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Abstract
This paper discusses group decision-making (GDM) with interval multiplicative preference
relations (IMPRs) based on the geometric consistency. We propose a logarithmically geo-
metric compatibility degree between two IMPRs and then define a geometrically logarithmic
consistency index of IMPRs. The new consistency index of IMPRs is invariant under permu-
tation of alternatives and transpose of IMPRs. By the statistics theory, the thresholds of the
geometrically logarithmic consistency index are provided. For an unacceptably consistent
IMPR, an interactive iterative algorithm is designed to improve its consistency level. Using
the relationship between an interval weight vector (IWV) and an IMPR, a fuzzy programming
model is established to derive an IWV. This model is converted into a linear programming
model for resolution. Subsequently, a new individual decision-making (IDM) method with
an IMPR is put forward. By minimizing the logarithmically geometric compatibility degree
between each individual IMPR and the collective one, a convex programming model is built
to determine experts’ weights. Consequently, a novel GDMmethodwith IMPRs is presented.
Numerical examples and simulation experiments are conducted to reveal the superiority of
the proposed IDM method and GDM method.

Keywords Group decision-making · Geometrical consistency · Consistency index · Interval
multiplicative preference relations

1 Introduction

Thepreference relation [1–4] is one of themost important tools in decision science bypairwise
comparisons. Alongwith the eruptible increasing of economic and social development, group
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decision-making (GDM) [5–7] can fully utilize experts’ opinions to deal with more and more
complex decision-making problems. Generally, the experts’ opinions are measured by the
1–9 scale [8], the 0.1–0.9 scale [9], the verbal scale [10], and so on. In fact, it is a common
phenomenon that much imprecise or uncertain information is involved in decision-making
problems. To help experts to express their ambiguous and uncertain judgments, it is more
faithful to measure the preference information by using intervals than crisp numbers, which
results in the appearance of interval multiplicative preference relations (MPRs) [11].

The consistency of interval MPRs (IMPRs) is the essential problem in the application
of IMPRs. To measure the inconsistency level of preference relations, Brunelli & Fedrizzi
[12] proposed five axiomatic properties to scientifically describe the performances of seven
existing consistency indices of MPRs. Using the hypothesis test, Vargas [13] provided a
statistical test to judge the statistical consistency of MPRs. Lin, Kou & Ergu [14] resorted
to a statistical approach to measuring the consistency level of MPRs. Amenta, Lucadamo
& Marcarelli [15] discussed the approximated consistency thresholds for Salo–Hämäläinen
index of MPRs [16]. At present, several consistency definitions of IMPRs have been studied
in [17–22]. However, previous research shows that an agreement on the consistency definition
of IMPRs has not yet reached,which increases the complexity of consistency index of IMPRs.
Based on the consistency definition of IMPRs in [20], Zhang [23] defined a consistency level
of IMPRs with the help of the logarithmic distance between two IMPRs. Combining the
consistency definition of IMPRs in [20] with the geometric consistency index (GCI) [24],
Liu et al. [25] proposed a GCI-based consistency index of IMPRs. Li et al. [19] pointed
out that the consistency definition of IMPRs in [20] does not satisfy the invariance under
the permutation of alternatives. To solve this problem, Li et al. [19] proposed a geometrical
consistency definition of IMPRs. Later,Wang, Lin&Liu [17] pointed out that the geometrical
consistency definition of IMPRs [19] satisfies the three properties: invariance, sensitivity, and
inevitability. Using the consistency definition of IMPRs in [21], Conde & Paz Rivera Pérez
[26] built a linear optimization problem to define the consistency index of IMPRs, which is
a little complex and inconvenient. Using the deviation degree of two MPRs involved in an
IMPR, Dong et al. [27] defined a consistency index of IMPRs.

To obtain more believable results of decision-making problems, it is necessary to con-
struct a scientific model for deriving the weight vector of alternatives. For decision-making
problemswith IMPRs, themethods for deriving the prioritization of alternatives are generally
divided into two classes. One is to extend some existing prioritization techniques of MPRs
[23, 25, 28, 29], such as the eigenvector method [8] and the row geometric mean method
(RGMM) [30]. Considering the continuous ordered weighted geometric averaging operator
of intervals, Zhou et al. [29] transformed an IMPR into an expected MPR from which the
ranking order is induced by RGMM [15]. The other is to use optimization theory to induce
the weight vector of alternatives based on different forms of objective functions [19, 31].
Considering the indeterminacy ratio of intervals, a nonlinear programming model [19] was
built to derive the interval weights of alternatives.

For GDM problems, experts’ weights play a crucial role in aggregating all individual
IMPRs into a collective one. It is very important to quantify experts’ weights in that different
experts generally have different abilities, skills, experience, and expertise. The values of
similarity degree [32] and support degree [33] were generally used to compute experts’
weights. By minimizing the group continuous logarithm compatibility between the synthetic
IMPR and its corresponding continuous characteristic preference relation, Zhou et al. [29]
built a group continuous compatibility model to quantify experts’ weights and discussed
an induced continuous ordered weighted geometric (ICOWG) operator for proposing an
ICOWG-based GDM procedure by extending the continuous ordered weighted geometric
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averaging operator (COWGA) [34]. Combining the consistency index of MPRs with the
induced continuous ordered weighted geometric operator, Wu et al. [28] put forward an
approach to computing experts’ weights based upon the reliability of information sources.
Of course, the programming model is a good way of determining experts’ weights [23, 35].
Minimizing the deviation degree between the opinions of each expert and the group [35], a
maximum consensus-based goal programmingmodel is established to determine the experts’
weights. Zhang [23] build an optimization model to determine experts’ weights for GDM
problems with IMPRs by maximizing the consistency level of the collective IMPR.

Although the aforementioned literature reveals that a great progress has been made on
GDM with IMPRs, there are still several limitations as follows:

(1) For measuring the inconsistency level of IMPRs, several inconsistency indices of
IMPRs [23, 25–27, 36] were proposed. The consistency index of IMPRs in [23] is based on
the consistency definition of IMPRs in [20]. However, the consistency definition in [20] is
sensitive to the labels of compared objects [18, 19, 22]. That is to say, the consistency indices
of IMPRs in [25, 36] are sensitive to the labels of alternatives [37, 38].

(2) It is undesirable to ignore the adjustment of a highly inconsistent IMPR.Moreover, the
thresholds of consistency index have a direct impact on the final ranking order. However, the
existing studies [23, 25–27] regarded the thresholds for those consistency indices of IMPRs.

(3) For GDM problems, different experts’ weight vectors generally gave rise to different
ranking orders [32]. However, the approaches of allocating experts’ weight vectors in [25,
36] are sensitive to the labels of alternatives [37, 38]. By the basic unit monotonic (BUM)
function [39], Wu et al. [28] defined an expected MPR of an IMPR. It should be noted that
the expected MPR derived from the upper triangle elements of an IMPR is different from
that derived from the lower triangle elements of the same IMPR, which results in different
weight vectors of experts and ranking orders obtained by method in [28] (see Example 3).

To overcome the above problems, this paper investigates the GDM method with IMPRs
based on the geometric consistency. Themotivations of this paper are summarized as follows:

(1) Proposing a more logical consistency index of IMPRs is an important issue during
the application of IMPRs in decision science. It is necessary to provide the scientific
thresholds of consistency index for IMPRs. This is the most important motivation of
this paper.

(2) The most existing method of improving the consistency degree of inconsistent IMPRs
is based on programming models, which can be solved only by the specialized software.
Hence, it is urgent to design an interactive algorithm to enhance the consistency level
of IMPRs. This is the second motivation of this paper.

(3) In GDM problems with IMPRs, it is inevitable to deal with the weights of experts.
There is an imperative for putting forward a more scientific method to derive reasonable
interval weight vectors (IWVs) and the weights of experts from GDM problems with
IMPRs. This motivates us to propose a comprehensive GDM method with IMPRs.

Based on the above motivations, this paper mainly focuses on developing a new GDM
method based on geometric consistency of IMPRs. The main innovations are summarized
below:

(1) This paper proposes the logarithmically geometric compatibility degree between two
IMPRs. A geometrically logarithmical consistency index of IMPRs is defined, which
is invariant under permutation of alternatives and transpose of an IMPR. Based on the
hypothesis test, the thresholds of the new consistency index of IMPRs are determined.
Then, an interactive iterative algorithm is proposed to enhance the consistency level of
inconsistent IMPRs.
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(2) Based on the relationship between IWVs and IMPRs, a fuzzy programming model is
constructed to determine an IWV by maximizing the degree of experts’ satisfaction
with the IWV. The constructed fuzzy programming model is then turned into a linear
programming model that is easily solved. Consequently, a new individual decision-
making (IDM) method is summarized.

(3) To minimize the logarithmically geometric compatibility degree of each individual
IMPR and the collective one, a convex programming model is built to determine the
objective weights of experts. Then, a novel GDM method with IMPRs is put forward.
Moreover, the ranking order obtained from the upper triangle entries of an IMPR is the
same as that obtained from the lower triangle entries of the IMPR.

(4) Simulation experiments are conducted to reveal the validity and superiority of the
proposed IDM method from three comparison criteria, i.e., average total deviation,
difference index, and difference ratio.

The reminder of this paper is organized as follows. Section 2 presents some related con-
cepts. Section 3 proposes the concept of logarithmically geometric compatibility degree
between two IMPRs and the geometrically logarithmic consistency index of IMPRs. Section 4
discusses the thresholds for the geometrically logarithmic consistency index of IMPRs and
proposes an interactive algorithm for improving the consistency of IMPRs. Section 5 builds
a fuzzy linear programming model to derive an IWV and proposes a new IDM method with
an IMPR. Then, simulation experiments are conducted to reveal the advantages of the pro-
posed IDMmethod. Section 6 formulates a convex programmingmodel to determine experts’
weights and proposes a novel GDM method with IMPRs. Numerical examples and compar-
ative analyses are conducted in Sect. 7. Section 8 summarizes some concluding remarks.

2 Preliminaries

In this section, basic notions about intervals, preference relations, and interval multiplicative
preference relations are reviewed.

Definition 1 [40]. An interval is defined as the form ã � [al , au] � {x |al ≤ x ≤ au}. If
al > 0, ã is called positive interval. Specially, an interval ã � [al , au] degenerates into a real
number a in case of al � au � a.

For two intervals ã � [al , au] and b̃ � [bl , bu], ã equals to b̃ if and only if (iff ) al � bl
and au � bu , denoted by ã � b̃.

Definition 2 [40, 41]. For two positive intervals ã � [al , au] and b̃ � [bl , bu], the
arithmetic operations of intervals are defined as follows: (i) ã ⊗ b̃ � [albl , aubu]; (ii)
(ã)λ � [(al )λ, (au)λ] (λ > 0); (iii) λã � [λal , λau] (λ > 0); (iv) ã

b̃
� [ albu , au

bl
]; (v)

ln ã � [ln al , ln au].

Definition 3 [8]. Let N � {1, 2, · · · , n}. If an n-order matrix P � (pi j )n×n meets pi j > 0,
pi j p ji � 1 and pii � 1 (i, j ∈ N ), then it is called anMPR. IfC( P̃, Q̃) � 0 further satisfies
pi j � pik pk j (i, j, k ∈ N ), then it is a consistent MPR. Otherwise, P is inconsistent.

Let P∗
n×n = { P � (pi j )n×n | pi j � pik pk j , i, j, k ∈ N} . Definition 3 is called Saaty

consistency in this paper.

Definition 4 [27]. The consistency indexC I (P) of anMPR P isC I (P) � min{d(P,C)|C ∈
P∗
n×n}, where d(P,C) is the distance between two MPRs P � (pi j )n×n and C � (ci j )n×n
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and computed by

d(P,C) �
∑n

i�1
∑n

j�1

(
ln pi j − ln ci j

)2

n2
or d(P,C) �

∑n
i�1

∑n
j�1 |ln pi j − ln ci j |

n2
(1)

By the definition of anMPR, the diagonal element of anMPR always equals to one. Thus,
it holds that ln pii � 0, ln cii � 0, and ln pi j − ln ci j � −(ln c ji − ln p ji ) (i, j ∈ N ). Thus,
Eq. (1) can be rewritten as:

d(P,C) � 2
∑n−1

i�1
∑n

j�i+1 (ln pi j−ln ci j)
2

n2
or d(P,C) � 2

∑n−1
i�1

∑n
j�i+1 |ln pi j−ln ci j |

n2
.

Definition 5 [30] A metric of two MPRs P � (pi j )n×n and Q � (qi j )n×n , denoted by
m(P, Q), is defined as:

m(P, Q) �
√

∑n−1

i�1

∑n

j�i+1
(lnpi j − ln qi j )2 (2)

For an MPR P � (pi j )n×n , let P∗ � (p∗
i j )n×n be generated by

p∗
i j � n

√
∏n

k�1
pik

/

n

√
∏n

k�1
p jk (i, j ∈ N ) (3)

Obviously, P∗ is a consistent MPR, i.e., P∗ ∈ P∗
n×n . In addition, P∗ � P is true if P̃

∗

is consistent.

Theorem 1 [30]. Let P∗ be constructed from an MPR P̃
∗
by Eq. (3). Then,

m(P, P∗) � min{m(P, Q)|Q ∈ P∗
n×n}

Remark 1 Let P∗ � (p∗
i j )n×n be constructed from an MPR P� (pi j )n×n by Eq. (3). Theo-

rem 1 demonstrates P∗ is a consistent MPR which is the closest to the MPR P̃ . If RGMM
is used as the prioritization procedure, the GCI of MPRs is defined as follows [24, 42]:

GC I (P) � 2
(n−1)(n−2)

∑

1≤i< j≤n

(
ln pi j − 1

n

∑n

k�1

(
ln pik − ln p jk

))2 � 2 · (m(P, P∗))2

(n − 1)(n − 2)

(4)

Definition 6 [29]. A matrix P̃ � ( p̃i j )n×n with p̃i j � [li j , ui j ] is called an IMPR if it meets

0 < li j ≤ ui j , lii � uii � 1, li j u ji � 1 (i, j ∈ N ) (5)

Definition 7 [19]. For an interval vector ω̃ � (ω̃1, ω̃2, · · · , ω̃n)T with ω̃i � [ωl
i , ω

u
i ], ω̃ is

called a multiplicative normalized interval weight vector (IWV) if it satisfies

0 < ωl
i ≤ ωu

i , ωu
i

∏n

j�1, j ��i
ωl

j ≤ 1, ωl
i

∏n

j�1, j ��i
ωu

j ≥ 1 (i ∈ N ) (6)

Definition 8 [19, 37]. An IMPR P̃ � ( p̃i j )n×n with p̃i j � [li j , ui j ] is geometrically consis-
tent if it fulfills:

li j ui j � likuiklk j uk j (i, j, k ∈ N ) (7)

Let P̃∗
n×n be the set of all geometrically consistent n-order IMPRs. Clearly, Eq. (7) can be

rewritten as
√
li j ui j � √

likuik
√
lk j uk j (i, j, k ∈ N ) (8)

123



2310 S. Wan et al.

Remark 2 For an IMPR P̃ � ([li j , ui j ])n×n , let P (gm) � (p(gm)
i j )n×n with p(gm)

i j � √
li j ui j .

Clearly, P (gm) is an MPR. For simplicity, P (gm) is called the geometric mean MPR of P̃ in
this paper. Definition 8 illustrates that an IMPR is consistent iff its geometric mean MPR
owns Saaty consistency. Moreover, if P̃ is reduced to anMPR P, then Definition 8 is reduced
to Saaty’s consistency. In this case, Eq. (8) is reduced to Eq. (1). Therefore, geometric
consistency of IMPRs is a generalization of Saaty consistency.

Theorem 2 [19]. Let ω̃ � (ω̃1, ω̃2, · · · , ω̃n)T be an IWV, where ω̃i � [ωl
i , ω

u
i ]. Then,

W̃ � (ω̃i j )n×n is a geometrically consistent IMPR, where

ω̃i j �
{
[1, 1], if i � j
[ωl

i/ω
u
j , ω

u
i /ω

l
j ], if i �� j

(9)

3 A new consistency index of IMPRs

This section develops a new logarithmic geometric compatibility degree between two IMPRs.
Then, a new consistency index of IMPRs is defined to measure the consistency degree of
IMPRs.

3.1 A new logarithmically geometric compatibility degree

Definition 9 For two IMPRs P̃ � ( p̃i j )n×n with p̃i j � [li j , ui j ] and P̃ ′� ( p̃′
i j )n×n with

p̃′
i j � [l ′i j , u′

i j ], the logarithmically geometric compatibility degree between P̃ and P̃ ′,
denoted by C( P̃, P̃ ′), is defined as:

C( P̃, P̃ ′) � 1
2n(n−1)

∑n−1

i�1

∑n

j�i+1
(ln li j + ln ui j − ln l ′i j − ln u′

i j )
2 (10)

Remark 3 Based on Eq. (2), Eq. (10) can be rewritten as C( P̃, P̃ ′) �
2

n(n−1) (m(P (gm), P ′
(gm)))2, where P (gm) is the geometric mean MPR of P̃ and P ′

(gm) is

that of P̃ ′.
Let P̃ (σ ) � ( p̃σ (i)σ ( j))n×n be an IMPR which is obtained from P̃ under a permutation

function σ on N , where σ : i → i p (i, i p ∈ N ) with σ (i) �� σ ( j) for i �� j (i, j ∈ N ).

Theorem 3 For two IMPRs P̃ and P̃ ′, the logarithmically geometric compatibility degree
C( P̃, P̃ ′) meets the following properties:

(i) C( P̃, P̃ ′) � C( P̃ ′, P̃); (ii) 0 ≤ C( P̃, P̃ ′) < +∞;
(iii) C( P̃, P̃ ′) � 0 ⇔ P (gm) � P ′

(gm); (iv) C( P̃ (σ ), P̃ ′
(σ )) � C( P̃, P̃ ′).

Proof By Eq. (10), it is straightforward that (i) and (ii) are true.
(iii) Let P̃ � ( p̃i j )n×n � ([li j , ui j ])n×n and P̃ ′ � ( p̃′

i j )n×n � ([l ′i j , u′
i j ])n×n . By Defini-

tion 9, C( P̃, P̃ ′) � 0 is true iff lnli j + lnui j − ln l ′i j − ln u′
i j � 0, i.e.,

√
li j ui j �

√
l ′i j u′

i j

(i, j ∈ N ). Therefore, C( P̃, P̃ ′) � 0 is equivalent to P (gm) � P̃ ′
(gm).

(iv) Let P̃ (σ ) � ([lσ (i)σ ( j), uσ (i)σ ( j)])n×n and P̃ ′
(σ ) � ([l ′σ (i)σ ( j), u′

σ (i)σ ( j)])n×n . By Eqs.
(10–11), it yields that

C( P̃ (σ ), P̃ ′
(σ ))

� 1
2n(n−1)

∑n−1

i�1

∑n

j�i+1
(lnlσ (i)σ ( j) + lnuσ (i)σ ( j) − ln l ′σ (i)σ ( j) − ln u′

σ (i)σ ( j))
2
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� 1
2n(n−1)

∑n
i p�1

∑
jp>i p (ln li p jp + ln uip jp − ln l ′i p jp − ln u′

i p jp
)2 � C( P̃, P̃ ′).

3.2 A new consistency index of IMPRs

This subsection proposes an approach to constructing a geometrically consistent IMPR from
any given IMPR. Then, a new consistency index of IMPRs is defined.

Theorem 4 Let P̃ � ( p̃i j )n×n with p̃i j � [li j , ui j ] be an IMPR. If P̃
∗ � ( p̃∗

i j )n×n �
([l∗i j , u∗

i j ])n×n is generated by

p̃∗
i j �

{
[1, 1], if i � j
[(

∏n
t�1 (li t lt j )

1/n, (
∏n

t�1 (uit ut j )
1/n], if i �� j

(11)

Then, (i) P̃
∗
is a geometrically consistent IMPR; (ii) If P̃ � P̃

∗
, then P̃ is geometrically

consistent.

Proof (i) By Eq. (11), one has l∗i i � u∗
i i � 1 and 0 < l∗i j ≤ u∗

i j (i, j ∈ N ). On the other hand,

it holds for l∗i j u∗
j i � (

∏n
t�1 li t lt j )

1/n(
∏n

t�1 uit ut j )
1/n � 1 (i �� j ; i, j ∈ N ). Therefore, P̃

∗

is an IMPR. Moreover, it yields that:

√
l∗iku∗

ik

√
l∗k j u∗

k j �
√

(
∏n

t�1
li t ltk)1/n(

∏n

t�1
uit utk)1/n

√

(
∏n

t�1
lkt lt j )1/n(

∏n

t�1
uktut j )1/n

�
√

(
∏n

t�1
li t lt j )1/n(

∏n

t�1
uit ut j )1/n �

√
l∗i j u∗

i j (i, j, k ∈ N )

which indicates that P̃
∗
fulfills Eq. (8). By Definition 8, P̃ is geometrically consistent.

(ii) It is straightforward from item (i).
Theorem 4 guarantees the existence of a geometrically consistent IMPR for anyone IMPR.

Moreover, if P̃ is reduced to an MPR, then P̃
∗
computed by Eq. (11) is degenerated into a

consistent MPR.
Based on Definition 5 and Theorem 4, a new consistency index of IMPRs is proposed as

follows.

Definition10 The consistency indexof an IMPR P̃ is defined asC I ( P̃) � min{C( P̃, R̃)|R̃ ∈
P̃∗
n×n}.
By Definition 10, the consistency index of an IMPR P̃ reflects the minimum deviation

degree (in the sense of distance) between P̃ and a geometrically consistent IMPR.Apparently,

the smaller the value of C I
(
P̃

)
, the higher the consistency degree of P̃ .

Theorem5 For an IMPR P̃ , let P̃
∗
be constructed by Eq. (11). Then, (i)C I ( P̃) � C( P̃, P̃

∗
);

(ii)C I ( P̃) � ∑n
i�1

∑n
j�1 (μi j )2

/
4n(n − 1), where

μi j � ln li j + ln ui j − 1
n

∑n

t�1
(ln li t+ ln lt j + ln uit+ ln ut j ) (12)

Proof (i) Let P̃ � ( p̃i j )n×n � ([li j , ui j ])n×n and P̃
∗ � ( p̃∗

i j )n×n � ([l∗i j , u∗
i j ])n×n . Assume

that P (gm) is the geometric mean MPR of P̃ and P∗
(gm) is that of P̃

∗
. Based on Theorem 4
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2312 S. Wan et al.

and Remark 2, P̃
∗
is a geometrically consistent IMPR and P∗

(gm) is a consistent MPR. By
Theorem 1, it yields that:

m(P (gm), P∗
(gm)) � min{m(P (gm), Q)|Q ∈ P∗

n×n} (13)

Using Eq. (10) and Remark 3, it yields that

C( P̃, P̃
∗
) �

2
∑n−1

i�1
∑n

j�i+1

(
ln

√
li j ui j − ln

√
l∗i j u∗

i j

)2

n(n − 1)
� (m(P (gm), P∗

(gm)))
2

n(n − 1)
(14)

On the basis of Remark 3 and Eq. (13), the value of p′−
i j p′+

j i � 1 can be computed by:

C I ( P̃) � 2
(
min{m(P (gm), R)|R ∈ P∗

n×n}
)2

n(n − 1)
� 2(m(P (gm), P∗

(gm)))
2

n(n − 1)
� C( P̃, P̃

∗
) (15)

(ii) Using Eq. (10), the value of C( P̃, P̃
∗
) is calculated by

C( P̃, P̃
∗
)

�
∑n−1

i�1
∑n

j�i+1 (ln li j + ln ui j − 1
n

∑n
t�1 (ln li t + ln lt j ) − 1

n

∑n
t�1 (ln uit + ln ut j ))2

2n(n − 1)

�
∑n−1

i�1
∑n

j�i+1 (μi j )2

2n(n − 1)
(16)

Clearly, it is true for μi i � 0 and μ j i � −μi j (i, j ∈ N ). Thus, C I ( P̃) �
∑n

i�1
∑n

j�1 (μi j )2
/
4n(n − 1).

The consistency index of MPRs should be invariant under the labels of compared objects
and the transpose of MPRs which is pointed out in [12] and [43]. The IMPR is a fuzzy
extension of theMPR; it is natural and logical that the consistency index of IMPRs is invariant

under the labels of compared objects and the transpose of IMPRs. For an IMPR P̃ , let P̃
T
and

F be the transpose of P̃ and a permutation matrix, respectively. A reasonable consistency

index of IMPRsC I ( P̃) shouldmeetC I ( P̃) � C I (FT P̃F) andC I ( P̃) � C I ( P̃
T
). Based on

item (ii) of Theorem 5, it is trivial that the proposed consistency index of IMPRs is invariant
under the labels of compared objects and the transpose of IMPRs.

Remark 4 Let P̃
∗
be constructed from an IMPR P̃ � ([li j , ui j ])n×n by Eq. (11) and P∗ �

(p∗
i j )n×n be constructed from an MPR P̃

∗
by Eq. (3). If P̃ is reduced to the MPR P �

(pi j )n×n , then

(i) P̃
∗
is reduced to the MPR P∗;

(ii) The consistency index of P computed by Eq. (16) is C I (P) � 2(m(P,P∗))2
n(n−1) �

(n−2)GC I (P)
n ;

(iii) If C I (P) � 0, then P̃
∗
is consistent, and vice versa.

Theorem 6 An IMPR β+
i j is geometrically consistent iff C I ( P̃) � 0.

Proof Necessity. If an IMPR P̃ � ([li j , ui j ])n×n is geometrically consistent, it holds for

√
li j ui j �

(
n∏

t�1

(√
li t lt j

√
uit ut j

)
) 1

n
(i, j ∈ N ) which can be rewritten as

ln li j ui j � 1
n

∑n

t�1
(ln li t lt j + ln uit ut j ) (i, j ∈ N ) (17)
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Obviously, Eq. (17) implies μi j � 0. Hence, C I ( P̃) � 0 is true if P̃ is geometrically
consistent.

Sufficiency. If C I ( P̃) � 0, then ln li j + ln ui j − 1
n

∑n
t�1 (ln li t+ ln lt j + ln uit+ ln ut j ) � 0

(i, j ∈ N ). As a result, one has:

(18)

√
likuik

√
lk j uk j �

(
n∏

t�1

(√
li t ltk

√
uit utk

)
)1/n (

n∏

t�1

(√
lkt lt j

√
uktut j

)
)1/n

� √
li j ui j (i, j, k ∈ N )

Therefore, P̃ is geometrically consistent.

4 A newmethod of improving consistency of IMPRs

From the perspective of statistics, this sectionmainly discusses the thresholds of the new con-
sistency index of IMPRs. Then, an iterative algorithm is designed to improve the consistency
level of an IMPR.

4.1 Thresholds of the new consistency index of IMPRs

For an IMPR P̃ � ([li j , ui j ])n×n , let μi j (i < j ; i, j ∈ N ) be calculated by Eq. (12).
Apparently, the closer the value of μi j is to zero, the smaller the value of C I ( P̃). Motivated
by the idea in [30, 44], it is assumed that the variables μi j (i < j ; i, j ∈ N ) with the same
normal distribution N (0, σ 2) are independent each other. Then, Theorem 7 is proposed as
follows.

Theorem 7. For an IMPR P̃ � ([li j , ui j ])n×n , let μi j (i < j ; i, j ∈ N ) be calculated by
Eq. (12). Assume that the variables μi j (i < j ; i, j ∈ N ) meet: (i) μi j (i < j ; i, j ∈ N )
are independent random variables; (ii) μi j (i < j ; i, j ∈ N ) are normally distributed with
the same mean zero and variance σ 2, i.e., μi j N (0, σ 2). Then, 2n(n−1)

σ 2 C I ( P̃) ∼ χ2( n(n−1)
2 ),

where χ2( n(n−1)
2 ) is the chi-square distribution with n(n−1)

2 freedom degree.

Proof It is true for
μi j
σ
N (0, 1) if μi j N (0, σ 2) (i < j ; i, j ∈ N ). By Eq. (16), it holds

that
∑n−1

i�1
∑n

j�i+1

(μi j
σ

)2 � 2n(n−1)
σ 2 C I ( P̃). Based on the statistics theory, if μi j (i <

j ; i, j ∈ N ) are independent random variables, then
∑n−1

i�1
∑n

j�i+1

(μi j
σ

)2 ∼ χ2
(
n(n−1)

2

)
.

Thus, 2n(n−1)
σ 2 C I ( P̃) ∼ χ2

(
n(n−1)

2

)
.

Let σ 2 � σ 2
n , i.e., μi j N (0, σ 2

n) (i < j ; i, j ∈ N ). The consistency test of IMPRs can be
transformed into the testing problem: H0: σ 2 ≤ σ 2

n , H1: σ 2 > σ 2
n , which is a one-side right-

tailed test. Thus, the consistency threshold of n-order IMPRs, denoted byC In , is determined
by

C In � σ 2
n

2n(n − 1)
χ2

α (
n(n−1)

2 ) (19)

where χ2
α (

n(n−1)
2 ) is the α-quantile of chi-square distribution with n(n−1)

2 freedom degree at
the significant level α (α ∈ (0, 1)). In practice, the significant level α in Eq. (19) is generally
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2314 S. Wan et al.

taken as 0.05 or 0.1. For a lot of randomly generated n-order IMPRs, the variables μi j

(i < j ; i, j ∈ N ) can be viewed as random variables with the same distribution. Take μ12

for example, Fig. 1 graphically depicts its frequency histograms when randomly generating
one hundred thousand n-order IMPRs (n � 3, 4, . . . , 10).

By Fig. 1, it is reasonable that the variables μi j (i < j ; i, j ∈ N ) are regarded as
normally distributed random variables. The second assumption of Theorem 7 is just verified
to be reasonable and scientific. It is well known that the standard deviation is a statistic which
measures the dispersion of a dataset. In practice, the standard deviation σ n in Eq. (19) usually

Fig. 1 Frequency histograms of μ12 for n-order IMPRs
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Table 1 Values of σ n and C In under different values of n and α

n 3 4 5 6 7 8 9 10

C In σ n 0.8430 0.9316 0.9761 1.0034 1.0216 1.0303 1.0412 1.0463

α � 0.05 0.0072 0.0635 0.0961 0.1214 0.1410 0.1557 0.1682 0.1779

α � 0.1 0.0411 0.0856 0.1187 0.1429 0.1610 0.1742 0.1854 0.1939

varies with the dimension of IMPRs. To obtain the more believable values of σ n and C In ,
the reference values of σ n and C In (n � 3, 4, . . . , 10) corresponding to different values of
α are listed in Table 1 when randomly generating one hundred thousand IMPRs.

Definition 11 Let C I ( P̃) be the consistency index of an n-order IMPR P̃ calculated by
Eq. (16). Let C In be the value of consistency threshold of any n-order IMPR. If C I ( P̃) ≤
C In , then P̃ is called an acceptably consistent IMPR.Otherwise, the IMPR P̃ is unacceptably
consistent.

Example 1 Compute the consistency index of P̃ �

⎛

⎜
⎜
⎝

[1, 1] [2, 5] [2, 4] [1, 3]
[ 15 ,

1
2 ] [1, 1] [1, 3] [1, 2]

[ 14 ,
1
2 ] [

1
3 , 1] [1, 1] [

1
2 , 1]

[ 13 , 1] [
1
2 , 1] [1, 2] [1, 1]

⎞

⎟
⎟
⎠

Based on Eq. (12), the geometrically consistent IMPR P̃
∗
is derived from P̃ as follows:

P̃
∗ �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [1.0746, 4.1618] [1.6818, 6.1601] [1.1892, 4.3559]
[0.2403, 0.9306] [1.0000, 1.0000] [0.7953, 2.9130] [0.5623, 2.5980]
[0.1623, 0.5946] [0.3433, 1.2574] [1.0000, 1.0000] [0.3799, 1.3161]
[0.2296, 0.8409] [0.4855, 1.7783] [0.7598, 26321] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

By Eq. (16), one has C I ( P̃) � 0.0574. If the significant level α equals to 0.05, the
consistency threshold of 4-order IMPRs is taken as C I 4 � 0.0635 by Table 1. Obviously,
C I ( P̃) < C I 4. Therefore, P̃ is acceptably consistent.

4.2 An algorithm of improving the consistency level of an IMPR

Inmanypractical decision-making problems, it is unavoidable to dealwith highly inconsistent
IMPRs especially for the large number of alternatives. Naturally, it is necessary to improve
the consistency of an unacceptably consistent IMPR. From an unacceptably consistent IMPR,
the most common method of coping with an unacceptably consistent IMPR is to derive an
acceptably consistent IMPR from the original IMPR. On the basis of Theorem 4, Theorem 8
is proposed to improve the consistency level of IMPRs.

Theorem8 For an IMPR P̃ � ( p̃i j )n×n , P̃
∗ � ( p̃∗

i j )n×n is obtained by Eq. (11). For a control

parameter 0 ≤ β ≤ 1, a matrix P̃ ′ � ( p̃′
i j )n×n is constructed by combining P̃ � ( p̃i j )n×n

and P̃
∗ � ( p̃∗

i j )n×n , where

p̃′
i j � ( p̃i j )

β ( p̃∗
i j )

1−β (i, j ∈ N ) (20)

Then, (i) P̃ ′ is an IMPR; (ii) C I ( P̃ ′) ≤ C I ( P̃).
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Proof (i) Let p̃i j � [li j , ui j ], p̃∗
i j � [l∗i j , u∗

i j ] and p̃′
i j � [l ′i j , u′

i j ]. By Definition 2, it holds
that:

[l ′i j , u′
i j ] � [(li j )β (ui j )1−β, (l∗i j )β (u∗

i j )
1−β ] (i, j ∈ N ).

Apparently, it is true for p̃′
i i � [1, 1] (i ∈ N ) and

l ′i j u′
j i � (li j )

β (l∗i j )1−β (u ji )
β (u∗

j i )
1−β � (li j u ji )

β (l∗i j u∗
j i )

1−β � 1 (i �� j ; i, j ∈ N ; 0≤ β ≤ 1)

(21)

Thus, P̃ ′ is an IMPR by Definition 6.
(ii) For simplicity, for all i < j and i, j ∈ N , let μi j � ln li j + ln ui j −

1
n

∑n
t�1 (ln li t+ ln lt j + ln uit+ ln ut j ),μ∗

i j � ln l∗i j + ln u∗
i j − 1

n

∑n
t�1 (ln l

∗
i t+ ln l

∗
t j +

ln u∗
i t+ ln u

∗
t j ), andμ′

i j � ln l ′i j +ln u′
i j − 1

n

∑n
t�1 (ln l

′
i t+ ln l

′
t j +ln u

′
i t+ ln u

′
t j ). Using Eq. (20),

one has μ′
i j � βμi j + (1 − β)μ∗

i j (i < j ; i, j ∈ N ). As a result, the consistency level of

P̃ ′ is computed by C I ( P̃ ′) � 1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (βμi j + (1 − β)μ∗

i j )
2. By Theorem 4,

μ∗
i j � 0 (i < j ; i, j ∈ N ) are induced in that P̃

∗
is geometrically consistent. Therefore,

one has

C I ( P̃ ′) � 1
2n(n−1)

∑n−1

i�1

∑n

j�i+1
(αμi j )

2 � β2 · C I (P ′) (22)

Obviously, Eq. (22) demonstrates that C I ( P̃ ′) ≤ C I ( P̃) is true in case of 0 ≤ β ≤ 1.
For an IMPR P̃ , let P̃ ′ be generated by Eq. (20). Item (ii) of Theorem 8 reveals the

consistent degree of P̃ ′ is greater than that of P̃ . An interactive algorithmnamedbyAlgorithm
1 is designed to improve the consistency level of inconsistent IMPRs. Based on Theorem 8,
Algorithm 1 is iterative and convergent.

Tomore intuitively display the flowchart ofAlgorithm1, the concrete process ofAlgorithm
1 is graphically depicted in Fig. 2.

5 A new IDMmethodwith an IMPR

To derive the multiplicative normalized IWV from an IMPR, a fuzzy programming model is
built and concerted into a linear programming model for resolution. Then, an IDM method
with an IMPR is proposed.
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Fig. 2 Framework of improving the consistency of an IMPR P̃

5.1 Determination of IWVs from IMPRs

Let � � {ω̃� (ω̃1, ω̃2, · · · , ω̃n)T|0 < ωl
i ≤ ωu

i , ωu
i

∏n
j�1, j ��i ω

l
j ≤ 1, ωl

i

∏n
j�1, j ��i ω

u
j ≥

1, i ∈ N } and ω̃i � [ωl
i , ω

u
i ] is the interval weight of the alternative xi (i ∈ N ). If an IMPR

P̃ � ([li j , ui j ])n×n is constructed by

[li j , ui j ] �
{
[1, 1], if i � j
[ωl

i/ω
u
j , ω

u
i /ω

l
j ], if i �� j

, (23)

then P̃ is geometrically consistent by Theorem 2.
By Definitions 2 and 6, Eq. (23) is equivalent to

ln li j + lnωu
j − lnωl

i � 0, ln ui j + lnωl
j − lnωu

i � 0 (i < j ; i, j ∈ N ) (24)

For simplicity, some notations are introduced as follows:

dli j (ω̃) � ln li j + lnωu
j − lnωl

i , d
u
i j (ω̃) � ln ui j + lnωl

j − lnωu
i (i < j ; i, j ∈ N ) (25)

To simplify the notations, the variables dli j (ω̃) and dui j (ω̃) are unified into dθ
i j (ω̃) (θ �

l, u; i < j ; i, j ∈ N ). If there are some contradictions in an IMPR, then there is no
multiplicative normalized IWV that satisfies Eq. (24). In practice, it is reasonable to find a
good enough multiplicative normalized IWV that satisfies Eq. (24) as well as possible. That
is to say, a good enough multiplicative normalized IWV approximately satisfies Eq. (24) as
much as possible, i.e.,

dθ
i j (ω̃) ∼� 0 (θ � l, u; i < j ; i, j ∈ N ) (26)

where the symbol a denotes the statement “fuzzy equal to”. Equation (26) is called the fuzzy
equation.

Based on the fuzzy programming method [45], a fuzzy set on the universe � is employed
to describe the fuzzy equation dθ

i j (ω̃)
∼� 0 whose membership function φθ

i j (ω̃) decreases

with increasing |dθ
i j (ω̃)| (ω̃ ∈ �; θ � l, u; i < j ; i, j ∈ N ). The value of φθ

i j (ω̃) is
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Fig. 3 Membership function of
dθ
i j (ω̃)

∼� 0

0

1

generally regarded as the degree of the expert’s satisfactionwith the fuzzy equationdθ
i j (ω̃)

∼� 0
(θ � l, u; i < j ; i, j ∈ N ). In fact, the degree of experts’ satisfaction with ω̃ can be
represented as the following linear piecewise function:

φθ
i j (ω̃) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if dθ
i j (ω̃) � 0

1 − dθ
i j

/
δ+i j,θ , if 0 < dθ

i j (ω̃) < δ+i j,θ

1 + dθ
i j

/
δ−
i j,θ , if − δ−

i j,θ < dθ
i j (ω̃) < 0

0, otherwise

(27)

where the parameters δ+i j,θ and δ−
i j,θ are the tolerance parameters and nonnegative. If there

is no additional information, it is generally assumed that δ+i j,θ � δ−
i j,θ � δi j (θ � l, u; i <

j ; i, j ∈ N ). In what follows, the meaning of φθ
i j (ω̃) is intuitively drawn in Fig. 3.

Obviously, φθ
i j (ω̃) ∈ [0, 1] (θ � l, u; i < j ; i, j ∈ N ). By Fig. 3, three statements are

drawn as follows:
(i) If dθ

i j (ω̃) � 0, then φθ
i j (ω̃) � 1. In this situation, ω̃ is completely satisfied;

(ii) If dθ
i j (ω̃) ∈ (−δ−

i j,θ , δ
+
i j,θ ) − {0}, then φθ

i j (ω̃) ∈ (0, 1). In this situation, ω̃ is partially
satisfied;

(iii) If dθ
i j (ω̃) /∈ (−δ−

i j,θ , δ
+
i j,θ ), then φθ

i j (ω̃) � 0. In this situation, ω̃ is fully dissatisfied.

Let ω̃ ∈ � be derived from an IMPR P̃ . Similar to the decision-making problems with
fuzzy goals and fuzzy constraints in [45], the overall satisfaction degree of ω̃, denoted by
φ P̃ (ω̃), is defined as:

φ P̃ (ω̃) � min{φθ
i j (ω̃)|θ � l, u; i < j ; i, j ∈ N } (28)

According to Fig. 3, it is obvious that φ P̃ (ω̃) ∈ [0, 1]. To obtain the optimal multiplica-
tive normalized IWV, the following programming model is built by maximizing the overall
satisfaction degree:

max φ P̃ (ω̃)

s.t . ω̃ ∈ �
(M-1)

where ω̃ is the decision variable. Obviously, the model (M-1) is a maximin optimization
problem which can be converted into the following programming model:

max ε

s.t .

{
φθ
i j (ω̃) ≥ ε (θ � l, u; i < j ; i, j ∈ N )

ω̃ ∈ �

(M-2)

where ω̃ and ε are decision variables. The variable ε denotes the degree of the minimally
overall satisfaction with ω̃. By Eq. (6) and Eq. (27), the model (M-2) is converted into the
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following model:

max ε

s.t .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ε − 1)δ−
i j,l ≤ ln li j + lnωu

j − lnωl
i ≤ (1 − ε)δ+i j,l (i < j ; i, j ∈ N )

(ε − 1)δ−
i j,u ≤ ln ui j + lnωl

j − lnωu
i ≤ (1 − ε)δ+i j,u (i < j ; i, j ∈ N )

0 <ωl
i ≤ ωu

i , lnωl
i +

∑n

j�1, j ��i
lnωu

j ≥ 0 , lnωu
i +

∑n

j�1, j ��i
lnωl

j ≤ 0 (i ∈ N )

0 ≤ ε ≤ 1
(M-3)

where ω̃i � [ωl
i , ω

u
i ] and ε are decision variables. The first two constraints are inferred

from Eq. (27). The last constraint is equivalent to φ P̃ (ω̃) ∈ [0, 1]. The other constraints are
obtained by Definition 7.

Let ω′l
i � lnωl

i and ω′u
i � lnωu

i (i ∈ N ). Then, the model (M-3) can be further expressed
and simplified as the following linear programming model:

max ε

s.t .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ε − 1)δ−
i j,l ≤ ln li j + ω′u

j − ω′l
i ≤ (1 − ε)δ+i j,l (i < j ; i, j ∈ N )

(ε − 1)δ−
i j,u ≤ ln ui j + ω′l

j − ω′u
i ≤ (1 − ε)δ+i j,u (i < j ; i, j ∈ N )

ω′l
i ≤ ω′u

i , ω′l
i +

∑n

j�1, j ��i
ω′u

j ≥ 0 , ω′u
i +

∑n

j�1, j ��i
ω′l

j ≤ 0 (i ∈ N )

0 ≤ ε ≤ 1

(M-4)

where ω̃′
i � [ω̃′l

i , ω̃′u
i ] and ε are decision variables. The constraints are the same as those of

model (M-3).
In the model (M-4), the tolerance parameters of should be large enough to guaran-

tee the existence of a nonempty feasible area. By the model (M-4), the optimal solution(
ω̃′∗
1 , ω̃′∗

2 , · · · ω̃′∗
n , ε∗) is obtained, where ω̃′∗

i � [ω̃′l
i , ω̃′u

i ]. Let ω̃∗
i � [exp(ω̃′l

i ), exp(ω̃
′u
i )]

(i ∈ N ). Then, ω̃∗
i � (

ω̃∗
1, ω̃

∗
2, · · · , ω̃∗

n

)
is a multiplicative normalized IWV. The optimal

objective value ε∗ measures the degree of overall satisfaction with the optimal multiplicative
normalized IWV ω̃∗. If ε∗ � 1, then P̃� ( p̃i j )n×n is geometrically consistent. By Theorem 2,
a geometrically consistent IMPR W̃� (ω̃i j )n×n is obtained by the following formula:

ω̃i j �
{
[1, 1], if i � j
[ω∗l

i /ω∗u
j , ω∗u

i /ω∗l
j ], if i �� j

(29)

Remark 5 In this subsection, an optimal multiplicative normalized IWV is derived from an
IMPR with the help of a fuzzy model. The advantages of the proposed fuzzy model are
summarized as follows:

(i) The experts’ satisfaction (membership or acceptance) degree of an IWV is considered
in the proposed fuzzy model (M-4), which is a linear programming method. Based on the
optimization theory, the globally optimal solution of the model (M-4) can be obtained.

(ii) By Definition 6, the first two constraints of the model (M-4) are equivalent to (ε −
1)δ+i j,l ≤ ln u ji +ω′l

i −ω′u
j ≤ (1− ε)δ−

i j,l and (ε −1)δ+i j,u ≤ ln l j i +ω′u
i −ω′l

j ≤ (1− ε)δ−
i j,u

(i < j ; i, j ∈ N ), respectively. Thus, if the tolerance parameters of the model (M-4) equal
to each other, i.e.,δ−

i j,l � δ+i j,l � δ−
i j,u � δ+i j,u , the multiplicative normalized IWV obtained

from the lower triangle entries of IMPRs is the same as that obtained from the upper triangle
entries of IMPR.
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(iii) In the model (M-4), only the upper triangle entries of IMPRs are used to derive the
optimal multiplicative normalized IWV from an IMPR.

5.2 A novel IDMmethod with an IMPR

Let X � (x1, x2, · · · , xn)T be a set of alternatives. Let P̃ be an IMPR provided by an expert.
On the basis of the aforesaid analyses, a novel IDM method with an IMPR is summarized as
follows:

Step 1 Set the values of tolerance parameters δ+i j,θ , δ
−
i j,θ (θ � l, u; i < j ; i, j ∈ N ), and

the consistency threshold of n-order IMPRs C In by Table 1.
Step 2 By Eq. (16) to compute the consistency index C I ( P̃) of P̃ .
(i) If C I ( P̃) ≤ C In , then P̃ is acceptably consistent. Set P̃ ′� P̃ and go to Step 4;
(ii) Otherwise, P̃ is unacceptably consistent and go to Step 3.

Step 3 By Algorithm 1, an acceptably consistent IMPR P̃ ′ is obtained from P̃ .

Step 4 Obtain the multiplicative normalized IWV ω̃ � (ω̃1, ω̃2, · · · , ω̃n)T with ω̃i �
[ωl

i , ω
u
i ] from P̃ ′ by the model (M-4).

Step 5 By using the formula of possibility degree in [19], the possibility degree
matrix P � (pi j )n×n is constructed, where pi j � p(ω̃i � ω̃ j ) � max{1 −
max{ lnωu

j−lnωl
i

lnωu
j−lnωl

j+lnωu
i −lnωl

i
, 0}, 0} (i, j ∈ N ). The larger the ranking value oi � ∑n

j�1 oi j ,

the better the alternative xi (i ∈ N ), where oi j is computed by

oi j �
{
1, if pi j ≥ 0.5
0, otherwise

(30)

The above process of the proposed IDM method with an IMPR is graphically depicted in
Fig. 4.

6 A novel GDMmethodwith IMPRs

This section devotes to developing a new method for GDM with IMPRs. Based on the
concept of logarithmically geometrical compatibility degree between two IMPRs, a convex
programming model is built to determine the weights of experts. Then, a GDMmethod with
IMPRs is brought forward.

Let M � {1, 2, · · · ,m}. Suppose that a GDM problem is composed of n alternatives xi
(i ∈ N ) and m experts ek (k ∈ M). Let λk denote the weight of the expert ek and satisfies∑m

k�1 λk � 1 and λk > 0 (k ∈ M). Let P̃k � ( p̃i jk)n×n be an individual IMPR provided by
the expert ek (k ∈ M). Then, a collective IMPR P̃G � ( p̃i j,G )n×n is obtained by [29]:

p̃i j,G �
∏m

k�1
( p̃i jk)

λk (31)

6.1 Properties of GDMwith IMPRs

For simplicity, letGC( P̃) denote the geometrically consistent IMPRof an IMPR P̃ generated
by Eq. (11) hereafter in this paper.

123



Group decision-making with interval multiplicative preference relations 2321

Fig. 4 Flow chart of the proposed IDM method with an IMPR

Theorem 9. For IMPRs P̃k (k ∈ M), let P̃G and GC( P̃k) be computed by Eq. (31) and
Eq. (11), respectively. Then,

(i) P̃G is geometrically consistent if P̃k (k ∈ M) are geometrically consistent;
(ii) GC( P̃G ) is a geometrically consistent IMPR;
(iii) GC( P̃G ) is obtained by aggregating GC( P̃k) (k ∈ M) by Eq. (31).

Proof (i) Let λk (k ∈ M) satisfy
∑m

k�1 λk � 1 and λk > 0.
Let P̃k � ([li jk, ui jk])n×n and P̃G � ([li j,G , ui j,G ])n×n (i, j ∈ N ; k ∈ M). Using

Eq. (31), it is obvious that

li j,G �
∏m

k�1
(li jk)

λk , ui j,G �
∏m

k�1
(ui jk)

λk (32)

li t,Guit,Glt j,Gut j,G�
∏m

k�1
(li tkuitklt jkut jk)

λk �
∏m

k�1
(li tkuitklt jkut jk)

λk (33)

If P̃k (k ∈ M) are geometrically consistent, then one has

li tkuitklt jkut jk�li jkui jk (i, j ∈ N ; k ∈ M) (34)

Equations (33–34) imply li t,Guit,Glt j,Gut j,G � ∏m
k�1 (li jkui jk)

λk � li j,Gui j,G (i, j ∈
N ) which means that P̃G is geometrically consistent.

(ii) It is straightforward from Theorem 4.
(iii) Let GC( P̃G ) � ([l∗i j,G , u∗

i j,G ])n×n and GC( P̃k) � ([l∗i jk, u∗
i jk])n×n . According to

Eq. (12), it holds that:

l∗i j,G � ∏n
t�1 (li t,Glt j,G )

1/n� ∏n
t�1 (

∏m
k�1 (li tk)

λk
∏m

k�1 (lt jk)
λk )

1/n�
∏m

k�1 (
∏n

t�1 (li tklt jk)
1/n)

λk� ∏m
k�1 (l

∗
i jk)

λk . (35).
In a similar way, we have

u∗
i j,G �

∏m

k�1
(u∗

i jk)
λk (36)
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By Eqs. (35–36), it is true for [l∗i j,G , u∗
i j,G ] � ∏m

k�1 ([l
∗
i jk, u

∗
i jk])

λk (i, j ∈ N ). Therefore,

GC( P̃G ) is aggregated from GC( P̃k) (k ∈ M) by Eq. (31).

Theorem 10 Let an IMPR P̃G � ([li j,G , ui j,G ])n×n be generated from IMPRs P̃k �
([li jk, ui jk])n×n (i, j ∈ N ; k ∈ M) by Eq. (31) and μi jk (i < j ; i, j ∈ N ; k ∈ M)
be calculated by:

μi jk � ln li jk + ln ui jk − 1
n

∑n

t�1
(ln li tk+ ln lt jk + ln uitk+ ln ut jk) (37)

Then, C I ( P̃G ) is computed by

C I ( P̃G ) �
∑n−1

i�1

∑n

j�i+1
(
∑m

k�1
λkμi jk)

2
/

2n(n − 1) (38)

where
∑m

k�1 λk � 1 with λk > 0.

Proof Let μi j,G � ln li j,G + ln ui j,G − 1
n

∑n
t�1 (ln li t,G+ ln lt j,G + ln uit,G+ ln ut j,G ) (i, j ∈

N ). By Eq. (19), one has C I ( P̃G ) � 1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (μi j,G )2. Using Eq. (32),

μi j,G can be computed by μi j,G � ∑m
k�1 λkμi jk . Then, it yields that C I ( P̃G ) �

1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (

∑m
k�1 λkμi jk)2.

Theorem 11 Let P̃G be generated by IMPRs P̃k (k ∈ M) by Eq. (30). Then,
(i) C I ( P̃G ) ≤ (

∑m
k�1 λ2k)(

∑m
k�1 C I ( P̃k));

(ii) If λk � 1/m (k ∈ M), then C I ( P̃G ) ≤ 1
m

∑m
k�1 C I ( P̃k);

(iii) If λk � 1/m (k ∈ M), then C I ( P̃G ) ≤ max
k�1,2,···,m{C I ( P̃k)};

(iv) Let λk � 1/m (k ∈ M). If all IMPRs P̃k (k ∈ M) are acceptably consistent, then P̃G

is acceptably consistent.

Proof (i) Let P̃k � ([li jk, ui jk])n×n . Taking Cauchy–Schwarz inequality on Eq. (38) and
Theorem 5, it yields that C I ( P̃G ) ≤ (

∑m
k�1 λ2k)(

1
2n(n−1)

∑n−1
i�1

∑n
j�i+1

∑m
k�1 μ2

i jk) �
(
∑m

k�1 λ2k)(
∑m

k�1 C I ( P̃k)).
(ii) If λk � 1/m (k ∈ M), then the equality C I ( P̃G ) �

1
m2

1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (

∑m
k�1 μi jk)2 is true by Eq. (38). Based on the Cauchy–Schwarz

inequality, it is clear that (
∑m

k�1 μi jk)2 ≤ m(
∑m

k�1 μ2
i jk). Thus, it holds that

C I ( P̃G ) ≤ 1
m

∑m

k�1
1

2n(n−1)

∑n−1

i�1

∑n

j�i+1
(μi jk)

2 � 1
m

∑m

k�1
C I ( P̃k) (39)

(iii) It is straightforward from item (ii) of Theorem 11.
(iv) If P̃k is acceptably consistent, then C I ( P̃k) ≤ C In (k ∈ M). According to (iii) of

Theorem 11, it is obvious that C I ( P̃G ) ≤ max
k�1,2,···,m{C I ( P̃k)} ≤ C In . Item (iv) is proved.

Remark 6 Theorem 11 explains the relationship between the consistency level of the collec-
tive IMPR and those of all individual IMPRs. For a GDM problem, Theorem 11 reveals that
the consistency level of the collective IMPR is not worse than that of each individual IMPR
with the largest consistency index if experts have the equal weight.
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6.2 Determination of experts’weights

During the aggregation process of GDMwith IMPRs, the collective IMPRwhich is generated
from all individual IMPRs has a dramatic effect on the final priority vector. If the experts’
weights are completely unknown, it is crucial to allocate an appropriateweight for each expert
based on his/her provided IMPR. Based on the proposed logarithmic compatibility degree
between two IMPRs, the following programming model is built to determine the experts’
weights:

min{C( P̃G , P̃1),C( P̃G , P̃2), · · · ,C( P̃G , P̃m)}

s.t .

{
λ1 + λ2 + · · ·+λm � 1

λk ≥ 0 (k � 1, 2, · · · ,m)

(M-5)

where λk (k � 1, 2, · · · ,m) are decision variables. The objective function is to minimize
the logarithmic compatibility degree between the collective IMPR P̃G and each individual
IMPR P̃k . The constraints of model (M-5) are the conditions of the priority vector.

Let ρi jk � ln li jk + ln ui jk (i < j ; i, j ∈ N ; k � 1, 2, · · · ,m). Using Eqs. (10) and (31),
it yields that

C( P̃G , P̃k) � 1
2n(n−1)

∑n−1

i�1

∑n

j�i+1
(
∑m

s�1
λsρi js − ρi jk)

2 (k � 1, 2, · · · ,m) (40)

The model (M-5) is multiple objectives programming model. By means of min–max
method, the model (M-5) is transformed into the following model:

min ξ

s.t .

⎧
⎨

⎩

1
2n(n−1)

∑n−1

i�1

∑n

j�i+1
(
∑m

s�1
λsρi js − ρi jk)

2− ξ ≤ 0 (k � 1, 2, · · · ,m)

λ1 + λ2 + · · ·+λm − 1 � 0, − λk ≤ 0 (k � 1, 2, · · · ,m)
(M-6)

where λk (k � 1, 2, · · · ,m) and ξ are decision variables.

Theorem 12 The model (M-6) is a convex programming model.

Proof Let λ � (λ1, λ2, · · · λm)T. For sake of simplicity, some notations are introduced as
follows:

f (λ, ξ ) � ξ , gk(λ, ξ ) � 1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (

∑m
s�1 λsρi js − ρi jk)2− ξ (k �

1, 2, · · · ,m),
hk(λ, ξ ) � −λk (k � 1, 2, · · · ,m), h0(λ, ξ ) � λ1 + λ2 + · · ·+λm − 1.
Obviously, f (λ, ξ ) and hk(λ, ξ ) (k � 0, 1, · · · ,m) are linear functions. To prove this

theorem, the functions gk(λ, ξ ) (k � 1, 2, · · · ,m) are proved to be convex functions. The
Hessian matrixes of gk(λ, ξ ) (k � 1, 2, · · · ,m) are computed as follows:

∇2gk � 1

n(n − 1)
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑n−1
i�1

∑n
j�i+1 (ρi j1)

2 ∑n−1
i�1

∑n
j�i+1 ρi j1ρi j2 · · · ∑n−1

i�1
∑n

j�i+1 ρi j1ρi jm 0
∑n−1

i�1
∑n

j�i+1 ρi j2ρi j1
∑n−1

i�1
∑n

j�i+1 (ρi j2)
2 · · · ∑n−1

i�1
∑n

j�i+1 ρi j2ρi jm 0
...

...
. . .

...
...

∑n−1
i�1

∑n
j�i+1 ρi jmρi j1

∑n−1
i�1

∑n
j�i+1 ρi jmρi j2 · · · ∑n−1

i�1
∑n

j�i+1 (ρi jm )
2 0

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(k � 1, 2, · · · ,m) (41)

123



2324 S. Wan et al.

Let ρk � (ρ12k, ρ13k, · · · , ρ1nk, ρ23k, · · · , ρn−1,n,k)T (k � 1, 2, · · · ,m) and 0 be a
0.5n(n − 1)-dimensional zero vector. Then, Eq. (41) is rewritten as:

∇2gk � 1

n(n − 1)
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρT
1ρ1 ρT

1ρ2 · · · ρT
1ρm 0

ρT
2ρ1 ρT

2ρ2 · · · ρT
2ρm 0

...
...

. . .
...

...
ρT
mρ1 ρT

mρ2 · · · ρT
mρm 0

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

� 1

n(n − 1)
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρT
1

ρT
2

...

ρT
m

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· (
ρ1, ρ2, · · · , ρm, 0

)
(k � 1, 2, · · · ,m) (42)

Based on the theory of matrix analysis,∇2gk (k � 1, 2, · · · ,m) are positive semi-definite.
Therefore, model (M-6) is a convex programming model.

Remark 7 It is worth pointing out the locally optimal solution of a convex programming
problem is also a globally optimal solution. Thus, by solving the model (M-6), we can obtain
the globally optimal solution for the experts’ weights. Item (iv) of Theorem 3 illustrates that
the logarithmically geometric compatibility degree is invariable for the labels of compared
objects. The objective function of themodel (M-5) is to minimize the logarithmic compatibil-
ity degree between the collective IMPR P̃G and each individual IMPR P̃k (k � 1, 2, · · · ,m).
The above analyses illustrate that the model (M-5) is equivalent to the model (M-6). Thus,
the proposed method of allocating experts’ weights is not sensitive to the labels of compared
objects.

6.3 GDMmethod with IMPRs

Based on the above analyses, a novel method of GDMwith IMPRs is summarized as follows:
Step 1Expert ω̃ � [ω−

i , ω+
i ] provides individual IMPR P̃k � ( p̃i jk)n×n(k � 1, 2, · · · ,m).

Step 2 Determine the values of tolerance parameters δ+i j,θ , δ
−
i j,θ (θ � l, u; i < j ; i, j ∈

N ), and the consistency threshold of n-order IMPRs C In by Table 1.
Step 3 By model (M-6), the weights of experts λk (k � 1, 2, · · · ,m) are determined.
Step 4 Compute the collective IMPR P̃G � ( p̃i j,G )n×n by Eq. (31).
Step 5 If λk� 1/m (k � 1, 2, · · · ,m), then compute C I ( P̃k) of P̃k (k � 1, 2, · · · ,m) by

Eq. (16) and go to the next step. Otherwise, go to Step 7.
Step 6 If C I ( P̃k) ≤ C In , then P̃ ′

G � P̃G and go to Step 8. Otherwise, go to Step 7.
Step 7 By Algorithm 1, derive an acceptably consistent IMPR P̃ ′

G from P̃G .
Step 8 After plugging P̃ ′

G into the model (M-4), the group multiplicative normalized
IWV ω̃ � (ω̃1, ω̃2, · · · , ω̃n)T is derived.

Step 9 See Step 5 of the proposed IDM method with an IMPR in Sect. 5.2.
The above process of the proposed GDM method with IMPRs is graphically depicted in

Fig. 5.
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Fig. 5 Flow chart of the proposed GDM method with IMPRs

7 Numerical examples and comparative analyses

This section presents three examples to illustrate the application of IDM with an IMPR and
GDM with IMPRs. Additionally, simulation-based comparison analyses are performed to
reveal the superiority of the proposed IDM method with an IMPR and GDM method with
IMPRs.

7.1 Application of IDMwith an IMPR and comparative analyses

Firstly, a numerical example is given to illustrate the concrete steps of the proposed IDM
method with an IMPR. Then, comparison analyses with methods in [19, 21, 31, 46] and
simulation experiments are conducted to reveal the advantages of the proposed IDMmethod.
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7.1.1 Application of IDMwith an IMPR

Example 2 Consider the IMPR

P̃ � ( p̃i j )4×4 �

⎛

⎜
⎜
⎝

[1, 1] [1, 2] [1, 2] [2, 3]
[ 12 , 1] [1, 1] [3, 5] [4, 5]
[ 12 , 1] [

1
5 ,

1
3 ] [1, 1] [6, 8]

[ 13 ,
1
2 ] [

1
5 ,

1
4 ] [

1
8 ,

1
6 ] [1, 1]

⎞

⎟
⎟
⎠

which has been examined by Wang et al. [21] and Zhang [31].
(1) Detailed steps of the proposed IDM method with an IMPR.

Obviously, it holds that
√
p−
12 p

+
12

√
p−
23 p

+
23 ��

√
p−
13 p

+
13. Therefore, the IMPR P̃ is not

geometrically consistent by Definition 8. By Sect. 5.2, the concrete solving process of this
example is given as follows:

Step 1 Set δ−
i j,θ � δ+i j,θ � 0.5 (θ � l, u; i < j ; i, j � 1, 2, · · · , 4). By Table 1, the

threshold of 4-order IMPRs is taken as C I 4 � 0.0635.
Step 2 Using Eq. (16), one has C I ( P̃) � 0.3277 > C I 4. Hence, P̃ is unacceptably

consistent by Definition 11.
Step 3 Algorithm 1 is used to improve the consistency level of an IMPR. Assumed that

the control parameters βt (t � 0, 1, 2, · · ·) in each iteration are always taken as the same
parameter β � 0.8. The detailed process of deriving an acceptably consistent IMPR P̃ ′ from
P̃ is shown as follows:

Let k � 0 and P̃
(0) � ( p̃i j,0)4×4 � P̃ . By Eq. (11), a geometrically consistent IMPR

P̃
∗(0) � ( p̃∗

i j,0)4×4 derived from P̃
(0)

is obtained as follows:

P̃
∗(0) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.5318,1.1892] [0.9306, 2.1147] [3.1302, 6.1601]
[0.8409, 1.8803] [1.0000, 1.0000] [1.2247, 2.5407] [4.1195, 7.4008]
[0.4729, 1.0746] [0.3936, 0.8165] [1.0000, 1.0000] [2.3166, 4.2295]
[0.1623, 0.3195] [0.1351, 0.2427] [0.2364, 0.4317] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

Then, P̃
(1) � ( p̃i j,1)4×4 � (( p̃i j,0)β ( p̃∗

i j,0)
1−β )4×4 is obtained as follows:

P̃
(1) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.8814,1.8025] [0.9857, 2.0224] [2.1874, 3.4643]
[0.5548, 1.1346] [1.0000, 1.0000] [2.5079, 4.3668] [4.0239, 5.4079]
[0.4945, 1.0145] [0.2290, 0.3987] [1.0000, 1.0000] [4.9601, 7.0425]
[0.2287, 0.4572] [0.1849, 0.2485] [0.1420, 0.2016] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

Using Eq. (16), it holds that C I ( P̃
(1)
) � 0.2097 > C I 4. Thus, P̃

(1)
is not geometrically

consistent by Definition 8. Let P̃
∗(1) � ( p̃∗

i j,1)4×4. Then,

P̃
∗(1) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.5161,1.2255] [0.9037, 2.1776] [3.0180, 6.3890]
[0.8160, 1.9378] [1.0000, 1.0000] [1.1840, 2.6281] [3.9539, 7.7109]
[0.4592, 1.1065] [0.3805, 0.8446] [1.0000, 1.0000] [2.2252, 4.4031]
[0.1565, 0.3313] [0.1292, 0.2529] [0.2271, 0.4494] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

By P̃
(2) � ( p̃i j,2)4×4 � (( p̃i j,1)β ( p̃∗

i j,1)
1−β )4×4, P̃

(2)
is computed as follows:

P̃
(2) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.7919,1.6687] [0.9687, 2.0526] [2.3329, 3.9154]
[0.5993, 1.2628] [1.0000, 1.0000] [2.1583, 3.9451] [4.0096, 5.8056]
[0.4872, 1.0323] [0.2535, 0.4633] [1.0000, 1.0000] [4.2254, 6.4112]
[0.2554, 0.4287] [0.1722, 0.2494] [0.1560, 0.2367] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.
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Using Eq. (16), it holds that C I ( P̃
(2)
) � 0.1342 > C I 4. Thus, P̃

(2)
is not geometrically

consistent by Definition 8. In the similar way, P̃
(3) � ( p̃i j,3)4×4 is calculated as follows:

P̃
(3) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.7220,1.5795] [0.9490, 2.0909] [2.4367, 4.3528]
[0.6331, 1.3851] [1.0000, 1.0000] [1.8998, 3.6647] [3.9634, 6.1989]
[0.4783, 1.0537] [0.2729, 0.5264] [1.0000, 1.0000] [3.6848, 5.9987]
[0.2297, 0.4104] [0.1613, 0.2523] [0.1667, 0.2714] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

ByEq. (16),C I ( P̃
(3)
) � 0.0859. Then,C I ( P̃

(3)
) > C I 4. Analogously, P̃

(4) � ( p̃i j,4)4×4

is obtained:

P̃
(4) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [0.6653,1.5233] [0.9265, 2.1382] [2.5011, 4.7792]
[0.6565, 1.5030] [1.0000, 1.0000] [1.7013, 3.4835] [3.8898, 6.5948]
[0.4677, 1.0793] [0.2871, 0.5878] [1.0000, 1.0000] [3.2719, 5.7413]
[0.2092, 0.3998] [0.1516, 0.2571] [0.1742, 0.3056] [1.0000, 1.0000]

⎞

⎟
⎟
⎠.

Using Eq. (16), the consistency index of P̃
(4)

is C I ( P̃
(4)
) � 0.0550. It is obvious that

C I ( P̃
(4)
)<C I 4. Thus, P̃

(4)
is geometrical consistent by Definition 8.

Let P̃ ′ � P̃
(4)
. Then, P̃ ′ is the acceptably consistent IMPR derived from the original

IMPR P̃ .
Step 4. Plugging P̃ ′ into model (M-5), the IWV is generated as follows:
ω̃ � ([1.1634, 1.7950], [1.5652, 2.3146], [0.8730, 1.2221], [0.2828, 0.3511])T.
Step 5 According to the possibility degree of intervals in [19] and Eq. (30), the possibility

degree matrix P is P �

⎛

⎜
⎜
⎝

0.5000 0.1661 0.9361 1.0000
0.8339 0.5000 1.0000 1.0000
0.0639 0.0000 0.5000 1.0000
0.0000 0.0000 0.0000 0.5000

⎞

⎟
⎟
⎠. Then, the ranking values are

obtained as o1 � 3, o2 � 4, o3 � 2 and o4 � 1. Thus, the ranking order of alternatives is

x2
83.39%� x1

93.61%� x3
100%� x4.

(2) Comparison analyses with existing methods in [19, 21, 31, 46]
To reveal the superiority of IDMmethods, three comparison criteria are shown as follows:

(i) Average total deviation (ATD)
Using Eq. (9), an geometrically consistent IMPR W̃ � (ω̃i j )n×n with ω̃i j � [ωl

i j , ω
u
i j ]

is generated by an IWV ω̃, where ω̃ is obtained from P̃ � ([li j , ui j ])n×n . Generally,
W̃ does not equal to the original IMPR P̃ . Inspired by the concept of logarithm com-
patibility degree of IMPRs [41], the value of ATD is computed by AT D( P̃, W̃ ) �

2
n(n−1)

∑n−1
i�1

∑n
j�i+1 (|ln li j − lnωl

i j |+|ln ui j − lnωu
i j |).

(ii) Difference index (DI).
Based on the geometric mean, Wang [47] defined the concept of difference index

(DI) to measure the difference level of two triangular fuzzy PRs. Accordingly, the
difference index between two IMPRs W̃ and P̃ is defined as DI ( P̃, W̃ ) � 1 −
(

∏

i �� j

(
min{li j ,ωl

i j }
max{li j ,ωl

i j }

)(
min{ui j ,ωu

i j }
max{ui j ,ωu

i j }

)) 1
2n(n−1)

.
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(iii) Difference ratio (DR)
Li et al. [19] defined the difference ratio of two IMPRs W̃ and P̃ , denoted by DR( P̃, W̃ ),

which is calculated by DR( P̃, W̃ ) �
(

∏

i< j

(
max{li j ,ωl

i j }
min{li j ,ωl

i j }

)(
max{ui j ,ωu

i j }
min{ui j ,ωu

i j }

)) 1
n(n−1)

.

Clearly, the smaller the values of above two comparison criteria, the more effective the
corresponding decision-making method. Using methods in [19, 21, 31, 46] and the proposed
IDM method to solve this example, the results are obtained and shown in Table 2.

Let the IWV ω̃ is obtained by the proposed IDM method. Let an IMPR W̃ be constructed
by ω̃ using Eq. (9). From Table 2, the following conclusions are drawn:

(1) For different values of the control parameter β in Step 5 of Algorithm 1, the ranking
order obtained by the proposed IDM method is always x2 � x1 � x3 � x4, which is in
accordance with that obtained by methods in [19, 21, 46] but different from that obtained
by method in [31]. However, the values of the possibility degree p21 and p13 vary with the
control parameter β.

(2) The last two columns of Table 2 show that the values of DI and DR obtained by
the proposed IDM method are correspondingly smaller than those obtained by methods in
[19, 21, 31]. Thus, the geometrically consistent IMPR W̃ constructed by the proposed IDM
method retains more the original preference information than those constructed by method
in [19, 21, 31]. Although some values of DI and DF obtained by the proposed IDM method
are larger than those obtained by method in [46], simulation experiments in SubSect. 7.1.2
reveal that the mean of DI (or DF) obtained by the proposed IDM method is smaller than
that obtained by method in [46] in case of randomly generated 1000 IMPRs.

(3) The eighth to the last columns in Table 2 indicate that the value of ATD obtained by the
proposed IDM method is smaller than those obtained by methods in [19, 21, 31, 46]. That is
to say, the geometrically consistent IMPR W̃ is the IMPR which is the closest to the original
IMPR P̃ from the perspective of the distance deviation. Thus, the proposed IDM method is
superior to methods in [19, 21, 31, 46].

(4)The methods in [19, 31] and the proposed IDM method are based on the geometric
consistency of IMPR proposed by [19]. Table 2 clearly shows that the values of three com-
parison criteria obtained by the proposed IDM method are smaller than those obtained by
methods in [19, 31]. Thus, the proposed IDMmethod with an IMPR could avoid information
loss and contain more original information within the original IMPR, which further verifies
the effectiveness of the proposed IDM method with an IMPR.

7.1.2 Comparative analyses based on simulation experiments

In what follows, comparison analyses based on simulation experiments are conducted to
further illustrate the superiority and effectiveness of the proposed IDMmethod. When using
the proposed IDM method and methods in [19, 21, 31, 46] to derive interval weights from
lots of randomly generated IMPRs, some specifications are stipulated as follows:

(1) For the method in [21], Eqs. (12–15) on page 258 in [21] are applied to generate the
IWV;

(2) For the method in [19], the parameter in Eq. (5.18) on p. 635 in [19] is taken as tur � 2;
(3) For the proposed IDMmethod, the control parameter in Step 5 of Algorithm 1 is taken

as β � 0.8. Additionally, the tolerance parameters of model (M-4) with the same value are
stipulated as follows:
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(i) If n � 4 or n � 5, then δ−
i j,l � δ+i j,l � δ−

i j,u � δ+i j,u � 0.5; (ii) If n � 6 or n � 7, then

δ−
i j,l � δ+i j,l � δ−

i j,u � δ+i j,u � 1.2; (iii) If n � 8, then δ−
i j,l � δ+i j,l � δ−

i j,u � δ+i j,u � 1.5.
(4) Let AV -ATD, AV -DI and AV -DF denote the average values of above three comparison

criteria under randomly generating a large number of different dimensions of IMPRs.
(5) For simplicity, letWang, Li, Zhang, Liu, and ∗ denote method in [21], method in [19],

method in [31], method in [46] and the proposed IDM method in this paper, respectively.
(6) Let perγ

ϑ (ϑ �� γ ; ϑ, γ � Wang, Li, Zhang, Liu, ) denote the percentage of the
same ranking order obtained by γ -method and ϑ-method.

For randomly generated 1000 IMPRs, the values of AV -ATD, AV -DI, and AV -DF corre-
sponding to methods in [19, 21, 31, 46] and the proposed IDM method are calculated and
shown in Tables 3–5, respectively. In the meanwhile, the percentages of the same ranking
order obtained any two methods in [19, 21, 31, 46] and the proposed IDM method are com-
puted and shown in Table 6. To visually demonstrate the advantages of the proposed IDM
method, the values of AV -ATD, AV -DI and AV -DF obtained by methods in [19, 21, 31, 46]
and the proposed IDM method are depicted in Fig. 5.

By scrutinizing Tables 3–6 and Fig. 6, two constructive conclusions are drawn as follows:
(1) The values of AV -ATD, AV -DI and AV -DF obtained by the proposed IDM method

are smaller than those obtained by methods in [19, 21, 31, 46] for different dimensions of
IMPR. Moreover, it is worth noting that methods in [19, 31] and the proposed IDM method
are all based on the geometrical consistency of IMPR. Thus, the proposed IDM method is
more efficient than methods in [19, 21, 31, 46] from the perspectives of ATD, DI and DR.

(2) As can be seen in Table 6, the maximum of perγ
ϑ (ϑ, γ � Wang, Li, Zhang, Liu, )

is 75.4% and the value of perγ
ϑ decreases with the increase in dimension of IMPRs from 4 to

8. In fact, different IDM methods are generally based on different consistency definitions of

Table 3 Values of AV -ATD obtained by methods in [19, 21, 31, 46] and the proposed IDMmethod for different
dimensions of IMPRs

Method n � 4 n � 5 n � 6 n � 7 n � 8

Method in [21] 0.8259 0.9450 1.0409 1.0514 1.0242

Method in [19] 1.0422 1.0599 1.0685 1.0765 1.0951

Method in [31] 0.9776 0.9917 1.0130 1.0255 1.0907

Method in [46] 0.6700 0.6936 0.7118 0.7201 0.7246

The proposed IDM method 0.5097 0.5524 0.6272 0.6869 0.6897

Table 4 Values of AV -DI obtained by methods in [19, 21, 31, 46] and the proposed IDM method for different
dimensions of IMPRs

Method n � 4 n � 5 n � 6 n � 7 n � 8

Method in [21] 0.5549 0.6063 0.6413 0.6461 0.6375

Method in [19] 0.6420 0.6506 0.6544 0.6579 0.6645

Method in [31] 0.6197 0.6269 0.6536 0.6404 0.6627

Method in [46] 0.4826 0.4970 0.5070 0.5116 0.5143

The proposed IDM method 0.3893 0.4183 0.4614 0.4933 0.4954
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Table 5 Values of AV -DR obtained by methods in [19, 21, 31, 46] and the proposed method for different
dimensions of IMPRs

Method n � 4 n � 5 n � 6 n � 7 n � 8

Method in [21] 2.3228 2.6064 2.8778 2.8986 2.8117

Method in [19] 2.8784 2.9096 2.9287 2.9457 2.9985

Method in [31] 2.6879 2.7123 2.7635 2.7961 2.9880

Method in [46] 1.9764 2.0142 2.0470 2.0618 2.0691

The proposed IDM method 1.6940 1.7571 1.8882 2.0018 2.0047

IMPRs or models of adjusting the consistency of IMPRs. Moreover, different IDM methods
apply different models to derive the interval priority vectors. Therefore, it is natural and
reasonable that different IDM methods may result in different ranking orders from the same
IMPR. The maximum of perγ

ϑ cannot reach 100%, which verifies that no two methods can
get exactly the same ranking order. Moreover, the higher the dimension of IMPR, the more
difficult the same ranking order obtained by two methods, which is in accordance with our
intuition. Therefore, simulation experiments not only validate the proposed IDMmethod but
also illustrate that the proposed IDM method is more believable and effective than methods
in [19, 21, 31, 46] from the perspectives of ATD, DI and DR.

7.2 Application of GDMmethod with IMPRs and comparative analyses

Example 3 Consider an example presented in [25, 48]. A GDM problem is composed of five
feasible alternatives xi (i � 1, 2, · · · , 5) and three experts ek (k � 1, 2, 3) with unknown
weights. Three individual IMPRs P̃k (k � 1, 2, 3) are provided as follows:

P̃1 �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[1, 1] [6, 7] [ 17 ,
1
5 ] [7, 8] [

1
6 ,

1
5 ]

[ 17 ,
1
6 ] [1, 1] [ 12 , 1] [6, 7] [

1
7 ,

1
5 ]

[5, 7] [1, 2] [1, 1] [6, 7] [7, 8]
[ 18 ,

1
7 ] [

1
7 ,

1
6 ] [

1
7 ,

1
6 ] [1, 1] [

1
2 , 1]

[5, 6] [5, 7] [ 18 ,
1
7 ] [1, 2] [1, 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, P̃2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[1, 1] [6, 7] [ 12 , 1] [7, 8] [
1
2 , 1]

[ 17 ,
1
6 ] [1, 1] [ 12 , 1] [6, 7] [

1
7 ,

1
6 ]

[1, 2] [1, 2] [1, 1] [5, 7] [7, 8]
[ 18 ,

1
7 ] [

1
7 ,

1
6 ] [

1
7 ,

1
5 ] [1, 1] [

1
2 , 1]

[1, 2] [6, 7] [ 18 ,
1
7 ] [1, 2] [1, 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

P̃3 �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[1, 1] [6, 7] [ 12 , 1] [5, 6] [
1
8 ,

1
7 ]

[ 17 ,
1
6 ] [1, 1] [ 12 , 1] [6, 7] [

1
7 ,

1
6 ]

[1, 2] [1, 2] [1, 1] [7, 8] [6, 7]
[ 16 ,

1
5 ] [

1
7 ,

1
6 ] [

1
8 ,

1
7 ] [1, 1] [

1
2 , 1]

[7, 8] [6, 7] [ 17 ,
1
6 ] [1, 2] [1, 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

7.2.1 Application of GDMmethod with IMPRs

Using the proposed GDM method to solve this example, the solving process is shown as
follows.

Step 1 Set δ−
i j,θ � δ+i j,θ � 0.5(θ � l, u; i < j ; i, j � 1, 2, · · · , 5) and C I 5 � 0.1187 by

Table 1.
Step 2 Using model (M-6), the experts’ weight vector is obtained as λ �

(0.3788, 0.4137, 0.2075)T.

123



2332 S. Wan et al.

Ta
bl
e
6
Pe

rc
en
ta
ge
s
of

th
e
sa
m
e
ra
nk

in
g
or
de
r
ob

ta
in
ed

by
an
y
tw
o
m
et
ho

ds
in

[1
9,
21

,3
1,

46
]
an
d
th
e
pr
op

os
ed

ID
M

m
et
ho

d
fo
r
di
ff
er
en
td

im
en
si
on

s
of

IM
PR

s

n
pe
r∗ W

an
g

pe
r∗ L

i
pe
r∗ Z

ha
ng

pe
r∗ L

iu
pe
rW

an
g

L
i

pe
rW

an
g

Z
ha
ng

pe
rW

an
g

L
iu

pe
rL

i
Z
ha
ng

pe
rL

i
L
iu

pe
rZ

ha
ng

L
iu

n
�

4
17

.0
0%

75
.4
0%

52
.5
0%

5.
80

%
16

.9
0%

19
.6
0%

4.
10

%
16

.9
0%

6.
20

%
6.
10

%

n
�

5
5.
40

%
47

.7
0%

27
.4
0%

0.
80

%
4.
90

%
5.
90

%
0.
04

%
4.
90

%
1.
40

%
0.
80

%

n
�

6
2.
00

%
25

.0
0%

10
.6
0%

0.
20

%
2.
20

%
3.
00

%
0.
20

%
2.
20

%
0.
30

%
0.
30

%

n
�

7
0.
50

%
3.
80

%
2.
10

%
0

0.
90

%
2.
50

%
0

0.
90

%
0

0

n
�

8
0.
20

%
2.
00

%
0

0
0.
20

%
0.
30

%
0

0.
20

%
0

0

123



Group decision-making with interval multiplicative preference relations 2333

Fig. 6 Values of AV-ATD, AV-DI, and AV-DF obtained by methods in [19, 21, 31, 46] and the proposed IDM
method

Step 3 By Eq. (31), the collective IMPR P̃G � ( p̃i j,G )5×5 is computed as follows:

P̃G �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[1.0000, 1.0000] [6.0000, 7.0000] [0.3111, 0.5436] [6.5279, 7.5364] [0.2474, 0.3630]
[0.1429, 0.1667] [1.0000, 1.0000] [0.5000, 1.0000] [6.0000, 7.0000] [0.1429, 0.1786]
[1.8397, 3.2144] [1.0000, 2.0000] [1.0000, 1.0000] [5.7449, 7.1967] [6.7796, 7.7814]
[0.1327, 0.1532] [0.1429, 0.1667] [0.1390, 0.1741] [1.0000, 1.0000] [0.5000, 1.0000]
[2.7550,4.0428] [5.5996, 7.0000] [0.1285, 0.1475] [1.0000, 2.0000] [1.0000, 1.0000]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Step 6 Using Eq. (17), one has C I ( P̃G ) � 0.9665 > C I 5. Thus, P̃G is unacceptably
consistent by Definition 11. It is assumed that the control parameter of Step 5 in Algorithm
1 is taken as β � 0.8 in each iteration. As per Algorithm 1, an acceptably consistent IMPR
P̃ ′

G is obtained as follows:

P̃ ′
G �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[1.0000, 1.0000] [2.1616, 3.9007] [0.3333, 0.6993] [3.8985, 7.0091] [0.5454, 1.0711]
[0.2564, 0.4626] [1.0000, 1.0000] [0.2124, 0.4608] [2.1452, 3.8610] [0.2657, 0.4995]
[1.4301, 3.0001] [2.1703, 4.7092] [1.0000, 1.0000] [6.0548, 11.6102] [2.0845, 4.0107]
[0.1427, 0.2565] [0.2590, 0.4662] [0.0861, 0.1652] [1.0000, 1.0000] [0.2094, 0.4448]
[0.9336,1.8335] [2.0021, 3.7635] [0.2493, 0.4793] [2.2484, 4.7762] [1.0000, 1.0000]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Step 7 Solving the model (M-6), the groupmultiplicative normalized IWV is derived from
P̃ ′

G as:

ω̃ � ([1.1260, 1.5676], [0.5359, 0.7278], [2.2067, 3.2562], [0.2396, 0.3451], [1.0708, 1.4776])T

Step 8 According to the possibility degree of intervals in [19] and Eq. (30), the possibility
degree matrix P is obtained as follows:

P �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.5000 1.0000 0.0000 1.0000 0.5837
0.0000 0.5000 0.0000 1.0000 0.0000
1.0000 1.0000 0.5000 1.0000 1.0000
0.0000 0.0000 0.0000 0.5000 0.0000
0.4163 1.0000 0.0000 1.0000 0.5000

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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The ranking values are obtained as o1 � 4, o2 � 2, o3 � 5, o4 � 1 and o5 � 3. Thus, the
ranking order of five feasible alternatives is x3 � x1 � x5 � x2 � x4.

Without loss of generality, let the value of the control parameter βt (t � 0, 1, 2, · · ·) of
Step 5 in Algorithm 1 be a constant β. Additionally, suppose that the values of all tolerance
parameters in model (M-4) are the same and taken as a constant δ, i.e., δ−

i j,l � δ+i j,l � δ−
i j,u �

δ+i j,u � δ (i < j ; i, j � 1, 2, · · · , 5). For different values of β and δ, the corresponding
results are computed and shown in Table 7. As can be seen from Table 7, the ranking orders
of alternatives are always x3 � x1 � x5 � x2 � x4.

7.2.2 Comparative analyses

Let ω̃ � (ω̃1, ω̃2, · · · , ω̃n)T be the group multiplicative normalized IWV and W̃ �
(ω̃i j )n×n � ([ω−

i j , ω
+
i j ])n×n be constructed by ω̃. Clearly, W̃ is a geometrically consistent

IMPR. By Definition 9, the logarithmically geometric compatibility degree between W̃ and
each individual IMPR P̃k is computed by.

C( P̃k, W̃ ) � 1
2n(n−1)

∑n−1
i�1

∑n
j�i+1 (ln li jk + ln ui jk − lnω−

i j − lnω+
i j )

2 (k �
1, 2, . . . ,m).

To illustrate the effectiveness of the results obtained by the proposed GDM method,
we resort to the mean of all logarithmically geometric compatibility degrees between W̃ and
each individual IMPR P̃k (k � 1, 2, · · · ,m), which is defined asMC � 1

m

∑m
k�1 C( P̃k, W̃ ).

Apparently, the smaller the value of MC, the more reliable the GDM method. Using GDM
methods in [25, 28] and the proposed GDM method to solve Example 3 and the following
five GDM subproblems, some notes are stipulated as follows:

(1) For theGDMmethod in [25], the experts’weights are obtained byEq. (14) (on page 188
in [25]) with the parameter a � 0.5;

(2) For the GDM method in [28], the BUM function and the parameter of Eq. (19) are
taken as Q(y) � y1/4 and α � 1, respectively;

(3) Using the proposed GDM method to solve five GDM subproblems, the tolerance
parameters in model (M-4) are equal to the constant 0.4. Additionally, the control parameters
βt (t � 0, 1, 2, · · ·) of Step 5 in Algorithm 1 are taken as the constant β � 0.5.

UsingGDMmethods in [25, 28] to solveExample 3, the corresponding results are obtained
and displayed in Table 7. As can be seen in Table 7, three interesting conclusions are sum-
marized as follows:

(1) Table 7 shows that the last column of Table 7 reveals that the values of MC computed
by the proposed GDM method for different values of parameters β and δ are smaller than
those computed by GDM methods in [25, 28]. Thus, the proposed GDM method retains
more original information GDM methods in [25, 28] and can avoid the loss of information.
Additionally, the ranking orders of alternatives are always x3 � x1 � x5 � x2 � x4 for
different values of parameters β and δ. However, the value of the possibility degree p15 varies
with the control parameter β and tolerance parameter δ.

(2) The ranking order obtained by the proposedGDMmethod is the same as those obtained
from the upper triangle entries of IMPRs by GDMmethods in [25, 28]. However, the ranking
order obtained by the proposed GDM method is different from that obtained from the lower
triangle entries of IMPRs by the GDMmethod in [28]. That is to say, different ranking orders
may be obtained from the same IMPR by the GDM method in [28]. For the proposed GDM
method, Remark 5 demonstrates that the ranking order obtained from the upper triangle
entries of an IMPR is in accordance with that obtained from the lower triangle entries of the
IMPR.
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(3) In fact, the reciprocity of IMPRs illustrates that an IMPR is completely deter-
mined by its lower (or upper) triangular entries. Therefore, the result obtained from the
upper triangle entries of an IMPR should be the same as that obtained from the lower
triangle entries of the same IMPR. Using the GDM method in [28] to determine the
experts’ weights, two different experts’ weight vectors λ1 � (0.2935, 0.4329, 0.2736)T

and λ2 � (0.2897, 0.4227, 0.2876)T are obtained, where λ1 and λ2 are obtained from
the upper and lower triangle entries of P̃k (k � 1, 2, 3), respectively. However, this
paper constructs a convex programming model to derive the unique experts’ weight vec-
tor λ � (0.3788, 0.4137, 0.2075)T, which effectively improves the objectivity of decision
results.

The phenomena of rank reversal [49] often occur in decision science. When an alternative
is added to (or removed from) a set of alternatives, the rank reversal means that the ranking
order of any other two alternatives is changed. A reasonable decision-making method should
avoid the rank reversal by adding or deleting of an alternative. To further verify the superiority
of the proposed GDMmethod, rank reversal test is performed. To test the rank reversal of the
proposed GDMmethod, the original problem (Example 3) is decomposed into the following
fiveGDM subproblem, where the i-th GDM subproblem is obtained by deleting alternative xi
(i � 1, 2, · · · , 5) from the original GDM problem. Using GDM methods in [25, 28] and the
proposedGDMmethod to solve these fiveGDMsubproblem, respectively, the corresponding
results are generated and given in Tables 8–12.

From Tables 8–12, the following conclusions are drawn:
(1) From the perspective of logarithmically geometric compatibility degree of IMPRs,

the last columns of Tables 8–12 reveal that MC obtained by the proposed GDM method is
smaller than that obtained by the GDM method in [25].

(2) If the GDM method in [28] is used to solve the above five GDM subproblems, the
ranking order (or the experts’ weight vector) obtained from the upper triangle entries is
different from that obtained from the lower triangle entries. This phenomenon illustrates that
the GDM method in [28] is defective in theory.

(3) A decision-making method should avoid the phenomena of rank reversal as much as
possible. When using GDMmethods in [25, 28] and the proposed GDMmethod to solve the
3-th and 4-th GDM subproblems, Tables 10–11 reveal that the ranking order of x1 and x5 is
changed. When using methods in [28] to solve the 1-th GDM subproblem, the ranking order
of x2 and x5 is changed. When using methods in [25, 28] to solve the 5-th GDM subproblem,
the ranking order of x1 and x3 is also changed. However, there is no reversal phenomenon for
any two alternatives by the deletion of alternative xi (i � 1, 2, 5) for the proposed GDM
method. Thus, the proposed GDM method can better avoid the phenomena of rank reversal
than GDM methods in [25, 28]. The examination of the rank reversal shows the validity and
practicability of the proposed GDM method.

8 Conclusion

This paper mainly discusses the GDMmethod with IMPRs based on geometric consistency.
First, a new individual decision-making method with an IMPR is put forward. Then, a novel
GDM method with IMPRs is proposed. The main contributions and features s of this paper
are outlined as follows:

(1) A logarithmic compatibility degree between two IMPRs is introduced to define a new
consistency index of IMPRs. This new consistency index is invariant under permutation
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of alternatives and transpose of IMPRs. In virtue of statistical approach, the thresholds
of the proposed consistency index are presented.

(2) To repair and improve the consistency level of IMPRs, an interactive algorithm is
designed. Using the relationship between an interval weight vector (IWV) and an IMPR,
a fuzzy programmingmodel is established to derive an IWV.As a result, an IDMmethod
is proposed.

(3) By minimizing the logarithmically geometric compatibility degree between each indi-
vidual IMPR and the collective one, a convex programming model is established to
objectively derive the experts’ weights. This model can retain more original informa-
tion within the original IMPR.

(4) By combining experts’ weights and the proposed IDM method, a novel GDM method
with IMPRs is put forward.

(5) Several numerical examples and simulation experiments are conducted to further reveal
the superiority of the proposed IDM method and GDM method.

However, current research on IMPRs in this paper reveals that there is more than one
consistency definition of IMPRs. Which consistency definition of IMPRs is the most scien-
tific and reliable one? It will be researched in near future. Additionally, a large-scale group
decision-making is a very common pattern of decision science in the modern information
and digital economy time [50, 51]. A large-scale group decision-making with IMPRs should
be taken into account to further enrich the theory and application of GDM with IMPRs.
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22. Krejčí J (2017)Onmultiplicative consistency of interval and fuzzy reciprocal preference relations.Comput
Ind Eng 111:67–78

23. Zhang H (2015) A consistency model for group decision making problems with interval multiplicative
preference relations. Appl Soft Comput 34:60–71

24. Aguarón J, Moreno-Jiménez JM (2003) The geometric consistency index: Approximated thresholds. Eur
J Oper Res 147(1):137–145

25. Liu F, Zhang W-G, Shang Y-F (2016) A group decision-making model with interval multiplicative recip-
rocal matrices based on the geometric consistency index. Comput Ind Eng 101:184–193

26. Conde E, Pérez MDPR (2010) A linear optimization problem to derive relative weights using an interval
judgement matrix. Eur J Oper Res 201(2):537–544

27. Dong YC et al (2015) Consistency issues of interval pairwise comparison matrices. Soft Comput
19(8):2321–2335

28. Wu J et al (2009) The induced continuous ordered weighted geometric operators and their application in
group decision making. Comput Ind Eng 56(4):1545–1552

29. Zhou L et al (2016) The optimal group continuous logarithm compatibility measure for interval multi-
plicative preference relations based on the COWGA operator. Inf Sci 328:250–269

30. Crawford G, Williams C (1985) A note on the analysis of subjective judgment matrices. J Math Psychol
29(4):387–405

31. Zhang Z (2017) Logarithmic least squares approaches to deriving interval weights, rectifying incon-
sistency and estimating missing values for interval multiplicative preference relations. Soft Comput
21(14):3993–4004

32. Koksalmis E, Kabak Ö (2019) Deriving decision makers’ weights in group decision making: an overview
of objective methods. Information Fusion 49:146–160

33. Wang B, Liang J, Qian Y (2014) Determining decision makers’ weights in group ranking: a granular
computing method. Int J Mach Learn Cybern 6(3):511–521

34. Yager RR, Xu ZS (2006) The continuous ordered weighted geometric operator and its application to
decision making. Fuzzy Sets Syst 157(10):1393–1402

35. Zhang Z, Pedrycz W (2019) A consistency and consensus-based goal programming method for group
decision-making with interval-valued intuitionistic multiplicative preference relations. IEEE Trans
Cybern 49(10):3640–3654

36. Liu F et al (2018) A group decision making model based on an inconsistency index of interval multiplica-
tive reciprocal matrices. Knowl Based Syst 145:67–76

37. Wang Z-J (2018) Comments on “A group decision-making model with interval multiplicative reciprocal
matrices based on the geometric consistency index.” Comput Ind Eng 117:131–137

38. Wang Z-J (2018) A note on a group decision making model based on a generalized ordered weighted
geometric average operator with interval preference matrices. Fuzzy Sets Syst 341:145–153

123



Group decision-making with interval multiplicative preference relations 2345

39. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking.
IEEE Trans Syst Man Cyberen 18(1):183–190

40. Alefeld G, Herzberger J (1993) Introduction to interval computations. Academic Press, London
41. Wang YL, Chen HY, Zhou LG (2013) Logarithm compatibility of interval multiplicative preference

relations with an application to determining the optimal weights of experts in the group decision making.
Group Decis Negot 22(4):759–772

42. Escobar MT, Aguarón J, Moreno-Jiménez JM (2015) Some extensions of the precise consistency con-
sensus matrix. Decis Support Syst 74:67–77

43. Brunelli M (2017) Studying a set of properties of inconsistency indices for pairwise comparisons. Ann
Oper Res 248(1–2):143–161

44. Xu Y, Liu X, Wang H (2018) The additive consistency measure of fuzzy reciprocal preference relations.
Int J Mach Learn Cybern 9(7):1141–1152

45. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manage Sci 17(4):141–164
46. Liu F, PedryczW,ZhangW-G (2017) Limited rationality and its quantification through the interval number

judgments with permutations. IEEE Trans Cybern 47(12):4025–4037
47. Wang Z-J (2015) Consistency analysis and priority derivation of triangular fuzzy preference relations

based on modal value and geometric mean. Inf Sci 314:169–183
48. XiaM, Chen J (2015) Studies on interval multiplicative preference relations and their application to group

decision making. Group Decis Negot 24(1):115–144
49. Al Salem AA, Awasthi A (2018) Investigating rank reversal in reciprocal fuzzy preference relation based

on additive consistency: causes and solutions. Comput Ind Eng 2018(115):573–581
50. YuanR,WuZ,Tu J (2022) Large-scale group decision-makingwith incomplete fuzzy preference relations:

The perspective of ordinal consistency. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2022.04.021
51. Wan S-P, Yan J, Dong J-Y (2022) Personalized individual semantics based consensus reaching process

for large-scale group decision making with probabilistic linguistic preference relations and application to
COVID-19 surveillance. Expert Syst Appl 191:116328

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Shuping Wan was born in 1974. He received the Ph. D. in control
theory and control engineering from Nankai University in 2005. He
is currently a professor in School of Information Technology, Jiangxi
University of Finance and Economics. He has contributed more than
200 journal articles to professional journals. His current research inter-
ests include decision analysis, fuzzy game theory, information fusion,
and financial engineering.

123

https://doi.org/10.1016/j.fss.2022.04.021


2346 S. Wan et al.

Xianjuan Cheng received a Ph.D. degree from Jiangxi University of
Finance and Economics, Nanchang, China, in 2021. Currently, she
is a graduate for Ph.D. degree in School of Information Technology,
Jiangxi University of Finance and Economics. She is currently a lec-
turer in the School of Economics and Management, Yangtze Univer-
sity, China. She recently focuses on the investigation on the preference
relation and its applications to decision-making.

Jiuying Dong received the Ph. D. degree in graph theory and combi-
natorial optimization from Nankai University, in 2013. She is currently
a professor in School of statistics, Jiangxi University of Finance and
Economics. She has contributed more than 60 journal articles to profes-
sional journals. Her current research interests include decision analysis,
graph theory and combinatorial optimization.

123


	Group decision-making with interval multiplicative preference relations
	Abstract
	1 Introduction
	2 Preliminaries
	3 A new consistency index of IMPRs
	3.1 A new logarithmically geometric compatibility degree
	3.2 A new consistency index of IMPRs

	4 A new method of improving consistency of IMPRs
	4.1 Thresholds of the new consistency index of IMPRs
	4.2 An algorithm of improving the consistency level of an IMPR

	5 A new IDM method with an IMPR
	5.1 Determination of IWVs from IMPRs
	5.2 A novel IDM method with an IMPR

	6 A novel GDM method with IMPRs
	6.1 Properties of GDM with IMPRs
	6.2 Determination of experts’ weights
	6.3 GDM method with IMPRs

	7 Numerical examples and comparative analyses
	7.1 Application of IDM with an IMPR and comparative analyses
	7.1.1 Application of IDM with an IMPR
	7.1.2 Comparative analyses based on simulation experiments

	7.2 Application of GDM method with IMPRs and comparative analyses
	7.2.1 Application of GDM method with IMPRs
	7.2.2 Comparative analyses


	8 Conclusion
	Acknowledgements
	References




