
Knowledge and Information Systems (2023) 65:2863–2894
https://doi.org/10.1007/s10115-023-01850-5

REGULAR PAPER

Towards intelligent database systems using clusters of SQL
transactions

Arunprasad P. Marathe1

Received: 7 July 2022 / Revised: 13 January 2023 / Accepted: 13 February 2023 /
Published online: 16 March 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Transactions are the bread-and-butter of database management system (DBMS) industry.
Whenyou checkyour bankbalance, paybill, ormovemoney fromsaving to chequing account,
transactions are involved. That transactions are self-similar—whether you pay a utility com-
pany or credit card, it is still a ‘pay bill’ transaction—has been noted before. Somewhat
surprisingly, that property remains largely unexploited, barring some notable exceptions.
The research reported in this paper begins to build ‘intelligence’ into database systems by
offering built-in transaction classification and clustering. The utility of such an approach
is demonstrated by showing how it simplifies DBMS monitoring and troubleshooting. The
well-knownDBSCAN algorithm clusters online transaction processing (OLTP) transactions:
this paper’s contribution is in demonstrating a robust server-side feature extraction approach,
rather than the previously suggested and error-prone log-mining approach. It is shown how
‘DBSCAN + angular cosine distance function’ finds better clusters than the previously tried
combinations, and simplifies DBSCAN parameter tuning—a known nontrivial task. DBMS
troubleshooting efficacy is demonstrated by identifying the root causes of several real-life
performance problems: problematic transaction rollbacks; performance drifts; system-wide
issues; CPUandmemory bottlenecks; and so on. It is also shown that the cluster count remains
unchanged irrespective of system load—a desirable but often overlooked property. The trans-
action clustering solution has been implemented inside the popularMySQLDBMS, although
most modern relational database systems can benefit from the ideas described herein.

Keywords Intelligent database management systems · Transactions · Feature extraction ·
Similarity measures · Unsupervised clustering · Database monitoring · Troubleshooting ·
DBSCAN

1 Introduction

A user books air tickets for himself and family members using an online Web portal—
front-end to a prototypical online transaction processing (OLTP) database application. He

B Arunprasad P. Marathe
arun.marathe@huawei.com; ap.marathe@gmail.com

1 Huawei Technologies Canada Co., Ltd., 19 Allstate Pkwy, Markham, ON L3R 5A4, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01850-5&domain=pdf
http://orcid.org/0000-0002-3789-7670

2864 A. P. Marathe

searches several flights, books tickets, and provides frequent flyer numbers of the passengers.
The airline reservation system implements this activity using a transaction. A second user
performs different flight searches before booking a ticket for herself, but does not provide
a frequent flyer number because it is not handy. The second transaction may have fewer
INSERT statements because only one person is flying. The two transactions have both simi-
larities and differences, but similarities probably outnumber differences. The self-similarity
is due to their accessing the same tables in similar fashions, although the SQL statements
generated may not be identical. Taking a step further, there may be a reason to believe that
their performances are similar—a hypothesis that can be exploited if found true. In particular,
if both of them can be put into the same cluster along with other similar transactions, and
cluster performance is monitored as a whole, a simple and practically useful OLTP system
abstraction may result.

A studyof thevarious applications providedby the twopopularOLTPbenchmarking toolk-
its OLTP-Bench [1] and Sysbench [2] reveals that each application contains SQL transactions
that can be neatly divided into a small number of non-overlapping transaction clusters. For
example, the SEATS application of OLTP-Bench implements an airline reservation system
and contains the following six types of activities from which six clusters may be identified:

1. Findflights orderedbydeparture timebetween twocities possibly consideringnearby
airports.

2. Make a new reservation.
3. Delete a reservation.
4. Find open seats on a flight.
5. Update a reservation by changing a seat.
6. Update such customer information as frequent flyer number.

An actual commercial airline reservation system will have more capabilities resulting in
more clusters, but still, cluster count is likely to be small (say less than 25).1

Within a cluster, transactions differ in the parameter values of the SQL statements, state-
ment orders, statement counts, statement types, rows read or updated, and so on.Nevertheless,
this research shows that each cluster has a characteristic performance profile—termed its sig-
nature—at the level of which an OLTP application can be monitored. Cluster-level metrics
are simple rolled-up versions of transaction-level metrics: for example, average values of
transactions/sec (TPS); number of rows (read, updated, or sent to the client); locking time;
and so on. In turn, transaction-level metrics are rolled-up versions of statement-level metrics
for the statements within a transaction. In turn, some of the statement-level metrics—for
example, rows read/written and estimated execution cost—can be computed from table-level
or execution plan operator-levelmetrics. The existence of such a natural hierarchymay permit
problem troubleshooting to proceed from coarser to finer levels.

1.1 Benefits of cluster-level monitoring

Cluster-level monitoring of an OLTP application has three advantages over transaction- or
statement-level monitoring. First, rather than monitoring thousands of SQL queries or trans-
actions, it is simpler and likely more effective to observe performances of only six clusters (in
the case of SEATS). Second, the cluster count is independent of an OLTP application’s load

1 Indeed, all of the workloads in OLTP-Bench have between 1 and 10 clusters [1]. Read-write and read-only
flavors of Sysbench [2] contain 10 clusters each. Although Sysbench is a synthetic benchmark, all of the
benchmarks in OLTP-Bench are based on real-life applications: online auctions; banking; talent show voting;
social networking; key-value store; airline reservation system; and so on.

123

Clusters of SQL transactions 2865

(which is proportional to the number of active terminals). Third, the benefits of clustering
multiply when anOLTP application is deployed in cloudwhere a few database administrators
(DBA) have to monitor performance of multiple applications simultaneously [3]. A cloud
DBA does not have the luxury of developing an in-depth understanding of an application and
its performance profile, and needs a helping hand.

SQL transaction clustering helps a (cloud) DBA by simplifying troubleshooting of sev-
eral performance problems: identification of problematic transaction rollbacks; performance
bottlenecks; system-wide issues; performance drifts; and so on. The benefits also extend to
non-cloud applications, and therefore, this research makes a case for database systems to
become knowledge-based by providing transaction cluster-level monitoring in addition to
the existing table-, index-, schema-, and user-level monitoring. The new granularity is not
meant to replace the existing tools, but nicely complements them: table-level and index-level
data will continue to provide the necessary drill-downs, but help in determining where to
drill-down should be valuable.

1.2 Novelties and key contributions of this paper

This research reported herein contains three novelties.

1. For SQL transaction clustering, features are extracted server-side by modifying the
MySQL code, rather than the existing state-of-the-art that relies on log-mining (which is
cumbersome and error-prone).

2. A novel application of SQL transaction clustering is demonstrated: namely, DBMS system
monitoring and performance troubleshooting.

3. DBSCAN parameter tuning—a known difficult task [4, 5]—is simplified. In cloud-
deployed DBMS applications—increasingly common in the last 5years—a cloud DBA
may not be able to hand-tune DBSCAN parameters of the multiple applications under her
supervision.

The following three subsections elaborate.

1.2.1 Server-side transaction feature extraction

SQL transaction are clustered based on inter-transaction distances. Selected attributes from a
transaction form its feature vector by a process called feature extraction, and inter-transaction
distances are calculated among such feature vectors. Previous research has relied on SQL
log-mining for transaction feature extraction, whereas this research proposes to use simple
server-side extensions instead.

Server-side extensions offer four benefits over previousmethods. First, regular-expression-
based SQL log mining is error-prone because identifying SQL constructs requires a parser, in
general. Second, commercial database systems do not provide API accesses to their parsers,
and parsing code needs to be duplicated. Third, log mining requires identification of transac-
tion boundaries, which may be difficult because transaction statements may be intermingled
in the log. (In server-side extensions, the server keeps track of the entire transactions.) Fourth,
if logs are mined from such a proxy server as MaxScale [6], ‘autocommit’ must be enabled
which essentially breaks a transaction into single-statement pieces.

Server-side feature extraction is implemented by extending the preexistingMySQL server
data structures meant for server monitoring. Similar data structures preexist in most mod-
ern DBMS engines (Oracle, SQL Server, PostgreSQL, and so on), and hence the solution
suggested herein has wider applicability.

123

2866 A. P. Marathe

1.2.2 Clustering helps DBMS performance troubleshooting

Modern DBMS systems are some of the most complex software systems built. Monitoring
their performance and troubleshooting problems has been difficult, and shows no signs of
becoming simpler. The workload transactions in online transaction processing (OLTP) sys-
tems can be naturally grouped into non-overlapping clusters, and DBMS performance can
be monitored at cluster-level. As this paper demonstrates, by doing that, several real-life
performance problems can be troubleshot easily.

The proposed approach goes hand-in-glove with prior work on boosting OLTP system
performance that executes a group of similar transactions in lock-steps so that the first trans-
action instance paves the L1-Instruction cache, and subsequent ones enjoy nearly miss-free
executions [7]. The notion of similarity in [7] is statement- and access-path-level (commit,
rollback, seek of a particular index, scan of a particular index, and so on), but in principle, can
be even more effective at transaction level—for example, TPC-C’s OrderStatus transaction.
After all, two OrderStatus instances—especially if they are read-only, as is the case with
OrderStatus—are likely to execute nearly identical instructions.

In the last two years, utility of database transactions in debugging has generated renewed
interest. The author first noted the usefulness of SQL transaction clusters in performance
troubleshooting in [8], but even the transactions by themselves (dropping ‘SQL’ and ‘cluster-
ing’ altogether) were found useful in [9] in the following sense. A client-side application can
store and access its shared state on the server-side using transactions, thereby minimizing
hard-to-debug concurrency bugs in distributed applications. For such bugs that do remain,
correlating shared states persisted in database with debug logs using data provenance may
help in debugging. The author hopes that SQL transactions continue to elicit such unusual
applications.

1.2.3 DBSCAN parameter tuning

The author chose DBSCAN clustering algorithm [10] for three practical reasons. First,
DBSCAN is well known in database research, and has even been used to cluster SQL trans-
actions previously [11]. Second, an open-source Python implementation is available [12] that
plugs in nicely with the rest of the Python-based transaction clustering system the author has
built. Third, DBSCAN’s utility claims have been questioned [4] and refuted by the DBSCAN
authors themselves [5]. An independent evaluation (this research) confirms DBSCAN’s suit-
ability for clustering SQL transactions.

DBSCAN parameters need to be hand-tuned, and different applications require different
values. In a subsequent paper, some of the DBSCAN authors proposed a heuristic—termed
SEKX in this paper—for parameter tuning. The current work demonstrates that a heuristic
enabled by the angular cosine distance function (ACD) outperforms SEKX by finding more
accurate transaction clusters, and simplifying DBSCAN parameter tuning. Last, but not least,
extensive SQL transaction clustering experiments—at a scale reported in this paper—have
not been performed before although some preliminary attempts were made.

1.3 In the larger context

This research proposes a new granularity of data collection in DBMS systems: transaction-
cluster-level. The overall message is that the new level is a natural extension of the existing
table-, index-, query-, user-, and schema-level granularities, and can be implemented using

123

Clusters of SQL transactions 2867

straightforward programming extensions toDBMS servers. Thiswork opens up opportunities
for new research as explained below. Intentionally, the directions identified are broad-based.
Some specific topics are also mentioned when considering the future work in Sect. 8.

First, transaction-cluster-level performance measurement greatly simplifies troubleshoot-
ing of certain scenarios. Previous research has used transaction-cluster-level data for
performancemeasurement and resource usage (scalability) predictions.What other uses exist
for this newdata granularity? Second, should transaction granularity be usedmore extensively
by existing query tuning tools? Third, a recent trend has started to use machine learning in
query optimization [13]. Can a transaction-as-a-whole be optimized using machine learning
techniques theway it has been exploited to drastically reduceL1 instruction-cachemisses [7]?
For example, many real-life transactions are predicated based on a small number of param-
eters. Can deep neural networks be created based on supervised or unsupervised learning of
those parameter values? Fourth, can machine learning models be trained using transaction-
cluster-level performance signatures so that they can predict deviations from those signatures
automatically?

A quote from a recent book on benchmarking cloud-native systems [14, p. 109] is a good
way to end this introduction.

[...] databases typically lack in flexibility when it comes to the provided analysis meth-
ods.More advancedmethods like classification or clustering are not supported bymany
systems. Especially in exploratory analysis, such methods may be essential [...]

This research takes some preliminary steps in alleviating the situation.

2 Clusters of SQL transactions

To perform transaction-cluster-level data monitoring, SQL transactions need to be segregated
into non-overlapping clusters. SQL transactionswithin a cluster are similar (but not identical),
and transactions in different clusters are dissimilar. Cluster determination is a three-step
process, and is described in the following three subsections.

1. Certain distinguishing attributes (called features) are extracted from a transaction, and an
n-element feature vector (FV) is formed (Sect. 2.1).

2. The distance between two transactions—defined to be the distance between their feature
vectors—is computed using a distance function (Sect. 2.2).

3. A clustering algorithm uses the feature vectors and the distance function to determine
clusters (Sect. 2.3).

2.1 Feature vector construction

In this research, extracting the following transaction features proved adequate.

• Statement type: SELECT, INSERT, UPDATE, and DELETE.
• Table name(s)—possibly none—referenced in the statement in ‘schema.table’ format.
• Counts associated with table names indicating frequency.

In other applications, different or additional features may need to be extracted, but the
overall approach described here remains valid. (Experiments in Sect. 5.8 evaluate whether
transaction clustering improves when two dynamic features are added to the mix.)

123

2868 A. P. Marathe

A transaction X ’s feature vector FV (X) is a concatenation of four sub-vectors FVS , FVI ,
FVU , and FVD for the four major SQL statement types SELECT, INSERT, UPDATE, and
DELETE respectively. All of the four sub-vectors are computed similarly, and therefore, only
the construction of FVS is described.

FVS is of length n—the total number of tables in the OLTP system’s schema, where each
table is schema-qualified, and occupies a specific position in the vector (to enable cross-
feature vector comparisons). If a table T is referenced by all of the SELECT statements in a
transaction a total of k times (k ≥ 0), then the vector element for T inside FVS has value k.

FVI , FVU , and FVD are computed similarly from all of the INSERT, UPDATE, and
DELETE statements in a transaction,2

To handle ROLLBACK and COMMIT statements, a vector element can be added that is 0 for
ROLLBACK and 1 for COMMIT. If more than two such statements need to be handled—for
example BEGIN, END, SAVEPOINT, and so on—they should be numbered 1 onward for
the reason mentioned in Sect. 8. In this research, however, no such additional statements are
handled.

Listing 1 Transaction X1

SELECT C_ID FROM Customer WHERE C_ID_STR = ’ 50665 ’
SELECT ∗ FROM Customer WHERE C_ID = 50665
SELECT ∗ FROM A i r p o r t , Coun t ry WHERE AP_ID = 180 AND AP_CO_ID =

CO_ID
SELECT ∗ FROM F r e q u e n t _ F l y e r WHERE FF_C_ID = 50665
UPDATE F r e q u e n t _ F l y e r SET FF_IATTR00 = −14751 , FF_IATTR01 = 8902

WHERE FF_C_ID = 50665 AND FF_AL_ID = 1075
UPDATE Customer SET C_IATTR00 = −14751 , C_IATTR01 = 89025 WHERE

C_ID = 50665
COMMIT

Consider the transaction X1—taken from the SEATS workload of OLTP-Bench [1]—
shown in Listing 1. It is the ‘update customer information’ transaction mentioned in Sect. 1,
and its feature vector is computed as follows.

• FVS(X1) = [2, 1, 1, 1] becauseSELECT statements in X1 refer toCustomer table twice,
and the other three tables once each.

• FVU (X1) = [1, 1] because UPDATE statements in X1 refer to two tables once each.
• FVI (X1) = FVD(X1) = [] because there are no INSERT’s or DELETE’s in X1.
• The complete feature vector for X1 is calculated as follows.

FV (X1) = FVS(X1) + FVI (X1) + FVU (X1) + FVD(X1)

= [2, 1, 1, 1] + [] + [1, 1] + []
= [2, 1, 1, 1, 1, 1]

Consider a second transaction X2 similar to X1 that selects from Customer only once.
FV (X2) will be [1, 1, 1, 1, 1, 1]. For all of the tables other than Customer, Airport, Country,
and Frequent_Flyer, the corresponding slots in the two feature vectors are 0’s and are not
explicitly shown.

The slot positions in feature vectorsmatterwhen comparing two transactions. For example,
imagine a third transaction X3 similar to X1 that does not update the Customer table, and
selects from that table only once. Because ‘update-Customer’ occupies the last slot in the
feature vector, FV (X3) will be [1, 1, 1, 1, 1, 0].
2 INSERT, UPDATE, and DELETE statements can also have embedded SELECT queries, and those are
handled similarly to the way FVS is.

123

Clusters of SQL transactions 2869

2.2 Angular cosine distance

Angular cosine distance, henceforth ACD, measures the distance between two transactions
using their feature vectors. For two n-dimensional vectors A and B, each with indices
0, 1, . . . n − 1, and with nonnegative values, ACD is defined as follows [15].

ACD(A,B) = 2

π

⎛
⎝cos−1

⎛
⎝

∑n−1
i=0 AiBi√∑n−1

i=0 A2
i

√∑n−1
i=0 B2

i

⎞
⎠

⎞
⎠ (1)

ACD is a distance measure or metric as shown in [16], and therefore, has the following
properties.

1. ACD(A,B) ≥ 0
2. ACD(A,B) = ACD(B,A)

3. ACD(A,B) ≤ ACD(A,C) + ACD(C,B) (triangle inequality)

Triangle inequality is an important property because it says that the closest distance
between two objects is a direct route: a detour through a third object cannot be any closer.
For SQL transactions, it means that two transactions that are close to a third transaction are
also close to each other. If that statement does not hold, SQL transaction clusters are not
meaningful.3

ACD also has a fourth property that is particularly useful in SQL transaction clustering:
ACD distances are normalized.

4. 0.0 ≤ ACD(A,B) ≤ 1.0

Because ACD distances are unitary, a closeness threshold Eps ∈ [0.0, 1.0] (for example,
0.2) canbedefined so that two transactions atmostEps apart are considered ‘close’; otherwise,
they are declared ‘far.’4 ACD—and normalized distance functions in general—also enable
an easy similarity definition: similari t y = 1.0 − distance

Thus ‘close’ transactions with Eps = 0.2 are at least 0.8 (or 80%) similar—something
even a non-expert can understand. Similarity connection will play an important role in sim-
plifying DBSCAN parameter tuning.

For the X1 and X2 transactions of Sect. 2.1:

ACD(X1, X2) = ACD([2, 1, 1, 1, 1.1], [1, 1, 1, 1, 1, 1])
= 0.197

X1 and X2 are 1.0− 0.197 = 0.803 (80.3%) similar which seems intuitively correct. The
transaction X3 from Sect. 2.1 with FV (X3) = [1, 1, 1, 1, 1, 0] is somewhat dissimilar to X1

and X2, and indeed, ACD(X1, X3) = 0.295, or they are only 70.5% similar which again
seems intuitive. With the closeness threshold Eps set to 0.2, X1 and X2 will be considered
close, and may end up in the same cluster, whereas X1 and X3 will not belong to the same
cluster.

3 A close cousin of ACD—the dot-product-based cosine distance—is not a metric because it does not satisfy
the triangle inequality and indeed performs worse than ACD in clustering SQL transactions as demonstrated
in Sect. 5.7.
4 The name Eps is chosen because it matches a DBSCAN parameter’s name as mentioned in Sect. 2.3.

123

2870 A. P. Marathe

Fig. 1 DBSCAN parameters Eps and minPts

2.3 DBSCAN and its parameter tuning

DBSCAN [10] is a density-based clustering algorithm whose two parameter values Eps and
minPts define density, and are illustrated in Fig. 1. If the circle (in general, hyper-sphere)
centered at p with radius Eps has at least minPts − 1 other points inside it, p belongs to a
dense neighborhood, and is considered a core point of a cluster. All of the core points belong
to clusters, and if a non-core point has a core point as a neighbor within distance at most Eps,
that non-core point also belongs to the core point’s cluster.

DBSCAN parameter tuning is difficult [4, 5] for two reasons.

1. Eps values are workload-dependent because distances themselves are. The distance value
20.0 can be ‘close’ for one workload, but ‘very far’ for another.

2. minPts is somewhat workload-independent in that some minimum cluster density may be
required no matter what, but minPts too requires tuning in some cases.

Epsnormalizationusingmin–maxvaluesmayhelp, but those values need to bedetermined,
and determination could be error-prone because of sampling—and in cloud environments,
cumbersome. Less obviously, it was found that such unnormalized distance functions as the
Euclidean require dissimilar objects (transactions) to be spread apart artificially for correct
cluster formations—as done in the DBSeer system [17] and explained in Sect. 5.5. That
spread-apart factor is workload dependent, and requires its own tuning.

ACD does not eliminate hand-tuning DBSCAN parameters, but simplifies it by providing
twofold help.

• Eps value has an intuitive meaning. For example, Eps = 0.2 means that independent
of workload, transactions have to be at least 80% similar before they can belong to the
same cluster. With such unnormalized distance functions as Euclidean, Eps values do
not have that property. The same can be said for Eps value variations. For example, in
the case of ACD, lowering Eps from 0.2 to 0.1 means that transactions now have to be at
least 90% similar, but in the case of Euclidean, lowering Eps from 20 to 15 makes cluster
membership criterion more demanding than before, but to what degree? That degree is
workload-dependent.

• As demonstrated in Sect. 5.6, for many workloads, ACD-based DBSCAN clustering is
not very sensitive to the two parameter values, and a good starting point is (Eps, minPts)
= (0.2, 10).

123

Clusters of SQL transactions 2871

Fig. 2 Relationships between the three tables

3 MySQL extensions for feature extraction from transactions

Extraction of transaction features such as the ones mentioned in Sect. 2.1 currently uses SQL
log mining and takes one of two approaches: logs are obtained from such a proxy server
as MaxScale [6] (as done in the DBSeer system [11, 18]), or directly from a DBMS (as
done in [19, 20]). This research proposes a third alternative: server-side feature extraction by
instrumenting a DBMS.

Server-side feature extraction, as implemented in MySQL, uses data from the three in-
memory tables shown in Fig. 2 that contain transaction-level, statement-level, and table-level
information. Only the events_statements_tables table is new; the other two preexist. New
columns were added to all of the tables, however. The three tables will henceforth be referred
to by the acronyms e_t_h, e_s_h, and e_s_t. They belong to a larger class of such tables—
in a special schema named ‘performance_schema’—that capture information about running
workloads. This real-time performance data capture feature, also called performance schema,
is enabled by default in MySQL [21].

Each completed transaction appears as a row in the e_t_h table whose key is
(THREAD_ID, EVENT_ID). One or more statements belonging to a transaction are cap-
tured in e_s_h, and accordingly there is a 1:N relationship between the two tables. In Fig. 2,
the transaction with EVENT_ID 40 in e_t_h contains four statements appearing as four of
the rows in e_s_h using NESTING_EVENT_ID as the linkage column. The newly added
e_s_t table contains zero or more rows for each statement present in e_s_h—one for each
distinct table reference in that statement. Accordingly, there is a 1:N relationship between the
bottom two tables. Such statements as COMMIT and ROLLBACK do not refer to any tables,

123

2872 A. P. Marathe

and therefore, have no presence in e_s_t. For example, the two-way join

“SELECT..FROM ORDER_LINE,STOCK WHERE..′′

of TPC-C appears as two of the rows in e_s_t with EVENT_ID of 29. The columns in Fig. 2
only capture the inter-table relationships. The other columns added to the three tables—not
explicitly shown in Fig. 2—capture transaction-, statement-, and table-level statistics.

A statistic’s scope suggests a natural place for its persistence in Fig. 2. Such statement-level
statistics as rows sent to client, durations, and lock wait times are best persisted as columns of
the “statements” table e_s_h (or its equivalent in other DBMS’s). Such table-level statistics
as a table’s frequency in a statement, rows read, and rows updated is best kept in such tables
as e_s_t. Whether to keep fine-grained or rolled up data (or both) can be a design decision. If
rolled-up data is not kept, SQL’s GROUP BY and other similar clauses can compute various
aggregations on the-fly. Keeping only coarse-level data will minimize performance impact.

Using a SELECT query involving multi-way joins among e_t_h, e_s_h, and e_s_t tables,
such information as the transaction text; statement type; statement text; statement run-time;
transaction run-time; table names appearing in statement and their counts; number of rows
examined; locking times; and so on is easily extracted. The query itself can be nontrivial to
write, but needs to be written only once. One tricky aspect of such data capture is that the
1:N relationships shown in Fig. 2 are not enforced by MySQL for performance reasons, and
therefore, dangling tuples may result. Such tuples should either be identified and filtered out
by the query itself (as is done in this research), or should be deleted in a post-processing step.

The statistical data gathered in this research are only for illustration, and depending on
need, a variety of other statistics can be extracted: point-selection versus range-selection;
determination of ‘SELECT... FOR UPDATE’ (a SQL language feature found in MySQL and
Oracle); query complexity based on subquery count or join-width; the number of statements
not using a good index; estimated execution costs; estimated row counts; and so on.

Although the server extensions described are MySQL-specific, the idea has wider appli-
cability. Tables similar to those depicted in Fig. 2 preexist (or can be easily created) in other
products too: in SQL Server, Oracle, and PostgreSQL, they are called dynamic management
views [22], dynamic performance tables [23], and statistics collectors [24], respectively.
Therefore, server instrumentation of the kind described in this section is possible in those
products.

4 System architecture

A prototype SQL transaction clustering system has been implemented as depicted in Fig. 3.
The Linux KVM virtual machine represents a hosted environment running a customer appli-
cation. The Windows 10 machine contains data processing components, including those
performing transaction clustering and classification. A high-speed network separates the two
machines, and because of that, no data processing overhead is put on the cloud VM. DBMS
workload is generated using the OLTP-Bench [1] (or Sysbench [2]) toolkit running locally
on the top machine.

The top MySQL instance has been instrumented as described in Sect. 3 to enable
transaction-level data collection and feature extraction. The bottom data processing node
then rolls up such data to derive transaction cluster-level metrics. A SQL query runs on the
top MySQL instance every 5 s, and performs data collection. (The interval ensures minimal
data collection overhead, but is a system parameter.) From each 5-s chunk, the following fea-

123

Clusters of SQL transactions 2873

Fig. 3 Architecture of a transaction clustering system

ture and non-feature information is extracted: SQL statements; statement types (SELECT,
INSERT, COMMIT, and so on); table names; table counts; statement durations; transaction
duration; lock times; and rows examined by statements.

Each 5-s chunk contains data about all of the transactions that finished within the last 5
s, and an epoch-style Linux timestamp is associated with that data resulting in a streaming
time-series that is shipped to the data processing node where chunk-based iterators process
it in pipelined fashion. After each data collection event, the three tables shown in Fig. 2 are
truncated to avoid rereading the same data during the next interval.5

In the rest of this section, the two data processing components of Fig. 3 are described:
transaction clustering and transaction classification.

4.1 Transaction clustering

Chunk processing begins by consuming the first t chunks to perform transaction clustering.
During experimentation, the first 30 s worth of transactions (t = 6) were found adequate to
determine transaction clusters, but t is a system parameter. The DBSCAN algorithm [10]—
enhanced with the ACD distance function—performs transaction clustering [12].

After the initial t chunks have been used to determine transaction clusters, the subsequent
chunks are processed by the ‘Transaction Classification’ module. OLTP workloads do not

5 The tables are implemented using circular in-memory queues, and therefore, do not grow beyond limits, but
truncation ensures data fidelity.

123

2874 A. P. Marathe

have ad-hoc queries, and so clusters, once formed, should not change. If that assumption is
violated, DBSeer’s online implementation of DBSCAN can be used [17], but we leave that
for future work.

4.2 Transaction classification

Transaction classification algorithm needs k cluster cores and exemplars therein to classify a
transaction X as follows. Distances from X to all of the exemplars of a cluster are computed
using the angular cosine distance function, and averaged. For the k cluster cores, k average dis-
tances are computed, and X is assigned to the cluster corresponding to the minimum average
distance, as long as that distance is not more than a threshold value (for example, 0.2). If the
threshold is exceeded, X is not close enough to any of the clusters and is declared an outlier.

5 SQL transaction clustering experiments

DBMS performance monitoring at transaction-cluster-level is a central theme of this paper,
and accurate cluster formations are required. Previous attempts at SQL transaction clustering
have been small-scale [11, 18], and cluster quality has not been given much attention. This
research attempts to remedy that situation.

The experimentation contained in this section provides the answers to a series of questions.

1. How much overhead does server-side feature extraction add? (Sect. 5.3.)
2. How effective is the ACD-based DBSCAN algorithm in forming accurate transaction

clusters? This is answered by comparing ACD with a baseline heuristic suggested by
the DBSCAN authors themselves. (Sect. 5.4.)

3. The DBSeer system attempted SQL transaction clustering using a Euclidean-based
distance function. Does ACD find better clusters than the Euclidean-based distance
function? (Sect. 5.5.)

4. Sensitivity analysis of ACD-based DBSCAN shows that it is not crucial for a DBA to
get the values of Eps and minPts just right. A good starting point of (Eps, minPts) =
(0.2, 10) forms acceptable clusters for many workloads. (Sect. 5.6.)

5. Why is it necessary to use the angular cosine distance function? What is the drawback
of the well-known dot-product-based cosine distance function? (Sect. 5.7.)

6. Do better clusters form when more transaction features are extracted? (Sect. 5.8.)

5.1 Experimental setup

The system depicted in Fig. 3 is used in all of the experiments, but is not optimized for
performance because this research’s focus is on performance monitoring, troubleshooting,
and debugging. The top Linux machine is a KVM virtual machine with 8 CPU cores (2.5
GHz), and 16 GB memory. The Windows 10 data processing node runs Enterprise Edition
of Windows, and contains an i7-8700 3.20 GHz CPU with 16 GB memory. In all of the
experiments, both of the machines were lightly loaded.

123

Clusters of SQL transactions 2875

5.2 Workload

The workload consists of the applications in the OLTP-Bench [1] and Sysbench [2] toolk-
its. Out of the OLTP-Bench’s 15 workloads, the author was able to run 11.6 Two flavors of
Sysbench benchmark were run: read-only and read-write, indicated in the results using ‘sys-
bench_ro’ and ‘sysbench_rw,’ respectively. Thus, all of the experiments ran on 13 workloads.

An open-source DBSCAN implementation from ‘Scikit-learn’ [12] performs transaction
clustering. It was instrumented to useACD and the other distance functions tried. (By default,
it uses the Euclidean distance function.) The author did not consider other clustering algo-
rithms because although DBSCAN has been used for transaction clustering previously [11,
18], its suitability has not been established because the previous clustering experiments were
small-scale, and did not use a variety of workloads.

5.2.1 Expected cluster counts

Determination of clustering effectiveness requires expected cluster counts to which actual
counts can be compared. Expected cluster counts were determined as follows.

• OLTP-Bench already provides the expected cluster counts for the workloads therein [1].
• For Sysbench, the counts were determined manually by studying the transactions them-

selves.

In Tables 1, 2, 3, and 4, expected cluster counts are indicated in brackets after the workload
names. For example, 9 clusters are expected for the AuctionMark workload. Actual cluster
counts in some of the experiments are not always integral because each value is an average of 5
runs produced using different samples, and DBSCAN sometimes produces slightly different
cluster counts for different samples. When evaluating various distance functions, fairness is
ensured by reusing the same transaction samples.

5.3 Performance impact of server-side feature extraction

In the first experiment, an attempt is made to measure the performance impact of the instru-
mentation described in Sect. 3. MySQL’s performance schema is enabled by default and
contributes one portion of the overhead. The other portion is due to the server extensions
shown in Fig. 2. Ideally, the two overheads would be separately measurable, but the server-
extension overhead was so small that we could not measure it. The combined overhead
was 3–7% based on the average requests/s values of the TPC-C benchmark queries locally
submitted to Huawei MySQL using OLTP-Bench, and thus transaction clustering can be
an ‘always-on’ feature in many situations. Overhead can be reduced further by modifying
MySQL code so that only selected portions of ‘performance schema’ are enabled, but we
leave that for future work.

5.4 Clustering effectiveness of the ACD-based DBSCAN

ACD-based DBSCAN with (Eps, minPts) = (0.2, 10)—henceforth, abbreviated to ACD
(0.2, 10)—is an excellent starting point for clustering database transactions as the exper-
iment in this section demonstrates.

6 CH-benCHmark, JPAB, and ResourceStreser workloads produced run-time errors. LinkBenchwas excluded
because it (and JPAB) have been removed from a rewrite of OLTP-Bench currently under development [25].

123

2876 A. P. Marathe

Table 1 ACD(0.2, 10) versus SEKX(2 ∗ DIM − 1, 2 ∗ DIM)

Workload and expected cluster count DIM Avg. cluster count Comments

ACD SEKX

AuctionMark (9) 9 9.4 1 Observation 3

Epinions (9) 2 8 1 Observation 1

SEATS (6) 8 7 1 Observation 4

SIBench (2) 1 2 2

SmallBank (6) 5 6 1

sysbench_ro (10) 1 10 10

sysbench_rw (10) 5 10 10

TATP (7) 3 7 1

TPC-C (5) 10 5 1

Twitter (5) 2 5 1

Voter (1) 4 1 1

Wikipedia (5)a 7 2 1

YCSB (6) 2 5 1 Observation 2

aWikipedia application turns out to be hard to cluster by all of the distance functions for a non-obvious reason.
The five types of transactions in Wikipedia have very skewed frequencies, with two types of transactions
contributing 98.94% of the total. Two other types of transactions occur with frequencies of only 0.07% each,
and are rarely present in the clustering samples. Changing transaction frequencies caused OLTP-Bench errors
(reported to the benchmark authors) and, therefore, were left at their original values. The reader can ignore
the Wikipedia results, but they are included for completeness

Table 1 captures ACD(0.2, 10)’s performance against a baseline provided by the well-
known Euclidean distance function. In the Euclidean baseline, Eps andminPts values are set
using a heuristic provided by the DBSCAN authors in a subsequent paper [26]. We will term
the resulting baseline SEKX after the author names.

5.4.1 The SEKX heuristic

The SEKX heuristic works as follows. Let the dimensionality of a workload—defined to be
the maximum feature vector length—be DIM. Then:

• Heuristic value of Eps = (2 ∗ DIM) − 1
• Heuristic value of minPts = (2 ∗ DIM)

The DIM column of Table 1 captures a workload’s dimensionality, defined as above.
Accordingly, for example, when AuctionMark is clustered using SEKX-based DBSCAN, the
parameter settings are: Eps = 17 and minPts = 18.

5.4.2 Performance of ACD(0.2, 10) versus the SEKX baseline

The ‘Avg. cluster count’ columns of Table 1 compare clustering effectiveness of the ACD
versus the SEKX baseline. As mentioned in Sect. 5.2, average cluster counts in this and
subsequent tables are averages over 5 runs, each using its own transaction samples, and
hence are not always integral. As can be seen, ACD(0.2, 10) handily outperforms SEKX in
8 out of 13 workloads and, equally important, is never worse than SEKX in the remaining 5
workloads. For 9 workloads, SEKX puts all of the transactions into single clusters, and hence
is ineffective.

123

Clusters of SQL transactions 2877

The following observations—cross-referenced in the ‘Comments’ column of Table 1—
provide the reasons why ACD(0.2, 10)’s cluster counts are slightly off in a few cases.

Observation 1. Epinions cluster count is off by 1 because a transaction type selects from
Review and Trust tables separately, and another type selects from their
joined version. Both end up in the same cluster because the feature vector
construction in Sect. 2.1 currently does not distinguish them.

Observation 2. YCSB cluster count is off by 1 because two of the transaction types have
point and range selects, but are otherwise identical, and that difference is
currently not captured as a feature.

Observation 3. AuctionMark produced the correct cluster count with ACD(0.15, 10).
Observation 4. SEATS produced the correct cluster count with ACD(0.15, 15).

Observations 1 and 2 suggest possible features that can be extracted and added to the
feature vector.

The author has also compared ACD with baselines provided by other distance functions,
including some ACD variations.

• Jaccard distance by treating a SQL query as a bag of words
• A combination of Jaccard and Levenshtein distances
• An ACD variation in which the distance is defined to be: avg(FVS, FVI , FVU , FVD) by

taking the average distance of the four sub-vectors FVS , FVI , FVU , and FVD mentioned
in Sect. 2.1.

• Another ACD variation in which the distance is defined to be: max(FVS, FVI , FVU ,

FVD).

ACD outperformed them all.

5.5 ACD-based DBSCAN versus DBSeer-based DBSCAN

The DBSeer system had previously used DBSCAN to cluster database transactions while
using an enhanced-Euclidean-based distance function for inter-transaction distances [17].
How that function’s clustering effectiveness compares with ACD’s is investigated in this
experiment.

In DBSeer, similar transactions are those that access the same tables in similar fashions.
Dissimilar transactions are those in which there is at least one table that one transaction
accesses (via SELECT, INSERT, UPDATE, or DELETE), and the other one does not.

• Similar transactions use the usual Euclidean distance function. For example, for
transactions X1 and X2 of Sect. 2.1, the Euclidean distance computation yields:
DBSeer([2, 1, 1, 1, 1], [1, 1, 1, 1, 1]) = 1.0.

• For dissimilar transactions such as X1 and X3 of Sect. 2.1, a modified formula is used that
multiplies ‘dissimilar’ squares by a spread-apart factor (set to 10000.0)—viz. 10000 ·
(1 − 0)2—and yields:

DBSeer(X1, X3) = DBSeer([2, 1, 1, 1, 1], [1, 1, 1, 1, 0])
= 100.0

DBSeer’s enhanced-Euclidean distance function requires hand-tuning of DBSCAN
parameters, but to enable comparison with ACD, a pair of parameter values that gave an
overall decent performance across all of the workloads was determined: (Eps, minPts) =

123

2878 A. P. Marathe

Table 2 ACD versus DBSeer’s enhanced-Euclidean distance function

Workload and expected cluster count Avg. cluster count

ACD DBSeer DBSeer DBSeer
(0.2, 10) (10, 10) (250, 10) (250, 20)

AuctionMark (9) 9.4 9.6 3 3

Epinions (9) 8 8 1 1

SEATS (6) 7 8.2 1 1

SIBench (2) 2 2 1 1

SmallBank (6) 6 6 1 1

sysbench_ro (10) 10 10 10 10

sysbench_rw (10) 10 0 10 10

TATP (7) 7 7 1 1

TPC-C (5) 5 5 3 3

Twitter (5) 5 5 1 1

Voter (1) 1 1 1 1

Wikipedia (5) 2 2 2 2

YCSB (6) 5 5 1 1

(10, 10). The results are captured in columns 2 and 3 of Table 2. Once again, the abbreviation
DBSeer(10, 10) means ‘DBSeer-based DBSCAN algorithm with (Eps, minPts) = (10, 10).’

Ignoring the ‘sysbench_rw’workload,DBSeer is somewhatworse thanACD, but is decent.
DBSeer could not cluster ‘sysbench_rw,’ however, and thus ACD wins the comparison.

‘Sysbench_rw’ is an interesting case. It is hard to cluster not only by DBSeer but also
by several other distance functions that the author has tried. The reason has to do with that
workload’s highly symmetrical transactions: all of the transactions are roughly equidistant
from all of the other transactions. Unsurprisingly, such objects are hard to cluster.

For scientific curiosity, we ran a parameter sweep forDBSeer’s enhanced-Euclidean func-
tion so thatDBSeer-based DBSCAN could cluster ‘sysbench_rw.’Eps ranged from 25 to 250
in increments of 25, and minPts varied between 10 and 20. In all, 20 pairs were examined,
and out of those, three candidate pairs emerged: (225, 10), (250, 10), and (250, 20) with
average cluster counts of 10.8, 10, and 10, respectively, for ‘sysbench_rw.’ The last two pairs
were chosen to run the entire suit of benchmarks, and the results appear in columns 4 and 5
of Table 2.

As can be seen, both of those pairs can cluster the twoSysbenchworkloadswell, but cannot
cluster most of the other workloads in that all of the transactions are put in single clusters.
Tuning the DBSCAN parameters using DBSeer’s enhanced-Euclidean distance function is
indeed difficult. Another approach is to try to tune the spread-apart factor (10000.0), but that
just trades tuning of one parameter for another.

5.6 Sensitivity analysis of the ACD-based DBSCAN

This experiment attempts to answer the following question: When using the ACD-based
DBSCAN algorithm, how crucial is it for a DBA to get the values of Eps and minPts just
right? For example, one DBA might want transactions to be put in the same cluster only
if they are at least 90% similar. Another DBA might want denser clusters by requiring that

123

Clusters of SQL transactions 2879

Table 3 Sensitivity analysis of ACD with different Eps and minPts values

Workload and expected
cluster count

Avg. cluster count

ACD ACD ACD ACD ACD ACD
(.20,10) (.15,10) (.15,15) (.10,10) (.10,15) (.05,20)

AuctionMark (9) 9.4 9.4 5.4 8.2 5.4 4

Epinions (9) 8 8 8 8 8 8

SEATS (6) 7 7.4 6 8.4 7 5.2

SIBench (2) 2 2 2 2 2 2

SmallBank (6) 6 6 6 6 6 6

sysbench_ro (10) 10 10 10 10 10 10

sysbench_rw (10) 10 9 0.6 0 0 0

TATP (7) 7 7 7 7 7 7

TPC-C (5) 5 6 5.8 6 5.8 4.8

Twitter (5) 5 5 5 5 5 5

Voter (1) 1 1 1 1 1 1

Wikipedia (5) 2 2 2 2 2 2

YCSB (6) 5 5 5 5 5 5

a transaction’s neighborhood contain at least 20 similar transactions. It turns out that the
ACD-based DBSCAN is not very sensitive to various the Eps and minPts values for most of
the workloads.

Table 3 captures ACD-based DBSCAN’s performance for 6 sets of parameters. Approx-
imately, cluster membership criterion becomes more demanding as one reads across a row,
and hence cluster counts can be expected to decrease from left to right. For example, the
last column requires two transactions to be at least 95% similar, and their neighborhoods to
contain at least 20 similar transactions—extremely challenging conditions. As can be seen,
ACD-based DBSCAN is not very sensitive to parameter values for most of the workloads.
Even when it is (AuctionMark and sysbench_rw; and to a lesser extent SEATS and TPC-C),
graceful degradation is observed. Therefore, it is not crucial for a DBA to get the values
of Eps and minPts spot on, and any decent values should perform respectably well. For the
tricky ‘sysbench_rw’ workload, two ACD configurations perform well.

The average cluster counts in Table 3 should also be compared with ‘DBSeer’ cluster
counts in Table 2 (columns 3, 4, and 5) to conclude thatACD-basedDBSCAN is considerably
less sensitive to parameter values than DBSeer-based DBSCAN is.

5.7 Why not use the dot-product-based cosine distance?

Some readers may wonder why the angular cosine distance function is used, and not its
well-known cousin: the cosine distance based on dot product. The experiment in this section
provides an answer.

The cosine of two nonzero vectors A and B can be computed using the dot-product
formula [15]:

A · B = ‖A‖‖B‖ cos(θ)

123

2880 A. P. Marathe

The dot-product-based cosine similarity is cos(θ), and the distance is (1−cos(θ)). There-
fore, the dot-product-based cosine distance—henceforthDCD—canbe calculated as follows:

DCD(A,B) = 1 − A · B
‖A‖‖B‖

= 1 −
⎛
⎝

∑n−1
i=0 AiBi√∑n−1

i=0 A2
i

√∑n−1
i=0 B2

i

⎞
⎠ (2)

Although there are similarities between Eqs. 2 and1, it is somewhat surprising that unlike
the angular cosine distance, DCD is not a metric. In particular, the triangle inequality does
not hold for the triplet [1, 0], [0, 1], and [0.7071, 0.7071]:

DCD([1, 0], [0.7071, 0.7071]) + DCD([0.7071, 0.7071], [0, 1]) < DCD([1, 0], [0, 1])

In SQL transaction clustering, is it important for a distance function to be a metric? It is, as
the experiment in this section demonstrates. When the experiment in Sect. 5.4 is repeated by
comparingACD(0.2, 10) andDCD(0.2, 10) distance functions, the data in Table 4 results. To
understandDCD(0.2, 10)’s behavior inmore detail, twomore columns are added that capture
the numbers of unclassified transactions after clustering finishes. Once again, because each
cell value captures the average of five runs, the numbers of unclassified transactions are not
always integral.

Notice that DCD(0.2, 10) is never better than ACD(0.2, 10), but is worse for three work-
loads: AuctionMark, SEATS, and SmallBank. For SEATS, ACD(0.2, 10) produces a cluster
more than the expected count, whereasDCD(0.2, 10) produces one fewer cluster.We declare
DCD(0.2, 10) to be worse because fewer clusters means that two or more of them have been
aggregated, and their performances cannot be studied separately, whereas more clusters
means that a given transaction type is divided into two or more fine-grained categories.

The last two columns of Table 4 indicate that DCD consistently leaves fewer unclassified
transactions. In other words, the problem is not that it cannot classify certain transactions,
but that it wrongly classifies them in several cases. SmallBank provides an extreme case: all
of the transactions form a single large cluster. (Sect. 6.1 describes the six transaction types
in SmallBank.)

In short, metric distance functions should be preferred whenever possible although the
problems caused by non-metric distance function may not be apparent for several workloads.
Indeed, as noted in Sect. 7.4, researchers have not always been precise or correct in using the
distance functions in clustering SQL transactions. Because no previous study has performed a
thorough investigation on suitable distance functions for SQL clustering, the relativemerits of
the various distance functions have not been brought to light—something that the experiments
in this research begin to address.7

7 As an interesting aside emphasizing the importance of metric distance functions, the author was attempting
to generalize an elegant algorithm due to Lingas [27] that computed the relative neighborhood graphs (RNG).
Lingas’ algorithm computed the RNG for a set of points using the Euclidean distance; the generalization
was to compute the RNG for points with associated weights (disks). Generalizing the Euclidean distance to
compute inter-disk distances makes it non-metric. A counterexample was found in [28] that suggested that a
straightforward generalization of Lingas’ algorithm would be nearly impossible—the status quo after more
than 27 years.

123

Clusters of SQL transactions 2881

Table 4 Angular cosine versus dot-product-based cosine: performance of ACD(0.2, 10) versusDCD(0.2, 10)

Workload and expected cluster count Avg. cluster count # of unclassified transactions

ACD DCD ACD DCD

AuctionMark (9) 9.4 7 63.2 27.0

Epinions (9) 8 8 0.0 0.0

SEATS (6) 7 5 33.6 5.4

SIBench (2) 2 2 0.0 0.0

SmallBank (6) 6 1 0.6 0.6

sysbench_ro (10) 10 10 0.0 0.0

sysbench_rw (10) 10 10 0.6 0.6

TATP (7) 7 7 0.0 0.0

TPC-C (5) 5 5 3.2 3.2

Twitter (5) 5 5 0.0 0.0

Voter (1) 1 1 3.6 3.6

Wikipedia (5) 2 2 6.4 1.4

YCSB (6) 5 5 0.0 0.0

5.8 Extraction of more features

The experiment in Sect. 5.4 suggested that Epinions and YCSB workloads would benefit
from two static features (joined versus individual tables and point versus range selects), but
for diversity, two dynamic features of transactions are considered: (1) the total number of
rows examined by the statements within a transaction; and (2) the average lock time for the
statements within a transaction. Accordingly, the feature vector is lengthened by 2. Contrary
to expectation, these two dynamic features did not improve clustering performance, and
therefore, detailed results are not included. Nevertheless, experimental work advised us to
make the following three remarks.

Remark 1 Feature values require normalization. A typical value for average lock time is 0.03
ms; for row count, typical values are 8, 20 and 130. As indicated in Sect. 2.1, existing feature
values are small integers, and without normalization, row count dominates other features.

Remark 2 Even after normalization, clustering performance is still slightly worse than the
vanillaACD variationwhich shows that extractingmore features does not necessarily translate
to better cluster formations.

Remark 3 When all three combinations of ‘row count’ and ‘average lock time’ are tried
as features, no clear winner emerges, indicating that these features should be considered
non-primary or non-essential for the 13 workloads.

6 Performance troubleshooting enabled by SQL transaction clustering

The experiments in this section demonstrate how cluster-level performance monitoring sim-
plifies troubleshooting ofmany real-life problems faced byDBA’s and system administrators.
In particular, the experiments help address the following questions, thereby taking some steps
in making the database system more intelligent.

123

2882 A. P. Marathe

1. What can the cluster signatures tell us? (Sect. 6.1.)
2. How do cluster signatures behave under heavy system loads? (Sect. 6.2.)
3. How can we find the performance sweet spot of a DBMS application? (Sect. 6.3.)
4. How can we identify problematic transaction rollbacks? Such rollbacks can negatively

impact an application’s performance, and are difficult to troubleshoot using existing tech-
niques. (Sect. 6.4.)

5. How can we identify a performance drift whereby a performance metric departs consid-
erably from its baseline value? (Sect. 6.5.)

6. How can we identify such system-wide performance problems as a failed network card
or a failed disk? (Sect. 6.6.)

7. What resource—for example, CPU or memory—is most likely to become a bottleneck in
a DBMS application? (Sect. 6.7.)

6.1 Transaction cluster signatures

OLTP-Bench’s SmallBank workload simulates some operations of a bank and is chosen
to illustrate the concept of cluster signatures. Intentionally, a relatively unknown workload
is chosen—although OLTP-Bench contains the well-known TPC-C benchmark—because a
DBA in a cloud environment may not understand a customer application to the same extent
that a dedicated DBA in non-cloud environment might. SmallBank contains six transaction
types briefly described below.

1. Balance computes the sum of savings and checking balances for a customer, and is the
only read-only transaction in SmallBank.

2. DepositChecking increases the checking balance by some amount, and can optionally
rollback.

3. TransactSavingmakes a deposit or withdrawal on the savings account, and can option-
ally rollback.

4. Amalgamatemoves all of the funds from one customer to another customer’s checking
account.

5. WriteCheck represents writing a check against an account. If the account does not have
the necessary funds, a penalty of 1 for overdrawing is applied.

6. SendPayment (OLTP-Bench’s addition) sends payment from one checking account to
another.

The SmallBank cluster signatures with 10-terminal workload at the scale-factor of 1
are shown in Fig. 4. The three sub-plots in Fig. 4 capture the average values of the three
transaction-cluster-level metrics: lock time (in ms); number of rows examined; and TPS
(transactions/s). Each sub-plot contains six lines—one for each of the transaction clusters
identified.8 Each plotted point represents many transaction-level values rolled up to a cluster-
level value, and conveys summary information from the previous 5 s.

From the SmallBank cluster signatures, aDBAcanmake several ‘intelligent’ observations.

• Six clusters mean that there are six types of transactions in SmallBank—as enumerated
above.

• Cluster signatures are discernible, and therefore, transaction-cluster-level data aggrega-
tion and analysis seems worthwhile. For the top two sub-plots, the signatures are even
non-overlapping. In the third sub-plot, 5 signatures are clustered around 100 TPS, and

8 The second subplot contains only five lines because clusters 1 and 3 examine 3 rows each, and the plotting
software cannot distinguish two overlapping lines.

123

Clusters of SQL transactions 2883

Fig. 4 SmallBank’s cluster signatures (10-terminal workload)

unsurprisingly, the highest TPS values (cluster 1: 600–700) are for the read-only Balance
transaction (and as can be expected, has the second lowest average lock time).

• Most signatures contain small variations for at least three reasons. First, transactions
in a cluster are similar but not identical. Second, transactions execute cooperatively in
a multitasking environment, and even two identical transactions do not get the same
resources. Third, each data point aggregates 5 s worth of data. Nevertheless, the metrics
are stable because the workload and its hosting system are stable. (Some of the future
experiments will introduce systematic workload and system variations to recreate some
real-life scenarios.)

• All of the transactions in a given cluster examine the same number of rows—a SmallBank
peculiarity.

• ‘Avg. lock time’ and ‘Avg. rows examined’ graphs are stacked in the same order—
understandable because usually, the more rows a transaction examines, the more locking
time it needs.

The most expensive transaction type—the one with the lowest TPS value—is Cluster 2,
representing the Amalgamate transaction, whose sample exemplar is produced in Listing 2.
The ability to look at cluster exemplars can be useful already. For example, the Amalgamate
transaction looks suspicious: if funds are moved from one customer’s account to another
customer’s account, should not the second customer’s account balance increase, and not
decrease (unless, of course, if the bank permits negative balances)?

123

2884 A. P. Marathe

Listing 2 An exemplar of the Amalgamate transaction type

SELECT ∗ FROM ACCOUNTS WHERE c u s t i d = 586790
SELECT ∗ FROM ACCOUNTS WHERE c u s t i d = 728976
SELECT b a l FROM SAVINGS WHERE c u s t i d = 586790
SELECT b a l FROM CHECKING WHERE c u s t i d = 728976
UPDATE CHECKING SET b a l = 0 . 0 WHERE c u s t i d = 586790
UPDATE SAVINGS SET b a l = b a l − 52840 . 0 WHERE c u s t i d = 728976
commit

Cluster signatures can act as baseline performance profiles, and may allow easy detection
of any future deviations (possibly even automatically using automatic anomaly detec-
tion [29]). The rest of the experiments in this section will introduce systematic variations to
either the workload or the hosting system to observe how signatures change. To save space,
some graphs will contain fewer than three metrics, and in those cases, the reader can assume
that the omitted metric conveys no additional information, or is unaffected by the variation
studied.

6.2 Unchanged cluster counts under heavy system load

The system load has a direct impact on a DBMS application’s performance. Many metrics—
for example, average response time and throughput—degradewhen the system load increases.
Performance troubleshooting becomes more difficult as the system load increases because
the various system logs grow at faster rates, and data sizes increase. One of the promises of
keeping cluster-level metrics is that the cluster count remains unchanged irrespective of the
system load.

When SmallBank runs with 100 simultaneous terminals rather than 10 as in Sect. 6.1, the
cluster count remains 6. (The graphs are omitted to save space.) A system under heavy load
will run into performance bottlenecks more easily than the same system under light load,
and cluster-level data capture does not ‘solve’ that problem. Nevertheless, cluster-level data
capture can simplify determination of a performance ‘sweet spot’—a load value belowwhich
the system is likely to run smoothly—as the next experiment suggests.

6.3 Performance sweet spot

By using a variation of the experiment demonstrated in Sect. 6.2, the sweet spot of a DBMS
system performance can be determined. In particular, by systematically increasing an OLTP
application’s load (measured using the number of terminals connected to it), an approximate
number can be determined beyond which the performance degradation is no longer graceful
because at least some of the cluster-level metrics worsen by large amounts. At that point,
throttling mechanisms can kick in to ensure that the load does not increase beyond that sweet
spot. The details are omitted for brevity.

6.4 Identification of transaction rollbacks

Transaction rollbacks are normal; some are even expected. For example, SmallBank’s
DepositChecking and TransactSaving can occasionally rollback by design (Sect. 6.1). Some-
times, however, rollback frequencies become problematically high, andmay require remedial

123

Clusters of SQL transactions 2885

actions. If rollbacks are limited to a transaction type, cluster-level monitoring helps because
unexpected additional clusters form: those for the rolled-back ‘incomplete’ transactions.

TPC-C contains five transaction types [30], which the system correctly identifies as five
clusters. (The graphs are omitted for brevity.) Transaction rollbacks are demonstrated using
the Payment transaction by modifying its code such that after submitting 2 out of its 7
statements, it rolls back with 20% probability—simulating a problematic high-frequency
rollback. To make example even more realistic, a second rollback—simulating a normal and
rare DBMS occurrence—happens after the sixth statement with 0.1% probability (overall
probability 0.8 × 0.1 = 0.08%). The problematic rollbacks are numerous, and should form
their own cluster, whereas the normal ones should not.

The modified Payment transaction’s logic is illustrated in Listing 3.

Listing 3 Modified Payment transaction with a high-frequency and a normal rollback. The probability calcu-
lations are omitted for brevity.

UPDATE WAREHOUSE SET W_YTD = W_YTD + 562 .6300048828125 WHERE W_ID = 1
SELECT W_STREET_1 , W_STREET_2 , W_CITY , W_STATE, W_ZIP , W_NAME FROM

WAREHOUSE WHERE W_ID = 1
<−− high−f r e q u e n c y r o l l b a c k w i t h 20% p r o b a b i l i t y −−>
UPDATE DISTRICT SET D_YTD = D_YTD + 562 .6300048828125 WHERE D_W_ID = 1

AND D_ID = 8
SELECT D_STREET_1 , D_STREET_2 , D_CITY , D_STATE , D_ZIP , D_NAME FROM

DISTRICT WHERE D_W_ID = 1 AND D_ID = 8
SELECT C_FIRST , C_MIDDLE , C_LAST , C_STREET_1 , C_STREET_2 , C_CITY ,

C_STATE , C_ZIP , C_PHONE , C_CREDIT , C_CREDIT_LIM , C_DISCOUNT ,
C_BALANCE, C_YTD_PAYMENT, C_PAYMENT_CNT, C_SINCE FROM CUSTOMER
WHERE C_W_ID = 1 AND C_D_ID = 8 AND C_ID = 298

UPDATE CUSTOMER SET C_BALANCE = −4496.89013671875 , C_YTD_PAYMENT =
47285 .52734375 , C_PAYMENT_CNT = 19 WHERE C_W_ID = 1 AND C_D_ID = 8
AND C_ID = 298

<−− normal r o l l b a c k w i t h 0.08% p r o b a b i l i t y −−>
INSERT INTO HISTORY (H_C_D_ID , H_C_W_ID , H_C_ID , H_D_ID , H_W_ID ,

H_DATE , H_AMOUNT, H_DATA) VALUES (8 , 1 , 2 9 8 , 8 , 1 , ’ 2020−02−27
1 0 : 5 1 : 3 7 . 2 5 5 ’ , 562 . 6300048828125 , ’ i p h x n u s r i h x ’)

commit

Themodified TPC-C benchmark produces the results shown in Fig. 5 in which six clusters
form, rather than the expected five. A sample exemplar from Cluster 1 appears in Listing 4,
and reveals the ‘incomplete’ Payment transaction with a telltale rollback issued after two
statements.

Listing 4 ‘Incomplete’ Payment transaction with a telltale rollback

UPDATE WAREHOUSE SET W_YTD = W_YTD + 1704 .68994140625 WHERE W_ID = 2
SELECT W_STREET_1 , W_STREET_2 , W_CITY , W_STATE, W_ZIP , W_NAME FROM

WAREHOUSE WHERE W_ID = 2
r o l l b a ck

Because the ‘incomplete’ Payment transaction contains only two statements, its ‘Avg.
Lock Time’ is the least among the six in Fig. 5. The normal (rare) DBMS rollbacks (0.08%
probability) do not form a cluster because they do not meet DBSCAN’s density require-
ment mentioned in Sect. 2.3. High-frequency rollbacks are difficult to identify if cluster-level
statistics are not kept. Applications often resubmit transactions in case of rollbacks, and users
only notice and wonder about degraded performance. An incident report would cause DBA’s
or programmers to dig through voluminous logs to even begin suspecting a culprit.

123

2886 A. P. Marathe

Fig. 5 When Payment rolls back with 20% probability, an unexpected sixth cluster (Cluster 1) appears

6.5 Performance drift

Performance drift refers to a situation in which one (or just a few) cluster’s performance
drifts from its norm. Many situations can cause performance drifts. Here is a typical one: A
DBA might forget to reinstate an index that (s)he deliberately dropped during a bulk load
operation. (Dropping and recreating indexes on either side speed up a bulk load operation.)

To simulate a performance drift, a secondary index on the (C_W_ID, C_D_ID, C_LAST,
C_FIRST) columns of TPC-C’s CUSTOMER table is dropped while workload is running.
MySQL can make an index invisible, making that access method unavailable to the query
optimizer. During this experiment, the secondary index is made invisible for a portion of the
run.

Two out of the five TPC-C transactions use that index as an access method to navigate to
other tables: the read-only OrderStatus transaction, and the read-write Payment transaction.
When the index is made unavailable, the query optimizer has to use table scans instead of
index seeks. As can be seen in Fig. 6, average row counts show dramatic increases (drifts)
for clusters 0 (OrderStatus) and 2 (Payment) during the interval [615, 685] during which
the index was made invisible. Sure enough, as soon the invisible index is reinstated at the
timestamp 685, the optimizer begins using it, and the two ‘rows examined’ values return to
their baseline values soon afterward.

When the performance of only one cluster drifts, objects related to only that cluster
(e.g., tables, indexes, statistics) are good starting points for debugging. Without cluster-level
statistics, such a diagnosis may require considerably more work.

123

Clusters of SQL transactions 2887

Fig. 6 An index made invisible during [615, 685] causes two transactions to access many more rows

6.6 System-wide performance problem

System-wide performance problems are caused by such things as a failed network card,
operating system reboot, failed disk, and runaway process hoggingCPU’s. If all of the clusters
experience simultaneous degraded performances, a system-wide issue may be the cause. One
such situation is created using a CPU-hogging program that spawns as many processes as
the number of CPU cores on the computer (8), and then making them run infinite ‘while’
loops—thereby creating a CPU bottleneck.

In the resulting graphs shown in Fig. 7, ‘Avg. duration’ replaces ‘Avg. TPS’ as a metric.
(The two are inversely related.) CPU saturation happens in the interval [300, 375] during
which the average durations of all of the clusters show unmistakable jumps. After about
375, when the offending program is killed, all five average durations return to their baseline
values. Interestingly, average lock times are largely unaffected, indicating that for the few
transactions that did manage to execute during CPU saturation, lock time did not take a hit.
Such observations should provide DBA’s a good starting point to formulate a hypothesis
before starting a detailed investigation.

6.7 Bottleneck analysis

Cloud applications run on pre-provisioned VM’s such as KVM [31]. Because application
behavior is relatively unknown, a bottleneck may develop—in CPU, memory, disk I/O,
network I/O, and so on. Furthermore, bottlenecks may vary by transaction types. Non-cloud
DBA’s are used to monitoring such operating system-level performance counters as vmstat,
iostat, and netstat in Linux for bottleneck identification, but cluster-level statistics offer a
complementary method that can provide additional help.

123

2888 A. P. Marathe

Fig. 7 Average durations increase during [300, 375]

Fig. 8 Memory reduces from 16 to 3 GB at timestamp 120 onward

To study whether a VM has sufficient memory, its memory is reduced on the fly from 16
GB to 3 GBwhile TPC-C workload runs. Such a drastic change in memory allocation is only
for demonstration: typical changes should be much smaller.

In the results captured in Fig. 8, memory reduction happens at timestamp 120 onward.
The average TPS values before and after that interval show no discernible changes. There is
a noticeable drop at 120 as the operating system seems to adjust to the new memory setting,

123

Clusters of SQL transactions 2889

Fig. 9 CPU saturation during the interval [3960, 4025]

but soon, normal service resumes. The ‘Avg. lock time’ metric is also mostly unaffected
except for one cluster, and therefore, one can conclude that this VM is well-provisioned for
memory.

In the next variation,CPU is constrained.ChangingCPUcount inKVMrequires amachine
restart, and therefore, an approach similar to the one in Sect. 6.6 is taken, except that 7 out
of the 8 cores are kept busy running infinite ‘while’ loops. The results appear in Fig. 9.

The CPU bottleneck spans the interval [3960, 4025] during which reduced ‘Avg. TPS’
values are visible. Highest ‘Avg. TPS’ values are for clusters 2 and 4 (read-only transactions
StockLevel and OrderStatus, respectively). Outside of the CPU bottleneck, those values are
somewhat close, but during the bottleneck, OrderStatus transaction’s performance takes a
bigger hit (Y-axis is log-scale) suggesting that OrderStatus is much more sensitive to CPU
than StockLevel is in this environment. (The observation is consistent across many runs.)
If OrderStatus is deemed important (say because customers check statuses of their orders
often), it may make sense to over-provision for CPU rather than for memory if a choice is to
bemade between the two. The ‘what-if’ analysis of the type enabled by transaction clustering
is somewhat reminiscent of such analysis provided by DBMS workload tuning tools.

7 Related work

The research reported in this paper proposes a new granularity for studying a DBMS system’s
performance: clusters of similar (but not identical) SQL transactions.Accordingly, such topics
as clustering methodologies, distance functions, feature vectors, and so on relevant to this
work. For ease of exposition, the related work is divided into many subsections.

123

2890 A. P. Marathe

7.1 Need for identifying SQL transaction clusters on the server side

Identifying transaction clusters from SQL text arriving at a database server is important
for two reasons. First, modern applications deployed in cloud environments are often Web
applications [3] inwhich such frameworks as Ruby-on-Rails [32] andDjango [33] use object-
relational mappings to submit SQL queries, and do not use stored procedures—which would
otherwise form good clusters. Second, as noted by Stonebraker et al. [34], because of SQL’s
‘one language fits all’ approach, transaction code may use a mix of stored procedures; pre-
pared statements; andSQLembeddings in such languages as Java,C++, andC#, necessitating
identification of transaction clusters from SQL text arriving at a database server.

7.2 SQL query clustering

Clustering itself is a broad and well-studied topic [35]. Of most relevance to this research
are the scenarios when SQL queries are classified or clustered, and in those cases two gran-
ularities have been considered: individual query level and transaction level. The former has
received a lot more attention than the latter. As noted in [20], SQL query similarity has
been the basis for such varied applications as data prefetch in OLAP, SQL-autocomplete,
view selection optimization in warehouses, workload analysis, database parameter tuning,
and so on. Just as an example, query clusters were found to be a good abstraction when
tuning database parameter values using feature vectors conceptually similar to the ones in
Sect. 2.1, but including normalized estimated operation costs [36]. Before this research, SQL
transaction clusters were considered only once in the context of performance and resource
modeling of DBMS applications [18]. Extensive clustering experiments using a variety of
OLTP workloads have not been performed previously, although some small-scale attempts
were made [11, 18].

7.3 SQL query feature extraction

Nomatterwhether SQLqueries or transactions are clustered, SQLquery features drive cluster
formation. SQL query features previously tried include terms in SELECT, JOIN, FROM,
GROUP BY, and ORDER BY clauses; table names; column names; normalized estimated
execution costs [19, 36], and features have been converted into vectors, graphs, or sets [20,
36]. A variation in [20] suggests SQL query normalization using well-known rewrite rules
before feature extraction. The features considered in this paper can be used for distance (and
similarity) calculations between two SQL queries although at that granularity, more features
should probably be added to vectors. When attempting more features on OLTP workloads,
care should be taken to ensure that cluster count stays within reasonable limits because
otherwise, benefits of clustering begin to diminish.

7.4 Distance functions

Distance functions and similarity scores play central roles in clustering because inter-object
distances are required. Such distance functions as cosine, Jaccard, and Hamming have been
tried to cluster SQL queries [19, 20, 37], although only the Euclidean has been tried at the
transaction level before [17]. In [37], cosine distance is used to find similarity between a SQL
query and its context. The definition does not use angular cosine distance though, and the

123

Clusters of SQL transactions 2891

dot-product-based definition is not a metric as noted in Sect. 2.2. In [19], cosine distance is
used to compute distance between two SQL queries, but the authors did not indicate which
flavor of it was used. One takeaway from this paper on that topic is that such normalized
distance functions as ACD outperform such unnormalized distance functions as Euclidean
for SQL transaction clustering.

7.5 Feature extractionmethodologies

Before this research, feature extraction has mined SQL text from DBMS logs [19, 20], or
MaxScale proxy server [18]. As mentioned in Sect. 1, mining SQL logs is inexact and error-
prone because of the language’s complexity. (Commercial DBMS engines have not provided
API access to their parsers.)

For the past 15years at least, modern DBMS systems have been exposing dynamic data
from running servers as sets of relations on which SQL queries can be posed [21–24]. This
approach has proven to be practical for three reasons. First, data of various granularity can
be cheaply maintained in server data structures because no transaction semantics need to
be enforced. Second, a row-set needs to be materialized from such data structures only
on demand when a query arrives. Third, SQL queries on such row-sets enable powerful
information extraction. This research has demonstrated that in future, intelligent database
systems can provide clustering and classification functionalities using the same or similar
data sets.

8 Conclusions and future work

DBMS administration work is getting increasingly complex because of the workload diver-
sity, and DBA’s having to monitor multiple applications in cloud environments. This research
lends a helping hand by adding some intelligence to complicated software systems. In partic-
ular, by clustering the transactions, a ‘birds-eye’ view of the system is provided that makes
performance troubleshooting for such scenarios as unexpected transaction rollbacks, perfor-
mance drifts, bottleneck identifications, and so on. Others have started to investigate how
machine learning can help query optimization [13], and this research is complementary to
that thread of work.

Previous research had suggested a possibility that DBSCAN might be a suitable algo-
rithm for SQL transaction clustering, but no substantial evidence for its suitability was
gathered. This research demonstrates that angular cosine distance-based DBSCAN is suit-
able for the clustering task, and is an improvement over the Euclidean-based DBSCAN with
either SEKX [26] or DBSeer [17] heuristics: better clusters form, and DBSCAN parameter
tuning is simplified. As an added benefit, ACD-based DBSCAN is not very sensitive to the
DBSCAN’s parameter values, and therefore, any reasonable values for Eps and minPts will
likely form acceptable transaction clusters. Another finding demonstrates that angular cosine
distance function finds better clusters than the well-known dot-product-based cosines.

Future work may investigate the following features for transaction clustering: column
names to possibly identify index issues; predicate types (point queries vs. range queries)
and counts; access paths used; isolation level; number of sorts; join tables; and so on. The
server-side framework suggested in this paper allows storage of feature values in table-,
statement-, or transaction-level relations as appropriate. Usefulness of cluster-level signatures
as established in Sect. 6.1 suggests that some cluster-level signatures—for example lock times

123

2892 A. P. Marathe

and row counts—can also be kept at statement-level. Doing that will enable troubleshooting
to drill-down from a transaction to the statements within. Multiple cluster-level signatures
may help because an application may have distinct ‘peak’ and ‘off-peak’ behaviors.

Future work can investigate whether ACD is suitable with such clustering algorithms as
BIRCH [38], k-means [39] and SOTA [40].

Last, but not least, server-side feature extraction can be attempted in othermodern database
systems using minor extensions to preexisting scaffoldings, and then transaction-cluster-
level data monitoring can be provided out-of-the-box. A possibility also exists to perform
clustering on the server side based on regularly and randomly collected transaction samples.
The advantage of client-side data processing as advocated in this paper, of course, is that no
clustering overhead is put on the DBMS server, but a major redesign on the DBMS server
may make server-side clustering possible in future.

Acknowledgements Matthew Van Dijk implemented the server-side feature extraction framework.

References

1. Difallah DE, Pavlo A, Curino C, Cudré-Mauroux P (2013) OLTP-bench: an extensible testbed for bench-
marking relational databases. PVLDB 7(4):277–288

2. GitHub: sysbench (2020). https://github.com/akopytov/sysbench
3. Verbitski A, Gupta A, Saha D, Brahmadesam M, Gupta K, Mittal R, Krishnamurthy S, Maurice S,

Kharatishvili T, Bao X (2017) Amazon aurora: design considerations for high throughput cloud-native
relational databases. In: Proceedings of the 2017 ACM international conference on management of data,
SIGMODconference2017,Chicago, IL,USA,pp1041–1052. https://doi.org/10.1145/3035918.3056101.
https://doi.org/10.1145/3035918.3056101

4. Gan J, Tao Y (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of
the ACM SIGMOD conference, pp 519–530. https://doi.org/10.1145/2723372.2737792

5. Schubert E, Sander J, Ester M, Kriegel H, Xu X (2017) DBSCAN revisited, revisited: why and how you
should (still) use DBSCAN. ACM Trans Database Syst 42(3):19–11921

6. MariaDB (2020) MariaDB MaxScale. https://mariadb.com/kb/en/maxscale/
7. Harizopoulos S, Ailamaki A (2004) STEPS towards cache-resident transaction processing. In:

(e)Proceedings of the thirtieth international conference on very large data bases, VLDB 2004, Toronto,
Canada, pp 660–671. https://doi.org/10.1016/B978-012088469-8.50059-0. http://www.vldb.org/conf/
2004/RS18P1.PDF

8. Marathe AP (2021) DBMS performance troubleshooting in cloud computing using transaction clustering.
In: Proceedings of the EDBT 2021 Conference, pp. 463–468 (2021). https://doi.org/10.5441/002/edbt.
2021.52

9. Li Q, Kraft P, Cafarella M, Demiralp c, Graefe G, Kozyrakis C, Stonebraker M, Suresh L, Zaharia M
(2023) Transactions make debugging easy. In: Proceedings of the CIDR 2023 conference, Amsterdam,
The Netherlands, Jan. 8–11

10. EsterM, Kriegel H, Sander J, XuX (1996) A density-based algorithm for discovering clusters in large spa-
tial databases with noise. In: Proceedings of the second international conference on knowledge discovery
and data mining (KDD-96), pp 226–231

11. Yoon DY, Niu N, Mozafari B (2016) DBSherlock: a performance diagnostic tool for transactional
databases. In: Proceedings of the 2016 international conference on management of data, pp 1599–1614 .
https://doi.org/10.1145/2882903.2915218

12. Scikit Learn: DBSCAN (2019). https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
DBSCAN.html

13. Marcus RC, Negi P, Mao H, Zhang C, Alizadeh M, Kraska T, Papaemmanouil O, Tatbul N (2019) Neo:
a learned query optimizer. Proc VLDB Endow 12(11):1705–1718. https://doi.org/10.14778/3342263.
3342644

14. Bermbach D, Wittern E, Tai S (2017) Cloud service benchmarking-measuring quality of cloud services
from a client perspective. Springer, New York City

15. Wikipedia: Cosine similarity (2019). https://en.wikipedia.org/wiki/Cosine_similarity

123

https://github.com/akopytov/sysbench
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/2723372.2737792
https://mariadb.com/kb/en/maxscale/
https://doi.org/10.1016/B978-012088469-8.50059-0
http://www.vldb.org/conf/2004/RS18P1.PDF
http://www.vldb.org/conf/2004/RS18P1.PDF
https://doi.org/10.5441/002/edbt.2021.52
https://doi.org/10.5441/002/edbt.2021.52
https://doi.org/10.1145/2882903.2915218
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://en.wikipedia.org/wiki/Cosine_similarity

Clusters of SQL transactions 2893

16. Leskovec J, Rajaraman A, Ullman JD (2014) Mining of massive datasets, 2nd edn. Cambridge University
Press, Cambridge

17. GitHub: DBSeer (2020). https://github.com/barzan/dbseer
18. Mozafari B, Curino C, Jindal A, Madden S (2013) Performance and resource modeling in highly-

concurrent OLTP workloads. In: Proceedings of the ACM SIGMOD international conference on
management of data, SIGMOD2013,NewYork,NY,USA,pp301–312. https://doi.org/10.1145/2463676.
2467800

19. Makiyama VH, Raddick J, Santos RDC (2015) Text mining applied to SQL queries: a case study for the
SDSS skyserver, vol 1478. CEUR-WS.org, Aachen, Germany, pp 66–72. http://ceur-ws.org/Vol-1478/
paper7.pdf

20. Kul G, Luong DTA, Xie T, Chandola V, Kennedy O, Upadhyaya SJ (2018) Similarity metrics for SQL
query clustering. IEEE Trans Knowl Data Eng 30(12):2408–2420. https://doi.org/10.1109/TKDE.2018.
2831214

21. MySQL: Chapter 26 MySQL Performance Schema (2020). https://dev.mysql.com/doc/refman/8.0/en/
performance-schema.html

22. Microsoft: System Dynamic Managemenet Views (2019). https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/system-dynamic-management-views?
view=sql-server-ver15

23. Oracle: About Dynamic Performance Views (2020). https://docs.oracle.com/cd/B19306_01/server.102/
b14237/dynviews_1001.htm#i1398692

24. PostgreSQL: The Statistics Collector (2020). https://www.postgresql.org/docs/9.6/monitoring-stats.html
25. GitHub: OLTP-Bench II (2020). https://github.com/timveil-cockroach/oltpbench
26. Sander J, Ester M, Kriegel H, Xu X (1998) Density-based clustering in spatial databases: the algorithm

GDBSCAN and its applications. Data Min Knowl Discov 2(2):169–194
27. Lingas A (1994) A linear-time construction of the relative neighborhood graph from the Delaunay trian-

gulation. Comput Geom 4:199–208. https://doi.org/10.1016/0925-7721(94)90018-3
28. MaratheAP (1995)Theweighted relative neighbourhood graph.Master’s thesis,YorkUniversity, Toronto,

Ontario, Canada
29. Marathe AP (2020) LRZ convolution: an algorithm for automatic anomaly detection in time-series data.

In: Proceedings of the SSDBM 2020 conference, pp 1–1112
30. TPC-C (1992). http://www.tpc.org/tpcc/
31. Wikipedia: Kernel-based Virtual Machine (2020). https://en.wikipedia.org/wiki/Kernel-based_Virtual_

Machine
32. Wikipedia: Ruby on Rails (2020). https://en.wikipedia.org/wiki/Ruby_on_Rails
33. Wikipedia: Django (web framework) (2020). https://en.wikipedia.org/wiki/Django_(web_framework)
34. Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P (2007) The end of an

architectural era (it’s time for a complete rewrite). In: Proceedings of the 33rd international conference
on very large data bases. University of Vienna, Austria, pp 1150–1160. http://www.vldb.org/conf/2007/
papers/industrial/p1150-stonebraker.pdf

35. Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2:165–193
36. Li G, Zhou X, Li S, Gao B (2019) Qtune: a query-aware database tuning system with deep reinforcement

learning. Proc VLDB Endow 12(12):2118–2130
37. Agrawal R, Rantzau R, Terzi E (2006) Context-sensitive ranking. In: Proceedings of the ACM SIGMOD

conference, pp. 383–394. https://doi.org/10.1145/1142473.1142517
38. Zhang T, Ramakrishnan R, Livny M (1997) BIRCH: a new data clustering algorithm and its applications.

Data Min Knowl Discov 1(2):141–182
39. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–136
40. Dopazo J, Carazo JM (1997) Phylogenetic reconstruction using an unsupervised growing neural network

that adopts the topology of a phylogenetic tree. J Mol Evol 44:226–233

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://github.com/barzan/dbseer
https://doi.org/10.1145/2463676.2467800
https://doi.org/10.1145/2463676.2467800
http://ceur-ws.org/Vol-1478/paper7.pdf
http://ceur-ws.org/Vol-1478/paper7.pdf
https://doi.org/10.1109/TKDE.2018.2831214
https://doi.org/10.1109/TKDE.2018.2831214
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_1001.htm#i1398692
https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_1001.htm#i1398692
https://www.postgresql.org/docs/9.6/monitoring-stats.html
https://github.com/timveil-cockroach/oltpbench
https://doi.org/10.1016/0925-7721(94)90018-3
http://www.tpc.org/tpcc/
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://en.wikipedia.org/wiki/Django_(web_framework)
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
https://doi.org/10.1145/1142473.1142517

2894 A. P. Marathe

Arunprasad P. Marathe is a Canadian citizen of Indian origin. Born
in Mumbai, Maharashtra, India, he grew up in the adjoining state of
Gujarat. He obtained his bachelor’s, master’s, and doctorate degrees
from M. S. University of Baroda (1991), York University, Toronto
(1995), and University of Waterloo (2001), respectively, all in com-
puter science. His research interests include database management
systems, distributed systems, software engineering, algorithms, scien-
tific computing, theoretical computer science, compilers, and statistics.
He has developed database systems on the server-side (SQL Server,
DB2, and MySQL at Microsoft, IBM, and Huawei, respectively) and
client-side (using SQL Server at VersaBank). He worn a "best teacher"
award—as voted by students—at the M. S. University of Baroda where
he worked as a lecturer between 1991 and 1993.

123

	Towards intelligent database systems using clusters of SQL transactions
	Abstract
	1 Introduction
	1.1 Benefits of cluster-level monitoring
	1.2 Novelties and key contributions of this paper
	1.2.1 Server-side transaction feature extraction
	1.2.2 Clustering helps DBMS performance troubleshooting
	1.2.3 DBSCAN parameter tuning

	1.3 In the larger context

	2 Clusters of SQL transactions
	2.1 Feature vector construction
	2.2 Angular cosine distance
	2.3 DBSCAN and its parameter tuning

	3 MySQL extensions for feature extraction from transactions
	4 System architecture
	4.1 Transaction clustering
	4.2 Transaction classification

	5 SQL transaction clustering experiments
	5.1 Experimental setup
	5.2 Workload
	5.2.1 Expected cluster counts

	5.3 Performance impact of server-side feature extraction
	5.4 Clustering effectiveness of the ACD-based DBSCAN
	5.4.1 The SEKX heuristic
	5.4.2 Performance of ACD(0.2, 10) versus the SEKX baseline

	5.5 ACD-based DBSCAN versus DBSeer-based DBSCAN
	5.6 Sensitivity analysis of the ACD-based DBSCAN
	5.7 Why not use the dot-product-based cosine distance?
	5.8 Extraction of more features

	6 Performance troubleshooting enabled by SQL transaction clustering
	6.1 Transaction cluster signatures
	6.2 Unchanged cluster counts under heavy system load
	6.3 Performance sweet spot
	6.4 Identification of transaction rollbacks
	6.5 Performance drift
	6.6 System-wide performance problem
	6.7 Bottleneck analysis

	7 Related work
	7.1 Need for identifying SQL transaction clusters on the server side
	7.2 SQL query clustering
	7.3 SQL query feature extraction
	7.4 Distance functions
	7.5 Feature extraction methodologies

	8 Conclusions and future work
	Acknowledgements
	References

