in ∪n par

i=1 Ni
k (q) to form Nk (q);

7: return Nk (q);

4 Discussions on large-scale data

In this section, we discuss massive queries on large-scale D (e.g. 108 vectors or more).
The key challenge on large-scale data is the construction cost of proximity graphs, which is
superlinear with the number n of points in D. When n is large enough, the construction cost
will be pretty large. To relieve this issue, we follow the idea in NSG [10], called partition
based methods in this work, which simply divide the large data into equal-size partitions
and build a proximity graph for each partition. By this way, they are able to reduce the
construction cost. In this following, we show more details of partition based methods and
discuss how to apply our method bridge view to enhance the search performance for partition
based methods.

To be specific, partition based methods evenly divide the large-scale D into n par parti-
tions, i.e., {D1, D2, ..., Dnpar } and then build a proximity graph for each partition [10], i.e.,
{G1,G2, ...,Gnpar } accordingly. As a classical instance in [10], when dealing with large-
scale data, the data is first divided into 16 partitions (w.r.t. 16 cores) and then 16 NSG graphs
are built. Note that the construction cost of a proximity graph is O(nt × d) [18], where
t ∈ (1, 2) depends on the construction method and the data distribution, since the graph con-
struction needs to find close neighbors for each point in D. However, partition based methods
build n par proximity graphs on the same number of equal-size data partitions. Thus, their
construction cost is reduced to O(n1−t

par × nt × d).
Moreover, partition basedmethods exploit the parallel power of multi-core CPUs to accel-

erate the search process. During the search for a single query, they conduct ANN search on
each partition in parallel and finally merge those results from n par partitions. As shown in
Algorithm 5, given a query q , it is assigned to n par cores simultaneously and each core
conducts ANN search on a single partition, as shown in Line 1–4. Finally, a simple merging
operation returns the best result, as shown in Line 6. Since n par cores are exploited to deal
with the same query, partition based methods improve the data-level parallelism.

We can see that current partition based methods (e.g. [10]) actually employ query view
when dealing with massive queries. They assign each hardware thread the same query simul-
taneously but conduct ANN search on different data partitions in parallel. Hence, we can
improve those methods by replacing query view with bridge view. By this means, we can
exploit the advantages of bridge view to enhance the performance of partition based meth-
ods. We show this idea in Algorithm 6. Like bridge view, it requires the parameters as inputs
including Q, k and e f Search. However, it has a set of data sets {D1, D2, ..., Dnpar }and their
corresponding proximity graphs {G1,G2, . . . ,Gnpar } as its inputs, due to the partitioning
strategy. In Line 1–4, the KNN set Nk(q) for each query is initialized as ∅. In Line 5–12,
it iteratively conducts the bridge view for each partition and then merges the results found
before this iteration and the results found in the current partition. In each iteration, it takes

123

Accelerating massive queries of approximate nearest neighbor… 4199

Algorithm 6 Partition Based Methods with Bridge View
Require: {G1,G2, . . . ,Gnpar }, {D1, D2, ..., Dnpar }, Q, k and e f Search
Ensure: KNNs of each q ∈ Q
1: N = ∅;
2: for each q ∈ Q do
3: Nk (q) = ∅;
4: end for
5: for 1 ≤ i ≤ n par do
6: conduct bridge view on Gi , Di and Q, with N ′ as returned results;
7: /* the merge operation */
8: for each q ∈ Q do
9: obtain N ′

k (q) fromN ′;
10: find the best k neighbors of Nk (q) ∪ N ′

k (q) to form Nk (q);
11: end for
12: end for
13: for each q ∈ Q do
14: N = N ∪ Nk (q);
15: end for
16: return N ;

Di , Gi , Q, k and e f Search as inputs of bridge view in Algorithm 4, and return the result
N ′, as shown in Line 6. In Line 8–11, it conducts the merge operation, which selects the
best k neighbors from Nk(q) ∪ N ′

k(q) to form a new version of Nk(q) for each q ∈ Q. Here,
Nk(q) represents the best neighbors found before this iteration, while N ′

k(q) those found in
this iteration. Finally, we collect each KNN set Nk(q) to generate the final set N , as shown
in Line 13–15.

5 Experiments

In this section, we present our experimental results, in order to demonstrate the advantages
of bridge view over query view in various settings. First of all, we list the experimental
settings. Then, we present the main experimental results, explore the underlying reasons and
investigate the effects of key parameters on bridge view. In addition,we show the experimental
results on large-scale data with partition based methods.

5.1 Experimental settings

The statistics of the data used in this paper are listed in Table 2. Here, each data contains a
pair of data set and query set.

• Moderate-scale data: there are totally four pairs of moderate-scale data. The points
and queries of Sift1M are randomly sampled from the learn set of Sift1B.3 Both sets of
Deep1M are randomly sampled from the learn set of Deep1B.4 Both sets of Tiny1M are
randomly sampled from Tiny80M.5 Gist is from the data with the same name Gist 3, but
is equally divided into data set and query set.

• Large-scale data: two pairs of large-scale data are used. Sift100M is the learn set of
Sift1B 3, divided into two parts in a random manner, i.e., 90 million data points and 10

3 http://corpus-texmex.irisa.fr/.
4 https://yadi.sk/d/11eDCm7Dsn9GA.
5 http://horatio.cs.nyu.edu/mit/tiny/data/.

123

http://corpus-texmex.irisa.fr/
https://yadi.sk/d/11eDCm7Dsn9GA
http://horatio.cs.nyu.edu/mit/tiny/data/

4200 Y. Liu et al.

Table 2 Data statistics Data n d nq

Sift1M 1,000,000 128 1,000,000

Deep1M 1,000,000 96 1,000,000

Tiny1M 1,000,000 384 1,000,000

Gist 500,000 960 500,000

Sift100M 90,000,000 128 10,000,000

Deep100M 90,000,000 96 10,000,000

million query points. Deep100M is a random sample of 100 million points from the learn
set of Deep1B 4. Similar to Sift100M, Deep100M is randomly divided into two parts,
i.e., 90 million data points and 10 million query points.

Computing Environments: our experiments are conducted on two workstations. The
first workstation is equipped with two Intel(R) Xeon(R) E5-2697 v3 CPUs, while the second
one with two Intel(R) Xeon(R) Gold 6238 CPUs. An Intel(R) Xeon(R) E5-2697 v3 CPU
has 14 cores, L1D cache of 14×32 KB, L2 cache of 14×256 KB and L3 cache of 35 MB.
An Intel(R) Xeon(R) Gold 6238 CPU has 22 cores, 22×32 KB, L2 cache of 22×1 MB and
L3 cache of 30.25 MB. We use the first workstation for our experiments by default, unless
specified. The codes are implemented by C++ and compiled by g++4.8. We use the SIMD
instructions to accelerate distance computations. By default, we set the number T of threads
as 16 and the number k of returned neighbors as 20, unless specified.

Performance Indicators: for each method of MQ-ANN, we use the number of queries
handled per second to evaluate its efficiency, i.e., queries/second .We use recall to estimate
the accuracy of returned results. Let knn(q)be the returned results for the queryq and knn∗(q)

be the exact KNNs of q . The recall of q is defined as recall(q) = |knn(q) ∩ knn∗(q)|/k.
The recall for a query set is averaged over all the queries. Besides, we use the scan_rate
to evaluate the number of distance computations. Let #dists be the total number of distance
computations and scan_rate = #dists/n/nq . We use cache_misses to indicate the total
cache misses during massive queries and estimate it by the instruction perf stat -e
cache-misses for each method.

Abbreviations: we compare query view and bridge view with three state-of-the-art prox-
imity graphs, i.e., DPG (D for short), HNSW (H for short) and NSG (N for short). For
simplicity, we use NsgQuery or NQ to represent query view with NSG and NsgBridge or NB
to represent bridge view with NSG. As to the methods on large-scale data, we use the prefix
“PAR-” to represent the partition basedmethods. For example, PAR-NQ indicates that we use
NSG graphs as the index and take query view on each NSG graph during the search process.
For each method, we carefully select its parameters in order to achieve the best performance.

5.2 Main experimental results

The purpose of this part is to demonstrate the advantages of bridge view over query view.
Further, we explore the reasons behind the advantages of our method. Besides, we investi-
gate the effects of key parameters on the performance of bridge view. All experiments are
conducted on the moderate-scale data.

123

Accelerating massive queries of approximate nearest neighbor… 4201

0.9 0.92 0.94 0.96 0.98 1
1E4

5E4

1E5

2E5

recall

qu
er
ie
s/
se
co
nd

NsgBridge NsgQuery
HnswBridge HnswQuery
DpgBridge DpgQuery

(a) Sift1M

0.9 0.92 0.94 0.96 0.98 1
2E4

5E4

1E5

2E5

recall

qu
er
ie
s/
se
co
nd

(b) Deep1M

0.9 0.92 0.94 0.96 0.98 1
1E3

5E3

1E4

3E4

recall

qu
er
ie
s/
se
co
nd

(c) Tiny1M

0.9 0.92 0.94 0.96 0.98 1
5E2

1E3

5E3

1E4

2E4

recall

qu
er
ie
s/
se
co
nd

(d) Gist

Fig. 6 The main results of comparing two views

5.2.1 Comparing two views

We compare those two views with three state-of-the-art proximity graphs, i.e., DPG, HNSW
and NSG, as shown in Fig. 6. Overall, bridge view obviously outperforms query view in
almost all cases, especially with NSG and HNSW. Let us take NSG as an example. On
Tiny1M, NsgBridge deals with 3× queries as many as NsgQuery when recall is around
0.98. Among all the six methods, NsgBridge has the best performance. This demonstrates
the superiority of bridge view over query view.

The advantages of bridge view over query view are significantly affected by the dimen-
sions.Bridge viewhas a larger advantage over query viewondatawith higher dimensions (i.e.,
Tiny1M and Gist) than data with lower dimensions (i.e., Sift1M and Deep1M). Let us take
NSG as an example. The speedup of NsgBridge over NsgQuery on Tiny1M is as high as 3,
while it is at most 1.5 on Sift1M. In addition, the index has an obvious effect on the perfor-
mance in both views. NSG usually has the best performance in both views, while DPG has
the worst one. This phenomenon is pretty significant on Tiny1M and Gist.

Notably, we obtain the performance curve for each method in Fig. 6 by varying the key
search parameter e f Search between 20 and 320, in order to present its full search perfor-

123

4202 Y. Liu et al.

mance. As discussed above, e f Search controls the tradeoff between efficiency and accuracy,
i.e., enlarging e f Search costs more but returns more accurate results.

5.2.2 Exploring two views

As discussed in Sect. 3.3, bridge view reduces the cache misses at the expense of repeated
distance computations and increased memory space. To show this phenomenon, we present
scan_rate and cache_misses in Fig. 7 and memory footprint in Fig. 8.

In Fig. 7, we can see that bridge view reduces the cache misses in a large scale w.r.t. query
view, when achieving the same recall value. Let us take NSG as an example and consider
a specified recall value such as 0.98. In this case, NsgBridge computes obviously more
distances than NsgQuery, but produces far fewer cache misses. To be specific, NsgBridge
computes 60%more distances than NsgQuery, but only produces 16% cache misses as many
as NsgQuery on Gist. Similar phenomena could be found in other settings. This means that
each distance computation in bridge view leads to fewer cache misses and even less cost
than that in query view. The intuition behind bridge view is to enhance massive queries by
reducing cache misses. Hence, we verify that our design fulfills our motivation.

On the other hand, bridge view requires more memory space than query view, which is
its side effect. As in Fig. 8, the memory usage of NsgQuery keeps unchanged w.r.t. different
recall values, while that of NsgBridge grows as recall increases for a larger recall. A larger
recall indicates a larger e f Search, which determines the size of q.pool for each query q .
Note that bridge view has to store q.pool for each query q during the whole process, while
query view does not. However, considering the improvement of bridge view in performance,
we can tolerate such additional cost for the sake of search performance.

5.2.3 Effects of key parameters

In this part, we investigate the effects of three parameters on the performance of bridge view,
i.e., the number T of threads, the parameter S and the number nq of queries. Besides, we
have discussed the influence of e f Search in Sect. 5.2.1.

Effects of the number T of parallel threads: Since we solve massive queries in multi-
core CPUs, the number T of hardware threads will affect the performance. We show the
results with NSG in Fig. 9. We can see that the advantages of NsgBridge over NsgQuery
increase as the number T of threads rises. This means that bridge view will further enhance
its performance for more hardware threads. In particular, NsgBridge with 8 threads obviously
outperforms NsgQuery with 24 threads on Tiny1M.

Effects of the parameter S: Note that S indicates the maximum number of unexpanded
vertices extracted for each query in each iteration. We show its effects in Fig.10. Overall,
the effects of S is pretty slight and a moderate value such as 10 usually achieves the best
performance. If S is a small value such as 5, its efficiency significantly decreases as shown on
Gist. This is because Ȳi (u)will have fewer queries in each iteration and thus bridge view fails
to make full use of the data locality. On the other hand, a larger S such as 15 may influence
the quality of Ȳi (u), especially for a small e f Search value, as shown on Deep1M.

Effects of the number nq of queries: We also care about the effects of the number nq
of queries on bridge view. We show the results of NsgBridge in Fig. 11. As nq increases, the
performance ofNsgBridge obviously grows. This is because a larger nq leads to a larger Ȳi (u)

for each bridge vertex u in each iteration, which reducesmore cachemisses. In contrast, query
view is not affected by nq , since it deals with each query independently. This demonstrates
that bridge view will further enhance its performance for more queries.

123

Accelerating massive queries of approximate nearest neighbor… 4203

0.9 0.92 0.94 0.96 0.98 1
1E-3

5E-3

1E-2

recall

sc
an

ra
te

NsgBridge NsgQuery
HnswBridge HnswQuery
DpgBridge DpgQuery

(a) Deep1M

0.9 0.92 0.94 0.96 0.98 1
1E9

5E9

1E10

3E10

recall

ca
ch
e
m
is
se
s

(b) Deep1M

0.9 0.92 0.94 0.96 0.98 1
5E-3

1E-2

5E-2

recall

sc
an

ra
te

(c) Gist

0.9 0.92 0.94 0.96 0.98 1
5E9

1E10

5E10

1E11

2E11

recall

ca
ch
e
m
is
se
s

(d) Gist

Fig. 7 Comparing two views in scan_rate and cache_misses

0.9 0.92 0.94 0.96 0.98 1
0

1,000

2,000

3,000

4,000

5,000

recall

m
em

or
y
(M

B
)

NsgBridge
NsgQuery

(a) Sift1M

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1
·104

recall

m
em

or
y
(M

B
)

(b) Tiny1M

Fig. 8 Comparing two views of NSG in memory footprint

123

4204 Y. Liu et al.

0.9 0.92 0.94 0.96 0.98 1
1E4

5E4

1E5

2E5

recall

qu
er
ie
s/
se
co
nd

NB T8 NQ T8
NB T16 NQ T16
NB T24 NQ T24

(a) Sift1M

0.9 0.92 0.94 0.96 0.98 1
1E3

5E3

1E4

4E4

recall

qu
er
ie
s/
se
co
nd

(b) Tiny1M

Fig. 9 Effects of the number T of parallel threads on two views of NSG. NB is short for NsgBridge and NQ
for NsgQuery. T8 means 8 threads

0.9 0.92 0.94 0.96 0.98 1
2E4

5E4

1E5

2E5

recall

qu
er
ie
s/
se
co
nd

S=5
S=10
S=15

(a) Deep1M

0.9 0.92 0.94 0.96 0.98 1
4E3

1E4

2E4

recall

qu
er
ie
s/
se
co
nd

(b) Gist

Fig. 10 Effects of the parameter S on NsgBridge

0.9 0.92 0.94 0.96 0.98 1
1E4

5E4

1E5

2E5

recall

qu
er
ie
s/
se
co
nd

NBnq=2E5 NB nq=5E5
NB nq=1E6 NQ

(a) Sift1M

0.9 0.92 0.94 0.96 0.98 1
1E3

5E3

1E4

3E4

recall

qu
er
ie
s/
se
co
nd

(b) Tiny1M

Fig. 11 Effects of the number nq of queries on two views of NSG

123

Accelerating massive queries of approximate nearest neighbor… 4205

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5
·104

recall

qu
er
ie
s/
se
co
nd

PAR-NB PAR-NQ
PAR-HB PAR-HQ

(a) Sift100M

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.2

0.4

0.6

0.8

1
·104

recall

qu
er
ie
s/
se
co
nd

(b) Deep100M

Fig. 12 Comparing two views of the partition based methods with 16 partitions on large-scale data

5.3 Experimental results on large-scale data

In this part, we show the experimental results of partition based methods, in order to demon-
strate the advantages of bridge view over query view on large-scale data. As a key parameter
for partition based methods, we investigate the effects of the number n par of partitions.
Moreover, we present the joint effects of n par and the number T of threads. By default, we
set the number T of threads as 32 in this part, unless specified.

First, we fix the number n par of partitions as 16, as in [10], and vary the parameters
e f Search to observe the performance of different methods. The results are presented in
Fig. 12. We can see that PAR-NB (PAR-HB) significantly outperforms PAR-NQ (PAR-HQ).
This demonstrates that bridge view is able to enhance the partition based methods, as dis-
cussed in Sect. 4. Similar phenomenon could be found with DPG.

Second, we show the effects of n par on the performance in Fig. 13, where we set three
values of n par , i.e., 8, 16 and 32. Here, we show the results with NSG for simplicity. We
can see that a smaller n par presents better performance. Clearly, fewer partitions enhance
the connections among the points in the whole data set, while more partitions reduce those
connections. The motivation of partition based methods is to reduce the construction cost and
employ the hardware threads to accelerate the search process in parallel [10], but sacrifice
the performance to some extent.

Lastly, we discuss the joint effects of n par and T on the performance. We set n par ∈
{8, 16, 32} and T ∈ {8, 16, 24}. We compare the results in both PAR-NB and PAR-NQ with
various pairs of n par and T , as shown in Fig. 14, where all the experiments are conductedwith
the second workstation as presented in Sect. 5.1. As discussed above, either decreasing n par

or increasing T will improve the performance of both views. Hence, we can see that P8_T24
presents the best performance with the smallest n par and the largest T in our settings. In
addition, it is interesting that P8_T16 is pretty close to P16_T24 in performance, but obviously
outperforms P32_T24. Similarly, P16_T16 is very close to P32_T24. Hence, to obtain the
expected performance, we should carefully select the pairs of n par and T , to balance the
construction cost and the number of hardware threads required.

In all, we can see that our new method, i.e., bridge view, significantly outperforms its
competitor, i.e., query view, for massive queries on large-scale data.

123

4206 Y. Liu et al.

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5

·104

recall

qu
er
ie
s/
se
co
nd

(a) Sift100M

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5

·104

recall

qu
er
ie
s/
se
co
nd

PAR8-NB PAR8-NQ
PAR16-NB PAR16-NQ
PAR32-NB PAR32-NQ

(b) Deep100M

Fig. 13 Effects of the number n par of partitions on the partition based methods, where n par is set as 8, 16
and 32 respectively. For simplicity, PAR16 indicates the large data is divided into 16 partitions

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5
·104

recall

qu
er
ie
s/
se
co
nd

(a) PAR-NB on Sift100M

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5
·104

recall

qu
er
ie
s/
se
co
nd

P8 T8 P8 T16 P8 T24
P16 T8 P16 T16 P16 T24
P32 T8 P32 T16 P32 T24

(b) PAR-NQ on Sift100M

0.91 0.92 0.93 0.94 0.95
0

0.5

1

1.5

·104

recall

qu
er
ie
s/
se
co
nd

(c) PAR-NB on Deep100M

0.91 0.92 0.93 0.94 0.95
0

0.5

1

1.5

·104

recall

qu
er
ie
s/
se
co
nd

(d) PAR-NQ on Deep100M

Fig. 14 Joint Effects of the number n par of partitions and the number T of parallel threads. P8_T16 indicates
that we divide D into 8 partitions and use 16 hardware threads to conduct the search process

123

Accelerating massive queries of approximate nearest neighbor… 4207

6 Related works

In this section, we introduce the existing works of four related problems, i.e., ANN search,
MQ-ANN, KNN Join and concurrent BFS queries.

6.1 Approximate nearest neighbor search

There are a bulk of works on ANN search in high-dimensional space, due to its wide appli-
cations. A typical method builds an index and then accelerates the search process with the
index, which smartly selects a small portion of the whole data as candidates and returns the
accurate results from those candidates. In the early years, tree structures were very popular
and thus many trees were created [19–22]. Locality sensitive hashing based methods have
caused many attentions due to their theoretical guarantees [1, 23–25]. Recently, proximity
graphs [8–10, 17] attract more and more attentions and have been demonstrated as the state-
of-the-art index methods by recent benchmarks [6, 7]. ANN search deals with a single query
simultaneously, while our problem MQ-ANN deals with massive queries in the meantime.

6.2 Massive queries of approximate nearest neighbor search

The typical idea of MQ-ANN is to create a smart scheduling method for an efficient index.
Due to the number of queries, solutions to MQ-ANN prefer parallel platforms to improve
the throughput. Some variants of existing index structures have been proposed to exploit
the parallel computing platforms such as multi-core CPUs and many-core GPUs. Some
researchers proposed to use multi-core CPUs to accelerate the search process [26, 27]. Some
methods accelerate tree structures with GPUs [28, 29] and [30]. Pan et. al. proposed to
accelerate LSH based methods with GPUs [31, 32]. In addition, there are some works that
integrate both CPUs and GPUs together to accelerate similarity search [33, 34]. In this paper,
we focus on solving MQ-ANN by combining the pruning power of proximity graphs and the
parallel power of multi-core CPUs.

6.3 K-nearest neighbor join

As a primitive operation in data mining, KNN Join [12] is another problem that is highly
related to our work. Like MQ-ANN, KNN Join usually builds index structures to accelerate
the search process for a set of queries. However, those index structures have to be constructed
online, while MQ-ANN builds them offline. Hence, KNN Join method has to balance the
construction cost and the search performance of the selected index. Moreover, both KNN
Join and MQ-ANN would take smart scheduling methods to exploit shared computations
among multiple queries, in order to accelerate the search process with the index.

During the past decades, several methods have been proposed under various platforms.
MuX [12] employs R-tree as the index to reduce I/O cost during the join process. Gorder [35]
takes grid based ordering technique to group nearby data points together and then conducts
the scheduled block nested join, in order to reduce the I/O cost and CPU cost. iJoin [36]
uses iDistance [37] as the underlying index structure. Yao et al. [38] proposed to take z-order
based index methods to conduct KNN Join in large relational databases. Moreover, there are
methods [39, 40] that employ MapReduce to process KNN Join for large-scale data sets.

123

4208 Y. Liu et al.

6.4 Concurrent breadth-first search queries

As another related problem, concurrent Breadth-First Search (BFS) Queries [15] is a fun-
damental operation in the domain of graph algorithms and has attracted a lot of attention
for decades. As the classical method, MS-BFS [15] employs multi-core CPUs to accelerate
multiple BFS queries. Its key idea is to share the access to the same neighbor list across
multiple queries when they try to expand the same vertices in the same step. By this means,
it is able to reduce the cache misses obviously. However, due to the nature of BFS, MS-BFS
has to maintain a bitmap with the same size of the graph vertices for each query, in order
to avoid repeated visits to the same vertex. As a result, the total number of concurrent BFS
queries is significantly limited.

As mentioned above, our solution is inspired by the access-sharing strategy of MS-BFS,
since theymainly expand a set of graph vertices. However, they are different in both problems
solved and solution details. First, their problems solved, i.e., concurrent BFS queries vsMQ-
ANN with proximity graphs, are different in two aspects. (1) MQ-ANN requires access to
vectors and distance computations among them, while concurrent BFS queries have no such
operations. (2) Each BFS query requires access to all the graph vertices, while each ANN
query only a small part of the proximity graph for collecting close candidates. Second, their
techniques, i.e., MS-BFS vs bridge view, are different in two aspects. (1) MS-BFS has to
maintain a bitmap visi ted for each query to avoid repeated accesses to the same graph vertex,
while bridge view does not. (2)MS-BFS prefers a small query set (e.g., tens) due to the former
aspect, while bridge view prefers a large query set (e.g., millions).

Besides, there are other methods that employ multi-core CPUs to enhance BFS queries
[41, 42] in the literature. iBFS [43] employs GPU to accelerate concurrent BFS queries.
On the other hand, Gorder [44] aims at reducing the cache misses for graph algorithms by
reordering the graph vertices to keep vertices that will be frequently accessed together locally.
We are inspired by MS-BFS that shares access to the same vertex among multiple queries,
but adapt this idea to MQ-ANN with proximity graphs by a novel scheduling strategy.

7 Conclusion

In this paper, we aim at solving MQ-ANN in high-dimensional space by combining the
pruning efficiency of proximity graphs and the parallel power of multi-core CPUs. The
existing method called query view suffers from numerous cache misses, due to the nature of
ANN search with a proximity graph. To relieve this issue, we propose a new method called
bridge view, which reduces the cache misses in a large scale by improving the data locality.
Further, we discuss how to extend bridge view to deal with large-scale data. Moreover,
we conduct extensive experiments on real-life data sets to demonstrate the advantages of
bridge view with three state-of-the-art proximity graphs, including DPG, HNSW and NSG.
According to our experimental results, bridge view obviously outperforms query view for
MQ-ANN in various settings.

Acknowledgements This work was supported by Project funded by National Natural Science Foundation of
China (NSFC) under Grants 62002274, 61902299 and 61976168. This work was also supported in part by
Project funded by China Postdoctoral Science Foundation under Grants 2019TQ0239 and 2019M663636.

123

Accelerating massive queries of approximate nearest neighbor… 4209

References

1. Sun Y, Wang W, Qin J, Zhang Y, Lin X (2015) SRS: solving c-approximate nearest neighbor queries in
high dimensional Euclidean space with a tiny index. PVLDB 8(1):1–12

2. Huang Q, Feng J, Zhang Y, Fang Q, NgW (2016) Query-aware locality-sensitive hashing for approximate
nearest neighbor search. PVLDB 9(1):1–12

3. Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans
Pattern Anal Mach Intell 36(11):2227–2240

4. JegouH,DouzeM, SchmidC (2011) Product quantization for nearest neighbor search. IEEETrans Pattern
Anal Mach Intell 33(1):117–128

5. Babenko A, Lempitsky V (2014) The inverted multi-index. IEEE Trans Pattern Anal Mach Intell
37(6):1247–1260

6. https://github.com/spotify/annoy
7. https://github.com/searchivarius/nmslib
8. Li W, Zhang Y, Sun Y, Wang W, Li M, Zhang W, Lin X (2019) Approximate nearest neighbor search on

high dimensional data—experiments, analyses, and improvement. IEEE Trans Knowl Data Eng 32:1475–
1488

9. MalkovY, Yashunin D (2018) Efficient and robust approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Trans Pattern Anal Mach Intell 42:824–836

10. Fu C, Xiang C, Wang C, Cai D (2019) Fast approximate nearest neighbor search with the navigating
spreading-out graph. PVLDB 12(5):461–474

11. Baranchuk D, Babenko A, Malkov Y (2018) Revisiting the inverted indices for billion-scale approximate
nearest neighbors. In: ECCV, pp 202–216

12. Böhm C, Krebs F (2004) The k-nearest neighbour join: turbo charging the KDD process. Knowl Inf Syst
6(6):728–749

13. Dong W, Moses C, Li K (2011) Efficient k-nearest neighbor graph construction for generic similarity
measures. In: Proceedings of the 20th international conference on world wide web, pp 577–586

14. Liu Y, Cheng H, Cui J (2021) Revisiting k-nearest neighbor graph construction on high-dimensional data:
experiments and analyses. arXiv Preprint arXiv:2112.02234

15. Then M, Kaufmann M, Chirigati F, Hoang-Vu T-A, Pham K, Kemper A, Neumann T, Vo HT (2014) The
more the merrier: efficient multi-source graph traversal. PVLDB 8(4):449–460

16. Dong W, Moses C, Li K (2011) Efficient k-nearest neighbor graph construction for generic similarity
measures. In: WWW, pp 577–586

17. MalkovY, PonomarenkoA, LogvinovA,KrylovV (2014)Approximate nearest neighbor algorithm based
on navigable small world graphs. Inf Syst 45:61–68

18. Chen J, Fang HR, Saad Y (2009) Fast approximate kNN graph construction for high dimensional data
via recursive Lanczos bisection. J Mach Learn Res 10(9):1989–2012

19. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM
18(9):509–517

20. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp 47–57
21. Berchtold S, Keim DA, Kriegel H-P (1996) The X-tree: an index structure for high-dimensional data. In:

VLDB, pp 28–39
22. Jagadish HV, Ooi BC, Tan KL, Yu C, Zhang R (2005) iDistance: an adaptive B+-tree based indexing

method for nearest neighbor search. ACM Trans Database Syst 30(2):364–397
23. TaoY, Yi K, Sheng C, Kalnis P (2009) Quality and efficiency in high dimensional nearest neighbor search.

In: SIGMOD, pp 563–576
24. Gan J, Feng J, Fang Q, Ng W (2012) Locality sensitive hashing scheme based on dynamic collision

counting. In: SIGMOD, pp 541–552
25. Liu Y, Cui J, Huang Z, Li H, shen H (2014) SK-LSH?: an efficient index structure for approximate nearest

neighbor search. PVLDB 7(9):745–756
26. Uribe-ParedesR,Valero-Lara P,Arias E, Sánchez JL, CazorlaD (2011) Similarity search implementations

for multi-core and many-core processors. In: HPCS. IEEE, pp 656–663
27. Gedik B (2013) Auto-tuning similarity search algorithms on multi-core architectures. Int J Parallel Prog

41(5):595–620
28. Gieseke F, Heinermann J, Oancea C, Igel C (2014) Buffer kd trees: processing massive nearest neighbor

queries on GPUs. In: ICML, pp 172–180
29. Kim M, Liu L, Choi W (2018) A GPU-aware parallel index for processing high-dimensional big data.

IEEE Trans Comput 67(10):1388–1402
30. Kim J, Hong S, Nam B (2012) A performance study of traversing spatial indexing structures in parallel

on GPU. In: HPCC. IEEE, pp 855–860

123

https://github.com/spotify/annoy
https://github.com/searchivarius/nmslib
http://arxiv.org/abs/2112.02234

4210 Y. Liu et al.

31. Pan J, Manocha D (2011) Fast GPU-based locality sensitive hashing for k-nearest neighbor computation.
In: SIGSPATIAL GIS, pp 211–220

32. Pan J, Manocha D (2012) Bi-level locality sensitive hashing for k-nearest neighbor computation. In:
ICDE. IEEE, pp 378–389

33. Matsumoto T, Yiu ML (2015) Accelerating exact similarity search on CPU-GPU systems. In: ICDM.
IEEE, pp 320–329

34. WangY, ShrivastavaA,Wang J, Ryu J (2018) FLASH: randomized algorithms accelerated overCPU-GPU
for ultra-high dimensional similarity search. In: SIGMOD, pp 889–903

35. Xia C, Lu H, Ooi BC, Hu J (2004) Gorder: an efficient method for KNN join processing. In: VLDB, pp
756–767

36. Yu C, Cui B, Wang S, Su J (2007) Efficient index-based KNN join processing for high-dimensional data.
Inf Softw Technol 49(4):332–344

37. Jagadish HV, Ooi BC, Tan KL, Yu C, Zhang R (2005) iDistance: an adaptive B+-tree based indexing
method for nearest neighbor search. ACM Trans Database Syst 30(2):364–397

38. Yao B, Li F, Kumar P (2010) K nearest neighbor queries and KNN-joins in large relational databases
(almost) for free. In: ICDE, pp 4–15

39. Lu W, Shen Y, Chen S, Ooi B (2012) Efficient processing of k nearest neighbor joins using mapreduce,
pp 1016–1027

40. Zhang C, Li F, Jestes J (2012) Efficient parallel KNN joins for large data in MapReduce. In: EDBT, pp
38–49

41. Bader DA, Madduri K (2006) Designing multithreaded algorithms for breadth-first search and st-
connectivity on the cray MTA-2. In: ICPP, pp 523–530

42. Chhugani J, Satish N, Kim C, Sewall J, Dubey P (2012) Fast and efficient graph traversal algorithm for
CPUs: maximizing single-node efficiency. In: IPDPS, pp 378–389

43. LiuH,HuangHH,HuY (2016) iBFS: concurrent breadth-first search onGPUs. In: SIGMOD, pp 403–416
44. Wei H, Yu JX, Lu C, Lin X (2016) Speedup graph processing by graph ordering. In: SIGMOD, pp

1813–1828

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Yingfan Liu is currently an assistant professor in the School of Com-
puter Science and Technology, Xidian University, China. He obtained
his Ph.D. degree in the Department of Systems Engineering and Engi-
neering Management at Chinese University of Hong Kong in 2019. His
research interests include the management of large-scale complex data
and the adaptive query optimization for DBMS.

123

Accelerating massive queries of approximate nearest neighbor… 4211

Chaowei Song is currently studying at the School of Computer Science
and Technology, Xidian University in China. He obtained a bachelor’s
degree in computer science and technology from Xidian University
in 2020. His research interest contains the management of large-scale
complex data such as high-dimensional data and efficient parallel algo-
rithms.

Hong Cheng is a full professor in the Department of Systems Engineer-
ing and Engineering Management at the Chinese University of Hong
Kong. She received her Ph.D. degree from University of Illinois at
Urbana-Champaign in 2008. Her research interests include data min-
ing, database systems, and machine learning. She received research
paper awards at ICDE’07, SIGKDD’06 and SIGKDD’05, and the cer-
tificate of recognition for the 2009 SIGKDD Doctoral Dissertation
Award. She is a recipient of the 2010 Vice-Chancellor’s Exemplary
Teaching Award at the Chinese University of Hong Kong.

Xiaofang Xia is currently an associate professor with the School of
Computer Science and Technology, Xidian University, China. She
received her Ph.D. degree in Control Theory and Control Engineer-
ing from Shenyang Institute of Automation, Chinese Academy of Sci-
ences, China, in 2019. She was a visiting student at the Department of
Computer Science, University of Alabama, USA, from August 2016 to
February 2018. Her research interests are mainly in cyber physical sys-
tems, smart grid security, database management system and anomaly
detection.

123

4212 Y. Liu et al.

Jiangtao Cui received the MS and Ph.D. degrees both in computer sci-
ence from Xidian University, China, in 2001 and 2005, respectively.
Between 2007 and 2008, he was with the Data and Knowledge Engi-
neering group working on high-dimensional indexing for large scale
image retrieval, in the University of Queensland, Australia. He is cur-
rently a professor in the School of Computer Science and Technol-
ogy, Xidian University, China. His current research interests include
database systems, data and knowledge engineering, data security, and
high-dimensional indexing.

123

	Accelerating massive queries of approximate nearest neighbor search on high-dimensional data
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem l
	2.2 Proximity graphs
	2.3 Our motivation

	3 Our solution: bridge view
	3.1 A naive version
	3.2 A mature version
	3.3 Comparing two views

	4 Discussions on large-scale data
	5 Experiments
	5.1 Experimental settings
	5.2 Main experimental results
	5.2.1 Comparing two views
	5.2.2 Exploring two views
	5.2.3 Effects of key parameters

	5.3 Experimental results on large-scale data

	6 Related works
	6.1 Approximate nearest neighbor search
	6.2 Massive queries of approximate nearest neighbor search
	6.3 K-nearest neighbor join
	6.4 Concurrent breadth-first search queries

	7 Conclusion
	Acknowledgements
	References

