
Knowledge and Information Systems (2023) 65:3511–3531
https://doi.org/10.1007/s10115-023-01860-3

SURVEY PAPER

Cybersecurity knowledge graphs

Leslie F. Sikos1

Received: 1 November 2021 / Revised: 26 February 2023 / Accepted: 11 March 2023 /
Published online: 29 April 2023
© The Author(s) 2023

Abstract
Cybersecurity knowledge graphs, which represent cyber-knowledge with a graph-based data
model, provide holistic approaches for processingmassive volumes of complex cybersecurity
data derived fromdiverse sources. They can assist security analysts to obtain cyberthreat intel-
ligence, achieve a high level of cyber-situational awareness, discover new cyber-knowledge,
visualize networks, data flow, and attack paths, and understand data correlations by aggre-
gating and fusing data. This paper reviews the most prominent graph-based data models used
in this domain, along with knowledge organization systems that define concepts and proper-
ties utilized in formal cyber-knowledge representation for both background knowledge and
specific expert knowledge about an actual system or attack. It is also discussed how cyber-
security knowledge graphs enable machine learning and facilitate automated reasoning over
cyber-knowledge.

Keywords Cybersecurity knowledge graph · Cyber-knowledge · Cyber-situational
awareness · Cyber-resilience · Attack graph

1 Introduction to cybersecurity knowledge graphs

Applying knowledge graphs in the cybersecurity domain can be used to organize,manage, and
utilize massive volumes of information in cyberspace, such as via ontology-based knowledge
representation, which can completely and accurately represent the complex knowledge of
heterogeneous systems [69]. These are called cybersecurity knowledge graphs or CKGs for
short.

Formal knowledge representation, a branch of artificial intelligence, can be used in
cybersecurity to formally define concepts, properties, and the relationships between them,
enabling automated software agents to categorize vulnerabilities, threats, and attacks; per-
form entity resolution; detect anomalies; and match attack patterns [49]. These might reveal
data correlations even experienced analysts would overlook.
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There are many information security and network process features that need to be stored
when working with cybersecurity knowledge graphs (usually directed, labeled graphs), and
the semantics of the captured cybersecurity knowledge varies greatly depending on the graph
data model used [52], typically one of the following:

– an RDF1 graph G R , which is a set of RDF triples (RDF statements) of the form (s, p, o)
∈ (I ∪ B) × I × (I ∪ L ∪ B), where

• I is a set of International Resource Identifiers (IRIs), i.e., sets of strings of Unicode
characters of the form
scheme:[//[user:pwd@]host[:port][/]path[?query][#fragment]
or a valid subset of these (such as URLs);

• L represent RDF literals, which are either
∗ LP are self-denotingplain literals of the form" < string > "(@ < lang >),

where < string > is a string and < lang > is an optional language tag; or
∗ typed literals LT of the form "<string>"^^<datatype> , where < datatype > is

an IRI denoting a datatype according to a schema, such as the XMLSchema, and
< string > is an element of the lexical space corresponding to the datatype;
and

• B is a set of blank nodes, i.e., unique but anonymous resources that are neither IRIs
nor RDF literals;

with I,L,B being pairwise disjoint infinite sets;
– a labeled property graph of the form GL P = (V , E, ι, λ, π), where V is a finite set

of graph vertices (nodes), E is a finite set of graph edges s. t. V and E are disjoint,
ι : E → (N × N ) is an incidence function that maps each edge in E into a pair of
vertices in V , λ : (V ∪ E) → L S is a labeling function that associates an edge with a
set of labels from L , and π : (N ∪ E) × P → VS is a property assignment function that
assigns a set of values from V to each property, the second and third of which are partial
functions;

– a hypergraph of the formG H = (V , E)where V is a set of vertices and E is a set of hyper-
edges between the vertices, each ofwhich is a set of vertices, i.e., E �

{{u, v, . . . } ∈ 2V
}
;

or
– a multigraph of the form G M = (V , E), where V is a set of vertices and E is a bag of

edges.

There is an increasing number of graph databases supporting various graph data models
[52]; some of the most prominent ones include the following:

1 Resource Description Framework, https://www.w3.org/TR/rdf11-concepts/
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– Semantic graph databases, including RDF triplestores and quadstores: Allegrograph,2

Amazon Neptune,3 AnzoGraph DB,4 CRAY Graph Engine5, Dgraph,6 GraphDB,7

MarkLogic,8 Openlink Virtuoso,9 RDFox,10 Stardog11

– Property graph databases: MEMGraph,12 NebulaGraph,13 Neo4j,14 RedisGraph,15

TigerGraph,16 Trovares17

– Multi-model graph databases: AgensGraph,18 ArangoDB,19 DataStax,20 FlockDB,21

graphbase.ai,22 HyperGraphDB,23 JanusGraph,24 Microsoft Azure Cosmos DB,25 Ora-
cle Spatial and Graph,26 OrientDB,27 SAP HANA,28 Sparksee,29 TerminusDB,30

TypeDB31

The various graph-based implementations come with different strengths and weaknesses
[42]. For example, not all support n-ary relations, even though these can be powerful for
modeling communication networks [23]. Data provenance, which can be utilized in cyber-
situational awareness [55], cybersecurity decision support [14], anomaly detection [53],
network forensics [48], etc., are not supported by all knowledge graphs either, although
hybrid solutions exist. While the RDF data model, for example, does not have a built-in
mechanism for capturing provenance, the Semantic Web research community introduced

2 https://allegrograph.com
3 https://aws.amazon.com/neptune/
4 https://cambridgesemantics.com/anzograph/
5 https://support.hpe.com/hpesc/public/docDisplay?docId=a00113912en_us&page=About_the_Cray_Graph
_Engine_CGE.html
6 https://dgraph.io
7 https://graphdb.ontotext.com
8 https://www.marklogic.com
9 https://virtuoso.openlinksw.com
10 https://www.oxfordsemantic.tech/product
11 https://www.stardog.com
12 https://memgraph.com
13 https://nebula-graph.io
14 https://neo4j.com
15 https://oss.redis.com/redisgraph/
16 https://www.tigergraph.com
17 https://www.trovares.com
18 https://bitnine.net/agensgraph/
19 https://www.arangodb.com
20 https://www.datastax.com
21 https://github.com/twitter-archive/flockdb
22 https://graphbase.ai
23 http://www.hypergraphdb.org
24 https://janusgraph.org
25 https://azure.microsoft.com/en-us/services/cosmos-db/
26 https://www.oracle.com/database/technologies/spatialandgraph.html
27 https://orientdb.org
28 https://www.sap.com/products/hana.html
29 https://www.sparsity-technologies.com
30 https://terminusdb.com
31 https://github.com/vaticle/typedb

123

https://allegrograph.com
https://aws.amazon.com/neptune/
https://cambridgesemantics.com/anzograph/
https://support.hpe.com/hpesc/public/docDisplay?docId=a00113912en_us&page=About_the_Cray_Graph_Engine_CGE.html
https://support.hpe.com/hpesc/public/docDisplay?docId=a00113912en_us&page=About_the_Cray_Graph_Engine_CGE.html
https://dgraph.io
https://graphdb.ontotext.com
https://www.marklogic.com
https://virtuoso.openlinksw.com
https://www.oxfordsemantic.tech/product
https://www.stardog.com
https://memgraph.com
https://nebula-graph.io
https://neo4j.com
https://oss.redis.com/redisgraph/
https://www.tigergraph.com
https://www.trovares.com
https://bitnine.net/agensgraph/
https://www.arangodb.com
https://www.datastax.com
https://github.com/twitter-archive/flockdb
https://graphbase.ai
http://www.hypergraphdb.org
https://janusgraph.org
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://orientdb.org
https://www.sap.com/products/hana.html
https://www.sparsity-technologies.com
https://terminusdb.com
https://github.com/vaticle/typedb


3514 L. F. Sikos

advanced formalisms that extend the standard RDF data model for this purpose [51]. The
number of, and the timespan of introduction of, these approaches indicate the importance of
justifying the utilization of a particular graph data model over others.

2 Knowledge graph-based network, CTI, and cyber-physical system
models

Cybersecurity knowledge graphs can be formally written as :KGn {:sk :pk :ok t}, where KG
is a named graph representing a data source (e.g., traceroute, a routing message (BGP update
message orOSPFLSA)), a router configuration file, a cybersecurity dataset (such as CAIDA),
a server log (AWS CloudWatch log, AWS S3 log, Apache web server log, etc.) or a system
log (Windows event log, Linux auditd daemon log, etc.), or a packet capture), n is the data
source identifier, with c ∈ Z

+ and n � i ; sk i is a knowledge statement’s subject representing
a network concept; pki is a knowledge statement’s predicate, which is either a cybersecurity
term (such as from an ontology like CNTFO) or the rdf:type predicate (expressing an “is
a” relationship); and oki is a knowledge statement’s object; t is the termination of statement
symbol, i.e., a semicolon if another RDF statement follows, otherwise a full stop [54].

When modeling communication networks or cyber-physical systems with knowledge
organization systems, the following main scenarios can be differentiated:

Type I a graph of a knowledge base represents a network infrastructure, and depending
on the granularity, the nodes represent either:

– simulated or real-world network infrastructure and network device entities and their
properties, and the arcs are the physical and logical links between them [55];

– autonomous systems (ASes) and their properties, and the arcs show how they are
connected to each other [54]; or

– network information flow, and the arcs represent routing [25]; or
– a cyberattack graph, where the arcs are attack paths [69].

Type II a graph of a knowledge base represents cyberthreat intelligence covering system
information, system parameters, cyberthreat data, and user or malware behavior
data [39];

Type III a graph represents a controlled vocabulary or an ontology:

– the nodes are cybersecurity concepts and properties, and the arcs are correlations between
them [50];

– the nodes are network device types and their properties, the arcs are connections between
them;

– the nodes are vulnerabilities and the arcs define properties, such as vulnerability scoring,
weaknesses, and platforms [26].

Type IV there are multiple, uniquely identified graphs (such as named graphs) that are
connected to each other, each of which capture data from a different data source
for data amalgamation and dimensionality reduction [53].

OWL32 ontologies provide conceptual modeling of concepts and properties for arbi-
trary knowledge domains, including cybersecurity, cyber-situational awareness [57], and

32 Web Ontology Language, https://www.w3.org/TR/owl-overview/
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cyberthreat intelligence, in which they can facilitate partial automation for tasks that would
otherwise have to be manually conducted or would be performed using multiple software
tools and would rely on human supervision [47]. For example, digital forensic investigations
can be partially automated subject to adequately captured forensic investigation knowledge
and associated semantics, assisting timeline creation and event reconstruction [16].

Entities (such as specific malware) derived from multiple sources, such as multiple after
action reports of attacks, if identical, can be matched and defined using owl:sameAs in a
fused cybersecurity knowledge graph, thereby providing all the available information about
the entity, plus naturally merging seemingly unrelated CKGs [40].

3 Knowledge graph-based KOSes for cybersecurity applications

Knowledge organization systems (KOSes), such as taxonomies, thesauri, controlled vocab-
ularies, datasets, and ontologies, can be utilized for the automation of data processing for
CTI, keeping CTI on track, turning CTI into action, performing adaptive threat-based adver-
sary emulation, threat-based purple teaming, security tool evaluation, and post-exploit threat
modeling.

Themachine-processability andmachine-interpretability of cybersecurity andCTIKOSes
depend on the underlying data model, the used data structure, and the level of abstraction.
For example, a matrix, or a circular dendrogram based on the structure represented by a
matrix, can represent data sources, offensive and defensive techniques and tactics, and the
properties can represent permissions. While such representations are not mapped directly to
knowledge graphs, there is a clear link between them. For example, theMITRE ATT&CK�33

framework, which constitutes an industry standard knowledge base of adversary tactics and
techniques based on real-world observations, is typically represented as a matrix by default;
its concepts and relationships can also be represented as a graph.

Another industry standard, STIX™ (Structured Threat Information Expression), is a lan-
guage and serialization format that can be used in ontological modeling of cybersecurity
knowledge graphs [29].

The Situation and Threat Understanding by Correlating Contextual Observations
(STUCCO) ontology,34 written in JSON Schema35 and as such, compatible with the Graph-
SON format, defines the concepts user, account, host, software, vulnerability, malware, flow,
attack, attacker, host, address, IP, address range, port, service, and domain name, and 115
properties to characterize these and their relationships [18]. The optimality of the granularity
of this ontology can be disputed, considering address range to be ideally defined as a datatype
property restriction instead of a concept, the actual addresses being property values rather
than entities. Nevertheless, the ontology can be used, for example, in incident response tasks,
such as searching through flow and IDS records by address for a particular time slot, and
check whether remote addresses are on blacklists; or attempting to identify malware based
on network traffic logs and system changes.

The Cybersecurity Operations Centre Ontology for Analysis (CoCoa) is a NIST-aligned
ontology that covers cyberthreat intelligence and information sources, including events and
logs; network information; unstructured, semistructured, and structured feeds; and threat
intelligence [37]. Using CoCoa, cyber-incidents can be represented in knowledge graphswith

33 https://attack.mitre.org
34 https://stucco.github.io
35 https://json-schema.org
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concepts such as cyber-incident, collector, vulnerability, threat, and network infrastructure,
which map relationships and connections of incidents for monitoring and visualization.

The cybersecurity terminology captured by KOSes might be linked even between
semistructured and structured systems. For example, a core node for linking, and mediating
between, cybersecurity Linked Open Data (LOD) KOSes in the LOD Cloud36 is the Uni-
fied Cybersecurity Ontology (UCO). It defines typed connections between STIX, CAPEC,37

MAEC,38 CWE,39 CVE,40 CVSS,41 Cybox,42 CPE,43 OpenIOC,44 STUCCO, Mobile Access
Control, and the Cloud User Ontology terms [61]. VulOntology45 is a vulnerability ontol-
ogy that defines the relationship between vulnerabilities and applications, platforms, and
weaknesses [44]. Similarly, the SEPSES Cybersecurity Knowledge Graph (CSKG) links and
integrates vulnerabilities, weaknesses, and attack patterns from a wide range of data sources,
includingCAPEC, CPE, CVE, CVSS, andCWE [26]. Alignment with these de facto standard
data sources is vital, as seen with mainstream cybersecurity knowledge graphs (see Table 1).

MITRE’s CyGraph46 can be used for both proactive and reactive cyber-resilience mea-
sures. It employs a property graph formalism and provides uniform representation of
network infrastructures, cyberthreats, mission dependencies, and overall security posture
[36]. CyGraph’s knowledge base not only holds information to construct attack graphs
and mission dependency models, but also includes potential attack-pattern relationships that
provide insight to correlations between known vulnerabilities and threat indicators.

By combining a cybersecurity ontology covering network attack types and characteristics
with the implementation of a cybersecurity knowledge base from knowledge acquisi-
tion, knowledge fusion/extraction, knowledge storage, knowledge inference, and knowledge
update, real-time solutions can be realized [28]. The ontological representation of, and for-
mal definition of the relationships between, devices, features, and attacks can be utilized
when converting heterogeneous network data to RDF triples. These rely on extracting reli-
able features from industry standard file formats to be converted, for example, from PCAP
packet capture files with tools such as CICFlowMeter,47 ultimately resulting in structured
data (derived from unstructured or semistructured data).

The Knowledge Graph of Threat Actor (TAGraph) is a framework consisting of a threat
actor ontology and a named entity recognition system to be used for automatically extracting
cybersecurity-related entities from webpages and generate a dataset and associated knowl-
edge graph based on them [17]. This can be particularly useful if information about a threat
actor is extracted from multiple sources and then subsequently fused and represented as a
single knowledge graph.

36 https://lod-cloud.net
37 Common Attack Pattern Enumeration and Classification, https://capec.mitre.org
38 Malware Attribute Enumeration and Characterization, https://maecproject.github.io
39 Common Weakness Enumeration, https://cwe.mitre.org
40 Common Vulnerabilities and Exposures, https://cve.mitre.org
41 Common Vulnerability Scoring System, https://www.first.org/cvss/
42 Cyber Observable eXpression, https://cyboxproject.github.io
43 Common Platform Enumeration, https://nvd.nist.gov/products/cpe
44 Open Indicators of Compromise, https://github.com/mandiant/OpenIOC_1.1
45 https://github.com/Brian-hku/VulKG
46 https://www.mitre.org/research/technology-transfer/technology-licensing/cygraph
47 https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
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Table 2 Primary application areas of mainstream cybersecurity KOSes

KOS Main application area

CI Cyber-resilience IR Digital forensics

CASE [7] − − − +

CNTFO [54] + − − −
CoCoa [37] − − + −
CyGraph [36] + + − −
MITRE D3FEND [24] + + + +

ParFor [63] − − − +

STIX [29] + − − −
STUCCO [18] + − − −
TAGraph [17] + − + −
UCO [61] + − + −

MITRE D3FEND™48 is a knowledge graph of cybersecurity countermeasures. It cate-
gorizes concepts in five categories: harden, detect, isolate, deceive, and evict. Within each
subcategory, specific techniques are defined and described. These form a matrix, which is
complemented by the Digital Artifact Ontology49 to represent the concepts of digital artifact
and related file types, network traffic types, and software types. It captures the semantics of
the concepts that link processes to digital artifacts (such as executable binary file, process
code segment, user account), and concepts ofMITRE’s OffensiveModel that modify process
code segments (exploitation of remote services, exploitation for privilege escalation) as well
as the process code segment verification of MITRE’s defensive model, covering five tactics
to classify defensive methods (harden, detect, isolate, deceive, and evict).

Jia et al. [21] proposed a framework to generate a cybersecurity knowledge base by utiliz-
ing an ontology based on vulnerabilities and by using the Stanford Named Entity Recognizer
(NER)50 and conditional random fields (CRFs) to extract cybersecurity entities from unstruc-
tured data. These are expressed inRDF, similar to the structured data (which is directlywritten
in RDF). This knowledge base consists of quintuples, capturing concept, instance, relation,
properties, and rule for each statement. Concepts such asOS, vulnerability, and consequences
are instantiated and characterized to capture the operating systems with version number, the
vulnerabilities with the associated threat type and threat level, and cyberattack types.

Table 2 summarizes popular cybersecurity knowledge organization systems by their main
application areas: cyberthreat intelligence (CI), cyber-resilience, incident response (IR), and
digital forensics.

Note that domain ontologies are typically too specific to be used across multiple cyber-
security fields, while upper ontologies, particularly those aligned with multiple industry
standards, can be applied in many.

48 https://d3fend.mitre.org
49 https://d3fend.mitre.org/dao
50 https://nlp.stanford.edu/software/CRF-NER.html
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4 Automated reasoning over cybersecurity knowledge graphs

One of the key benefits of utilizing machine-readable, and whenever available, machine-
interpretable, knowledge graphs in cybersecurity is that they facilitate automated reasoning
so that new facts can be inferred from explicit statements (existing data), and dynamically
updated information provided on the latest vulnerabilities and threats [68].

By usingRDF quadruples tomodel communication networks, cyber-situational awareness
can be improved via automated reasoning over implicit knowledge. For example, based on
CAIDAopen data, BGPupdatemessages, OSPFLSAs, and router configuration files, explicit
statements can automatically be generated, such as a “peers with” relationship between two
autonomous systems, or a “connected to” relationship between a network and a network
interface [54].

By modeling attackers’ background knowledge in a knowledge graph, the sensitive infor-
mation not disclosed yet can be inferred from implicit knowledge can be approximated [43].
The four core cases are 1) an attacker can infer the relationship of two persons based on
shared attributes, 2) an attacker can infer whether a user has a specific attribute based on a
relationships of the person has that attribute, 3) an attacker can infer the relationship of two
persons who are both connected to a third person, and 4) an attacker can infer a property of
a person based on the dependency of the property on another property.

For big data analysis for cyber-situational awareness, semantic data mining can be
used; however, achieving interoperability and generalization can be difficult, particularly
for unordered rules. The Subsumption Reasoning for Rule Deduction (SRDD) method has
been proposed to address this, whereby redundant semantic rules can be discovered based
on the rule subsumption decided by knowledge graph reasoning.

Denoising entity extraction fromcyber-knowledge graphs can assist overwhelmed security
analysts to make sense of threat intelligence data [10].

Logs of cybersecurity incidents can be captured efficiently in RDF-based provenance
graphs, which can be used to generate provenance graphs with alerts, and eventually concep-
tualized attack graphs [27]. This allows combining and integrating a range of techniques
for cyberthreat detection and alert generation. Attack graphs can be constructed—and
hence attacks reconstructed—bybackward–forward chaining andgraphquerying.Contextual
cyber-knowledge graphs provide provenance data for alerting, which in turn can be utilized
for identifying a potential root cause of an attack, whereby the alert score is increased for
each preceding alert in the path.

Attack graphs can be combined with a Bayesian network to effectively determine the
probability of attack paths. Bywriting reasoning rules for vulnerabilities (that are represented
as graph nodes), automated reasoning can be performed to infer that a vulnerability can cause
a particular consequence, two different vulnerability nodes have similar attributes, or that
two vulnerabilities can be continuously exploited [8].

Reasoning rules for cyberthreat information can be used to provide specific defense strate-
gies, whereby the relationship between vulnerabilities, weaknesses, platforms, and attack
patterns can be used to automatically infer a range of useful threat information [70]. Exam-
ples for what reasoning can generate include a platform having one of the vulnerabilities also
has the other, a platform may be attacked using a particular attack technique or a counterat-
tack technique for a malicious action. Moreover, an attack pattern can be linked to a platform
based on the exploit and the known CWE weakness, and actions can be recommended for
reducing an attack risk.
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Ontology-based representation of packet analysis semantics can facilitate automated
reasoning for network monitoring applications and honeypots [56]. Reasoning over ontolo-
gies describing BGP update messages can facilitate the automation of network analysis to
detect BGP hijacking [65], such as to be used for man-in-the-middle (MITM) attacks by
diverting traffic to the attacker, or for obtaining IP addresses for spamming or distributed
denial-of-service (DDoS) attacks.

Reasoning for logical subsumptions between concepts and roles can ultimately be used
for rule reduction after knowledge graph mining for cyber-situational awareness analysis,
such as to determine which attack techniques are easier for adversaries and which ones are
detected by common defense technologies [29].

Based on semantic modeling and a reasoning engine considering asset categories, rela-
tionships and input/output incident types, the impacts of complex cyber-physical attacks
against critical infrastructure can be propagated and the mitigation of potential harming
effects assisted [45].

5 Utilizingmachine learning on cybersecurity knowledge graphs

The categorization of algorithms for graph-based anomaly detection depends on the approach
being unsupervised or semi-supervised, and whether the graph is static or dynamic, and
attributed (node-/edge-labeled) or plain (unlabeled) [3]. These will determine whether the
detection is structure-based, community- or clustering-based, relational learning-based,
decomposition-based, or window-based. This can be complemented by graph-based anomaly
description, either in the form of interpretation-friendly graph anomaly detection or interac-
tive graph querying and sense-making. In dynamic graphs, anomalies are highly flexible, and
typically, there is insufficient labeled data; learning anomaly patterns can be more efficient
if all hints of structural, content, and temporal features are taken into account, rather than
using heuristic rules over partial features [72].

Frequent sequential patterns can be found in streaming data by considering temporal
information, such as via using the PrefixSpan algorithm [21].

Combining analyst intuitionwithmachine learning, as seenwith the system AI 2, is capable
of learning to defend against previously unseen attacks [64]. Unsupervised learning can learn
a model to identify anomalies, such as extreme or rare cyber-events, which can be ranked
based on a predefined metric and forwarded to human analysts, who can add labels to be
used by supervised learning. The resulting model can predict from features potential attacks
in the near future.

When cyber-knowledge graphs are used to represent cyber-knowledge, whether entities
derived from logs or cyberthreat intelligence (whichMAC address requested access to which
IP or domain, an IP is in which IP address space assigned to which autonomous system, etc.),
cyberthreat detection in SOC/SIEM environments can be formulated as a large-scale graph
inference problem [33].Graph netural networks (GNNs) can be used for graph-based network
intrusion detection, capturing both edge features and a network’s topological information—
as seen in the example of Graph SAmple and aggreGatE (GraphSAGE) detecting malicious
information flow in IoT networks [30]. However, graph-based inference algorithms, such
as belief propagation, random walk with restart, influence and diffusion, SimRank, graph-
based semi-supervised learning, and GraphSAGE, have various limitations when used for
threat detection, and this is why MalRank has been introduced, with the purpose of finding
a maliciousness score of a node, given a directed weighted graph, in which the vertices
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are collections of entities, such as domains and IPs, and the edges are sets of relationships
between these; and an a priori label and confidence over the set of vertices.

By taking an entity relationship set and asserting it in a triple-based cybersecurity knowl-
edge graph, substantial information about various cybersecurity entities can be accessed, such
as via SPARQL51 queries, while the relationships between entity pairs can be predicted using
deep learning [38]. For applications where the navigational programming paradigm based
on graph traversal is preferred over the SPARQL query paradigm based on graph patterns,
the RDFFrames framework offers a suitable interface [32].

Prior expert security knowledge and open threat data represented in cybersecurity knowl-
edge graphs can be used to guide reinforcement learning to effectively identify ways to detect
malware so that they can be deleted, thereby mitigating cyberattacks [41]. Such an approach
can mimic how SOC analysts process data based on their background knowledge. In fact, the
knowledge stored in cybersecurity knowledge graphs may provide multiple mitigation strate-
gies when a malware is being executed. The malware features can also be used to identify
the malware family to which a previously unknown malware sample belongs.

In cyber-knowledge graphs, which are inherently sparse, highly incomplete (the open-
world assumption applies), and noisy, statistical relational learning can be applied to predict
missing links and identify relationships between nodes [21]. Relational learning on cyber-
security knowledge graphs can be applied to information security monitoring and intrusion
detection, whereby the context provided by rich sets of entity and relationship types can
be utilized. Garrido et al. applied machine learning on cybersecurity knowledge graphs to
detect unexpected activities in industrial automation systems. By training a generative graph
embedding algorithm on a graph built from a training dataset, a baseline normal behavior
and operating conditions of an industrial system can be learned, and subsequently, link pre-
diction can be performed unsupervised to rank the likelihood of triple statements resulting
from events observed at test time and determine whether there is a substantial deviation from
the baseline [15]. This results in a qualitative evaluation of the predictions, with not only
anomalies detected, but also with the option to assign severity levels manually based on
available contextual information.

The K2 machine learning algorithm has been introduced to classify cyberattacks, where
dependency links between graph nodes are built to be tested against the preceding nodes in
order, and a new edge is added to the graph if it improves the Bayesian measurement [1].

6 Visualization of cyber-knowledge with knowledge graphs

A serious limitation of traditional information security tools is that too much information
might be displayed (from IDSes, vulnerability scanners, firewall managers, SIEM tools, and
security intelligence) with too little context [35]. Cybersecurity knowledge graphs provide a
viable option to represent and visualize security information, allowing timely cyber-incident
detection and response, which are becomingmore andmore demanding for security analysts.
Some examples of cybersecurity knowledge graph visualizations include, but are not limited
to enabling security analysts explore aggregated log data via relationships without complex
query languages (see Fig. 1 ), explore vulnerabilities and attack patterns with contextual
information (see Fig. 2 ), visualizing intrusion detection with packet capture-based logs of
interacting IP addresses (see Fig. 3 ), and visualizing an attack tree with attack goals and
subgoals, and the corresponding attack medium (see Fig. 4).

51 SPARQL Protocol and RDF Query Language, https://www.w3.org/TR/sparql11-query/
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Fig. 1 MITRE ATT&CK patterns and courses of action with CVE alignment (Siren) [59]

Fig. 2 CVE, CWE, CAPEC, and CPE recordes in a connected graph (GraphKer) [4]

Knowledge-driven systems can provide assistance to analysts via partial automation of
analytics and visualization of complex cybersecurity data. For example,VisAlert, proposed as
a radial display for network alert monitoring and visual correlation analysis, was designed to
display a local network topology graph, surrounded by alert types, with the aim of enabling
Tier 1 analysts to detect signs of potential anomalies [13]. Spam campaigns can also be
efficiently visualized using graph representations, allowing the in-depth analysis of the under-
lying botnet ecosystem [62]. By employing hypergraphs, multi-attribute associations of the
patterns extracted from large cybersecurity datasets can be displayed [22]. This is suitable
for timeline creation during network monitoring and forensic analysis, and for identifying
unknown attack patterns.
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Fig. 3 Visualizing intrusion detection for Oracle Machine Learning (OPG4Py) [67]

Fig. 4 Visualizing a reverse social engineering attack with an attack graph [66]

KAVAS (Knowledge-Assisted Visual Analytics for STIX), a graph-based visual analytics
platform, can be used for analyzing and enriching cyberthreat intelligence data [5]. It utilizes
both operational knowledge and domain knowledge of security experts for filtering, mapping,
and rendering CTI in the visualization phase. The STIX alignment follows SDOs and SROs
represented as links in node-link diagrams, but extends these by also displaying important
relationships embedded into SDOs referencing other objects. The implementation of KAVAS
also highlighted some limitations of STIX, such as the absence of a top-level element for
representing specific organizational assets (e.g., IT systems affected by attacks).
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Cyber-alerts can be investigated efficiently using graph-based analytics and narrative
visualization [2]. By capturing complex relationships between alerts and background knowl-
edge in knowledge graphs, security analysts can be assisted with context for interpreting
cyberthreats, performing risk management, and achieving a high level of cybersituational
awareness.

While link graphs have many benefits in data visualization in the cybersecurity domain,
the size of a graph can have a reverse effect on analysis efficiency and might even jeopardize
usability altogether. If the number of nodes and edges is too high, there are too many ele-
ments to show, resulting in unreadable and/or confusing representations. Moreover, showing
additional dimensions, such as alert type or severity, might not be practical [9].

Alternate representations, such as 3D graph visualizations, can somewhat overcome these
limitations. For example, DAEDALUS-VIZ can generate real-time 3D graphs for Darknet
monitoring-based alerts displaying spheres and tori [19]. It provides the option to filter by
network, protocol, port, sensor ID, alert, and filter status.

7 Data aggregation and data fusion using cybersecurity knowledge
graphs

Cybersecurity knowledge graphs have a huge potential when it comes to aggregating and
fusing data, which is typical in SOC and SIEMmonitoring dashboards, for example. Potential
data sources include, but are not limited to, network topology, IDS, firewall rules, firewall
manager, routing messages, vulnerability scanner, SIEM software, security intelligence, and
publicly available datasets, such as from the LOD Cloud. Aggregating data from diverse
sources is particularly useful when working on the zero-day mitigation of critical vulnerabil-
ities being exploited in the wild, such as the Apache Log4j vulnerability CVE-2021-44228
at the time of writing, which results in remote code execution. Figure5shows an example for
representing this vulnerability with data from the developer and an affected software vendor,
cyberthreat intelligence, and publicly available datasets, specifically, Apache, Cisco,MITRE,
NIST, and the LODCloud. Using an RDF-powered knowledge graph in this instance, the data
sources could be represented as identifiers of named graphs, and statements can be written
accordingly, e.g.,

:MITRE {
:CVE -2021 -44228 a :Vulnerability ;

:accessComplexity "medium" ;
:requiresAuthentication "false" .

}
:NIST {

:CVE -2021 -44228 :baseScore "10.0" ;
:knownAffectedSoftwareConfiguration
"cpe :2.3:a:apache:log4j :2.0: -:*:*:*:*:*:*"
.

}
:CISCO {

:CVE -2021 -44228 :vulnerableProduct
:CiscoWebexMeetingsServer ; :knownAffected
:CVRFPID -277610 ; :baseScore "10.0" .

}
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Fig. 5 Knowledge graph-based data aggregation for cyber-situational awareness and attack graph analysis

:APACHE :suggestsMitigationFor :CVE -2021 -44228.

Note that the base score in this case has been confirmed by two independent sources,
namely Cisco andNIST, and suchmatches indicate high likeliness of information correctness
and trustworthiness.

The above representation also allows provenance or other metadata to be captured for each
statement, making it possible to weight cyberthreat intelligence information for incomplete,
non-matching, or contradictory statements typical to the cyberthreat domain.

Host-level process communication graphs are suitable for inferring network connection
causations, which in turn can be aggregated into system-wide host-communication graphs.
Data fusion on directed graphs, in which the set of edges represents the communication
structure of data collection, transformation, and transmission agents, can be used to detect
lateral movement between hosts [12].

By considering the distribution of graph edges and the maximum degree of occurrences,
spoofing attacks, DoS attacks, fuzzy attacks, replay attacks, etc. can be identified, as seen
in the example given by Islam et al. in controller area network (CAN) communication of
self-driving cars [20]. Network information flow, when represented with graphs, can serve
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for training and data evaluation for network intrusion detection systems (NIDS), whereby
graph neural networks can be applied to detect intrusions using flow-based data [30].

Knowledge graph-based data aggregation and fusion can be well-utilized in IoT networks,
such as by uniformly representing sensor data in medical smart home settings to facilitate
automated reasoning over technology and software vulnerabilities [6]. This is useful for
preventing cyberattacks targeting medical devices and sensors, and indicating the need for
firmware and application updates.

By running federated queries on such a cyber-knowledge graph, entities having certain
property values according to data derived from multiple data sources simultaneously can be
found effectively. For example, the CVE of all the vulnerabilities that are associated with a
vulnerable product (as described in one dataset) and a known affected software configuration
at the same time (according to another dataset) can be identified, e.g.,

SELECT ?cve
FROM NAMED MITRE
FROM NAMED CISCO
FROM NAMED NIST
WHERE
{ ?v :vulnerableProduct :CiscoWebexMeetingsServer

;
:knownAffectedSoftwareConfiguration

"cpe :2.3:a:apache:log4j :2.0: -:*:*:*:*:*:*".
}

In turn, this can be utilized by semantic agents to infer, for example, whether a patch
should be installed for a vulnerable product of an organization having a specific software
configuration,which,when automated thisway, can take some load off security professionals.

Vulnerability data captured in knowledge graphs can enable CWE chain reasoning,
whereby the number of products having a particular weakness can be determined, and the
knowledge graph is queried to calculate chain confidence, based on which a candidate can
be selected [44]. Whether this is a possible CWE chain needs to be validated, such as via the
CVE vulnerability description.

Depending on the knowledge represented, the output of such systems can be used for
decision support, data analysis, task automation, and more. Such data-driven architectures
can represent how network segmentation affects the placement and configuration of firewalls,
and to find ways to prevent cyberattacks by pinpointing the most vulnerable services via
examining firewall rules in context, in particular, the source and destination addresses. Using
cybersecurity knowledge graphs, exposed vulnerabilities can be listed in order of frequency
and represented before and after mitigation. Complex queries executed on a knowledge graph
can be used to determine the relevance of a particular alert, such as from an intrusion detection
system, by providing correlation data between a cyber-event, an exploit, and a vulnerability
[31].

Graph-based IDSes (GrIDSes) are designed to detect large-scale automated attacks in
communication networks, forming graphs from incident reports and network traffic logs
[11]. They can aggregate cybersecurity graphs into simpler forms at higher hierarchical lev-
els. Semantically enriched cyber-knowledge representation can be complemented bymachine
learning to help security analysts in collaborative frameworks utilizing data from host- and
network-based sensors and security specialists alike, which is particularly useful in case of
novel complex cyberattacks, such as ransomware attacks [34]. Knowledge graphs can help
model cyberthreat and cyberattack trends, and understand new attack strategies ultimately
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leading to new attack categories [60]. By using knowledge graphs to represent cyberthreat
intelligence, malware behavior can be fused with cyber-knowledge [39]. Knowledge graphs
capturing known security vulnerabilities of medical devices in hospitals can contribute to
the protection of user data via augmenting data from device vendors, CISA ICS-CERT,52

etc., with Linked Open Data (LOD) datasets such as Wikidata53 and medical databased like
FDA’s AccessGUDID54 [58]. Knowledge graphs can also be utilized in automated malicious
repository detection [71]. A knowledge graph where nodes represent repositories and key-
words, and the edges between the nodes capture whether a keyword occurs in a repository,
can be used as the basis for repository representation learning using deep neural networks.

8 Conclusion

The complex correlations between cybersecurity data captured in a variety of data formats
and derived from a diverse range of data sources can be efficiently modeled using knowledge
graphs. The data model used determines the capabilities and limitations of a particular imple-
mentation, whether representing a computer network, interconnected devices, or cyberattack
paths. The formal grounding of these graphs ensure clearly understandable computational
properties and reasoning complexity for the represented background knowledge and cap-
tured expert knowledge. Cybersecurity knowledge graphs contribute to the standardization
of terminologyuse in the cybersecurity anddigital forensics domains, and themainstreampro-
cessing of security and security-related data that would otherwise be isolated and would have
limited automated processing support due to proprietary data formats and content normally
not accessible to software agents.

Cybersecurity knowledge graphs are suitable for network data aggregation, data integra-
tion, data fusion, data mapping, and knowledge discovery; they facilitate machine learning
and can be used for efficient visualizations in ways not feasible with other technologies.
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