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Abstract
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box
nature, it is often difficult to understand the prediction results of deep models. In recent
years, many interpretation tools have been proposed to explain or reveal how deep models
make decisions. In this paper, we review this line of research and try to make a comprehen-
sive survey. Specifically, we first introduce and clarify two basic concepts—interpretations
and interpretability—that people usually get confused about. To address the research efforts
in interpretations, we elaborate the designs of a number of interpretation algorithms, from
different perspectives, by proposing a new taxonomy. Then, to understand the interpreta-
tion results, we also survey the performance metrics for evaluating interpretation algorithms.
Further, we summarize the current works in evaluating models’ interpretability using “trust-
worthy” interpretation algorithms. Finally, we review and discuss the connections between
deep models’ interpretations and other factors, such as adversarial robustness and learn-
ing from interpretations, and we introduce several open-source libraries for interpretation
algorithms and evaluation approaches.

Keywords Interpretation · Interpretability · Trustworthiness · Interpretable deep learning

1 Introduction

Deep learning models [98] have achieved remarkable performance in a variety of tasks, from
visual recognition, natural language processing, reinforcement learning to recommendation
systems, where deep models have produced results comparable to and in some cases superior
to human experts. Due to their nature of over-parameterization (involving more than millions
of parameters and stackedwithmore than hundreds of layers), it is often difficult to understand
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the prediction results of deep models [47]. Explaining1 their behaviors remains challenging
because of their hierarchical non-linearity in a black-box fashion. The lack of interpretability
raises a severe issue about the trust of deep models in high-stakes prediction applications,
such as autonomous driving, healthcare, criminal justice, and financial services [29]. While
many interpretation tools have been proposed to explain or reveal the ways that deep models
make decisions, nonetheless, either from a scientific view or a social aspect, explaining the
behaviors of deep models is still in progress. In this paper, instead of focusing on the social
impacts, regulations, and laws related to deepmodel interpretations, wewould like to focus on
the research field by clarifying the research objectives and reviewing the methods proposed.

Interpretation versus Interpretability In this work, we first clarify two concepts that should
be distinguished: interpretations and model interpretability. Interpretations are also named
as explanations or attributions that are calculated by interpretation algorithms to explain or
reveal the ways that deep models make decisions, such as the indication of discriminative
features used for model decisions [137], or the importance of every training sample as the
contribution for inference [91]. On the other hand, the model interpretability refers to the
intrinsic properties of a deep model measuring in which degree the inference result of the
deep model is predictable or understandable to human beings [47]. In practice, one could
apply the interpretation algorithms of trustworthiness (introduced below) to further evaluate
the model interpretability throughmatching the interpretations, i.e., the results from interpre-
tation algorithms for a deep model, with the human-labeled results if available, such as [24].
In this way, the comparison of interpretability becomes possible among different models.
More evaluation approaches are reviewed and will be introduced later.

Interpretation algorithms and the taxonomy As there are no formal nor well-agreed def-
initions about the way to interpret a deep model, the interpretation algorithms are usually
designed with different principles, such as

– To highlight the important parts of input features on which the deep model mainly relies,
using gradients [155], perturbations [55], proxy explainable models [137] and other
methods;

– To investigate the inside of deep models to understand the rationale of how models make
decisions by visualizing the intermediate features [191, 197], or putting the counterfactual
examples to investigate the changes [64];

– To analyze the training data by assessing their individual contributions [91], estimating
their learning difficulty [21] or detecting mislabeled samples [128].

This paper reviews the recent interpretation algorithms and proposes a novel taxonomy for
categorizing the interpretation algorithms. In brief, the proposed taxonomy has three orthog-
onal dimensions – (1) representations of interpretations, e.g., the input feature importance
or the training samples’ influences; (2) the type of the targeting model that the algorithm
can be used for, e.g., differentiable models, models containing specific architectures or other
properties; and (3) relations between interpretation algorithms and the deep model, e.g., the
closed-form expression or the composition of the model. Recent interpretation algorithms
can all be categorized to the proposed three-dimensional taxonomy, which will be presented
in detail in Sect. 3.

Evaluations on trustworthiness of interpretation algorithms and model interpretability
There are two evaluations: one on the trustworthiness of interpretation algorithms, another
on the model interpretability.

1 The subtle differences among interpretation, explanation, and attribution are not considered in this paper,
and we use them interchangeably.
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Fig. 1 Scheme about interpretations, interpretation algorithms, trustworthiness, model interpretability and the
corresponding evaluations

From previous reviews and outlooks for the interpretations [29, 47, 81, 107, 144], we
summarize the most important desiderata for the interpretation algorithms, i.e., the trustwor-
thiness. The “trustworthiness” here refers to that the interpretation results are reliable/faithful
to arbitrary deepmodels. That is to say: The trustworthy interpretation algorithm produces the
explanations that loyally reveal the model’s behaviors, instead of giving results that are irrel-
evant or just those desired by humans. Incorporating a trustworthy interpretation algorithm,
the evaluations on the model interpretability are then meaningful. In Fig. 1, we illustrate the
connections between these key concepts and further elaborate these concepts in Sect. 2.

The trustworthiness of the interpretation algorithms could be assessed by designed eval-
uation approaches for assuring the uses of interpretations, and the interpretability of deep
models could be evaluated and measured for identifying the most interpretable ones. Both
evaluations have challenges remaining, introduced below.

– Quantifying the utility of trustworthiness of interpretation algorithms is challenging due
to the lack of a proper definition of this quantity and well-defined metrics. Though
trustworthiness can be understood subjectively that the trustworthy algorithm produces
loyal interpretations to the model, the optimal metric is still under study. Simple metrics
such as accuracy, precision, and recall are not applicable here.

– The difficulty of evaluating the model interpretability mainly comes from the lack of the
ground truth. We could not casually annotate “true” interpretations as annotating image
labels because interpretation labels might not exist in most cases, or it would be out of
objectiveness. Furthermore, obtaining human labeled ground truth for interpretation is
labor/time-consuming, which is not scalable over large datasets.

Even in this complex and difficult situation, several efficient and effective approaches have
been proposed to evaluate the trustworthiness of interpretation algorithms and model inter-
pretability. The former is mainly based on perturbation evaluations [70, 127, 143] or proxy
models [9, 183], while the latter based on expert ground truths [24] or cross-model expla-
nations [104]. In Sect. 4, we comprehensively review the evaluation approaches on both the
trustworthiness of interpretation algorithms and model interpretability.

Overview We describe the organization of this survey paper: We introduce the key con-
cepts, including the interpretation algorithm, interpretations, model interpretability, and their
relations in Sect. 2.Wepresent the proposed taxonomy for interpretation algorithms and intro-
duce the algorithms accordingly inSect. 3. Evaluations on the trustworthiness of interpretation
algorithms and the model interpretability are introduced in Sect. 4. Section 5 discusses the
connections between interpretations and other research topics. Finally, we introduce several
open-source libraries for interpretations and related in Sect. 6.
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2 Main concepts: interpretations and interpretability

The fuzziness of main concepts interpretation and interpretability leads to a lot of confusions
and hinders the academic process. In this section, we make our efforts to clarify these fuzzy
research targets and introduce the definitions of interpretations, interpretation algorithms
and model interpretability, with involving the notion of trustworthiness.

2.1 Interpretation algorithms and trustworthiness

We first introduce interpretation algorithms. A deep model needs interpretations because the
inference output of themodel does not show the reasoning inside. An interpretation algorithm
is thus designed to produce interpretations to explain the model’s decisions and gain insight
into its internals of reasoning and rationale. As mentioned previously, there are no formal
nor well-agreed definitions about the way to interpret a deep model. We, therefore, adopt a
very loose definition about the interpretation:All the outcomes produced by the interpretation
algorithms that help to understand the model are considered as interpretations.

Instead of directly discussing the interpretations, we introduce the categories of the inter-
pretation algorithms, as they give different information to help humans to understand the
deep models. For example, an algorithm obtaining the training samples’ learning difficulties
helps to inspect the model’s training process; An algorithm computing the feature impor-
tance helps to realize the most important features that the model uses to make decisions;
an algorithm investigating the intermediate results of a neural network helps understand the
model’s decision-making process. We show a novel taxonomy to fully categorize the existing
and potential algorithms and review the corresponding algorithms in Sect. 3.

The interpretation can then lead to the discussion that the model is interpretable or not.
However, before that discussion, we should guarantee at the first step that the interpretation
algorithm is trustworthy and the interpretation can be trusted. The notion of trustworthiness
is proposed to cover the most important desiderata from the previous review works [29, 107,
122], and can be defined as follows:

– An interpretation algorithm is trustworthy if it properly reveals the underlying rationale
of a model making decisions.

In this definition, the underlying rationale covers all categories of information that help
to understand the model, e.g., how the model makes decisions, or the reasoning behind the
modelmaking decisions. Theword properly here targets the issue that the intrinsic underlying
rationale behind the model is usually given by an extrinsic algorithm. Extrinsic algorithms
may not be part of the targeting model to be interpreted. That is to say, as an additional
module to diagnose the model, the interpretation algorithm is at risk of giving explanations
that are independent of the model. A sanity check [3] was performed to inspect several
gradient-based interpretation algorithms by randomizing parts of parameters in the model
and showing the interpretation changes. However, a few algorithms always produce the same
interpretations, despite the significant changes of the parameters. Trustworthiness is defined
to recover the rationale of the model, whether the model makes the correct decisions or not,
instead of yielding information that is independent of the model. Though the definition of
trustworthiness is not mathematically rigorous, the idea behind is clear. There are also several
evaluations for assessing the trustworthiness, which will be introduced in Sect. 4.1.

Trustworthiness of different interpretation algorithms Due to the differences in represen-
tation of explanation results and type of models to be interpreted, the amount of information
exposed by interpretation algorithms may be different. Trustworthiness is only required for
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the explained information. It would be easy for achieving the trustworthiness if one algorithm
explains only a bit of information about the deep model, but this would be rarely useful for
any explanation. The trustworthiness is thus an ad hoc requirement with respect to the inter-
pretation algorithm and defined to guarantee the information provided by the interpretation
algorithm can be trusted.

Relation to self-interpretable models To complete the discussions of trustworthy interpre-
tation algorithms, we note that many researchers are working on effective self-interpretable
models, to name a few, Capsule Models [73, 142], Neural Additive Models [5] and CALM
[88]. We consider this is a particular case within our discussion that the self-interpretable
models contain both the model and the intrinsic interpretation algorithm. To be more accu-
rate, the self-interpretable models consist of an intrinsic interpretation algorithm. Moreover,
if the model makes decisions based on the intrinsic interpretations, then this interpretation
component is without doubt trustworthy.

Fully-interpretable modelsWe also discuss fully interpretable models here to get a better
understanding about the interpretations and the trustworthiness of interpretation algorithms
for black-boxdeepmodels.We informally give the definition that amodel is fully interpretable
if the model is totally understandable by humans. The following models are considered as
fully interpretable without too much controversy2: a set of limited number of rules; a depth-
limited decision tree; a sparse linear model.

Comparison to fully and self-interpretable models To compare across fully interpretable
models, self-interpretable models and black-box deep models, we can see: (1) fully inter-
pretable models can be totally understood by showing themselves. (2) Self-interpretable
ones can provide explanations with an amount of information by an intrinsic interpretation
algorithm. The interpretation algorithms for both fully and self interpretation models are
trustworthy. (3) For black-box deep models, it is hard to provide such interpretations and
much harder to guarantee the interpretation algorithms be trustworthy. Fortunately, the inter-
pretations may be different and do not provide the fully interpretable explanation results. The
trustworthiness only guarantees that the amount of information provided by the interpretation
algorithm is correct.

2.2 Model interpretability

From industrial demands, the model interpretability is sometimes more important than other
metrics such as accuracy because of safety and social issues in domains of autonomous driv-
ing, healthcare, criminal justice, financial services andmany others. Though nomathematical
definition has been proposed, general agreement about the expression proposed by [47] has
been reached. We reclaim their definition of model interpretability as follows.

– The model interpretability is the ability (of the model) to explain or to present in under-
standable terms to a human.

According to other review works [29, 115], “the interpretability of a model is higher if it
is easier for a person to reason and trace back why a prediction was made by the model.
Comparatively, a model is more interpretable than another model if the prior’s decisions are
easier to understand than the decisions of the latter”.

From the definition of themodel interpretability, the expressionunderstandable to a human
is a subjective notion. It is human-centered [47, 94], making it complicated to target this

2 Without any limits, even a rule-based model may be too complex for a human to understand the model [107,
141]. This is also the motivation of several works that pursue the sparsity of explanation results [137].
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research problem of quantitatively measuring and comparing the interpretability of various
models. Till recently, there are not many metrics for quantifying the model interpretability,
and Sect. 4.2 will introduce the existing evaluation approaches on the model interpretability.

We give an intuitive example to show that different models may have different inter-
pretability. Take image classification [43, 175] as the task, and a trustworthy algorithm of
analyzing the input-output relations as the interpretation algorithm.We consider two models,
and the produced interpretations locate different image pixels. It is easier to understand if
the interpretation aligns with the object parts in the image, while it is harder to understand if
the interpretation locates at the background or another accompanied object in the image for
recognizing the target object. Although the trustworthy algorithm reveals the rationales of
both models, we prefer the former model because its way of making decisions is more direct
to human understandings.

2.3 Toward interpretable deep learning

This section defined the trustworthiness of interpretation algorithms and the model inter-
pretability. We emphasize several points that usually confuse the field with more explicit
remarks.

Interpretation algorithms, interpretations and model interpretability The notions of inter-
pretation algorithms, interpretations, andmodel interpretability should be distinguished.Only
the interpretability among all these expressions is a property of the model. Interpretation
algorithms are designed to analyze the black-box model. Algorithms must be trustworthy;
otherwise, the interpretations do not reveal the model’s internals. Their relations and differ-
ences are illustrated in Fig. 1.

Summary of desiderata for interpretations In this section, the proposed desiderata is the
trustworthiness for interpretation algorithms.Researchers [29, 47, 81, 101, 107, 183] also pro-
posed many other desiderata for interpretations, interpretation algorithms or interpretability,
such as fairness, privacy, reliability, robustness, causality, trust, fidelity, faithfulness, transfer-
ability, informativeness, transparency, plausibility, satisfaction, accountability, etc. However,
we note that (1) properties, such as informativeness, plausibility, satisfaction, refer to whether
the interpretation is understandable to humans, and are different from the trustworthiness in
this paper that refers to algorithms; (2) properties, such as reliability, robustness, trust, fidelity,
faithfulness, transparency, are similar to trustworthiness or can be comprised by the general
definition of trustworthiness; (3) properties, such as causality, transparency, depend on the
underlying rationale in our context; (4) properties, such as fairness, transferability, privacy,
are the standards to constrain the models; and (5) others (e.g., accountability and traceability)
are more related to holistic evaluations of the systems. There is slight difference and specific
requirements in various scenarios, but the proposed trustworthiness is only for interpretation
algorithms.

Deep models for high-dimensional data for scientific discovery Though the motivation
of interpretations and interpretability at the beginning is to help humans understand the
deep models, the interpretations sometimes lead to other valuable and promising findings.
Deep models may be more efficient than humans to cope with high-dimensional data. From
molecules [84, 133] to black holes [86], from chemistry [62] to games [152], deep models
could be used to solve many problems. However, without interpretations, the knowledge
discovered by deep models is still unknown for humans, or the scores obtained are not
semantic and not fully understood by humans. Interpretations in these cases could be helpful
to find new intelligent patterns and discover new scientific theories. For example, from a
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perspective of rationale processes, interpretations can help humans to understand how a
model infers; Or a feature analysis algorithm can help to identify the most important features
that the model uses; Or a tool of investigating the data can help find the typical data samples
or the most influential ones that explain how the model makes decisions. These algorithms
are all included in this paper and will be discussed in the following section.

3 Interpretation algorithms: taxonomy, algorithm designs, and
miscellaneous

This section introduces the interpretation algorithms in recent years, with a proposed taxon-
omy of three dimensions. For each algorithm, we give a brief introduction and follow the
taxonomy for the categorization. A discussion is also provided for future works at the end of
this section.

3.1 Taxonomy

We categorize the existing interpretation algorithms according to three orthogonal dimen-
sions: representations of interpretations, targeting model’s types for interpretations, and the
relation between interpretation algorithms and models. We list the options in each dimension
for a better comparison.

For different applications and interpretation requirements, the representations of interpre-
tation are various:

– Feature (Importance). These algorithms aim at estimating the feature importance/
contribution with respect to the final objective. This includes the analyses on the dimen-
sions of input raw data and extracted features, e.g., images, texts, audios etc.; and
intermediate features inside models, e.g., the activations of neural networks; or latent
features in GANs.

– Model Response. Algorithms here generally propose to generate or find new examples
and see themodel’s responses, so as to investigate themodel behaviors on certain patterns,
prototypes, or discriminative features by which the model makes decisions.

– Model Rationale Process. Though deep models are complex, they can be substituted
by interpretable models, to gain insights on the rational process inside. Algorithms here
interpret the deep model by indicating the path that the model makes decisions.

– Dataset. Instead of interpreting deep models, algorithms here propose to explain the data
samples in the training set by showing how they affect the optimization phase of deep
models.

Interpretation algorithms cope with different types of models:

– Model-agnostic. Algorithms are included here that completely consider the models as
black boxes and do not investigate the inside of models.

– Differentiable model. This subset of algorithms contains only algorithms that address
the interpretations of differentiable models, especially neural networks. Note that model-
agnostic algorithms also cover this subset.

– Specificmodel. This family of algorithms can only be applied to certain types of models,
e.g., convolutional neural networks (CNNs), generative adversarial networks (GANs),
Graph Neural Networks (GNNs). This is a narrower family than the previous one.
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Fig. 2 Illustration of relations between the interpretation algorithmand themodel. Four relations are illustrated:
closed-form, composition, dependence and proxy

The third dimension for categorizing interpretation algorithms is the relation between the
interpretation algorithm and the model:

– Closed-form. These algorithms derive a closed-form formula from the target model and
output interpretable terms.

– Composition: Algorithms here can be considered as components of (interpretable) mod-
els, usually obtained during training.

– Dependence: These algorithms build new operations upon the target model after training
and output interpretable terms.

– Proxy. Unlike dependence, algorithms here obtain, via learning or derivation, a proxy
model for explaining the behavior of models.

For a better illustration, four of relations between interpretation algorithms and deep models
are shown in Fig. 2.

We have introduced the proposed taxonomy of three dimensions: Representation, Model
Type and the Relation. In the following subsection, we will present most of the recent inter-
pretation algorithms. We also give a categorization of all these algorithms with respect to the
proposed taxonomy in Table 1.

3.2 Interpretation algorithms

LIME and model-agnostic algorithms LIME [137] presents a locally faithful explanation
by fitting a set of perturbed samples near the target sample using a potentially interpretable
model, such as linear models and decision trees.We define a model g ∈ G, whereG is a class
of interpretable models. The domain of g is {0, 1}d ′

and its complexity measure is Ω(g). Let
f : Rd → R be the model being explained and πx (z) be the proximity measure between
a perturbed sample z and x . Finally, let L( f , g, πx ) be a measure of the unfaithfulness of
g in approximating f in the locality defined by πx . LIME produces explanations by the
following:

ξ(x) = argmin
g∈G

L( f , g, πx ) + Ω(g). (1)

The obtained explanation ξ(x) interprets the target sample x , with linear weights when g is
a linear model. LIME is model-agnostic, meaning that the obtained proxy model is suitable
for any model. Similarly, several model-agnostic algorithms, such as Anchors [138], SHAP
[110], RISE [127],MAPLE [130], target interpreting features and provide feature importance
or contributions to the final decision.

Global interpretation algorithms Feature importance analysis is a common tool for
explaining the model outputs with respect to inputs. The aforementioned approaches can
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be categorized into feature importance analysis, while their interpretations are for individ-
ual examples, giving unique results for each different example. Different from these “local”
interpretations, “global” interpretations provide feature importance in an overall vision of
the model. Global interpretations for deep models are usually based on local ones, and an
aggregation of local interpretations is performed to obtain the global feature importance,
while the difference resides in the aggregation approach, e.g., LIME-SP [137], NormLIME
[6] and GALE [166].

Input gradient-based algorithms The input gradient attributes the important features in
the input domain. However, for deep nonlinear models with numerous layers stacked, the
gradientswould be vanished or saturated during the back-propagation and thus contain noises.

SmoothGrad [155] proposed to remove the noises by averaging the gradients of a number
of noised inputs. We take visual tasks as an example: Given input image x , neural networks
compute a class activation function Sc for class c ∈ C . A sensitivity map can be constructed
by calculating the gradient of Mc with respect to input x : Mc(x) = ∂Sc(x)/∂x . However,
the saliency maps are often noisy because of sharp fluctuations of the derivative. To smooth
the gradients, multiple Gaussian noises are added to the input image, and the saliency maps
are averaged. SmoothGrad is defined as follows:

M̂c(x) = 1

n

n∑

1

Mc(x + N (0, σ 2)). (2)

Integrated Gradient (IG) [160] aggregates the gradients along with the inputs that lie on
the straight line between the baseline and input. Let F be a neural network, x be the input,
and x ′ be the baseline input, which can be a black image for computer vision models and a
vector of zeros for word embedding in text models. The integrated gradients along the i th
dimension is

IGi (x) = (xi − x ′
i ) ×

∫ 1

α=0

∂F(x ′ + α × (x − x ′))
∂xi

dα. (3)

An axiom called completeness is satisfied, which states that the attributions add up to the
difference between the output of F at input x and baseline x ′.

Other input gradient-based algorithms include DeepLIFT [150], VarGrad [3], GradSHAP
[110], and FullGrad [156].

Layer-wise relevance propagationLayer-wise relevance propagation (LRP) [16] is also an
input feature attribution algorithm. Instead of using proxymodels, perturbations or gradients,
LRP recursively computes a Relevance score for each neuron of layers, so as to understand
the contribution of a single pixel of an image x to the prediction function f (x) in an image
classification task.

f (x) = · · · =
V (l+1)∑

d=1

R(l+1)
d =

V (l)∑

d=1

R(l)
d = · · · =

V (1)∑

d=1

R(1)
d , (4)

where R(l)
d is the Relevance score of the dth neuron at the lth layer, V (l) indicates the dimen-

sion of lth layer, and V (1) is the number of pixels in the input image. Iterating Eq. (4) from
the last layer, which is the classifier output f (x) to the input layer x consisting of image
pixels, then yields the contribution of pixels to the prediction results. Based on the idea of
back-propagating Relevance scores, LRP can be extended to other neural networks, evenwith
special and complex nonlinear operations [27, 118]. To adapt LRP to specific tasks, many
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variants have been proposed, such as Contrastive LRP [67] which produces pixel-wise expla-
nations of instance objects, Softmax-Gradient LRP [79] which gives explanations focusing
on discriminating possible objects in the images, and Relative Attributing Propagation (RAP)
[123] which focuses on both positive and negative features. Furthermore, extended LRPs [34,
169] can be helpful to interpret Transformer models [45, 48, 159].

CAM and variantsGiven a CNN and an image classification task, classification activation
map (CAM) [197] can be derived from the operations at the last layers of the CNNmodel and
show the important regions that affect model decisions. Specifically, for a given category c,
we expect the unit corresponding to a pattern of the category in the receptive field be activated
in the featuremap. Theweights in the classifier indicate the importance of each featuremap in
classifying category c. Therefore, a weighted sum of visual patterns illustrates the important
regions of a category. Let fk(x, y) denote the activation of unit k in the last convolutional
layer at spatial location (x, y), Fk = ∑

x,y fk(x, y) be the global average pooling for unit
k, and wc

k be the weight corresponding to class c for unit k so that
∑

k wc
k Fk is the input to

softmax for class c. Then the activation map for class c is:

Mc(x, y) =
∑

k

wc
k fk(x, y). (5)

GradCAM [145] further looks at the gradients flowing into the convolutional layer to give
weight to activation maps. Let yc be the score for class c before the softmax, Ak be feature
map activations of the unit k in a convolutional layer, the neuron importance weight αc

k is the
global-average-pooled gradient of yc with respect to Ak :

αc
k = 1

Z

∑

i

∑

j

∂ yc

∂Ak
i, j

. (6)

The localization map is a weighted combination of activation maps:

Lc
Grad−CAM = ReLU (

∑

k

αc
k A

k). (7)

ScoreCAM [174] also uses gradient information but assigns importance to each activation
map by the notion of Increase of Confidence. Given an image model Y = f (X) that takes in
image X and outputs logits Y. The kth channel of convolutional layer l is denoted Ak

l . With
baseline image Xb and category c, the contribution Ak

l toward Y is:

C(Ak
l ) = f c(X ◦ Hk

l ) − f c(Xb), (8)

where Hk
l = s(Up(Ak

l )). Up(·) is the operation that upsamples Ak
l into the input size and s

normalizes each element into [0, 1]. ScoreCAM is defined as:

Lc
Score−CAM = ReLU (

∑

k

αc
k A

k
l ), (9)

where αc
k = C(Ak

l ).
More CAM variants have been recently proposed, e.g., GradCAM++ [32], CBAM [178],

Respond-CAM [196], and Ablation-CAM [44].
Perturbation-based algorithms To investigate important features in the input, a straight-

forward way is to measure the effect of perturbations applied to the input [54, 55]. This idea is
quite simple: The random perturbations on the features would lead to different changes in the
model’s predictions, where larger changes would be observed for more important features.
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Note that perturbation can be also used for evaluating the trustworthiness of interpretation
algorithms when we are not aware of interpretation ground truth [143, 172].

Counterfactual examples Using counterfactual examples to explain the model behaviors
is also an important direction for understanding the black boxes. Generally, the counterfac-
tual examples have changes in the input that are as small as possible, but would completely
change the decision made by the model. The changes in input would be a clue for explaining
the model’s behavior. Most counterfactual-example approaches, such as FIDO [31], DiCE
[121], and several others [64, 97], to generating counterfactual examples are based on the
optimization with sparsity constraints or toward the smallest changes in input. Using coun-
terfactual examples to explain the model behaviors can also be included in causal inference
[126], which is considered as a newperspective formodel interpretability [120, 179]. Detailed
reviews on counterfactual explanations can be found in [12, 167, 173].

Adversarial examples Adversarial examples are very related to counterfactual ones with
similar optimization methods, while adversarial examples are used to reveal the vulnerability
of the deep model and often attack the AI systems. Adversarial examples in vision tasks are
usually the imperceptible changes in the images which mislead the model’s decision. Note
that analyses on the adversarial examples [58, 77] show the connections to the understanding
of the deep learning process and robustness of the trained deep model.

TCAV Given a set of examples representing a concept of human interest (such as an object,
a pattern, a color etc.), TCAV [87] seeks a vector in the space of activations at some layer
to represent this concept. Precisely, by defining a concept activation vector (or CAV) as the
normal to a hyperplane, TCVA separates examples according to the existence of this concept
in the activations: Given one example in a particular class, along the direction of a CAV,
the directional derivative of this example contributes a score if it is positive, and the ratio of
examples that have positive directional derivatives over all examples in this class is defined
as the TCAV score. CAV finds examples of a semantic concept learned by the intermediate
layers of a deep model, contributing to the predictions while TCAV quantitatively measures
the contributions of this concept.

Prototype To explain the classification models, finding the typical exemplar for each
category is also effective and direct. Humans can understand better that the model identifies
the featured prototype tomake decisions. Chen et al. [35] proposedProtoPNet,which explains
the deep model by finding prototypical parts of predicted objects and gathering evidence
from the prototypes to make final decisions. Another method named ABELE [69] generates
exemplar and counter-exemplar images, labeled with the class identical to, and different
from, the class of the image to explain, with a saliency map, highlighting the importance of
the areas of the image contributing to its classification.

As a technique for generating prototypes, activation maximization generally computes the
prototypes through an optimization process:

max
x

log p(yc|x) − λ‖x‖2, (10)

where p(yc|x) is the probability given by a deep model with x as input, and the second term
is the constraint for generating the prototype. However, the constraint can be replaced by
many other choices [49, 113, 124, 153]. A tutorial for this direction is cited [119]. More
works related to prototypes or exemplars for interpretations can be found in [23, 26, 103,
116].

Proxy models for rationale process The reasoning process or the underlying rationale of
deep models is complex due to the nonlinearity and enormous computations. It is difficult
for humans to know the exact steps of the rationale process with semantics inside the black
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boxes. However, this rationale process can be proxied by graphmodels [190] or decision trees
[192], which provide a decision-making path that is more interpretable to humans. Moreover,
deep neural networks can be combined with decision forest models [92] or distilled into a
soft decision tree [57]. A model-agnostic approach for interpreting rationale process named
BETA [96] allows to learn (with optimality guarantees) a small number of compact decision
sets, each of which explains the behavior of the black box model in specific, well-defined
regions of feature space.

Forgetting events Forgetting events are defined by [164] for analyzing the training exam-
ples using training dynamics. Given a dataset D = (xi , yi )i , after t steps of SGD, example xi
undergoes a forgetting event if it is misclassified at step t+1 after having been correctly clas-
sified at step t . Forgetting events signify samples’ interactions with decision boundaries, and
the samples play a part equivalent to support vectors in the support vector machine paradigm.
Unforgettable examples are samples learnt at step t∗ < ∞ and never misclassified for all
k ≥ t∗. They are easily recognizable samples that contain obvious class attributes. Whereas
examples with the most forgetting events are ambiguous without clear characteristics of a
certain class, and some are noisy samples.

Dataset cartography Dataset cartography [161] looks into two measures for each sample
during the training process—the model’s confidence in the true class and the variability of
confidence across epochs. Therefore, training examples can be categorized as easy-to-learn,
hard-to-learn, or ambiguous based on their position in the two-dimensional map. Consider
training dataset D = (x, y∗)i Ni=1 where xi is the i th sample and y∗

i is the true label. After
training for E epochs, the confidence is defined as the mean probability of true label across
epochs:

μ̂i = 1

E

E∑

e=1

pθ(e) (y∗
i |xi ), (11)

where pθ(e) is the probability with parameters θ(e) at the end of the eth epoch. The variability
is the standard deviation of pθ(e) (y∗

i |xi ):

σ̂i =
√∑E

e=1(pθ(e) (y∗
i |xi ) − μ̂i )2

E
, (12)

AUM Another method for analyzing the training dynamics is proposed to compute the
area under the margin (AUM) [128]:

AUM(x, y) = 1

T

T∑

t=1

(z(t)y (x) − max
i 
=y

z(t)i (x)), (13)

where z(t)i (x) is the logit, computed by the model, of i th class at t th epoch during training
with respect to the example x.

Influence functions Influence functions [91] identify the training samplesmost responsible
for a model prediction by upweighting a sample by some small value and analyze its effect
on the parameters and the loss of the target sample. Given input space X and output space Y ,
we have training data z1, . . . , zn , where zi = (xi , yi ) ∈ X ×Y . Let L(z, θ) be the loss where
θ ∈ Θ are the parameters. The optimal θ̂ is given by θ̂ = argminθ∈Θ

1
n

∑n
i=1 L(zi , θ). The

influence of upweighting training point z on the loss at the test point ztest is:

Iup,loss(z, ztest ) = −∇θ L(ztest , θ̂ )T H
θ̂
−1∇θ L(z, θ̂ ), (14)
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where H
θ̂

= 1
n

∑n
i=1 ∇2

θ L(zi , θ̂ ). Based on influence functions, several techniques [38, 90]
have been proposed with improvement.

Contributions of long-tailed training examples Instead of identifying mislabeled samples,
easy/difficult-to-learn samples from the training set, more theoretical works on detecting
the long-tail examples and outliers [28, 52, 53]. Most of them investigate the connections
between the memorization capacity of deep models [187] and the learning process, in order
to know the contributions of training examples, including long-tailed ones and outliers.

Interpretations on GNNsGraph Neural Networks (GNNs) are a powerful tool for learning
tasks on structured graph data. Like other deep learning models, GNNs show the black-box
fashion and are required to explain their prediction results and rationale processes. Without
requiring modification of the underlying GNN architecture, GNNExplainer [184] leverages
the recursive neighborhood-aggregation scheme to identify important graph pathways as well
as highlight relevant node feature information that is passed along edges of the pathways.
Recently, more researches focus on the interpretations of GNN models, such as GraphLIME
[76], CoGE [51], Counterfactual explanations on GNNs [18] and others [20, 111, 132].

Interpretations onGANsGenerative adversarial networks (GANs) are a popular generative
model based on two adversarial networks, where one generates synthesized examples, and
another tries to classify generated examples from natural examples. Interpretations on GANs
mainly search for semantically meaningful directions. Compared with labeled semantics,
Bau et al. [25] proposed GAN dissection to find semantic neurons in generative models and
modify the semantics in the generated images. Instead of relying on labels, Voynov et al.
[171] found semanticallymeaningful directions in an unsupervisedway from the intermediate
layers of generative models. Similarly, Shen et al. [149] proposed a closed-form factorization
method for identifying semantic neurons. Note that there are other methods for explaining
the generative models [131, 170, 180].

Information flow In some deep learning models, there are multiplicative scalar weights
that control information flow in some parts of a network. The most common examples are
attention [17] and gating:

catt =
∑

i

αatt
i hi , cgate = αgateh (15)

The attentionweightsαatt (
∑

i α
att
i = 1) and the gate valuesαgate (αgate ∈ [0, 1]) are usually

interpretable because their values represent the strength of the corresponding information
pathways. Attention and gating are frequently used in NLP models, and there have been
plenty of works aiming to understand the model through these weights, such as Rollout [2],
Seq2Seq-Vis [157] and others [61, 158], or to investigate the reliability of using them as
explanations [82, 148, 177]. As well, these ideas have also been used in Vision Transformers
[48] for explaining image classification models [34, 185] or bi-modal transformer models
[33].

Self-generated explanationsUsing text generation techniques, a model can explicitly gen-
erate human-readable explanations for its own decision. A joint output-explanation model is
trained to produce an prediction and simultaneously generate an explanation for the reason
of that prediction [14, 93, 109]. This requires some kind of supervision available to train the
explanation part of the model.

Inductive biases toward interpretationmodulesDifferent from post-hoc explanations after
the optimization process, some works focus on designing inductive biases during training to
encourage the model to be more interpretable. By simple abstraction, the objective function
for this purpose can be written as
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Table 1 Categorization of interpretation algorithms with respect to the proposed taxonomy

Algorithms Representation Model type Relation

LIME and variants Feature Model-Agnostic Proxy

Global interpretation Feature Model-Agnostic Proxy

Input-gradient based Feature Differentiable Dependence

LRP and variants Feature Differentiable Dependence

CAM and variants Feature Specific (CNNs) or
Differentiable

Closed-form or dependence

Perturbation-based Feature Model-Agnostic Dependence

Counterfactual examples Response Model-Agnostic or
Differentiable

Dependence

Adversarial examples Response Model-Agnostic or
Differentiable

Dependence

TACV Feature Differentiable Proxy

Prototype-based Response Model-Agnostic or
Differentiable

Proxy

Proxy models for rationale
process

Rationale Specific (CNNs) Proxy

Training dynamics based Dataset Model-Agnostic Dependence

Influence functions and
variants

Dataset Differentiable Closed-Form or Dependence

Contributions of training
examples

Dataset Differentiable Dependence

Interpretations on GNNs Feature Specific (GNNs) Dependence

Interpretations on GANs Feature Specific (GANs) Dependence

Information flow Feature Specific (Transformers) Dependence

Self-generated explanations Feature Specific (NLP) Composition

Self-interpretable models Rationale Specific (Self-Interpretable) Composition

Algorithms are listed following the order of presentation in Sect. 3.2. Note that, each row may contain several
algorithms which they may target at explaining different types of models or have different relations to the
models. Here the publications in each category of algorithms can be found in the corresponding paragraphs,
and are not repeated for a compact table presentation

Loss = L( f (x), y) + αR, (16)

where f (x) represents the deep model output with x as input, y is the ground truth, L is the
loss function, specifically the cross entropy for standard supervised classification problem,
and R is the objective function for biasing toward interpretable models. Various approaches
[46, 114, 140, 191] have been proposed to improve the interpretability during training. More
encouragingly, Sabour et al. [142] designed a self-interpretable deep model where each
neuron outputs semantic features.

3.3 Categorization and discussion

We have introduced a large number of typical interpretation algorithms and categorized
them according to the proposed taxonomy, so as to provide a clear illustration in this research
field.We hope the taxonomy can shed light on future improvements/extensions on explaining
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Table 2 List of interpretation algorithm publications

Methods Publications (non-exhaustive)

LIME and variants LIME [137], Anchors [138], SHAP [110], RISE [127], MAPLE
[130]

Global interpretation LIME-SP [137], NormLIME [6], GALE [166]

Input-gradient based SmoothGrad [155], IG [160], DeepLIFT [150], VarGrad [3], Grad-
SHAP [110], FullGrad [156]

LRP and variants LRP [16, 27, 118], Contrastive LRP [67], Softmax-Gradient LRP
[79], RAP [123], Chefer et al. [34]

CAM and variants CAM [197], GradCAM [145], ScoreCAM [174], GradCAM++ [32],
CBAM [178], Respond-CAM [196], Ablation-CAM [44]

Perturbation-based Fong et al. [54, 55], Samek et al. [143], Vu et al. [172],

Counterfactual examples FIDO [31], DiCE [121], Goyal et al. [64], Laugel et al. [97]

Adversarial examples Geirhos et al. [58], Ilyas et al. [77]

TACV TACV [87]

Prototype-based ProtoPNet [35], ABELE [69]

Proxy models for rationale process Zhang et al. [190, 192], BETA [96]

Training dynamics based Forgetting Events [164], Datasets Cartography [161], AUM [128]

Influence functions and variants Influence Functions [91], Group Influences [90], HYDRA [38]

Contributions of training examples Carlini et al. [28], Feldman et al. [52, 53]

Interpretations on GNNs GNN Explainer [184], GraphLIME [76], CoGE [51]

Interpretations on GANs GAN Dissection [25], Voynov et al. [170, 171], Shen et al. [149]

Information flow Rollout [2], Seq2Seq-Vis [157], Chefer et al. [33, 34], TAM [185]

Self-generated explanations Atanasova et al. [14], Kumar et al. [93], Liu et al. [109]

Self-interpretable models Capsule [73, 142], Neural additive models [5], CALM [88]

Algorithms are listed following the order of presentation in Sect. 3.2

(deep) learning models. We show the categorization of all these algorithms with respect to
the proposed taxonomy in Table 1, and gathering interpretation algorithms according to the
categorization in Table 2 for a quick glimpse.

Table 1 shows that there are many methods of the Feature representation and only a few
Rational ones; many Proxy and Dependence relations but a few Closed-Form. We argue
that both of these observations were due to the challenging analyses of complex deep neural
networks. The rationale and the closed-form of deep models are still hard to understand or
even approximate. From the categorization, we also would like to point out the blanks that
may indicate some unexplored directions for future perspectives. For example, no Model-
Agnostic algorithms have the Composition relation with models. While the input–output
sensitivity analysis methods are currently developed, improving the input-output interpreta-
tions can be a good perspective. Moreover, we should note that the adversarial attacks do
not only aim at trained models [30], but the interpretations [8, 56, 71]. We leave the further
investigations for future work.

3.4 Interpretations on specific application domains

We do not explicitly categorize the interpretation algorithms according to their application
domains because (1) the algorithm used in one specific domain may also be applicable on a
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broader scope with little modifications, especially for model-agnostic algorithms; and (2) for
model-specific algorithms, the categorization on the model type generally overlaps with the
one on the application domain. For completeness, we discuss recent works of deep model
interpretations in the following domains: reinforcement learning, recommendation systems,
and medical domains. These applications are slightly different from image classification or
sentiment analyses and may require interpretations in a unique form, but most algorithms
introduced previously can be used directly.

3.4.1 Deep reinforcement learning (DRL)-related domains

Reinforcement learning (RL) [85] is an area of machine learning concerned with how intel-
ligent agents ought to take actions in an environment in order to maximize the notion of
cumulative reward. Deep learning methods have recently enabled RL to decision-making
problems that were previously intractable, such as playing games [117, 151, 168] and train-
ing robots [10, 99, 100]. DRL is also applicable and shows potentials of application in
healthcare, finance and business management [13, 105], where human security and property
safety issues should be considered, leading to the demands of explainable RL [134].

According to recent surveys [13, 105], DRL methods are generally based on DNNs to
approximate value functions or find policies. Most methods directly learn the objectives from
raw inputs, especially for visual tasks where the images are used as inputs for estimating the
value functions. For those methods, input feature-related interpretation algorithms, such as
LIME and SmoothGrad, have already been explored for explaining DRL methods [15, 65,
80, 135]. However, as we discussed before, interpretation algorithms may expose differ-
ent amount of information of the deep models, and in some real-world situations, different
interpretation algorithms are required. For critical problems concerning human security and
property safety, showing the input–output relations of deep models is sometimes not per-
suadable for consumers. The rationale inside the deep model may be required and has not
been much investigated yet in this field.

3.4.2 Recommendation systems

The recommendation system [139] is a subclass of the information retrieval domain that
seeks to predict the “rating” or “preference” a user would give to an item. With the growing
information available on the Internet, it becomes more and more difficult to find the items
of interest by users themselves. For many web applications, the recommendation systems
are an essential method for providing a better user experience [193]. Based on all kinds of
information provided by users explicitly or implicitly, the recommendation system filters and
sorts a list of items of interest in a personalization way.

There are three reasons for explainable recommendation systems. The first one is to gain
users’ trust in the recommendation system. Explanations help to improve the transparency,
persuasiveness and user satisfaction of the recommendation system. The second is to facilitate
engineers to debug the recommendation algorithm. Explanations provide analyses how the
deep model works, and it would be easy to locate the bugs with explanations. The first two
arguments are borrowed from previous reviews [193, 195]. The third is to prevent the privacy
and social issues. The recommendationsmay be computed based on features that have privacy
or ethical issues. We would not like to have a recommendation system that may lead to these
issues. Explanations can thus be used to expose and prevent this problem.

Classic recommendation methods, including collaborate filtering [19, 72], are inter-
pretable, while the usages of black-box deep models [39, 40, 63] increases the opacity of
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recommendation systems. Recent works on explainable recommendation systems can be
categorized following our proposed taxonomy, and most of them focus on designing inter-
pretable modules [36, 102, 147, 162].We refer interested readers to the survey on explainable
recommendation systems [195].3

3.4.3 Deep learning applications to medical applications

Deep learningmethods have been recently applied onmedical domains, especially onmedical
imaging analyses [108], such as the classification of Alzheimer’s [83], lung cancer detection
[75], tuberculosis diagnosis [136], retinal disease detection [146], etc. Though researchers
show the potentials of using deep learningmethods in helping the diagnostics, the applications
in the real-world situations of healthcare, clinics, hospitals and rehabilitation are very critical,
because a single failure would cause irreparable damages. Explanations for deep learning-
based methods are more urged in this field than in other fields, to gain the trust of physicians,
regulators as well as the patients [154].

Interpretation algorithms proposed in this specific domain have been surveyed [154, 163].
Most of them are aligned with the general ones as reviewed in this work, because the network
architectures are the same and the tasks are similar. The difference mainly resides in the
data distribution and the domain expert knowledge. Interpretation algorithms are technically
applicable and their trustworthiness can be evaluated in medical domains. In spite of the
advances, however, currently deep learning-based methods have not achieved a significant
deployment in the clinics still due to the lack of interpretability [154]. This indicates that the
new interpretation tools are still required in this domain.

4 Trustworthiness evaluations of interpretation algorithms andmodel
interpretability evaluations

Previous section focuses on the interpretation algorithms and interpretation results. This
section summarizes the current works in evaluating the trustworthiness of interpretation
algorithms, and the deep models’ interpretability. To emphasize, the model interpretability
is measured based on trustworthy interpretation algorithms. Before introducing model inter-
pretability evaluation, we present the evaluation methods for assuring the trustworthiness of
interpretation algorithms in Sect. 4.1. Then, given a trustworthy interpretation algorithm, in
Sect. 4.2 we present a few evaluation methods for the interpretability of deep models.

4.1 Trustworthiness evaluations of interpretation algorithm

Perturbation-based evaluations The perturbation-based evaluation of interpretation algo-
rithms follows the intuition that flipping the most salient pixels first should lead to high
performance decay. Perturbation-based examples can therefore be used for the trustworthi-
ness evaluations of interpretation algorithms [41, 70, 143, 172]. The main metric MoRF,
Most Relevant First, (or LeRF, Least Relevant First, respectively), calculates the area under
the curve (AUC), where the curve is of the probabilities predicted by the model after remov-
ing most relevant features (or least relevant features respectively). MoRF would drop very
quickly at beginning and LeRF would retain at a high value until the end, if the explanation

3 We also note that whether the usage of deep models improves the recommendation system is an open
discussion [42], but this is out of the scope of this survey.
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is trustworthy. They are usually used together and both have the same objective of evaluating
the trustworthiness of the explanation.

In a different view [55, 74] that “without re-training, it is unclear whether the degradation
in model performance comes from the distribution shift or because the features that were
removed are truly informative.” So Hooker et al. [74] proposed to remove the most important
features, extracted by the interpretation algorithms, and then retrain the model, to measure
the degradation of model performance and evaluate the trustworthiness of interpretation
algorithms. We believe that the prohibitive computation cost added by the retraining step
is meaningful for explaining the learning process (how the features/pixels were learned by
a specific architecture of models), but contributes less to explain one trained model in a
post-hoc way.

Evaluations by randomizing parameters There is no need for retraining in some cases, and
we can identify untrustworthy interpretation algorithms by simply randomizing parameters.
Adebayo et al. [3] found that even with random weights at the top layers of the network, a
number of saliency map-based approaches were still able to locate the important regions of
the input images, and proved that these methods do not depend on the models. Adebayo et
al. [4] summarized the uses of interpretation algorithms for model debugging, i.e., to detect
spurious correlation artifacts (data contamination), diagnose mislabeled training examples
(data contamination), differentiate between a (partially) re-initialized model and a trained
one (model contamination), and detect out-of-distribution inputs (test-time contamination).

BAM Yang et al. [181] proposed a framework, named Benchmarking AttributionMethods
(BAM), for benchmarking interpretation algorithms through amanually created datasetwhere
objects are randomly pasted into images, and a set of models trained on that dataset. BAM
carefully generates a semi-natural dataset, where objects are copied into images of scenes,
so each image has an object label and a scene label. Then with models trained on this
dataset and test examples, a target interpretation algorithm is evaluated by this framework,
giving relative importance rankings for input features, which can be validated by ground
truth from the generated dataset. The intuition behind BAM is that relative importance has a
ground truth ranking, which can be controlled by the crafted dataset and used for comparing
with the one given by interpretation methods, and then BAM can quantitatively evaluate the
trustworthiness of the algorithm.

Trojaning Model trojaning attacks [37, 68] indicate visual dataset contamination, where
a subset of images are modified by giving a specific trigger (e.g., a yellow square is attached
to the right bottom of the image) to the desired target. This attack poisons the trained model
that the trigger is the only feature for classifying the desired target. Benefit from trojaning
attacks, Lin et al. [106] proposed to verify the interpretation algorithm on the trojanedmodels.
The qualified algorithm should highlight pixels around the trigger in contaminated images
instead of object parts. Using the triggers as ground truth, Lin et al. [106] evaluated the
trustworthiness of interpretation algorithms.

Infidelity and sensitivity The desired properties relating to trustworthiness have been
discussed in [9, 183]. We reclaim the two definitions of (in)fidelity and sensitivity, which
objectively and quantitativelymeasure the trustworthiness of interpretation algorithms.Given
a black-box function f , an interpretation algorithm Φ, a random variable I ∈ R

d with prob-
ability measure μI , which represents meaningful perturbations of interest, and a given input
neighborhood radius r , the infidelity and sensitivity ofΦ of the target interpretation algorithm
as:

INFD(Φ, f , x) = EI∼μI (I
TΦ( f , x) − ( f (x) − f (x − I))2), (17)
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SENSMAX = max‖ y−x‖≤r
‖Φ( f , y) − Φ( f , x)‖, (18)

where I represents significant perturbations around x and can be specified in various ways.
ExpO fidelity and stability Plumb et al. [129] proposed two metrics for measuring the

desired properties of explanations and using them as regularization terms, to improve the
explainability of trained models. These two metrics can also be used as trustworthiness
metrics for LIME and its variants, as they are able to evaluate the related fidelity and stability
of proxy models. We use ExpO-Fidelity and ExpO-Stability to refer the two metrics in this
paragraph, where ExpO is short for Explanation-based Optimization, in order to avoid the
confusion to the Infidelity and Sensitivity [183]. The formulas of ExpO-Fidelity and ExpO-
Stability are

F( f , g, Nx ) = Ex ′∼Nx [(g(x ′) − f (x ′))2], (19)

F( f , e, Nx ) = Ex ′∼Nx [||e(x, f ) − e(x ′, f )||22]‖, (20)

where g is the proxy model obtained by LIME or its variants, and e(x, f ) represents the
post-hoc local explanation result given a local data point x to explain and the model f .

Sensitivity to hyperparameters Besides evaluations on the trustworthiness to the model,
Bansal et al. [22] proposed to measure the sensitivity to hyperparameters. “It is important
to carefully evaluate the pros and cons of interpretability methods with no hyperparameters
and those that have”. In fact, the insensitivity to hyperparameters is also an important metric
to trustworthiness.

4.2 Model interpretability evaluation

In some situations, different deep models exhibit different abilities to expose understandable
terms to humans. Even the same network architecture, training on different datasets may have
different interpretability scores [24]. Given the same trustworthy interpretation algorithm
and any two models, model interpretability evaluation methods are used to measure and
compare the interpretability between models. In this subsection, we introduce four model
interpretability evaluation methods, i.e., Network Dissection [24], Pointing Game [189],
Consensus [104] and the one through OOD Samples [59, 60].

The basic idea for evaluating the model interpretability for Network Dissection [24],
Pointing Game [189] and Consensus [104] is to measure the overlap between semantic items
(e.g., segmentation ground truth by humans, or cross-model ensemble of explanations) and
interpretation results, as shown in Fig. 3.

Network dissection Network Dissection [24], based on CAM [197], relies on a densely-
labeled dataset where each image is labeled across colors, materials, textures, scenes, objects
and object parts. Given a CNN model, Network Dissection recovers the intermediate-layer
featuremaps used by themodel for the classification, and thenmeasures themean intersection
over union (mIoU) of each neuron between the activated locations with the labeled visual
concepts. A neuron is semantic if its mIoU is larger than a threshold. Then the number of
semantic neurons and the ratio are considered as the score for model interpretability.

Pointing game The Pointing Game [189] measures the model interpretability via the
localization accuracy. This accuracy is equally the true positive rate between the computed
explanation and the annotated object of interest. It is similar to Network Dissection in the
way that the pixel-wise or box-wise labels for visual concepts are required and the same
intersection between explanations and annotations is measured.

123



3216 X. Li et al.

(a) Image (b)Human Label (c) LIME (d) GradCAM (e) SmoothGrad

(f) Image (g)Human Label (h) LIME (i) GradCAM (j) SmoothGrad

Fig. 3 Visualizations of semantic segmentation ground truth and interpretations from three popular algorithms,
i.e., LIME, GradCAM and SmoothGrad, where the interpretation results are shown in different levels of
granularity, i.e., superpixel, low-resolution, and pixel, respectively. We use the three algorithms to interpret
images from CUB-200-2011 [175], where the semantic segmentations are available

Consensus Consensus approach [104] incorporates an ensemble of deep models as a com-
mittee. Consensus first computes interpretations using a trustworthy interpretation algorithm
(e.g., LIME [137], SmoothGrad [155]) for every model in the committee, then obtains the
consensus of interpretation from the entire committee through voting. Further, Consensus
evaluates the interpretability of a model through matching its interpretation result (of LIME
or SmoothGrad) to the consensus, and ranks the matching scores together with other deep
models in the committee, so as to pursue the absolute and relative interpretability evaluation
results. Consensus uses LIME and SmoothGrad to validate its effectiveness, while Consen-
sus is also compatible with other algorithms that interpret other targets, such as the rationale
process, as long as the voting approach is suitable for the interpretation algorithm.

Through OOD samples BAM [181] and Trojaning attacks [37, 68] create datasets that are
different from natural distributions, and train the models on such datasets. Models trained
on such datasets are used to verify the trustworthiness of interpretation algorithms because
they should suffer from the attacks on the datasets. In another way, one can use the such
ideas of out-of-distribution (OOD) samples to directly evaluate the deep models where the
OOD samples were not seen during training. [59, 60] generated different OOD datasets and
tested with classic deep models and human observers to record the errors that they made
on these datasets. With sophisticated designs of datasets and experiments, they found that
the consistency between humans and deep models is closing. These evaluations show the
interpretability of deep models in a general way, to present that the visual recognition of
models is partially consistent with humans. This could be easily extended to the comparison
within models.

4.3 Human-centered/user-study evaluations

User studies involving humans are a commonly used method for evaluating the trustworthi-
ness of interpretation algorithms andmodel interpretability.We combine these two directions
and introduce them here, as the designed user-study experiments may be capable of perform-
ing the two evaluations simultaneously.

An approach to evaluate the algorithm of counterfactual examples [11] was proposed,
where a user-study experiment was used to validate their approaches. This user-study exper-
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Table 3 List of evaluation methods

Method name Category Additional notes

Perturbation T.E.I.A AUC scores of MoRF, LeRF

Randoming parameters T.E.I.A Filtering Irrelavant Algorithms

BAM T.E.I.A Based on a semi-natural dataset

Trojaning T.E.I.A Based on a semi-natural dataset

Infidelity and sensitivity T.E.I.A –

Expo fidelity and stability T.E.I.A Available only for LIME and variants

Sensitivity to hyperparameters T.E.I.A –

Network dissection M.I.E Based on a densely labeled dataset

Pointing game M.I.E Requires pixel-wise or box-wise labels

Consensus M.I.E Based on cross-model explanations

Through OOD samples M.I.E Based on OOD datasets

There are two categories of evaluations as introduced in this work: Trustworthiness Evaluations of Interpreta-
tion Algorithm (T.E.I.A) andModel Interpretability Evaluation (M.I.E), with respect to Sect. 4.1 and Sect. 4.2.
Additional notes are added as a description for the speciality of the evaluation method

iment aims at verifying whether humans can predict the deep model’s decision. Specifically,
several (clean and counterfactual) samples with models’ predictions are presented to users,
and then a new sample is shown to ask the user if the model can make the correct decisions
or not. Another approach based on decision trees and sets, designs descriptive and multiple-
choice questions to test the user’s understanding of the decision boundaries of the classes in
the data, in order to evaluate the interpretability of their proposed Bayesian Decision Lists.
[56] designed the user-study experiments following the idea that interpretability is the user’s
ability to predict the model’s changes in response to changes in input. More user studies can
be found in [66, 78, 94].

4.4 Concluding remarks

We summarize the evaluation methods in Table 3. We have to note that assessing the
trustworthiness of interpretation algorithms is challenging. While a small number of algo-
rithms benefit from intrinsic properties of deep models, e.g., closed-form interpretations,
the trustworthiness of most algorithms remains to be evaluated. Despite filtering approaches
(such as randomizing the weights [3]) to picking out irrelevant interpretation algorithms,
reasonable and practical evaluation approaches for directly assessing the trustworthiness are
also reviewed. Given a trustworthy algorithm, the interpretability can be evaluated between
models, to compare the degree of being understandable. If the algorithm is not trustworthy, it
does not make sense to compare the interpretability of models using unreliable interpretation
results. A few model interpretability evaluation methods are introduced, while more model
interpretability evaluations should be explored in the future. We also note that subjective
human-centered user studies are one important evaluation tool that can be used for evalu-
ating both interpretation algorithms and model interpretability, thanks to the flexibility of
designing arbitrary experiments for various objectives.
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5 Impact beyond interpretations

Deep models have many unknown phenomenon and properties, e.g., adversarial attacks,
memorization capacity, generalization ability etc. (Lack of) interpretation and (low) inter-
pretability are one of them. Interestingly, besides the original motivations for explaining
black-box deep models, interpretation-related terms have been connected to existing find-
ings about deep models. In this section, we present two fields that are widely known to be
related to interpretations.

5.1 Interpretability, adversarial attacks, and robustness

Recent studies on adversarial examples have found positive connections between model
interpretability and adversarial robustness. Two teams [140, 165] first observed that compared
to standard models, adversarially trained models show more interpretable input gradients.
Etmann et al. [50] theoretically proved that the increase in adversarial robustness improves
the alignment between input and its respective input gradient, using the case of a linear
binary classifier. Zhang et al. [194] further analyzed how adversarially trainedmodels achieve
robustness from an interpretation perspective, showing that adversarially robust models rely
on fewer texture features and are more shape-biased, which is regarded as coincide more
with the human interpretation. Essentially, the connection between adversarial examples
and gradient-based interpretations may come from their common dependence on the input
gradient.

For future works, these observations could (1) motivate new understandings about how
deep models work and (2) explore the connections between interpretation-related terms and
other properties of deep models.

5.2 Learning from interpretations

As containing rich information about the location of discriminative features, interpretation
results can also be utilized to guide training strategies such as data augmentations and regu-
larization approaches, especially for vision tasks. For example, Kim et al. [89] proposed to
improve Mixup [188] by leveraging the saliency map [153]. Specifically, they aimed to seek
an optimal transport that maximizes the exposed saliency. Zagoruyko et al. [186] imposed
the regularizer to encourage the alignment of saliency maps between the teacher and student
networks for effective knowledge distillation. Wickramanayake et al. [176] also used inter-
pretations to generate efficient augmented data samples to train the model, for improving
the interpretability and the model performance. Interpretations sometimes can be used as
weak labels in specific tasks. For example, Lai et al. [95] introduced a saliency-guided learn-
ing approach for weakly supervised object detection. Many weakly object localization and
weakly semantic segmentation methods [7, 89, 182] start from an interpretation, and obtain
promising results.

From these works, we believe that the interpretability and model performance are not two
contradictory measures and that they can be improved simultaneously. Future works could
further focus on this direction.
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6 Open-source libraries for deep learning interpretation

To simplify future researches and practical usages, we introduce several open-source libraries
that implement popular interpretation algorithms based on mainstream deep learning frame-
works, such as TF-Explainer4 based on Tensorflow [1], Captum5 based on PyTorch [125]
and InterpretDL6 based on PaddlePaddle [112]. Note that TF-explainer and Captum mainly
include algorithms that target at features with gradient-based techniques. Some other popular
libraries focus on machine learning and have not involved deep models, such as interpretml,7

AIX3608 etc., and the library LIT9 that is for NLP models.

7 Discussions and conclusions

In this paper, we review the recent research on interpretation algorithms, model interpretabil-
ity, and the connections to other deep learning factors.

First of all, to address the research efforts in interpretations,we clarify themain concepts of
interpretation algorithms and model interpretability that were usually confused, and connect
them by introducing the notion of trustworthiness of interpretation algorithms.

Second, we propose a new taxonomy and elaborate the design of several recent interpreta-
tion algorithms, from different perspectives according to the proposed taxonomy. Our work
reviews the recent advances in interpretation algorithms, and provides a clear categorization,
to help future researches to better compare new algorithms with the most related works, or
progress in unexplored directions.

Third, we survey the performance metrics for evaluating the trustworthiness of interpre-
tation algorithms, to guarantee the appropriate usages of the interpretation results. These
metrics can be used to quantitatively compare between the interpretation algorithms. The
proposition of new algorithms can be supported by comparing these metrics with related
works, instead of by providing tenuous descriptions and qualitative visualizations.

Further, we summarize the current work in evaluating models’ interpretability given
trustworthy interpretation algorithms. Based on these evaluations, more relations between
interpretability and other metrics could be found for deep models, possibly leading to further
understandings about the deep learning. However, there are not many evaluation methods
for measuring the interpretability, though the existing ones are largely aligned for popular
network architectures. Designing new methods of evaluating models’ interpretability could
be one of the important research directions.

Finally, we review and discuss the connections between deep models’ interpretations and
other factors, such as adversarial robustness and learning from interpretations. New under-
standings how deep models could be observed and analyzed. Note that many interpretation
algorithms and evaluation approaches are open-sourced and there are some useful libraries
to simplify the practical usages and future researches.

Acknowledgments FundingwasprovidedbyNationalKeyR&DProgramofChina (GrantNo. 2021ZD0110303).

4 https://github.com/sicara/tf-explain.
5 https://github.com/pytorch/captum.
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7 https://github.com/interpretml/interpret.
8 https://github.com/Trusted-AI/AIX360.
9 https://github.com/PAIR-code/lit.
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