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Abstract

This paper discusses group decision-making (GDM) with interval multiplicative preference
relations (IMPRs) based on the geometric consistency. We propose a logarithmically geo-
metric compatibility degree between two IMPRs and then define a geometrically logarithmic
consistency index of IMPRs. The new consistency index of IMPRs is invariant under permu-
tation of alternatives and transpose of IMPRs. By the statistics theory, the thresholds of the
geometrically logarithmic consistency index are provided. For an unacceptably consistent
IMPR, an interactive iterative algorithm is designed to improve its consistency level. Using
the relationship between an interval weight vector IWV) and an IMPR, a fuzzy programming
model is established to derive an IWV. This model is converted into a linear programming
model for resolution. Subsequently, a new individual decision-making (IDM) method with
an IMPR is put forward. By minimizing the logarithmically geometric compatibility degree
between each individual IMPR and the collective one, a convex programming model is built
to determine experts’ weights. Consequently, a novel GDM method with IMPRs is presented.
Numerical examples and simulation experiments are conducted to reveal the superiority of
the proposed IDM method and GDM method.

Keywords Group decision-making - Geometrical consistency - Consistency index - Interval
multiplicative preference relations

1 Introduction

The preference relation [ 1-4] is one of the most important tools in decision science by pairwise
comparisons. Along with the eruptible increasing of economic and social development, group
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decision-making (GDM) [5—7] can fully utilize experts’ opinions to deal with more and more
complex decision-making problems. Generally, the experts’ opinions are measured by the
1-9 scale [8], the 0.1-0.9 scale [9], the verbal scale [10], and so on. In fact, it is a common
phenomenon that much imprecise or uncertain information is involved in decision-making
problems. To help experts to express their ambiguous and uncertain judgments, it is more
faithful to measure the preference information by using intervals than crisp numbers, which
results in the appearance of interval multiplicative preference relations (MPRs) [11].

The consistency of interval MPRs (IMPRs) is the essential problem in the application
of IMPRs. To measure the inconsistency level of preference relations, Brunelli & Fedrizzi
[12] proposed five axiomatic properties to scientifically describe the performances of seven
existing consistency indices of MPRs. Using the hypothesis test, Vargas [13] provided a
statistical test to judge the statistical consistency of MPRs. Lin, Kou & Ergu [14] resorted
to a statistical approach to measuring the consistency level of MPRs. Amenta, Lucadamo
& Marcarelli [15] discussed the approximated consistency thresholds for Salo-Haméldinen
index of MPRs [16]. At present, several consistency definitions of IMPRs have been studied
in [17-22]. However, previous research shows that an agreement on the consistency definition
of IMPRs has not yet reached, which increases the complexity of consistency index of IMPRs.
Based on the consistency definition of IMPRs in [20], Zhang [23] defined a consistency level
of IMPRs with the help of the logarithmic distance between two IMPRs. Combining the
consistency definition of IMPRs in [20] with the geometric consistency index (GCI) [24],
Liu et al. [25] proposed a GCI-based consistency index of IMPRs. Li et al. [19] pointed
out that the consistency definition of IMPRs in [20] does not satisfy the invariance under
the permutation of alternatives. To solve this problem, Li et al. [19] proposed a geometrical
consistency definition of IMPRs. Later, Wang, Lin & Liu [17] pointed out that the geometrical
consistency definition of IMPRs [19] satisfies the three properties: invariance, sensitivity, and
inevitability. Using the consistency definition of IMPRs in [21], Conde & Paz Rivera Pérez
[26] built a linear optimization problem to define the consistency index of IMPRs, which is
a little complex and inconvenient. Using the deviation degree of two MPRs involved in an
IMPR, Dong et al. [27] defined a consistency index of IMPRs.

To obtain more believable results of decision-making problems, it is necessary to con-
struct a scientific model for deriving the weight vector of alternatives. For decision-making
problems with IMPRs, the methods for deriving the prioritization of alternatives are generally
divided into two classes. One is to extend some existing prioritization techniques of MPRs
[23, 25, 28, 29], such as the eigenvector method [8] and the row geometric mean method
(RGMM) [30]. Considering the continuous ordered weighted geometric averaging operator
of intervals, Zhou et al. [29] transformed an IMPR into an expected MPR from which the
ranking order is induced by RGMM [15]. The other is to use optimization theory to induce
the weight vector of alternatives based on different forms of objective functions [19, 31].
Considering the indeterminacy ratio of intervals, a nonlinear programming model [19] was
built to derive the interval weights of alternatives.

For GDM problems, experts’ weights play a crucial role in aggregating all individual
IMPRs into a collective one. It is very important to quantify experts’ weights in that different
experts generally have different abilities, skills, experience, and expertise. The values of
similarity degree [32] and support degree [33] were generally used to compute experts’
weights. By minimizing the group continuous logarithm compatibility between the synthetic
IMPR and its corresponding continuous characteristic preference relation, Zhou et al. [29]
built a group continuous compatibility model to quantify experts’ weights and discussed
an induced continuous ordered weighted geometric (ICOWG) operator for proposing an
ICOWG-based GDM procedure by extending the continuous ordered weighted geometric
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averaging operator (COWGA) [34]. Combining the consistency index of MPRs with the
induced continuous ordered weighted geometric operator, Wu et al. [28] put forward an
approach to computing experts’ weights based upon the reliability of information sources.
Of course, the programming model is a good way of determining experts’ weights [23, 35].
Minimizing the deviation degree between the opinions of each expert and the group [35], a
maximum consensus-based goal programming model is established to determine the experts’
weights. Zhang [23] build an optimization model to determine experts’ weights for GDM
problems with IMPRs by maximizing the consistency level of the collective IMPR.

Although the aforementioned literature reveals that a great progress has been made on
GDM with IMPRs, there are still several limitations as follows:

(1) For measuring the inconsistency level of IMPRs, several inconsistency indices of
IMPRs [23, 25-27, 36] were proposed. The consistency index of IMPRs in [23] is based on
the consistency definition of IMPRs in [20]. However, the consistency definition in [20] is
sensitive to the labels of compared objects [18, 19, 22]. That is to say, the consistency indices
of IMPRs in [25, 36] are sensitive to the labels of alternatives [37, 38].

(2) It is undesirable to ignore the adjustment of a highly inconsistent IMPR. Moreover, the
thresholds of consistency index have a direct impact on the final ranking order. However, the
existing studies [23, 25-27] regarded the thresholds for those consistency indices of IMPRs.

(3) For GDM problems, different experts” weight vectors generally gave rise to different
ranking orders [32]. However, the approaches of allocating experts’ weight vectors in [25,
36] are sensitive to the labels of alternatives [37, 38]. By the basic unit monotonic (BUM)
function [39], Wu et al. [28] defined an expected MPR of an IMPR. It should be noted that
the expected MPR derived from the upper triangle elements of an IMPR is different from
that derived from the lower triangle elements of the same IMPR, which results in different
weight vectors of experts and ranking orders obtained by method in [28] (see Example 3).

To overcome the above problems, this paper investigates the GDM method with IMPRs
based on the geometric consistency. The motivations of this paper are summarized as follows:

(1) Proposing a more logical consistency index of IMPRs is an important issue during
the application of IMPRs in decision science. It is necessary to provide the scientific
thresholds of consistency index for IMPRs. This is the most important motivation of
this paper.

(2) The most existing method of improving the consistency degree of inconsistent IMPRs
is based on programming models, which can be solved only by the specialized software.
Hence, it is urgent to design an interactive algorithm to enhance the consistency level
of IMPRs. This is the second motivation of this paper.

(3) In GDM problems with IMPRs, it is inevitable to deal with the weights of experts.
There is an imperative for putting forward a more scientific method to derive reasonable
interval weight vectors (IWVs) and the weights of experts from GDM problems with
IMPRs. This motivates us to propose a comprehensive GDM method with IMPRs.

Based on the above motivations, this paper mainly focuses on developing a new GDM
method based on geometric consistency of IMPRs. The main innovations are summarized
below:

(1) This paper proposes the logarithmically geometric compatibility degree between two
IMPRs. A geometrically logarithmical consistency index of IMPRs is defined, which
is invariant under permutation of alternatives and transpose of an IMPR. Based on the
hypothesis test, the thresholds of the new consistency index of IMPRs are determined.
Then, an interactive iterative algorithm is proposed to enhance the consistency level of
inconsistent IMPRs.
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(2) Based on the relationship between IWVs and IMPRs, a fuzzy programming model is
constructed to determine an IWV by maximizing the degree of experts’ satisfaction
with the IWV. The constructed fuzzy programming model is then turned into a linear
programming model that is easily solved. Consequently, a new individual decision-
making (IDM) method is summarized.

(3) To minimize the logarithmically geometric compatibility degree of each individual
IMPR and the collective one, a convex programming model is built to determine the
objective weights of experts. Then, a novel GDM method with IMPRs is put forward.
Moreover, the ranking order obtained from the upper triangle entries of an IMPR is the
same as that obtained from the lower triangle entries of the IMPR.

(4) Simulation experiments are conducted to reveal the validity and superiority of the
proposed IDM method from three comparison criteria, i.e., average total deviation,
difference index, and difference ratio.

The reminder of this paper is organized as follows. Section 2 presents some related con-
cepts. Section 3 proposes the concept of logarithmically geometric compatibility degree
between two IMPRs and the geometrically logarithmic consistency index of IMPRs. Section 4
discusses the thresholds for the geometrically logarithmic consistency index of IMPRs and
proposes an interactive algorithm for improving the consistency of IMPRs. Section 5 builds
a fuzzy linear programming model to derive an IWV and proposes a new IDM method with
an IMPR. Then, simulation experiments are conducted to reveal the advantages of the pro-
posed IDM method. Section 6 formulates a convex programming model to determine experts’
weights and proposes a novel GDM method with IMPRs. Numerical examples and compar-
ative analyses are conducted in Sect. 7. Section 8 summarizes some concluding remarks.

2 Preliminaries

In this section, basic notions about intervals, preference relations, and interval multiplicative
preference relations are reviewed.

Definition 1 [40]. An interval is defined as the form a = [a;,a,] = {x|la; < x < a,}. If
a; > 0, a is called positive interval. Specially, an interval a = [a;, a,,] degenerates into a real
number a in case of ¢ = a, = a.

For two intervals a = [a;, a,] and b= [b1, b,], a equals to b if and only if (iff) a; = b;
and a, = by, denoted by a = b.

Definition 2 [40, 41]. For two positive intervals a = [a;,a,] and b = [b, by], the
arithmetic operations of intervals are defined as follows: (i) a ® b = lab;, ayby]; (i)
@* = [(a)*, @)*] (& > 0); (i) Aa = [Aaqy, ray] (A > 0); (iv) i;' =[5 2L V)
Ina =[Ina;, Ina,].

Definition3 [8]. Let N = {1, 2, - - -, n}. If an n-order matrix P = (p;;),x, meets p;; > 0,
pijpji = land p;; = 1(i, j € N), thenitis called an MPR. If C(i’, Q) = O further satisfies
pij = pixpkj (i, j, k € N), then it is a consistent MPR. Otherwise, P is inconsistent.

Let Piy, ={ P = (Pij)uxn| Pij = PikPkj, i, J,k € N} . Definition 3 is called Saaty
consistency in this paper.

Definition 4 [27]. The consistency index CI(P)ofan MPR P is CI(P) = min{d(P, C)|C €
Prvn)> where d(P, C) is the distance between two MPRs P = (p;;)nxn and C = (¢ij)nxn
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and computed by

2
Yo Xt (Inpij —Ineij) it X1 I pij — Incyj

d(P,C) = . ord(P,C) = 5

n n

ey

By the definition of an MPR, the diagonal element of an MPR always equals to one. Thus,
it holds that In p;; = 0,1In¢;; = 0,and In p;; —Inc¢;; = —(Incj; —Inpj;) (i, j € N). Thus,
Eq. (1) can be rewritten as:

n—1 §-n Ineci: 2
d(P,C) = 2355 Zj:i-v—;lz(l" pij=Incij) ord(P,C) =

Definition 5 [30] A metric of two MPRs P = (p;j)uxn and @ = (gij)nxn, denoted by
m(P, Q), is defined as:

m(P, Q) = / Y Uiy — g2 @

For an MPR P = (pij)nxn, let P* = (p;‘j),,x,, be generated by

Pl = \’/nzzl pik/\'/l_[::l pjk (i, j €N) 3)

In addition, P* = P is true if P~

n—1 n
235151 Y j—iv1 IIn pij—Incij]
n? :

Obviously, P* is a consistent MPR, i.e., P* € Pr_,.
is consistent.

Theorem 1 [30]. Let P* be constructed from an MPR P* by Eq. (3). Then,
m(P, P*) = min{m(P, Q)| Q € P,,,}

Remark 1 Let P* = (p;kj)nxn be constructed from an MPR P= (p;;)nxn by Eq. (3). Theo-

rem 1 demonstrates P* is a consistent MPR which is the closest to the MPR P. If RGMM
is used as the prioritization procedure, the GCI of MPRs is defined as follows [24, 42]:

n 2 2-(m(P, P¥))?
GCIP) = geitizyy D (1n piy—E3 (npi—mn pjk)) e

I<i<j<n
(C)]
Definition 6 [29]. A matrix P = (Pij)uxn With p;j = [l;;, u;;]is called an IMPR if it meets
0<lij <wj, lij =u;j =1, lijjuj; =1(, j € N) 5
Definition 7 [19]. For an interval vector &@ = (&1, @2, - - -, @n) with &; = [a)ll., o}'], @ is
called a multiplicative normalized interval weight vector (IWV) if it satisfies
i o
0<a) <w,a) 1_[]1];&1(1)-/5 Hjl#la),_l(zeN) 6)

Definition 8 [19, 37]. An IMPR P = (Pij)nxn With p;; = [I;;, u;;] is geometrically consis-
tent if it fulfills:

lijuij = Liguiklijug; (@, j, k € N) @

Let P*

nxn
rewritten as

be the set of all geometrically consistent n-order IMPRs. Clearly, Eq. (7) can be

VIijuij = liguigy/Tgugg G, jok € N) ®)
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Remark 2 For an IMPR P = ([l;;. ttij . et Pigmy = (pfE" Ynsn with p$™ = \/lijui;.

Clearly, P (g is an MPR. For simplicity, P gy is called the geometric mean MPR of P in
this paper. Definition 8 illustrates that an IMPR is consistent iff its geometric mean MPR
owns Saaty consistency. Moreover, if P is reduced to an MPR P, then Definition 8 is reduced
to Saaty’s consistency. In this case, Eq. (8) is reduced to Eq. (1). Therefore, geometric
consistency of IMPRs is a generalization of Saaty consistency.

Theorem 2 [19]. Let & = (&1, @, -+, @d,)" be an IWV, where &; = [a)f,a)l‘.‘]. Then,
W= (@;ij)nxn is a geometrically consistent IMPR, where
i [1,1], ifi=j
Qi = ! I e ) 9)
i { [0} /!, ! Jl ], if i # )

3 A new consistency index of IMPRs

This section develops a new logarithmic geometric compatibility degree between two IMPRs.
Then, a new consistency index of IMPRs is defined to measure the consistency degree of
IMPRs.

3.1 A new logarithmically geometric compatibility degree

Definition 9 For two IMPRs P = (Pij)nxn With p;j = [l;j, u;;] and P'= (P,,)nxn with
Di; ;= [ ol ] the logarithmically geometric compatibility degree between P and P,
denoted by C(P, P'), is defined as:

~ o~ 1 n—1 n 2
CP. P = 5l Zi:] Z/:m (nlyj +Inug —Inlj; —Inuj;) (10)

Remark 3 Based on Eq. (2), Eq. (10) can be rewritten as C(i’, f") =
n(n%l)(m(P(gm), P’(gm)))z, where P (g, is the geometric mean MPR of P and P’ (om) is
that of I:”. )

Let P(o) = (Po(i)o(j))nxn be an IMPR which is obtained from P under a permutation
function o on N, where o : i — i, (i, ip € N) witho (i) #o(j)fori # j (i, j € N).

Theorem 3 For two IMPRs P and P’, the logarithmically geometric compatibility degree
C(P, P ) meets the following properties:

() C(P P') = C(P’, P); (ii) 0 < C(P, P') < +00;

(iii) C(P, P') = 0 & P gy = P’ (gmy; (iv) C(P ), P’ ) = C(P, P').

Proof By Eg. (10), it is straightforward that (i) apd (i) are true.
(iii) Let P = (Pij)nxn = (Uij, tijDnxn and P = (lal{j)nxn = ([l,‘,j, M;j])nxn- By Defini-

tion 9, C(P, P') = 0'is true iff Inlij + lnuij —Inl; —Inu}; = 0, ie., J/lju; = Jlu};
(i, j € N). Therefore, C(P, I~”) = 0 is equivalent to P (g = I;’(gm).

(10(1\]])1;46: E(T()i :th([tla(i)a(j)s ”U(i)a(j)])nxn and I;,(a) = ([l(;(i)g(j)s u;(i)(,(j)])nxw By Egs.
—11), it yields tha

C(P(o), i"(o))

1 n—1 n 2
= Znn—T) Zi:l Zj:i+1 (Inls iy (j) + Into(iro(j) = I gy — it i) (j)
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1 2 D p
= =) Z?pzl ij>ip (ln l,'p‘/'p +1n Mipjp —1n ll{pjp —Inu’ ) = C(P, P’).

ipjp

3.2 A new consistency index of IMPRs

This subsection proposes an approach to constructing a geometrically consistent IMPR from
any given IMPR. Then, a new consistency index of IMPRs is defined.

Theorem 4 Let P = (PijInxn With pij = [lij, u;j] be an IMPR. If P’ = (ﬁ?j)nxn =
(U7} ui; Dnxn 1s generated by

. _{[1, 11, ifi=j an

U ATy i) (T i)V, i 0

Then, (i) Pisa geometrically consistent IMPR; (ii) If P= P*, then P is geometrically
consistent.

Proof (i) By Eq. (11),onehas[}; = u}; = 1and0 < l;“j < u}kj (i, j € N).On the other hand,

itholds for 5,u%; = ([T7y Lieli)"/" ([T/—y uirui)"/" = 1G # ji i, j € N). Therefore, P*
is an IMPR. Moreover, it yields that:

n n n n
Ihouf, lljj”ltj :\/(I—L:] litltk)l/n(l_[t:] Mitlltk)l/n\'/(l_lt:1 lkrltj)l/n(l—[t:1 Ui/

n n
=/<1"[l:1 Ll i)V = [l Gk € N)

which indicates that P fulfills Eq. (8). By Definition 8, P is geometrically consistent.

(ii) It is straightforward from item (i).

Theorem 4 guarantees the existence of a geometrically consistent IMPR for anyone IMPR.
Moreover, if P is reduced to an MPR, then P* computed by Eq. (11) is degenerated into a
consistent MPR.

Based on Definition 5 and Theorem 4, a new consistency index of IMPRs is proposed as
follows.

Definition 10 The consistency index of an IMPR P is definedas CI(P) = min{C(P, R)|R €
75*

}.
nxn

By Definition 10, the consistency index of an IMPR P reflects the minimum deviation
degree (in the sense of distance) between P and a geometrically consistent IMPR. Apparently,

the smaller the value of CI (i’) the higher the consistency degree of P.

Theorem 5 ForanIMPR P, let P” be constructed by Eq. (11). Then, (i) CI(P) = C(P, P);
HCIP) = Y, Y, (Mij)2/4n(n — 1), where

1 n
Mij = lnlij +In Uujj — 5 Zt—l (1nl,~,+1nl,j +In u,-,+1nutj) (12)

Proof (i) Let P = (5ij)uxn = (Uij. ijDuxn and P = (5 s = (15, uf; D Assume

that P (g, is the geometric mean MPR of Pand P E*gm) is that of P*. Based on Theorem 4
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and Remark 2, P" is a geometrically consistent IMPR and Pfgm) is a consistent MPR. By
Theorem 1, it yields that:

(P (gmys Plyy) = min{m(Pgmy, Q)1 Q € Py} (13)
Using Eq. (10) and Remark 3, it yields that

2
—1
Co, 2XIS Y (ln\/li/ui/_ln\/l?ju?j) (P (gmy. Plyp))?

C(P,P)
nin—1) nn—1)

(14)
On the basis of Remark 3 and Eq. (13), the value of pl’; p}t = 1 can be computed by:

. 2
2(min{m(P(gm). RIR € Py, )" 20m(Pgm). Pl,,)°

CI(P) = = =C(P,P") (15
(P) nn—1) n(n —1) ( ) 13
(ii) Using Eq. (10), the value of C (i’, 13*) is calculated by
C(P, P
O i (g Inwgy — & 30 (nly +Inly) — 2 300 (g + Inug))?
N 2n(n — 1)
-1
_ st Xljmin (i)
B 2n(n — 1)
(16)
Clearly, it is true for w;; = 0 and wj;; = —u;; (@,j € N). Thus, CI(I~’) =

PR B (Mi_/)2/4n(n - 1.

The consistency index of MPRs should be invariant under the labels of compared objects
and the transpose of MPRs which is pointed out in [12] and [43]. The IMPR is a fuzzy
extension of the MPR; it is natural and logical that the consistency index of IMPRs is invariant

under the labels of compared objects and the transpose of IMPRs. For an IMPR P, let i’T and
F be the transpose of P and a permutation matrix, respectively. A reasonable consistency

index of IMPRs C I(P) should meet CI(P) = CI(FTPF)and CI(P) = CI(P"). Based on
item (ii) of Theorem 5, it is trivial that the proposed consistency index of IMPRs is invariant
under the labels of compared objects and the transpose of IMPRs.
Remark 4 Let P” be constructed from an IMPR P = ([Zij, uijDnxn by Eq. (11) and P* =
(p;‘j)nx,, be constructed from an MPR P” by Eq. (3). If P is reduced to the MPR P =
(pij)nxn» then

@ P * is reduced to the MPR P*;

*\)2

(ii) The consistency index of P computed by Eq. (16) is CI(P) = %’7’_1;))) =
(n—2)GCI(P).
—

@ii1) If CI(P) = 0, then P is consistent, and vice versa.

Theorem 6 An IMPR ﬁi*j is geometrically consistent iff C1 (P)=0.

Proof Necessity. If an IMPR P = (lij, uijDnxn is geometrically consistent, it holds for
1

n
Viijuij = (]_[ (,/li,ltj /u,-,u,j)> (i, j € N) which can be rewritten as
=1

S|

n
Inlyjuij = 5 (bl + i) Q. j € N) (17)
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Obviously, Eq. (17) implies u;; = 0. Hence, CI(P) = 0 is true if P is geometrically
consistent.

Sufficiency. If CI(P) = 0, then In;j +Inu;; — 2 30 (Inli+1Inlyj +Inuj+Inu,j) = 0
(i, j € N). As aresult, one has:

n n

1/n 1/n
Vi /T = (1‘[ (ﬁﬁ)) (1'[ (Mﬁuwzj))

r=1 r=1
:,/lijul‘j(i,j,kGN) (18)

Therefore, P is geometrically consistent.

4 A new method of improving consistency of IMPRs

From the perspective of statistics, this section mainly discusses the thresholds of the new con-
sistency index of IMPRs. Then, an iterative algorithm is designed to improve the consistency
level of an IMPR.

4.1 Thresholds of the new consistency index of IMPRs

For an IMPR P = ([ij, wijDnxn, let ui; i < j; i, j € N) be calculated by Eq. (12).
Apparently, the closer the value of i;; is to zero, the smaller the value of C1 (P). Motivated
by the idea in [30, 44], it is assumed that the variables w;; (i < j; i, j € N) with the same
normal distribution N (0, o'2) are independent each other. Then, Theorem 7 is proposed as
follows.

Theorem 7. For an IMPR P = (Lij, wijDnxn, let uij (i < j; i, j € N) be calculated by
Eq. (12). Assume that the variables w;; (i < j; i, j € N)meet: ) u;j (i < j; i,j € N)
are independent random variables; (ii) u;; (i < j; i, j € N) are normally distributed with
the same mean zero and variance o2, i.e., j4;; N(0, 02). Then, %C[(i’) ~ Xz(@),
where Xz(@) is the chi-square distribution with @ freedom degree.

Proof It is true for ’%N(O, 1) if u[jN(O,oz) (i < j; i,j € N). By Eq. (16), it holds
that Y=} > i (%)2 = %Cl(i’). Based on the statistics theory, if u;; (i <
j; i, j € N) are independent random variables, then Y "~} i (%)2 ~ X%@)‘
Thus, 2000 1(P) ~ 3 (050).

Leto? = Eﬁ, ie., uijN(O, E%) (i < j; i, j € N). The consistency test of IMPRs can be
transformed into the testing problem: Hy: ol < Eﬁ, Hi:02 > 6,21, which i a one-side right-
tailed test. Thus, the consistency threshold of n-order IMPRs, denoted by C1,,, is determined
by

o o, 2(nin=1)y (19)
" on(n — et 2

where Xé(@) is the a-quantile of chi-square distribution with @ freedom degree at
the significant level @ (o € (0, 1)). In practice, the significant level « in Eq. (19) is generally
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2314 S. Wan et al.

taken as 0.05 or 0.1. For a lot of randomly generated n-order IMPRs, the variables 1i;;
(i < J; i,j € N)can be viewed as random variables with the same distribution. Take w1»
for example, Fig. 1 graphically depicts its frequency histograms when randomly generating
one hundred thousand n-order IMPRs (n = 3,4, ..., 10).

By Fig. 1, it is reasonable that the variables u;; (i < j; i,j € N) are regarded as
normally distributed random variables. The second assumption of Theorem 7 is just verified
to be reasonable and scientific. It is well known that the standard deviation is a statistic which
measures the dispersion of a dataset. In practice, the standard deviation &, in Eq. (19) usually

o
0.025 0,025}
002 0.02)
0015 0,015}
001 0ot
0.005 0.00s|-
0
- 3 2 E 1 3 4 E 3 4
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Fig. 1 Frequency histograms of 1+ for n-order IMPRs

@ Springer



Group decision-making with interval multiplicative preference relations 2315

Table 1 Values of &, and C1,, under different values of n and o

n 3 4 5 6 7 8 9 10

Cl, oy, 0.8430  0.9316  0.9761 1.0034  1.0216  1.0303 1.0412  1.0463
a=0.05 0.0072 0.0635 0.0961 0.1214 0.1410 0.1557 0.1682  0.1779
a=0.1 0.0411  0.0856  0.1187  0.1429  0.1610  0.1742  0.1854  0.1939

varies with the dimension of IMPRs. To obtain the more believable values of 7, and C1,,
the reference values of o, and C1, (n = 3,4, ..., 10) corresponding to different values of
« are listed in Table 1 when randomly generating one hundred thousand IMPRs.

Definition 11 Let C/ (P) be the consistency index of an n-order IMPR P calculated by
Egq. (16). Let C1, be the value of consistency threshold of any n-order IMPR. IfCI(P) <
C1,,then P is called an acceptably consistent IMPR. Otherwise, the IMPR P is unacceptably
consistent.

[1,1] [2,5] [2,4] [1, 3]
[£.31 01,11 [1,3] [1,2]
(2.5 5. 11[1, 11 (4. 1]
(3. 11 [5. 1101, 2] [1, 1]
Based on Eq. (12), the geometrically consistent IMPR P" is derived from P as follows:

[1.0000, 1.0000] [1.0746, 4.1618] [1.6818, 6.1601] [1.1892, 4.3559]

=+ | [0.2403,0.9306] [1.0000, 1.0000] [0.7953,2.9130] [0.5623, 2.5980]
~ | [0.1623, 0.5946] [0.3433, 1.2574] [1.0000, 1.0000] [0.3799, 1.3161]
[0.2296, 0.8409] [0.4855, 1.7783] [0.7598, 26321] [1.0000, 1.0000]

Example 1 Compute the consistency index of P =

By Eq. (16), one has CI(P) = 0.0574. If the significant level o equals to 0.05, the
consistency threshold of 4-order IMPRs is taken as C14 = 0.0635 by Table 1. Obviously,
CI(P) < Clj4. Therefore, P is acceptably consistent.

4.2 An algorithm of improving the consistency level of an IMPR

In many practical decision-making problems, itis unavoidable to deal with highly inconsistent
IMPRs especially for the large number of alternatives. Naturally, it is necessary to improve
the consistency of an unacceptably consistent IMPR. From an unacceptably consistent IMPR,
the most common method of coping with an unacceptably consistent IMPR is to derive an
acceptably consistent IMPR from the original IMPR. On the basis of Theorem 4, Theorem 8
is proposed to improve the consistency level of IMPRs.

Theorem 8 ForanIMPR P = (PijInxns P = ([5;’} )nxn is obtained by Eq. (11). For a control
parameter 0 < 8 < 1, a matrix P = (ﬁ/ij),,xn is constructed by combining P = (Pijnxn
and P* = (ﬁ;kj)nxn, where

Pl =B ) PG j e N (20)

Then, (i) P’ is an IMPR; (ii) CI(P’) < CI(P).
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Proof (i) Let p;; = [lij, uij], ﬁ;*/. = [IF ; ] By Definition 2, it holds
that: '

(0w = [P @ip) =P @GP @) =Pl G, j € N).

Apparently, it is true for p}, = [1,1] (i € N) and

! ]and P,/ =[l.

l/’ ’J’

Ly =P @D PP i)' =P = Wju )P Gus) P =16 #j5 i, jeN; 0< < 1)

(21)
Thus, P’ is an IMPR by Definition 6.
(ii) For simplicity, for all i < j and i,j € N, let w;; = Inl;; + Inu;; —
IS (nly+Inl; + lnu,-,+lnu,j)/,L* = Inlf; + Inuf; — 320, (nlfi+Inly, +
Inu +lnutJ) and,ulj lnl’ +lnu Zt_l(lnllt+lnlt’j+lnu;t+lnutj).Usngq. (20),

one has M,] = Buij +(1 — ﬂ)p,l] (l < j; i,j € N). As aresult, the consistency level of
P’ is computed by CI(P’) = zn(n_l) 2171 Z, =i+l (Buij + (1 — ,B)MU)2 By Theorem 4,

u?‘i =0( < j; i,j € N) are induced in that P"is geometrically consistent. Therefore,
one has

~ n—1 n
CIP) = gty Dy Doy, @) = B2 CIP) (22)

Obviously, Eq. (22) demonstrates that C1 (I;’ )y<ClI (P) istrue in case of 0 < 8 < 1.

For an IMPR i’,}et P’ be generated by Eq. (20). Item (ii) of Theorem 8 reveals the
consistent degree of P is greater than that of P. An interactive algorithm named by Algorithm
1 is designed to improve the consistency level of inconsistent IMPRs. Based on Theorem 8,
Algorithm 1 is iterative and convergent.

Algorithm 1. Improve the consistency level of an IMPR
Input: The threshold €7, andanIMPR p.

Output: An acceptably consistent IMPR ~ p’ .
Step 1. Set the threshold C7, of an n-order IMPR by Table 1. Let /=0 and p© = p .

Step 2. Using Eq. (16), the consistency index of P“=(5{),,, , denoted by CI(P™*), is obtained.

Step 3. If CI(P“)< CI,, , then go to Step 7; otherwise, continue the next step.

Step 4. Let P =(p,"),,, be the IMPR which is derived from p© , where 5, is obtained by Eq. (11).

Step 5. Let PV =(pi™),,, =((BY* (D)) )y (t=0.1,2,--) where /3, €[0,1] is a control parameter provided by an expert.

Step 6. Let #=¢+1 and return to Step 2.
Step 7. Output  p’ = p© .

To more intuitively display the flowchart of Algorithm 1, the concrete process of Algorithm
1 is graphically depicted in Fig. 2.

5 A new IDM method with an IMPR

To derive the multiplicative normalized IWV from an IMPR, a fuzzy programming model is
built and concerted into a linear programming model for resolution. Then, an IDM method
with an IMPR is proposed.
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Input the threshold C7, and the original IMPR p .
Let =0 and P" :(13;-!)),””

. . B(t+l) _ o~ (t+]) . = (t+1) _ = (OB =*(DN\I-B,
Compute Ehe consistency index Let PV =(pf™"),., with p""=(p/")" ()™,
CI(P") byEq.(17)

where S, €[0,1] is provided by the expert.

1

Let P :(ﬁ;(')),,Xn ,where p," is
computed by Eq. (12)

cl1(PP)y<CI,?

VY

Output an acceptably consistent IMPR p’' = p®

Fig. 2 Framework of improving the consistency of an IMPR P

5.1 Determination of IWVs from IMPRs

= (D], @ B ! 1 1
Let Q = {&@= (&1, @2, - -+, &p)T]0 < w; < of, of ]_[;le’j# o < 1, ol H?:l,j;&i a)? >
1, i € N}and & = [!, w!] is the interval weight of the alternative x; (i € N). If an IMPR
P= (lij, uijDnxn is constructed by

[1, 1], ifi=j
U 2
Ui i {[wf/w;f,w;‘/wj], ifi# @
then P is geometrically consistent by Theorem 2.
By Definitions 2 and 6, Eq. (23) is equivalent to
Inlj+Ine’ —Inewf =0, Inujj+ne, —nof =06 <jii,jeN) (24

For simplicity, some notations are introduced as follows:

dl (@) =Inljj +Ine" —Ine}, (@ =Inu;+Ino; —Inw! (i < j;i,jeN) (25)

To simplify the notations, the variables a'l.l j(c?)) and dl‘; (@) are unified into df)j (@) (6 =
l,u; i < j; i,j € N). If there are some contradictions in an IMPR, then there is no
multiplicative normalized IWV that satisfies Eq. (24). In practice, it is reasonable to find a
good enough multiplicative normalized IWV that satisfies Eq. (24) as well as possible. That
is to say, a good enough multiplicative normalized IWV approximately satisfies Eq. (24) as
much as possible, i.e.,

di@) =00 =1lui<jiijeN) (26)

where the symbol a denotes the statement “fuzzy equal to”. Equation (26) is called the fuzzy
equation.

Based on the fuzzy programming method [45], a fuzzy set on the universe €2 is employed
to describe the fuzzy equation digj (@) = 0 whose membership function cj)fj (@) decreases

with increasing |dfj(6))| (®e Q 0 =1Lu, i< j;i,je N). The value of qﬁ?j(d)) is

@ Springer



2318 S. Wan et al.

Fig. 3 Membership function of
dfj @ =0

> d (@)

generally regarded as the degree of the expert’s satisfaction with the fuzzy equation dfj @=0
@ =1lLu;, i < j;i,j € N). In fact, the degree of experts’ satisfaction with @ can be
represented as the following linear piecewise function:

if (@) =0
—d"/(SUe, 1f0<d9(w) <8
Leds 670 if =854 < d5@ <0

0, otherwise

(@) = 27)

ij.0°

where the parameters 8+ o and 8;j ¢ are the tolerance parameters and nonnegative. If there
is no additional 1nf0rmat10n it is generally assumed that §7. X 8;,0 =680 ="Lui<
J; i, j € N).In what follows, the meaning of ¢>fj (@) is intuitively drawn in Fig. 3.

Obviously, ¢i9j((b) e[0,110 =1,u; i < j; i,j € N).By Fig. 3, three statements are
drawn as follows:

Q) If d9 (@) = 0, then ¢9 (6)) = 1. In this situation, @ is completely satisfied;

(i) If de (w) € (— 8” 0 ” 9) — {0}, then ¢9 (@) € (0, 1). In this situation, @ is partially
satisfied;

(iii) If d9 (@) ¢ (=8]; 9, 87 ) then ¢9 (®) = 0. In this situation, @ is fully dissatisfied.

Let® € Q be derived from an IMPR P. Similar to the decision-making problems with
fuzzy goals and fuzzy constraints in [45], the overall satisfaction degree of @, denoted by
¢ p(@), is defined as:

¢p(@) = min{el; (@0 =1,u; i < j; i,jeN} (28)

According to Fig. 3, it is obvious that ¢ P(‘;’) € [0, 1]. To obtain the optimal multiplica-
tive normalized IWYV, the following programming model is built by maximizing the overall
satisfaction degree:

max ¢p(@)

M-1
s.t. @€ Q ( )

where @ is the decision variable. Obviously, the model (M-1) is a maximin optimization
problem which can be converted into the following programming model:
max &
¢5(@) =e©®=1u;i<jsi,jeN) (M-2)
®eQ
where @ and ¢ are decision variables. The variable ¢ denotes the degree of the minimally
overall satisfaction with @. By Eq. (6) and Eq. (27), the model (M-2) is converted into the
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following model:
max &

(e — 1o, <Inlj+ne —Inw| < (1 —e)s;, (i < jii.jeN)

(e = 18, < Inuj +]na) —hhe! <1 - 8)3” LA <jii,jeN)
s.t. n
I I .
0 <ol < of, nw + ijlyj# Inw' >0, Ino +Zj:1#i ne <0 @ eN)
0<ex<l1
(M-3)
where @; = [a)ll., o] and ¢ are decision variables. The first two constraints are inferred

from Eq. (27). The last constraint is equivalent to ¢ (@) € [0, 1]. The other constraints are
obtained by Definition 7.

Let wl/.l =In a)f and a)l/." = Inw} (i € N). Then, the model (M-3) can be further expressed
and simplified as the following linear programming model:

max &
(g—l)é?lglnl +a) —w£15(1—8)551(i<j; i,j€N)

y (5—1)5;u_1nu1,+w1 o <(1—e);, (< jsi,jeN) (M-4)
ol <o, o +Z] g Wi =0, w’“+Z l]#la);lio(IEN)
0<e<l1

where &, = [d)lfl , ®"] and & are decision variables. The constraints are the same as those of
model (M-3).

In the model (M-4), the tolerance parameters of should be large enough to guaran-
tee the existence of a nonempty feasible area. By the model (M-4), the optimal solution

(a)’l*, o, - &, e*) is obtained, Where oF = [”l o). Let &F = [exp(c?);l), exp(@}*)]
(i € N). Then, (Z);k = (a)] s wz, cee ) is a multiplicative normalized IWV. The optimal

objective value £* measures the degreie of overall satisfaction with the optimal multiplicative
normalized IWV @*.If ¢* = 1, then P= ( Pij)nxn is geometrically consistent. By Theorem 2,
a geometrically consistent IMPR W= (®;;),xx is obtained by the following formula:
- [1, 1], ifi =j
ij = e 29
@ij { [a);kl/a);f”, w;‘”/a);‘fl], ifi #j (29
Remark 5 In this subsection, an optimal multiplicative normalized IWV is derived from an

IMPR with the help of a fuzzy model. The advantages of the proposed fuzzy model are
summarized as follows:

(i) The experts’ satisfaction (membership or acceptance) degree of an IWV is considered
in the proposed fuzzy model (M-4), which is a linear programming method. Based on the
optimization theory, the globally optimal solution of the model (M-4) can be obtained.

(ii) By Definition 6, the first two constraints of the model (M-4) are equivalent to (¢ —
D8S, <lnuji+o o <(1—e)5; jand (e = 18}, , <Inlji+o} —of <(1-e)s;,
(i<j;i,j€N), respectively Thus, if the tolerance parameters of the model (M-4) equal
to each other, i.e. 8_ 1= 8 = 8_ 8: «» the multiplicative normalized IWV obtained
from the lower trlangle entrles of IMPRS is the same as that obtained from the upper triangle
entries of IMPR.
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(iii) In the model (M-4), only the upper triangle entries of IMPRs are used to derive the
optimal multiplicative normalized IWV from an IMPR.

5.2 A novel IDM method with an IMPR

Let X = (xq, x2, - - -, x;)T be a set of alternatives. Let P be an IMPR provided by an expert.
On the basis of the aforesaid analyses, a novel IDM method with an IMPR is summarized as
follows:

Step 1 Set the values of tolerance parameters 6;']"9, 81.;’0 @=1lu;i<j;i,jeN),and
the consistency threshold of n-order IMPRs C1,, by Table 1.

Step 2 By Eq. (16) to compute the consistency index CI(P) of P.

G If CI(P) < CI,, then Pis acceptably consistent. Set P'=P and go to Step 4;

(ii) Otherwise, P is unacceptably consistent and go to Step 3.

Step 3 By Algorithm 1, an acceptably consistent IMPR P’ is obtained from P.

Step 4 Obtain the multiplicative normalized IWV ® = (&1, &, - -, &))" with @&; =
[wf., w!] from P’ by the model (M-4).

Step 5 By using the formula of possibility degree in [19], the possibility degree

matrix P = (pij)axn is constructed, where p;; = p(o; > @;) = max{l —
moj ol 0 0y (i, j € N). The larger the ranking value o; = 3"
max{lnw%_lnw,_ﬂnw;,_lnwl, },0} (i, j € N). The larger the ranking value 0; = ijlo,],

i

the better the alternative x; (i € N), where o;; is computed by

0 — 1, ifpij > 0.5 (30)
" 0, otherwise

The above process of the proposed IDM method with an IMPR is graphically depicted in
Fig. 4.

6 A novel GDM method with IMPRs

This section devotes to developing a new method for GDM with IMPRs. Based on the
concept of logarithmically geometrical compatibility degree between two IMPRs, a convex
programming model is built to determine the weights of experts. Then, a GDM method with
IMPRs is brought forward.

Let M = {1, 2, ---, m}. Suppose that a GDM problem is composed of n alternatives x;
(i € N) and m experts ex (k € M). Let A denote the weight of the expert e; and satisfies
ka=1 M =1land A > 0 (k € M). Let Pk = (Pijk)nxn be an individual IMPR provided by
the expert ey (k € M). Then, a collective IMPR PG = (Pij,G)nxn is obtained by [29]:

~ m ~
Bijo =] ],_, i) 31)

6.1 Properties of GDM with IMPRs

For simplicity, let G C(P) denote the geometrically consistent IMPR of an IMPR P generated
by Eq. (11) hereafter in this paper.
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Input the values of tolerance parameters, the threshold and an IMPR ;. 6, , (0 € {/,u};i< j;i,j € N), Cl,, P ‘

_ PO _ (50
Lett=0and P“ =(p),,,

< Sett=t+1
Compute the consistency index

C](i’(t)) by Eq, (16) Let I”,(rﬂ) (p(H-l)) with ﬁl(,m)_(ﬁi(;))ﬁ, (i];_(x))l—ﬂ,
i where S, €[0,1] is provided by an expert.

o~

/~ =~ > N Let PO =(p®) where

k) S Dy Dpen >

o ,
-~

iy

Set P'=pP"

i’;(l) is computed by Eq. (11)

‘ Obtain the interval weights @ =[@/,@'](i € N) from P’ by model (M-4)

v

‘ Generate the ranking order by descending the values of 0, =30, (i € N), where O is computed by Eq. (30).

Fig. 4 Flow chart of the proposed IDM method with an IMPR

Theorem 9. For IMPRs Py (k € M), let P and GC(Py) be computed by Eq. (31) and
Eq. (11), respectively. Then,

1) P G is geometrically consistent if Py (k € M) are geometrically consistent;
(i) GC (PG) is a geometrically consistent IMPR;
(ii1) GC(PG) is obtained by aggregating GC(Pk) (k € M) by Eq. (31).
Proof (i) Let Ax (k € M) satisfy > ;" | Ax = 1 and A > O.
Let Py = (ijk, uijxDuxn and PG = ([lij,G, Uij.GDuxn (i, j € N; k € M). Using
Eq. (31), it is obvious that
m m
lijc = szl @)™, uij = Hk:l (i)™ (32)
m m
lirguir,6lij.cuij.o= [ || Gneindirun)™ =TT, Gieioelijeue™ — (33)
If Py (k € M) are geometrically consistent, then one has

Liskwisklijrusjk=lijkuije (i, j € N5 k € M) (34)

Equations (33-34) imply lis, Guir,Glij.cu1j.G = [T Gijruij)™ = lij.cuij.c G, j €
N) which means that P¢ is geometrically consistent.
@ii) It is straightforward from Theorem 4,
(ii1) Let GC(PG) = ([ll] G i), G])nxn and GC(Pk) = ([ll]k, ;"jk])nxn. According to
Eq. (12), it holds that:
1
I G = [T72) Uirclij.o)' "= [Ty (T G Ty o) "

[Ty (T Giadej0 ™)™ = Ty G50 (35).

In a similar way, we have
m
“?j,G = Hk:l (u;sjk)/\k (36)
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By Egs. (35-36), it is true for [li*j,G’ u;ﬁj,c] =T, ([l[*/.k, u;*/.k])’\" (i, j € N). Therefore,
GC(Pg) is aggregated from GC(Py) (k € M) by Eq. (31).

Theorem 10 Let an IMPR i’c = ([lij,6, uij,cDnxn be generated from IMPRs i’k =
(Uijk> wijkDnxn (G, j € N; k € M) by Eq. 31) and w;jx (i < j; i,j € N; k € M)
be calculated by:

n
Mijk = In l,'jk +In Ujjk — % Zt:l (ln li,k+lnl,jk +1In ui,k+ln u,jk) (37)

Then, CI(Pg) is computed by

~ n—1 n m 2
CIPe) =3 D O, Mettije) / 2n(n = 1) (38)
where > ;' | Ar = 1 with &g > 0.

Proof Let Hij,G = In l,'j,G +Inu;j ¢ — % Z:lzl (Inli;,g+1n l,‘/!G +Inu;; g+In uj6) (i, j€

N). By Eq. (19), one has CI(Pg) = 5= S0 Xj—isi (ij.6)*. Using Eq. (32),

Wij,G can be computed by pijc = > j_; AkMijk- Then, it yields that CI(Pg) =
1 -1

Zn(n—1) Yo ZT}:H] (TR Aettiji)

Theorem 11 Let P be generated by IMPRs Py (k € M) by Eq. (30). Then,
() CI(PG) = (3 AT, CI(PY);
(i) If sk = 1/m (k € M), then CI(Pg) < £ 31, CI(Py);
(iii) If Ax = 1/m (k € M), then CI(Pg) < (L max {CI(PY)):

N

(iv) Let Ay = 1/m (k € M).If all IMPRs Py, (k € M) are acceptably consistent, then Pg
is acceptably consistent.

Proof (i) Let Pk = (lijk, uijkDnxn- Taking Cauchy—Schwarz inequality on Eq. (38) and
Theorem 5, it yields that CI(PG) < (341) M) groty ormt X jmivl Sobe Hi) =
(i A CLPY), )

) If Ag = 1/m (k € M), then the -equality CI(Pg) =
ﬁm Z;‘:_II > imien Qe 1ijk)? is true by Eq. (38). Based on the Cauchy—Schwarz
inequality, it is clear that (Y3 puije)* < m(3_3=; u7;;)- Thus, it holds that

~ 1 m 1 n—1 n 21 m ~
CIPG) = 35 X 30 Dy Dy i) = 3 2 CLP) (39)

(i) It i§ straightforward from item (ii) of The9rem 1.
(iv) If Py is acceptably consistept, then CI(Py) < C ~I n (k€ = M ). According to (iii) of
Theorem 11, it is obvious that CI(Pg) < L {nzax {CI(Py)} < ClI,. Item (iv) is proved.
=1,2,m

Remark 6 Theorem 11 explains the relationship between the consistency level of the collec-
tive IMPR and those of all individual IMPRs. For a GDM problem, Theorem 11 reveals that
the consistency level of the collective IMPR is not worse than that of each individual IMPR
with the largest consistency index if experts have the equal weight.
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6.2 Determination of experts’ weights

During the aggregation process of GDM with IMPRs, the collective IMPR which is generated
from all individual IMPRs has a dramatic effect on the final priority vector. If the experts’
weights are completely unknown, itis crucial to allocate an appropriate weight for each expert
based on his/her provided IMPR. Based on the proposed logarithmic compatibility degree
between two IMPRs, the following programming model is built to determine the experts’
weights:

min{C(Pg, P1),C(Pg, P2),---,C(Pg, Ppn)}
AMAAy+- - +Ay, =1 M-5)
M=0k=1,2--,m)

where Ar (k = 1,2, ---,m) are decision variables. The objective function is to minimize
the logarithmic compatibility degree between the collective IMPR P and each individual
IMPR i’k. The constraints of model (M-5) are the conditions of the priority vector.

Let pjjx =Inljjr +Inu;j (0 < j; i, j € Ny k=1,2,---,m). Using Egs. (10) and (31),
it yields that

~ ~ 1 n—1 n m 2
CPG, PO = gy Dy Dy QD Psiss = Pij)® (K =1,2,0-,m)  (40)

The model (M-5) is multiple objectives programming model. By means of min—-max
method, the model (M-5) is transformed into the following model:

min &

1 n—1 n m 2
MAda+ oty —1=0—A <0Gk =1,2,---,m)

s.t.

(M-6)

where A (k = 1,2, ---,m) and & are decision variables.
Theorem 12 The model (M-6) is a convex programming model.

Proof Let A = (Ay, A2, - - - Am)L. For sake of simplicity, some notations are introduced as
follows:

8 = & @8 = gy X i (T Aspijs — pijp) = § (k=
1,2,---,m),

A E) = (k=1,2,---,m),hg(A,E) = A1 + Ay + - +Ay — L.

Obviously, f(A, &) and hi(A, &) (k = 0,1, ---,m) are linear functions. To prove this
theorem, the functions gx(A, &) (k = 1,2, ---, m) are proved to be convex functions. The
Hessian matrixes of gx(A, &) (k = 1,2, - -+, m) are computed as follows:

n—1y-n .2 n—1s-n . n—1y-n o
Zi:ﬂ =i+t (Pij1) Zi:ll j=i+1 Pij1Pij2 = Zi:ll Zj:i+l Pij1Pijm 0
n— n— 2 n—
21 it Pij2pijt iy i ij2)" e X2y Xl Pij2Pijm O

2
Vg = —
= m—1) 1 : 1 : : . :
121 Xjmint Pijmpijt i) Xy Pijmpij2 - Ei) Elmigy (ijm)® 0
0 0 0 0
(k=1,2,---,m) 41)
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Let pp = (P12k: P13k:**+ Plaks P23ks**» Pu—tnk)’ (k = 1,2,---.m) and 0 be a
0.5n(n — 1)-dimensional zero vector. Then, Eq. (41) is rewritten as:

pLPL PIP2 -+ PPy O
PIp1 PIP2 - PIPy O

Vg =
8k _n(n _ 1) T. TZ . T. .
PmP1 LyP2 PPy O
0 o --- 0 O
'3
p3
1
- . . PP 0V (k=1,2,---, 42
Yo (0150255 P> 0) ( m) (42)
Pon
0
Based on the theory of matrix analysis, Vzgk (k=1,2,---,m)are positive semi-definite.

Therefore, model (M-6) is a convex programming model.

Remark 7 It is worth pointing out the locally optimal solution of a convex programming
problem is also a globally optimal solution. Thus, by solving the model (M-6), we can obtain
the globally optimal solution for the experts’ weights. Item (iv) of Theorem 3 illustrates that
the logarithmically geometric compatibility degree is invariable for the labels of compared
objects. The objective function of the model (M-5) is to minimize the logarithmic compatibil-
ity degree between the collective IMPR i’G and each individual IMPR P rk=1,2,---,m).
The above analyses illustrate that the model (M-5) is equivalent to the model (M-6). Thus,
the proposed method of allocating experts’ weights is not sensitive to the labels of compared
objects.

6.3 GDM method with IMPRs

Based on the above analyses, a novel method of GDM with IMPRs is summarized as follows:
Step 1 Expert® = [w; , w] ] provides individual IMPR i’k = (Dijnxntk =1,2,---,m).
Step 2 Determine the values of tolerance parameters 85,9, 85’9 @=Lui<yj;i,je

N), and the consistency threshold of n-order IMPRs C1,, by Table 1.

Step 3 By model (M-6), the weights of experts Ay (k = 1,2, - - -, m) are determined.
Step 4 Compute the collective IMPR i’G = (Pij,6)nxn by Eq. 31).
Step 51f ag=1/m (k = 1,2, ---, m), then compute CI(P;) of Py (k =1,2,---,m) by

Eq. (16) and go to the next step. Otherwise, go to Step 7.

Step 6 If CI(Pk) < CI,, then P’G = PG and go to Step 8. Otherwise, goto Step 7.
Step 7 By Algorithm 1, derive an acceptably consistent IMPR P’ ¢ from Pg.
Step 8 After plugging P’ into the model (M-4), the group multiplicative normalized

IWV & = (@1, @2, -, @) is derived.

Step 9 See Step 5 of the proposed IDM method with an IMPR in Sect. 5.2.
The above process of the proposed GDM method with IMPRs is graphically depicted in

Fig. 5.
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Input the values of tolerance parameters 0, ,,9,, (6 =/uii< jii,j € N)  the threshold of

7, and individual IMPRs pL (i,je N;k=12,---,m)
|2
| Using model (M-6), determine the weights of experts 4, (k =1.2,-+-,m)

!

| By Eq. (31), obtain the collective IMPR P, =(, ),... ‘

N

Y

Compute the consistency index C7/ (P) of P,
(k=1,2,---,m) by Eq. (16)

Let 1=0 and P =(p\%),. =P,

Set (=1+1

B _ ( =0+ .
Compute the consistency Let £/ =(Pyg"),. with
index CI(P") of B Py =B (B, where
by Eq. (16) B, €[0.1] is provided by the expert.
T

N | Let 2 =(p),.,, where

5, is computed by Eq. (11)

Set P.=P,

| Plug P, into model (M-4) to derive the group multiplicative normalized IWV @ = (@, ®,,+,®,)'

| Compute the values of O; (i./€N) by Eq. (30) |

| Derive the ranking order by descending the values of O, :Z; 10, (i=12---n)

Fig. 5 Flow chart of the proposed GDM method with IMPRs

7 Numerical examples and comparative analyses

This section presents three examples to illustrate the application of IDM with an IMPR and
GDM with IMPRs. Additionally, simulation-based comparison analyses are performed to
reveal the superiority of the proposed IDM method with an IMPR and GDM method with
IMPRs.

7.1 Application of IDM with an IMPR and comparative analyses
Firstly, a numerical example is given to illustrate the concrete steps of the proposed IDM

method with an IMPR. Then, comparison analyses with methods in [19, 21, 31, 46] and
simulation experiments are conducted to reveal the advantages of the proposed IDM method.
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7.1.1 Application of IDM with an IMPR

Example 2 Consider the IMPR

[} 11 [1,2] [1,2] [2,3]

B ~ (7,11 [1,1] [3,5] [4,5]
P = ijldx4 = 1’

(Pij)axa [% 1] [g 3] [1,1] [6, 8]

(53115 51 [, g1 [1. 1]

which has been examined by Wang et al. [21] and Zhang [31].
(1) Detailed steps of the proposed IDM method with an IMPR.

Obviously, it holds that \/ P sz\/ PaiDay # \/ P13P75- Therefore, the IMPR P is not
geometrically consistent by Definition 8. By Sect. 5.2, the concrete solving process of this
example is given as follows:

Step 1 Setéug = 6119 =050 =10Lu i<j;i,j=1,2,---,4). By Table 1, the
threshold of 4-order IMPRs is taken as C14 = 0.0635.

Step 2 Using Eq. (16), one has CI(P) = 03277 > Cl4. Hence, P is unacceptably
consistent by Definition 11.

Step 3 Algorithm 1 is used to improve the consistency level of an IMPR. Assumed that
the control parameters §; (t = 0, 1, 2, ---) in each iteration are always taken as the same
parameter S = 0.8. The detailed process of deriving an acceptably consistent IMPR P’ from
P is shown as follows:

Let k = 0 and 13(0) (ﬁu 0)4X4 = P. By Eq. (11), a geometrically consistent IMPR

*(0)

= (pf 245 0)4x4 derived from P 1s obtained as follows:

[1.0000, 1.0000] [0.5318,1.1892] [0.9306, 2.1147] [3.1302, 6.1601]
pro _ [0.8409, 1.8803] [1.0000, 1.0000] [1.2247, 2.5407] [4.1195, 7.4008]
[0.4729, 1.0746] [0.3936, 0.8165] [1.0000, 1.0000] [2.3166, 4.2295]
[0.1623, 0.3195] [0.1351, 0.2427] [0.2364, 0.4317] [1.0000, 1.0000]

) ~ ~ ~ _ . .
Then, P*~ = (pij,1)ax4 = ((pijyo)ﬂ(p;f/yo)l B)4x4 is obtained as follows:

[1.0000, 1.0000] [0.8814,1.8025] [0.9857,2.0224] [2.1874, 3.4643]
i’(l) _ | [0.5548, 1.1346] [1.0000, 1.0000] [2.5079, 4.3668] [4.0239, 5.4079]
[0.4945, 1.0145] [0.2290, 0.3987] [1.0000, 1.0000] [4.9601, 7.0425]
[0.2287, 0.4572] [0.1849, 0.2485] [0.1420, 0.2016] [1.0000, 1.0000]

Using Eq. (16), it holds that CI(I~’ 1)) = 0.2097 > CI4. Thus, i’(l) is not geometrically

1 -
consistent by Definition 8. Let P*( ) = (p; qu)4X4. Then,

[1.0000, 1.0000] [0.5161,1.2255] [0.9037,2.1776] [3.0180, 6.3890]

=«(1) | [0.8160, 1.9378] [1.0000, 1.0000] [1.1840, 2.6281] [3.9539, 7.7109]
| 10.4592, 1.1065] [0.3805, 0.8446] [1.0000, 1.0000] [2.2252, 4.4031]
[0.1565, 0.3313] [0.1292, 0.2529] [0.2271, 0.4494] [1.0000, 1.0000]

~ (2 - - - ~(2) .
By PP = (Pij2)axa = ((p,-j,])ﬁ(pfj’l)lfﬂ)étle, PP s computed as follows:
[1.0000, 1.0000] [0.7919,1.6687] [0.9687, 2.0526] [2.3329, 3.9154]
=2 | [0.5993,1.2628] [1.0000, 1.0000] [2.1583, 3.9451] [4.0096, 5.8056]
B [

|
P 10
[0.4872, 1.0323] [0.2535, 0.4633] [1.0000, 1.0000] [4.2254, 6.4112]
[0.2554, 0.4287] [0.1722, 0.2494] [0.1560, 0.2367] [1.0000, 1.0000]
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Using Eq. (16), it holds that Cl(i’(z)) = 0.1342 > C1I4. Thus, I~’(2) is not geometrically

. .. .. 3 ~ .
consistent by Definition 8. In the similar way, P( ) (Pij,3)4x4 is calculated as follows:

[1.0000, 1.0000] [0.7220,1.5795] [0.9490, 2.0909] [2.4367, 4.3528]

PO _ [0.6331, 1.3851] [1.0000, 1.0000] [1.8998, 3.6647] [3.9634, 6.1989]
[0.4783, 1.0537] [0.2729, 0.5264] [1.0000, 1.0000] [3.6848, 5.9987]

[0.2297, 0.4104] [0.1613, 0.2523] [0.1667, 0.2714] [1.0000, 1.0000]

By Eq. (16), CI(P™) = 0.0859. Then, C1(P"”) > CT4. Analogously, P” = (5i;.4)ax4
is obtained:

[1.0000, 1.0000] [0.6653,1.5233] [0.9265,2.1382] [2.5011, 4.7792]

Py _ [0.6565, 1.5030] [1.0000, 1.0000] [1.7013, 3.4835] [3.8898, 6.5948]
[0.4677,1.0793] [0.2871, 0.5878] [1.0000, 1.0000] [3.2719, 5.7413]

[0.2092, 0.3998] [0.1516, 0.2571] [0.1742, 0.3056] [1.0000, 1.0000]

Using Eq. (16), the consistency index of P is C1(P™) = 0.0550. It is obvious that
ClI (i’(4))<ﬁ4. Thus, i’(4) is geometrical consistent by Definition 8.

Let P’ = P“
IMPR P.

Step 4. Plugging P’ into model (M-5), the IWV is generated as follows:

® = ([1.1634, 1.7950], [1.5652, 2.3146], [0.8730, 1.2221], [0.2828, 0.3511])".

Step 5 According to the possibility degree of intervals in [19] and Eq. (30), the possibility
0.5000 0.1661 0.9361 1.0000
0.8339 0.5000 1.0000 1.0000
0.0639 0.0000 0.5000 1.0000

0.0000 0.0000 0.0000 0.5000
obtained as 01 = 3, 0 = 4, 03 = 2 and 04 = 1. Thus, the ranking order of alternatives is

), Then, P’ is the acceptably consistent IMPR derived from the original

degree matrix P is P = . Then, the ranking values are

83.39%  93.61%  100%
X2 > X1 > X3 > X4.
(2) Comparison analyses with existing methods in [19, 21, 31, 46]
To reveal the superiority of IDM methods, three comparison criteria are shown as follows:
(i) Average total deviation (ATD) ~
Using Eq. (9), an geometrically consistent IMPR W = (&;j)nx, With @;; = [a)f i w;‘j]
is generated by an IWV &, where @ is obtained from P = ([ij, uijDnxn. Generally,

W does not equal to the original IMPR P. Inspired by the concept of logarithm com-
patibility degree of IMPRs [41], the value of ATD is computed by ATD(P, W) =
D Y Y (Indj — In o [+/Inw;; — Inw]).

(ii) Difference index (DI).
Based on the geometric mean, Wang [47] defined the concept of difference index
(DI) to measure the difference level of two triangular fuzzy PRs. Accordingly, the

difference index between two IMPRs W and P is defined as DI (P, W) = 1-

1
; . =T
l_l mm{l,-j,w[[.j} ml“{uij,w}“’.} n(n—1)
! o .
A max{l,-j,a)l.j} max{u,l,wij}
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(iii) Difference ratio (DR) ~ ~ o
Li et al. [19] defined the difference ratio of two IMPRs W and P, denoted by DR(P, W),
1

o ax{ly;, I ; i n(n—=T)
which is calculated by DR(P, W) = <H (mdx{ - w,_,}) (T:;{{:’ S’l’/}})> :

i min{zij,wfj} 05

Clearly, the smaller the values of above two comparison criteria, the more effective the
corresponding decision-making method. Using methods in [19, 21, 31, 46] and the proposed
IDM method to solve this example, the results are obtained and shown in Table 2.

Let the IWV @ is obtained by the proposed IDM method. Let an IMPR W be constructed
by @ using Eq. (9). From Table 2, the following conclusions are drawn:

(1) For different values of the control parameter 8 in Step 5 of Algorithm 1, the ranking
order obtained by the proposed IDM method is always xp > x; > x3 > x4, which is in
accordance with that obtained by methods in [19, 21, 46] but different from that obtained
by method in [31]. However, the values of the possibility degree p»; and pj3 vary with the
control parameter S.

(2) The last two columns of Table 2 show that the values of DI and DR obtained by
the proposed IDM method are correspondingly smaller than those obtained by methods in
(19, 21, 31]. Thus, the geometrically consistent IMPR W constructed by the proposed IDM
method retains more the original preference information than those constructed by method
in [19, 21, 31]. Although some values of DI and DF obtained by the proposed IDM method
are larger than those obtained by method in [46], simulation experiments in SubSect. 7.1.2
reveal that the mean of DI (or DF) obtained by the proposed IDM method is smaller than
that obtained by method in [46] in case of randomly generated 1000 IMPRs.

(3) The eighth to the last columns in Table 2 indicate that the value of ATD obtained by the
proposed IDM method is smaller than those obtained by methods in [19, 21, 31, 46]. That is
to say, the geometrically consistent IMPR W is the IMPR which is the closest to the original
IMPR P from the perspective of the distance deviation. Thus, the proposed IDM method is
superior to methods in [19, 21, 31, 46].

(4)The methods in [19, 31] and the proposed IDM method are based on the geometric
consistency of IMPR proposed by [19]. Table 2 clearly shows that the values of three com-
parison criteria obtained by the proposed IDM method are smaller than those obtained by
methods in [19, 31]. Thus, the proposed IDM method with an IMPR could avoid information
loss and contain more original information within the original IMPR, which further verifies
the effectiveness of the proposed IDM method with an IMPR.

7.1.2 Comparative analyses based on simulation experiments

In what follows, comparison analyses based on simulation experiments are conducted to
further illustrate the superiority and effectiveness of the proposed IDM method. When using
the proposed IDM method and methods in [19, 21, 31, 46] to derive interval weights from
lots of randomly generated IMPRs, some specifications are stipulated as follows:

(1) For the method in [21], Egs. (12—-15) on page 258 in [21] are applied to generate the
WV,

(2) For the method in [19], the parameter in Eq. (5.18) on p. 635 in [19] is taken as #,,,, = 2;

(3) For the proposed IDM method, the control parameter in Step 5 of Algorithm 1 is taken
as B = 0.8. Additionally, the tolerance parameters of model (M-4) with the same value are
stipulated as follows:
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(1) Ifn =4 orn = 5, then 81 = 8;}’1 =8, = 8;“,.7,‘ =0.5;(ii)) If n = 6 orn = 7, then

81 = Sfj’l =68.,= 81.*],‘” =1.2;(iii) If n = 8, then §; , = 8;}’1 =6 ,= 8;},14 =1.5.

(4) Let AV-ATD, AV-DI and AV-DF denote the average values of above three comparison
criteria under randomly generating a large number of different dimensions of IMPRs.

(5) For simplicity, let Wang, Li, Zhang, Liu, and * denote method in [21], method in [19],
method in [31], method in [46] and the proposed IDM method in this paper, respectively.

(6) Let perg W # y; ¥, y = Wang, Li, Zhang, Liu, ) denote the percentage of the
same ranking order obtained by y-method and ©#-method.

For randomly generated 1000 IMPRs, the values of AV-ATD, AV-DI, and AV-DF corre-
sponding to methods in [19, 21, 31, 46] and the proposed IDM method are calculated and
shown in Tables 3-5, respectively. In the meanwhile, the percentages of the same ranking
order obtained any two methods in [19, 21, 31, 46] and the proposed IDM method are com-
puted and shown in Table 6. To visually demonstrate the advantages of the proposed IDM
method, the values of AV-ATD, AV-DI and AV-DF obtained by methods in [19, 21, 31, 46]
and the proposed IDM method are depicted in Fig. 5.

By scrutinizing Tables 3—6 and Fig. 6, two constructive conclusions are drawn as follows:

(1) The values of AV-ATD, AV-DI and AV-DF obtained by the proposed IDM method
are smaller than those obtained by methods in [19, 21, 31, 46] for different dimensions of
IMPR. Moreover, it is worth noting that methods in [19, 31] and the proposed IDM method
are all based on the geometrical consistency of IMPR. Thus, the proposed IDM method is
more efficient than methods in [19, 21, 31, 46] from the perspectives of ATD, DI and DR.

(2) As can be seen in Table 6, the maximum of per},’ (¥, y = Wang, Li, Zhang, Liu,)
is 75.4% and the value of perﬁ,’ decreases with the increase in dimension of IMPRs from 4 to
8. In fact, different IDM methods are generally based on different consistency definitions of

Table 3 Values of AV-ATD obtained by methods in [19, 21, 31, 46] and the proposed IDM method for different
dimensions of IMPRs

Method n=4 n=>5 n==6 n=17 n=3_§

Method in [21] 0.8259 0.9450 1.0409 1.0514 1.0242
Method in [19] 1.0422 1.0599 1.0685 1.0765 1.0951
Method in [31] 0.9776 0.9917 1.0130 1.0255 1.0907
Method in [46] 0.6700 0.6936 0.7118 0.7201 0.7246
The proposed IDM method 0.5097 0.5524 0.6272 0.6869 0.6897

Table 4 Values of AV-DI obtained by methods in [19, 21, 31, 46] and the proposed IDM method for different
dimensions of IMPRs

Method n=4 n=>5 n==6 n=717 n=238

Method in [21] 0.5549 0.6063 0.6413 0.6461 0.6375
Method in [19] 0.6420 0.6506 0.6544 0.6579 0.6645
Method in [31] 0.6197 0.6269 0.6536 0.6404 0.6627
Method in [46] 0.4826 0.4970 0.5070 0.5116 0.5143
The proposed IDM method 0.3893 0.4183 0.4614 0.4933 0.4954
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Table 5 Values of AV-DR obtained by methods in [19, 21, 31, 46] and the proposed method for different

dimensions of IMPRs

Method n=4 n=>5 n==6 n=7 n=238
Method in [21] 2.3228 2.6064 2.8778 2.8986 2.8117
Method in [19] 2.8784 2.9096 2.9287 2.9457 2.9985
Method in [31] 2.6879 2.7123 2.7635 2.7961 2.9880
Method in [46] 1.9764 2.0142 2.0470 2.0618 2.0691
The proposed IDM method 1.6940 1.7571 1.8882 2.0018 2.0047

IMPRs or models of adjusting the consistency of IMPRs. Moreover, different IDM methods
apply different models to derive the interval priority vectors. Therefore, it is natural and
reasonable that different IDM methods may result in different ranking orders from the same
IMPR. The maximum of perg cannot reach 100%, which verifies that no two methods can
get exactly the same ranking order. Moreover, the higher the dimension of IMPR, the more
difficult the same ranking order obtained by two methods, which is in accordance with our
intuition. Therefore, simulation experiments not only validate the proposed IDM method but
also illustrate that the proposed IDM method is more believable and effective than methods
in [19, 21, 31, 46] from the perspectives of ATD, DI and DR.

7.2 Application of GDM method with IMPRs and comparative analyses

Example 3 Consider an example presented in [25, 48]. A GDM problem is composed of five

feasible alternatives x; (i = 1, 2, < 5) and three experts e; (k = 1, 2, 3) with unknown
weights. Three individual IMPRs Py (k = 1, 2, 3) are provided as follows:
(1,11 [6,7] [4. £11[7.8] [¢. 1] (1,11 [6,71 [5,11[7.8] [}, 1]
) [3, 61 11,11 [5,1106,71 [5, 41 | (.41 (516,71 14, 21
Py=|1[57 [1,2] 1,11 06,71 [7,8] |.P2=| [1,2] [1,2] [1,1][5,7] [7,38]
(. 5105, 8105, 410010 (4, 1) £ 315 0. b g, 1
[5.6] 15,71 [§. %] [1,2] [1,1] [1,2] [6,7] [§. %] [1,2] [1,1]
[1,11 [6,7] [5.11[5.6] [§. 5]
i [, 41 [L1] (5. 11 (6, 7] 4. ¢]
Pz= [1,2] [1,2] [1,1] [7,8] [6,7]
[5: 51 [3. 6] [g. 71 (111 [5. 1]
(7,81 16,71 [4, £111,2] [1,1]

7.2.1 Application of GDM method with IMPRs

Using the proposed GDM method to solve this example, the solving process is shown as
follows.

Step 1 Set §;; o = 8?},9 =050 =1I1ui<j;i,j=12,---,5and Cls =0.1187 by
Table 1.

Step 2 Using model (M-6), the experts’ weight vector is obtained as A =
(0.3788, 0.4137, 0.2075).
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Values of AV-DI of different methods

Values of 4V-ATD of different methods

AV-DR of different methods

Values of

n=d =5 n=6 n=7 n=g

Fig. 6 Values of AV-ATD, AV-DI, and AV-DF obtained by methods in [19, 21, 31, 46] and the proposed IDM
method

Step 3 By Eq. (31), the collective IMPR i’G = (Pij,G)5xs is computed as follows:

[1.0000, 1.0000] [6.0000, 7.0000] [0.3111, 0.5436] [6.5279, 7.5364] [0.2474, 0.3630]
[0.1429, 0.1667] [1.0000, 1.0000] [0.5000, 1.0000] [6.0000, 7.0000] [0.1429, 0.1786]
[1.8397, 3.2144] [1.0000, 2.0000] [1.0000, 1.0000] [5.7449, 7.1967] [6.7796, 7.7814]
[0.1327, 0.1532] [0.1429, 0.1667] [0.1390, 0.1741] [1.0000, 1.0000] [0.5000, 1.0000]
[2.7550,4.0428] [5.5996, 7.0000] [0.1285, 0.1475] [1.0000, 2.0000] [1.0000, 1.0000]

N
Q
I

Step 6 Using Eq. (17), one has CI(Pg) = 0.9665 > CIs. Thus, Pg is unacceptably
consistent by Definition 11. It is assumed that the control parameter of Step 5 in Algorithm
1 is taken as 8 = 0.8 in each iteration. As per Algorithm 1, an acceptably consistent IMPR
P’ is obtained as follows:

[1.0000, 1.0000] [2.1616, 3.9007] [0.3333,0.6993] [3.8985, 7.0091] [0.5454, 1.0711]
[0.2564, 0.4626] [1.0000, 1.0000] [0.2124, 0.4608] [2.1452,3.8610] [0.2657, 0.4995]
13’(; = | [1.4301,3.0001] [2.1703, 4.7092] [1.0000, 1.0000] [6.0548, 11.6102] [2.0845, 4.0107]
[0.1427,0.2565] [0.2590, 0.4662] [0.0861, 0.1652] [1.0000, 1.0000] [0.2094, 0.4448]
[0.9336,1.8335] [2.0021, 3.7635] [0.2493, 0.4793] [2.2484, 4.7762] [1.0000, 1.0000]
_ Step 7 Solving the model (M-6), the group multiplicative normalized IWV is derived from
P'; as:

@ = ([1.1260, 1.5676], [0.5359, 0.7278], [2.2067, 3.2562], [0.2396, 0.3451], [1.0708, 1.4776])T

Step 8 According to the possibility degree of intervals in [19] and Eq. (30), the possibility
degree matrix P is obtained as follows:
0.5000 1.0000 0.0000 1.0000 0.5837
0.0000 0.5000 0.0000 1.0000 0.0000
P = | 1.0000 1.0000 0.5000 1.0000 1.0000
0.0000 0.0000 0.0000 0.5000 0.0000
0.4163 1.0000 0.0000 1.0000 0.5000
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The ranking values are obtained as o1 = 4,0y = 2,03 = 5, 04 = 1 and 05 = 3. Thus, the
ranking order of five feasible alternatives is x3 > x1 > x5 > x3 > x4.

Without loss of generality, let the value of the control parameter g; (t =0, 1, 2,---) of
Step 5 in Algorithm 1 be a constant 8. Additionally, suppose that the values of all tolerance
parameters in model (M-4) are the same and taken as a constant §, i.e., 8; ;= 8;'1 ;= 81.; w=
8;].’” =680 < j;i,j=1,2,---,5). For different values of 8 and &, the corresponding
results are computed and shown in Table 7. As can be seen from Table 7, the ranking orders

of alternatives are always x3 > x| > x5 > X2 > X4.

7.2.2 Comparative analyses

Let ® = (@1, @, --,@n)T be the group multiplicative~ normalized IWV and W =
(@ijInxn = ([a)i;, a);“j])n>< » be constructed by @. Clearly, W is a geometrically consistent

IMPR. By Definition 9, the logarithmically geometric compatibility degree between W and
each individual IMPR Py is computed by.

CPLW) = o X0 Y Ml +Inugy — o —Inof)? (k=
1,2,...,m).

To illustrate the effectiveness of the results obtained by the proposed GDM method,
we resort to the mean of all logarithmically geometric compatibility degrees between W and
eachindividual IMPR Py (k = 1,2, -+, m), whichis definedas MC = LS | C(Py, W).
Apparently, the smaller the value of MC, the more reliable the GDM method. Using GDM
methods in [25, 28] and the proposed GDM method to solve Example 3 and the following
five GDM subproblems, some notes are stipulated as follows:

(1) For the GDM method in [25], the experts’ weights are obtained by Eq. (14) (on page 188
in [25]) with the parameter a = 0.5;

(2) For the GDM method in [28], the BUM function and the parameter of Eq. (19) are
taken as Q(y) = yl/4 and o = 1, respectively;

(3) Using the proposed GDM method to solve five GDM subproblems, the tolerance
parameters in model (M-4) are equal to the constant 0.4. Additionally, the control parameters
B (t =0, 1, 2,---)of Step 5 in Algorithm 1 are taken as the constant § = 0.5.

Using GDM methods in [25, 28] to solve Example 3, the corresponding results are obtained
and displayed in Table 7. As can be seen in Table 7, three interesting conclusions are sum-
marized as follows:

(1) Table 7 shows that the last column of Table 7 reveals that the values of MC computed
by the proposed GDM method for different values of parameters 8 and § are smaller than
those computed by GDM methods in [25, 28]. Thus, the proposed GDM method retains
more original information GDM methods in [25, 28] and can avoid the loss of information.
Additionally, the ranking orders of alternatives are always x3 > x| > x5 > x2 > x4 for
different values of parameters 8 and 6. However, the value of the possibility degree pis varies
with the control parameter § and tolerance parameter 4.

(2) The ranking order obtained by the proposed GDM method is the same as those obtained
from the upper triangle entries of IMPRs by GDM methods in [25, 28]. However, the ranking
order obtained by the proposed GDM method is different from that obtained from the lower
triangle entries of IMPRs by the GDM method in [28]. That is to say, different ranking orders
may be obtained from the same IMPR by the GDM method in [28]. For the proposed GDM
method, Remark 5 demonstrates that the ranking order obtained from the upper triangle
entries of an IMPR is in accordance with that obtained from the lower triangle entries of the
IMPR.
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(3) In fact, the reciprocity of IMPRs illustrates that an IMPR is completely deter-
mined by its lower (or upper) triangular entries. Therefore, the result obtained from the
upper triangle entries of an IMPR should be the same as that obtained from the lower
triangle entries of the same IMPR. Using the GDM method in [28] to determine the
experts’ weights, two different experts’ weight vectors A; = (0.2935, 0.4329, 0.2736)T
and A, = (0.2897, 0.4227, 0.2876)T are obtained, where A; and A, are obtained from
the upper and lower triangle entries of P (k =1, 2, 3), respectively. However, this
paper constructs a convex programming model to derive the unique experts’ weight vec-
tor A = (0.3788, 0.4137, 0.2075)T, which effectively improves the objectivity of decision
results.

The phenomena of rank reversal [49] often occur in decision science. When an alternative
is added to (or removed from) a set of alternatives, the rank reversal means that the ranking
order of any other two alternatives is changed. A reasonable decision-making method should
avoid the rank reversal by adding or deleting of an alternative. To further verify the superiority
of the proposed GDM method, rank reversal test is performed. To test the rank reversal of the
proposed GDM method, the original problem (Example 3) is decomposed into the following
five GDM subproblem, where the i-th GDM subproblem is obtained by deleting alternative x;
(i=1,2,---,5) from the original GDM problem. Using GDM methods in [25, 28] and the
proposed GDM method to solve these five GDM subproblem, respectively, the corresponding
results are generated and given in Tables 8—12.

From Tables 8—12, the following conclusions are drawn:

(1) From the perspective of logarithmically geometric compatibility degree of IMPRs,
the last columns of Tables 8—12 reveal that MC obtained by the proposed GDM method is
smaller than that obtained by the GDM method in [25].

(2) If the GDM method in [28] is used to solve the above five GDM subproblems, the
ranking order (or the experts’ weight vector) obtained from the upper triangle entries is
different from that obtained from the lower triangle entries. This phenomenon illustrates that
the GDM method in [28] is defective in theory.

(3) A decision-making method should avoid the phenomena of rank reversal as much as
possible. When using GDM methods in [25, 28] and the proposed GDM method to solve the
3-th and 4-th GDM subproblems, Tables 10-11 reveal that the ranking order of x| and x5 is
changed. When using methods in [28] to solve the 1-th GDM subproblem, the ranking order
of x, and x5 is changed. When using methods in [25, 28] to solve the 5-th GDM subproblem,
the ranking order of x; and x3 is also changed. However, there is no reversal phenomenon for
any two alternatives by the deletion of alternative x; (i = 1, 2, 5) for the proposed GDM
method. Thus, the proposed GDM method can better avoid the phenomena of rank reversal
than GDM methods in [25, 28]. The examination of the rank reversal shows the validity and
practicability of the proposed GDM method.

8 Conclusion

This paper mainly discusses the GDM method with IMPRs based on geometric consistency.
First, a new individual decision-making method with an IMPR is put forward. Then, a novel
GDM method with IMPRs is proposed. The main contributions and features s of this paper
are outlined as follows:

(1) A logarithmic compatibility degree between two IMPRs is introduced to define a new
consistency index of IMPRs. This new consistency index is invariant under permutation

@ Springer
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of alternatives and transpose of IMPRs. In virtue of statistical approach, the thresholds
of the proposed consistency index are presented.

(2) To repair and improve the consistency level of IMPRs, an interactive algorithm is
designed. Using the relationship between an interval weight vector IWV) and an IMPR,
afuzzy programming model is established to derive an IWV. As a result, an IDM method
is proposed.

(3) By minimizing the logarithmically geometric compatibility degree between each indi-
vidual IMPR and the collective one, a convex programming model is established to
objectively derive the experts’ weights. This model can retain more original informa-
tion within the original IMPR.

(4) By combining experts’ weights and the proposed IDM method, a novel GDM method
with IMPRs is put forward.

(5) Several numerical examples and simulation experiments are conducted to further reveal
the superiority of the proposed IDM method and GDM method.

However, current research on IMPRs in this paper reveals that there is more than one
consistency definition of IMPRs. Which consistency definition of IMPRs is the most scien-
tific and reliable one? It will be researched in near future. Additionally, a large-scale group
decision-making is a very common pattern of decision science in the modern information
and digital economy time [50, 51]. A large-scale group decision-making with IMPRs should
be taken into account to further enrich the theory and application of GDM with IMPRs.
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