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Abstract

With the rapid development of information technologies, multi-source heterogeneous data has
become an open problem, and the data is usually modeled as graphs since the graph structure
is able to encode complex relationships among entities. However, in practical applications,
such as network security analysis and public opinion analysis over social networks, the
structure and the content of graph data are constantly evolving. Therefore, the ability to
continuously monitor and detect interesting patterns on massive and dynamic graphs in
real-time is crucial for many applications. Recently, a large group of excellent research
works has also emerged. Nevertheless, these studies focus on different updates of graphs
and apply different subgraph matching algorithms; thus, it is desirable to review these works
comprehensively and give a thorough overview. In this paper, we systematically investigate
the existing continuous subgraph matching techniques from the aspects of key techniques,
representative algorithms, and performance evaluation. Furthermore, the typical applications
and challenges of continuous subgraph matching over dynamic graphs, as well as the future
development trends, are summarized and prospected.

Keywords Continuous subgraph matching - Dynamic graph - Subgraph isomorphism -
Graph simulation

B Deke Guo
dekeguo @nudt.com

Xi Wang
wangxil9 @nudt.com

Qianzhen Zhang
zhangqgianzhen18 @nudt.com

Xiang Zhao
xiangzhao @nudt.com

Institute for Quantum Information & State Key Laboratory of High Performance Computing,
College of Computer Science and Technology, National University of Defense Technology,
Changsha, China

Science and Technology on Information Systems Engineering Laboratory, National University of
Defense Technology, Changsha, China

Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01753-x&domain=pdf

946 X.Wang et al.

1 Introduction

Over the last decade, information networks such as social networks, communication net-
works, world wide web, financial transaction networks, etc., have become ubiquitous and
pervasive. Apart from their increasing data scale and data types, one of the most important
aspects is that the structure and content of the graphs constantly evolve due to the frequent
updates in the real world. Taking social networks as an example, there are over 1.4 billion
daily active users on Facebook, generating more than 500,000 posts/comments and 4 mil-
lion likes per minute, leading to a flood of updates on the Facebook social network [2]. In
addition, Google+ added 10 million new users in the two weeks since its launch in 2011
[32]. Therefore, the ability to continuously monitor and detect patterns of interest is essen-
tial for obtaining meaningful and up-to-date discoveries in such frequently updated graphs.
Meanwhile, this monitoring capability is required for many applications from a variety of
domains.

— Social networks. The applications may involve: 1) targeted advertising, spam or fraudu-
lent activities detection [14, 38, 74] and 2) fake news propagation monitoring [66].

— Protein-interaction network. In a protein-interaction network, by matching a known pro-
tein network with a dynamic protein interaction network, the mutated protein structure
can be found quickly from the protein interaction network [19, 77].

— Transportation networks. In transportation networks, we can monitor the real-time traffic
accidents by matching the pattern graph with the dynamic road network data graph [66].

— Computer networks. In dynamic computer networks, based on the continuous subgraph
matching technique, we can monitor cyber-attack events or detect anomaly flow in time
[17].

— Knowledge graphs. It can deal with evolving knowledge over time to support continuous
question answering [13] and reasoning over RDF graph is also based on such pattern
monitoring [6].

Given a dynamic data graph and a query graph, the continuous subgraph matching problem
can be described as identifying and monitoring the query graph in the dynamic data graph
continuously and reporting the newer up-dates of the matching results. Matching here refers
to the same structure and meeting the specific semantic constraint. Now, we take cyber-attack
event detection and credit card fraud detection as examples to illustrate how to abstract an
event into a pattern graph and the significance of continuous subgraph matching.

Example 1 Figure 1a demonstrates a graph-based description of cyber-attack pattern. A vic-
tim browses the compromised website, causing a downloading of malware scripts. Then,
the malware scripts establish a communication between the victim and the botnet command
and control server. When the victim registers at the botnet command and control server,
he receives a command at the same time, leading to an information exfiltration back to the
botnet command and control server. Obviously, if we can detect the attack pattern (based
on the subgraph matching) in the network, potential malicious activities could be avoided.
Recently, Verizon, an American communications company, analyzed 100,000 security inci-
dents over the past decade and found that 90% of them could be easily classified into ten
major graph-based attack patterns [7].

Example 2 Figure 1b shows an example of a credit card fraud with a series of transactions
modeled by a pattern graph. Criminals try to cash out illegally by making bogus deals with
merchants and middlemen. They first establish a credit payment to the merchant; When the
merchant receives the real payment from the bank, he transfers the money to the middleman
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Fig. 1 Example of continuous subgraph matching

account(s), which further transfers the money back to the criminal to complete the cashing.
Apparently, this pattern also can be easily modeled as a query graph. By detecting this pattern
query in the financial transaction networks, fraud can be avoided effectively.

Challenges and Limitations. Owing to the importance and practicality of continuous
subgraph matching, how to effectively and efficiently find the matching results of a given
query graph continuously over the dynamic graphs is a meaningful research topic in the era of
big data. By observing its practical application requirements, we identify a list of challenges
that the continuous subgraph matching may face:

— Frequent data updates. The graph data in the network system, such as social networks,
data center networks, or financial networks, updates all the time. Thus, traditional static
graph matching techniques would need to rebuild an index and rematch the whole graph
data for each update, which is a time-consuming and labor-intensive approach.

— Large-scale data. Due to the constant updates, the amount of dynamic graph data is larger
than that of static graph data, increasing the difficulty of graph subgraph matching.

— Increased demand for real-time analysis. In many real-time analysis applications, when-
ever the graph is updated, the new matching result requires to be obtained in time;
otherwise, the application value of the matching result will be reduced or lost. For exam-
ple, in network security, real-time monitoring of suspicious data transmission modes is
required, and a delay in analyzing the matching results can result in network paralysis.

The primary motivation for conducting this survey is twofold. Firstly, a lot of graph algo-
rithms have been proposed to perform continuous subgraph matchings tasks in recent years.
However, existing surveys are somewhat out-of-date, and no new research and recommen-
dations are discussed. The latest survey [39] was published five years ago, and there was
only a brief introduction to subgraph matching in the dynamic graph. Secondly, the surveys
[33] and [46] only introduce and summarize the existing algorithm from a certain aspect,
not comprehensive. Additionally, existing survey [47] solely focus on the subgraph matching
algorithms in static graph [36, 63, 85, 87]. These existing surveys did not provide compre-
hensive reviews on continuous subgraph matching over the dynamic graph data. In particular,
Our survey is the first one to illustrate the existing research effort and progress that has been
made in the area of continuous subgraph matching in the dynamic graph regarding key tech-
niques, representative algorithms, and performance evaluations. Meanwhile, there are some
related surveys, such as pattern mining [28] and community search [27]. However, the former
focuses on graph mining in dynamic graphs while the latter focuses on community retrieval
over big graphs. Although both of these technologies require subgraph matching algorithms,
it is not the focus of their technical optimization.
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In this survey, we introduce the existing continuous subgraph matching methods which
committed to solving the above problems. First, we categorize the research of continuous sub-
graph matching systematically according to the different practical application requirements.
And then, we discuss two different types of continuous subgraph matching approaches based
on the update methods of the dynamic graph. Among them, continuous subgraph match-
ing for graph structure change is the most commonly study, and the incremental matching
approach is the most advanced method applied to solve this problem, which attempts to
identify changes to previously matched data in response to updated dynamic graph data to
meet the increased demand for the real-time analysis.

The rest of the paper is organized as follows. Section 2 provides a detailed definition of
continuous subgraph matching and classification. Sections 3 and 4 describe the concepts
of and matching techniques for structure-based and content-based changes, respectively.
Section 5 compares the performance of different matching algorithms. Section 6 introduces
the current applications of continuous subgraph matching. Section 7 presents a list of future
topics, and Sect. 8 presents the conclusion.

2 Definition and classification of continuous subgraph matching

In this section, we first formally introduce continuous subgraph matching and then have a
comprehensive classification of continuous subgraph matching from a variety of different
methodological perspectives.

2.1 Preliminary definition

The graph is usually is defined as (V, E, L), where V is a set of vertices, E is a set of edges
between, and L is a label function that associates each vertex v € V with a set of labels.
Any edge e € Eg in the graph can be noted as (v;, vj), where v;, v; € V. In this paper,
we use G = (Vg, Eg, Lg) to represent data graph, and P = (Vp, Ep, Lp) to represent
pattern graph. Currently, there are two data graph types: super-large graphs, such as social
networks, or a combination of many small graphs, such as the AIDS Antiviral dataset [5]
that comprises numerous small pictures showing the atomic structure of chemicals. As the
current continuous subgraph matching problem mainly relates to super-large graphs, this
paper concentrates on continuous subgraph matching for super-large graphs.

A dynamic graph, also known as a streaming graph, is a graph that evolves over time.
There are two categories of dynamic graph updates, namely (1) graph structure updates,
where the vertices and edges in the graph are inserted or deleted over time, causing changes
in the graph structure; (2) graph content updates, where the content or attributes of the data
objects in the graph are updated, resulting in content change.

The definition of the dynamic graph is given in the next section. As the current research
is mainly focused on the structural update of the data graph, the definition of the dynamic
graph is given in the graph structure update.

2.1.1 Graph structure update

Definition 1 (Graph Update Stream) A graph update stream Ag is construct with a sequence
of update operations (Agy, Aga,---), where Agy is a triple (op, v;, v;) such that op =
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Fig.2 Subgraph isomorphism with the structure updated data graph

{I, D} is the type of operations, with / and D representing edge insertion and edge deletion
respectively of an edge (v;, v;).

A dynamic graph abstracts an initial graph G=(Vi, Eg, Lg) and an update stream Ag.
After applying Ag to G, it transforms to G’. Note that insertion operation creates new edges
between vertices and could also add new vertices. The same does for deletion operations.

Definition 2 (Subgraph isomorphism) Giventwo graphs G1=(Vy, E1, L1) and Go=(V», E», L»),
an embedding of G| in G, (or, from G| to G») is an bijective function f: (1) Vv € Vi,
Li(v) = La(f(v)); and (2) V(vy, v2) € Ey, (f(v1), f(v2)) € En.

Example 3 InFig. 2, the dashed box shows the subgraph M =[(v1, u3),(va, ue),(v3, us),(vs4, ug)]
that matches the pattern graph P after the initial data graph G is changed to G with the
update operation Ag = {(/, us, ug)}.

Recently, graph functional dependencies [25], keys [21], and association rules [24] are all
defined based on subgraph isomorphic matching [62]. However, it is a NP-complete prob-
lem due to the exponential search space resulting generated by all possible subgraphs [65]
[35]. Subgraph isomorphism often imposes stronger topological constraints on the matching
process to obtain more consistent matching results. Some applications, such as social net-
works, do not require high matching accuracy, which greatly restricts matching efficiency.
In view of its intractability, approximate matching has been studied to obtain inexact solu-
tions, which allows vertex/edge mismatching [9, 70]. Differs from approximate matching,
simulation matching does not allow vertex/edge mismatching. The simulation matching is
described in more detail below.

According to the degree of the matching approximations, it is divided into Bounded
simulation [23], Graph simulation [53], Dual simulation [50], Strong simulation [50] and
Strict simulation, all above are collectively called simulation matching. Bounded simulation
matching relaxes the strict structural constraints of isomorphism matching by moving from
edge-to-edge mapping to edge-to-path mapping. If a data vertex u matches a query vertex
v, they only need to satisfy that L p(u)=Lg(v) and L p(u')=Lg(v'), where u’ is one of the
descendant vertex of u and v’ is one of the child vertex have of v’. Compared with bounded
simulation, graph simulation requires that u’ is one of the child vertexes of u. It means that
vertex u# maintains the same successor relationship with the corresponding vertex v. The
dual simulation further requires # to maintain the same precursor relationship with v. On the
basis of dual simulation, strong simulation requires that the radius of the subgraph containing
the matching vertex(the subgraph may contain non-matching vertices) is not larger than the
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Fig.3 Graph simulation with the structure updated data graph

diameter of the pattern graph. Strict simulation matching is the strictest one of simulation
matching, and it further requires the subgraph composed entirely of the matching vertices.

Note that simulation matching can tolerate some noise and errors in matching results.
Thus, it plays an important role in some applications such as social network and Web net-
work analysis. Although differences between the results of simulation matching and subgraph
isomorphism remain, simulation matching results usually meet the needs of practical appli-
cations. Hence, it is still regarded as the correct matching result. Take graph simulation as an
example, and it is defined as follows:

Definition 3 (Graph simulation) Given a pattern graph P = (Vp, Ep,Lp) and G =
(Vg, Eg, L), graph simulation refers that there is a binary relationship SCVp x V5 between
P and G, which satisfies that:

(1) Y(v,u)SS, Lg(v)=Lp(u).
(2) YveVp, we have: (a) JueVg with (v, u)eS, and (b) Y(v, v)eEg, I(u, u')eEg with
W', u)es.

Example 4 As shown in Fig. 3, the vertex u, in the initial data graph G has the same label as
v; in the pattern graph P. Moreover, u,’s successor u4 has the same label as vy's successor vy.
Therefore, we can infer that uy matches v,. Similarly, because v3's successor in the pattern
graph P is empty, we can infer that v3 matches u3. As there is no vertex in u4’s successor and
its label is the same as v4's successor, v3 , 14 and v4 do not match. Therefore, according to the
definition of graph simulation matching, for = 1, after the initial data graph G was updated
with the operation GCy = {(/, ua, ug)}, us and v4 met the matching conditions. Furthermore,
the subgraphs My = [(v2, u2), (v3, u3), (v4, ug)] and My = [(v2, u2), (v3, ug), (v4, ug)]
matched the pattern graph generated. Note that, although the structure of M> is different
from that of the pattern graph P, it is still considered as a match.

2.1.2 Graph content update

Graph content update means that the labels of the vertex/edge or specific object evaluation
in the graph can change with time.

Example 5 As shown in Fig. 4, for time ¢ = 1, the label of u3 and u¢ in the initial data graph G
were changed. The dotted box shows the subgraph M = [(v1, u3), (v2, ue), (v3, us), (v4, ug)l,
which matches the pattern graph after the data graph is updated.
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Fig.4 Subgraph isomorphism with the content updated data graph

2.2 Classification of continuous subgraph matching

In this subsection, we classify continuous subgraph matching according to five method-
ological perspectives and introduce the representative algorithms for each class. Since each
classification is not independent, there are intersections between the algorithms for each
classification.

2.2.1 Dynamic feature of data graph

From the dynamic feature of data graph, continuous subgraph matching is divided into struc-
tural change and content change based on whether the topological structure of the graph
is changed. Currently, many studies about continuous subgraph matching mainly focus on
structural changes caused by the dynamic addition and deletion of vertices or edges in the
data graph. It is mainly used in network anomaly attack detection and social network rela-
tionship detection. Continuous subgraph matching for structure change was first proposed by
Wang et al. [75] in 2009. They constructed a node-neighbor tree (NNT) to filter the match-
ing candidate set, which can effectively reduce the negative matching results. Later, some
representative algorithms are proposed, including IncIsoMatch [23], SJ-Tree [16], graph sim-
ulation (DDST [66], and IncBMatch [23]), which further improve the execution efficiency
of subgraph matching.

Content changes for graph mainly appears in the data center. Many studies have abstracted
the network topological structure of the data center into a data graph for data analysis, where
each vertex in the graph represents a server, and the edges between vertices represent the
links between servers. In this case, the topological structure of the graph data does not change
frequently, but the labels of the vertices (i.e., the amount of free memory of the server) and
edges (i.e., the effective bandwidth of the link) in the data graph change frequently over
time. In order to deal with this situation effectively, BoZhong et al. [88] proposed the Gradin
algorithm. It put forward a N-dimensional grid index for tracking the evolution data and can
also be directly applied to the frequently updated edge labels in a data graph.

2.2.2 Strength of consistency constraint
From the strength of consistency constraint, according to whether a bijective function or

binary relationship is used, continuous subgraph matching can be divided into subgraph
isomorphism and simulation matching, respectively. Subgraph isomorphism guarantees that
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the matching results are completely consistent with the pattern graph. It is mainly used for
protein-interaction network analyzing [39], network abnormal behavior monitoring [17] and
other data analysis applications with strict structural requirements.

While simulation matching obtains the results via binary relationship, and the match-
ing results are approximate matches. First, it generates a matching candidate set of each
query vertex according to the label of the data vertex and then filters out unmatched vertices
according to the different approximate matching degrees of the precursor and successor of
the vertex in the pattern graph. Representative algorithms include DDST [66] and IncBMatch
[23], etc. Particularly, the results obtained by the IncBMatch algorithm satisfy the matching
conditions even if the structure of the subgraphs is different from the pattern graph. Mean-
while, the matching process of IncBMatchcan is performed in polynomial time with higher
efficiency. Simulation matching is more flexible, improves the matching efficiency, and iden-
tifies more useful matching results. Hence, it is mainly used for monitoring traffic accidents
on the road network [66], and detecting the relationship between people and various groups
[23] (such as the drug transaction relationship network). This graph data analysis application
focuses more on mining the relationship between vertices.

2.2.3 Type of matched results

From the type of matched results, a continuous subgraph matching algorithm is classified as
an exact algorithm or approximate algorithm due to the accuracy of the obtained matching
results. Exact algorithms ensure that the matching results are completely accurate and are
mainly used in many fields such as network anomaly detection and biological data analysis,
which rely on accurate matching results. The examples of exact algorithms used to match
data graphs and pattern graphs include IncIsoMatch [23], SJ-Tree [16], and Gradin [88].

However, many applications that use real-time results require that all matching results
be returned quickly, making complicated exact matching algorithms unsuitable. Coinci-
dently, these applications could also tolerate some vertex/edge mismatches (i.e., false-positive
results). To address these problems, the approximate subgraph matching algorithm is gener-
ated. It is different from simulation matching as it is usually based on mathematical models
such as probability statistics. The error ratio of the matching results can be kept within a
certain range through parameter adjustment. All research works which presented NNT [75],
Replication mechanism [55], and SSD [30], proposed an approximate graph matching algo-
rithm that converts the graph matching problem into a more easily solved problem, trading
matching accuracy for matching efficiency.

Note that the exact algorithm and approximate algorithm are two algorithms that determine
the accuracy of matching results, while subgraph isomorphism and simulation matching are
different types of graph matching models.

2.2.4 Computational environment

From the computational environment, continuous subgraph matching can either be central-
ized or distributed according to whether it is deployed on a distributed platform or single
machine. Centralized continuous subgraph matching runs on a single computer with either
join-based or exploration-based matching methods and mainly handles small-scale graph
data. The join-based matching method decomposes the query graph, matches each query
fragment, and then connects the obtained matching results. Generally, this method needs to
build an index. The exploration-based method [69] starts from a vertex in the data graph and

@ Springer



A survey of continuous subgraph matching for dynamic graphs 953

Table 1 Graph traversal on parallel systems (Taken from [26])

System Type Time (s) Communication overhead (MB)
Giraph Block-centric model 10126 1.02x10°

GraphLab Node-centric model 8586 1.02x10°

Blogel Block-centric model 226 1.02x10°

GRAPE Automatic parallelization model 10.5 0.05

explores the entire data graph according to the query graph’s structure. Differ from join-based
matching. This method does not need to build an index.

Distributed continuous subgraph matching mainly depends on a distributed parallel graph
processing framework to process dynamic graph data with a large scale and high com-
putational complexity. Currently, there are three types of mainstream distributed parallel
graph computing systems, namely vertex-centric model (including Pregel [51], Trinity [64],
Giraph [1], and GraphLab [49]), block-centric model (Blogel [78], BLADYG [11]), and auto-
parallelization model (GRAPE [26]). Among them, vertex-centric and block-centric models
need to modify the algorithm according to the characteristics of the model, which is diffi-
cult for the unfamiliar user to recast the parallel models. In contrast, the auto-parallelization
model does not need to require that; it simply requires the user to provide three sequential
(incremental) algorithms for the data graph with a small amount of content. The logic of the
existing algorithm does not need to be modified. Additionally, all the three distributed parallel
graph computing systems follow the BSP model [72] and the exploration-based approach is
generally adopted for distributed matching owing to the need for the incremental updating
of matching results.

Table 1 shows the performance of different types of distributed parallel graph computing
systems in terms of shortest path query. Using the US road network as a data set, it can be
found that the performance of the GRAPE system is significantly better than other types of
systems.

2.2.5 Dependency relationship of queries

From the dependency relationship of queries, continuous subgraph matching can also be
divided into single query answer or multi-query answer according to whether it expresses the
continuous subgraph queries as one or many updated graph streams. The existing algorithms
mainly contribute to single query answer, where queries are set to be isolated and evaluated
independently. Currently, the single query answer technique for the dynamic graph is quite
mature, as seen in NNT [75], SJ-tree [16], and SSD [30], where algorithms use a-query-at-a-
time approaches: optimizing and answering each query separately. They do not allow batch
processing of multiple queries. However, sequential processing is not always most efficient
when multiple queries arrive [62].

Zervakis et al. [83] first proposes a continuous multi-query process engine, TRIC, over the
dynamic graph. To make full use of the information from multiple queries, it decomposes
them into several covering paths and constructs an index to organize the paths. Whenever an
update occurs, it continuously evaluates queries by taking advantage of the shared limitations
in the query set. The key point of multiple queries is to (1) quickly detect the affected queries
for each update and (2) avoid expensive joins and explore an approach for larger sets of
queries.
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In summary, each of the algorithms and classifications presented is different and solves
different graph matching problems. Table 2 summarizes the representative continuous sub-
graph matching algorithms and their classifications. The following sections will detail the
continuous subgraph matching technique based on structure- and content-based change. In
each section, the main problems will be analyzed and compared, and representative algo-
rithms and research status of each matching technique type will be discussed. Since most
current research revolves around the problem of continuous subgraph matching for structure-
based change, the main focus of this paper will be on the latest research progress on graph
matching techniques for structure-based change.

3 Continuous subgraph matching for structure-based change

Continuous subgraph matching for structure-based changes is the most widely used tech-
nique currently. From the perspective of algorithm design, two techniques currently exist
snapshot-based matching (Sect. 3.1) and incremental matching (Sect. 3.2). The snapshot-
based matching technique treats the updated data graph for each timestamp as a static graph
to perform a matching algorithm. In contrast, the incremental matching technique only ana-
lyzes and matches the updated parts of the data graph, avoiding the unnecessary calculation of
rematching the overall data graph. Furthermore, the finer-grained classification of the incre-
mental matching technique is described in detail in Sect. 3.2. In Fig. 5, we summarize the
classification and representative algorithms of the continuous subgraph matching technique
for structural change.

3.1 Snapshot-based matching technique

Snapshot-based matching technique over dynamic graph is regarded as a large-scale static
graph matching problem since each updated data graph for each moment is a static graph.
Matching algorithms are then performed on these continuous static graph streams. It is usually
suitable the cases where there are numerous added edges. In this case, adding all the edges
can be completed simultaneously, and the matching algorithm is performed on the updated
data graph snapshot. Therefore, the snapshot-based matching technique includes two parts,
an update operation and a matching operation. The following is a discussion of these two
operations.

3.1.1 Data graph update

The continuous subgraph matching problem was first discussed in [75] by Wang et al. In
this study, continuously updated graph data was regarded as graph streams, and a snapshot-
based pattern matching algorithm, the NNT algorithm, is proposed, which has achieved good
performance. The NNT algorithm constructed a node-neighbor tree(NNT) for each vertex
u in both data graph G and pattern graph P, which is denoted as NNT (u). For the data
graph G, given a depth value L, NNT (u)(u € G) stores all the paths in the data graph G,
which regards u as the root vertex, and the length does not exceed L. As shown in Fig. 5a,
Ti, T», T3, and T4 are NNTs with a depth value L = 2 corresponding to vertices 1, 2, 3, and
4 in the data graph G. The capital letters indicating the labels of the vertices, the contents of
T and T, are the same. Figure 6b shows an inverted index for NNTs to find the vertices and
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Fig.5 Classification of representative continuous subgraph matching algorithms based on structural changes

edges in each NNT that match the vertices and edges in the data graph, where * represents
the omitted part in the inverted index.

The update operations for structure changes over dynamic graph include deleting edge
operations and adding edge operations. The following discussions show how each operation
uses the inverted index based on the NNT to update the index.

Delete edge operation: Assuming that an edge in a data graph is deleted at a certain
time, the corresponding edges and sub-edges in all NNTs have to be deleted simultaneously
through the inverted index. For the data graph G in Fig. 5, if edge (1, 3) is deleted, edge
(a, c¢), sub-edges (c, e) and (c, f), and the vertices associated with these edges T1&T» are
removed from the inverted index.

Add edge operation: If an edge is added to a data graph at a certain time. First, the vertices
in each NNT, corresponding to the node of the added edge, are found based on the inverted
index. Then, the newly generated path in the data graph is added to the NNT, starting from
the vertex of the corresponding node. For the data graph G in Fig. 6, if edge (1, 4) is added,
in 71, the path (¢ — g — h) is added from vertex a, where the attributes of vertices g
and h are C and B, respectively. In 7>, the path (b — g) is added from vertex b, where the
attribute of g is C. The adding edge operation is completed when all paths in the NNTs are
added. Finally, the inverted index needs to be updated by adding the newly added vertices
and edges. Similarly, the same operation needs to be performed on vertex 4 to update the
index structure.

The NNT algorithm matches the pattern graph with the snapshot of the data graph at each
moment, which does not reflect the evolution process of the graph over time. Yang et al. [81]
first proposed an index structure, BR-Index, for large-scale dynamic graphs, which divided
the data graph into a series of overlapping index regions. And each region contained several
independent core regions. It extracted the maximum features (small subgraphs) of each index
region and then established a feature lattice for maintenance and lookup. Meanwhile, it also
maintained a vertex lookup table based on the hash principle. The table was used to store the
data vertices in each index region and which core region the vertex is in the index region.
Thus, the updated part can be located quickly using the lookup table when a data graph is
updated.
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Fig.6 Graph, node-neighbor trees, and inverted index constructed based on node-neighbor trees

Additionally, Song et al. [66] proposed a subgraph matching algorithm, DDST, based on a
time window, which was the first work to impose a timing order constraint on graph streams,
where the window contained all the snapshots that met the time constraint. Moreover, there
was a time constant on each edge that recorded the generation time of the edge. Based on this
timestamp, it was possible to determine whether a legitimate data subgraph is within a given
time window. Only when the legal data subgraph in the window met the matching conditions,
it would become a matching result. Compared with the NNT algorithm, the advantage of a
time window approach is its ability to evolve the graph over time and that it conforms better
to practical applications.

Furthermore, Khurana et al. [42] proposed a tree-like index structure, DeltaGraph. It is
a rooted and directed graph where each leaf node stores a snapshot arranged in time order,
and the internal nodes store a graph made up of combining lower-level graphs. Here, the
root node represented the source node, the leaf node represented the target node, and each
edge held information from the source and target nodes. When the data graph performed an
add or delete edge operation, this index structure added a snapshot of the data graph at that
moment to the leaf node. The information stored with each edge is called edge delta. And
it is sufficient to build the source node (i.e., root node) of the graph corresponding to the
target node (e.g., leaf node) of the graph, so that a specific snapshot can be created from the
root to the snapshot by traversal the path. When the data graph performed an add or delete
edge operation, this index structure only needed to add the snapshot of the data graph at that
moment to the leaf node.

3.1.2 Subgraph matching

When using the subgraph isomorphism method in the matching process, the time complexity
is very high. For example, for the NNT algorithm using the subgraph isomorphism method
for matching, the time complexity can be described as O (n1 x na (|71 | L5 /log|T1)|T>)) [81],
where n] represents the number of vertices in the pattern graph, n, represents the number of
vertices in the data graph at each time, 77 and 75 represent the maximum number of NNTs
corresponding to the pattern graph and data graph. This shows that the subgraph isomorphism
method severely restricts the execution efficiency of the NNT algorithm; therefore, it does
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not meet the real-time requirements of continuous subgraph matching and should be avoided
as much as possible.

NNT algorithm uses an approximate algorithm, which performs subgraph matching by
comparing the paths of two vertices in the NNT. If all the paths in the NNT constructed by each
pattern graph vertex can find a match in the NNT constructed by the corresponding data graph
vertex, it indicates that the pattern graph matches the data subgraph. The time complexity of
this subgraph matching method is O (n1nor!), where r represents the maximum degree of the
data graph node, and / represents the selected depth value. Because each matching operation
requires matching all possible vertices, the overhead is still very high. Thus, the algorithm
also proposes a coding method to convert the NNT into a numerical vector and counts the
number of different paths in all NNTs to further reduce the computing overhead.

As shown in Fig. 6a, there are eight different paths in 77, 75, T3, and T4; hence, the NNT
of each vertex can be represented by an 8-dimensional vector, where the i-th dimension
records the number of i-#h paths in the NNT. Consequently, the pattern graph and subgraph
can be converted into a multidimensional numerical vector. If the value of each dimension
in the pattern graph is less than or equal to the value of the dimension in the subgraph, it
means the subgraph meets the matching conditions. The matching time complexity based on
the above optimization is O (Lnn,), where L represents the number of non-zero items in
the numerical vector.

During the subgraph matching process, the BR-Index algorithm first extracts the features
(subgraphs) set of the pattern graph. Then based on this extracted set, it finds the index regions
in the data graph that contain some of these features. Next, it finds the candidate sets of these
features in the corresponding index region. Finally, the candidate sets are combined to obtain
the matching result.

In comparison, the DDST algorithm uses a simulation matching method to complete
subgraph matching. As simulation matching is more flexible than isomorphism matching,
it can identify more useful results. However, in subgraph isomorphism traditional graph
simulation extends edge-to-edge mapping to edge-to-path mapping and imposes a more
flexible topological constraint, resulting in imprecise results. To solve this problem, the
DDST algorithm adds two constraints Dual simulation and Locality [50] to graph simulation
and constructs a signature for the pattern graph. The signature includes the labels of the edges
and vertices, as well as the in- and out-degree information of all vertices. If the signature of the
data subgraph is consistent with the pattern graph, it sequentially uses the binary simulation.
Simultaneously, it presents the time order of the edges in the pattern graph. If the time
attribute of each edge in the data subgraph meets the time order in the pattern graph, it meets
the matching condition. Further, DeltaGraph uses a distributed parallel graph processing
framework to complete subgraph matching; it stores snapshots in memory. Given a pattern
graph, it can directly find a matched snapshot starting from the root using the information on
the edge.

In summary, the subgraph isomorphism method has a low computation efficiency and is
very time-consuming. Therefore, the approximate matching algorithm and simulation match-
ing are better candidates for the design of snapshot-based matching methods. The approximate
algorithm uses a small number of false-positive results to reduce the matching time, and the
simulation matching uses the verification of binary relationships to replace the subgraph
isomorphism. Simulation matching is mainly applied for applications that focus more on
mining relationships between vertices. Finally, the application requirements determine the
most suitable subgraph matching algorithm.
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3.2 Incremental matching technique

Using the snapshot-based matching method over dynamic graphs will cause many redundant
calculations even though there is only a small number of update operations. In response,
Wenfei Fan et al. [23] first applied the incremental processing technique to continuous sub-
graph matching by proposing the IncSimMatch algorithm and IncBMatch algorithm, which
only analyzed and matched the updated parts of the data graph. In addition, they compared
the two algorithms with their batch processing (snapshot) algorithms, Matchgy and Matchy ,
respectively. The experimental results showed that when the number of addition or deletion
edge operations did not exceed a certain percentage of the total number of edges in the initial
data graph, the execution efficiency of the incremental matching technique was higher.

Incremental matching means that given a data graph G, a pattern graph P, an initial
pattern graph matching result P(G), and a set of update operations for data graph AG, a
newly added matching result set AO will be calculated after the data graph update. This
is P(G & AG) = P(G) & AO, where & represents the operator used to add the changed
content to the original data.

In the matching process, the incremental matching technique can either use direct com-
putation approach or construct an auxiliary data structure to utilize the intermediate results.
The advantages and disadvantages of the two methods are discussed in detail below.

3.2.1 Direct computation

When an edge is added or deleted, it may only affect a small part of the subgraph. Therefore,
Wenfei Fan et al. [23] proposed an incremental algorithm, IncIsoMat, based on direct com-
putation with the graph simulation method. It identifies and extracts a subgraph G’, which
can be affected by A O;. It executes a subgraph matching method on G’ to obtain the change
to the original matches by determining the set difference between the original matches and
new matches. Wenfei Fan et al. [22] further proposed another direct computation method,
IncISO, for the incremental subgraph isomorphism problem. When the data graph is updated,
only the data graph nodes within the diameter range of the pattern graph around the updated
edge are rematched to avoid double calculation of the entire data graph. The cost of IncISO
can be represented as a function of | P| and |Gy, (AG)|, instead of the entire graph size |G|,
where G4(v) represents the d —neighbor subgraph of v that are within d hops.

Although the above algorithms reduce redundant calculations by matching subgraphs
in the affected small-scale subgraphs, they also create new performance problems. These
approaches based on repeated search may incur significant overhead in extracting the affected
subgraph G’ (resp. G4(v)), performing subgraph matching on G’ (resp. G4(v)) and com-
puting the newer matching for each A O;. Moreover, due to the average distance between
two vertices is extremely small in real-world graphs [71], the extracted subgraph G’ (resp.
G 4(v)) could include most of the nodes and edges in G, leading to a useless optimization.

In terms of graph databases that handle continuous subgraph matching, many existing
graph databases, such as Neo4j [3] and OrientDB [4], only support one-time subgraph queries
which evaluate the subgraph on each snapshot of the data graph. However, due to the real-
time demand, many applications are required to handle continuous subgraph queries. To
solve this problem, Kankanamge et al. [40] presented an active graph database, Graphflow,
which supports incremental subgraph evaluating for each update. Internally, the system’s
query processor is based on Generic Join [58], which is essentially a worst-case optimal join
algorithm [57, 73]. In addition, Ammar et al. [10] further extend the worst-case optimal join
to the distributed system.
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Given a pattern graph P = (V(P), E(P)), the generic join first determines a query node
order s = (uy, ua, ..., u|g(p)), and then, implements a multi-way join using the multi-way
intersection operation on the query nodes in turn, according to order s. Each order of the
query node can also be considered as a query plan. In the problem of subgraph matching,
the multi-way intersection can be achieved using the intersection operation on adjacency
lists matched by one or more query nodes. In the process of implementation, the order, s,
of query nodes ensures that, for any k less than |E(Q)|, the induced subgraph composed
by s = (uy, ua, ..., ux) is connected. Here, the induced subgraph is represented as P. The
entire process of a generic join contains two basic operations:

— Scan: For first two nodes on the query node, order s = (u1, ua, ..., u|g(p)|) is obtained
directly by scanning the adjacency list of the graph.

— Extend/Intersect: When obtaining the P;_; match, the matches of Py can be calculated
through the Extend/Intersect operator. For any match of P;_; , each match of the query
nodes adjacent to uy starts along its adjacency table to acquire all possible matches for
uy; then, these matches are intersected to obtain the final matches for uy.

Although Graphflow can handle the continuous subgraph query based on Generic Join
without calculating the set difference, it still needs to compute the join operation from scratch
for each AO; even if the A O; does not cause any new matches.

3.2.2 Auxiliary data structure

Although the incremental matching algorithm with direct computation is performed on a
small-scale graph affected by A O;, it still needs to perform subgraph matching on the small
graph from scratch for each update, leading to high calculation costs. To solve this problem,
an auxiliary data structure can be constructed to keep track of the (partial) results of the
previous computation. Then, for each recent update, the newer results can be obtained easily.

In the process of constructing an auxiliary data structure, the intermediate results can either
be stored in the query graph or data graph, which is called query-centric representation or
data-centric representation, respectively. After the auxiliary data structure is constructed and
the candidate set of all query vertices is found, the subgraph matching operation of the query
graph is performed. The following is an in-depth introduction to subgraph matching based
on the two different auxiliary data structures.

Query-Centric Representation Query-centric representation is the more commonly
used, which stores a set of candidate data vertices for each query vertex, and partial matches
can be obtained by traversing the query graph. For the subgraph matching process, continuous
subgraph matching is similar to static subgraph matching. Based on whether a pattern graph
needs to be decomposed, it can use either a join-based matching or an exploration-based
matching technique. Further, graph simulation-based matching technique has also obtained
good experimental results in continuous subgraph matching. An in-depth introduction to
these three methods is provided below.

(1) Join-based matching technique

For alarge pattern graph, it can be time-consuming to rematch the entire pattern graph every
time the data graph is updated. Therefore, rather than looking for a match to any edge of the
entire graph or the query graph, it is better to divide the query graph into smaller subgraphs
and then search for them. As shown in Fig. 7, the pattern graph P is decomposed into a
series of smaller pattern subgraphs, expressed as ( Py, . .., Py). These pattern subgraphs have
then tracked the matches with individual subgraphs and combined the matches to produce
progressively final matching results for the entire pattern graph.

@ Springer



A survey of continuous subgraph matching for dynamic graphs 961

P1 ) Cp1
o— —»:]\

p
4 35— | Partial ——» ("
P Q Match . @—’
\Pk Cox /
— )

oO—
—
Pattern graph Pattern graph Incremental Compatible Fra'gfnent Compatible
fragments match graph fragments join subgraphs

Fig.7 Continuous subgraph matching via join-based method

The join-based method is widely used in static subgraph matching. The representative
algorithms include the glndex algorithm [80] and GraphGrep algorithm [31]. The join-based
method mines features using recognition capabilities from the data graph, such as path [31,
87], tree [63, 82] and subgraph [15, 37, 80]. Based on these features, it can build an index on
the data graph and decompose the pattern graph. However, simply applying this method to
the continuous subgraph matching process will produce a series of problems. For example,
the gIndex algorithm [80] would need to mine the features of the data graph subgraph at each
moment. Therefore, this method is unsuitable for continuous subgraph matching processing
with real-time analysis requirements. Although the GraphGrep algorithm [31] meets the real-
time requirements, it may produce several negative results by only using the path; therefore, it
is not highly recommended for verification and filtering applications. Notably, when applying
the join-based method to continuous subgraph matching analysis, the efficient extraction of
the data graph features is the main challenge.

Data graphs constructed in social network applications are often multi-relational graphs.
The properties of edges represent the connectivity and relationship between entities. There-
fore, in this application, the relationship between data graph entities (i.e., type of edge) can be
used as a data graph feature to decompose the pattern graph. Choudhury et al. [16] proposed
a tree-like auxiliary data structure called the subgraph join tree (SJ-Tree). The SJ-Tree is a
binary tree whose root node represents the pattern graph, and its child node represents the
subgraph of the pattern graph. And then, the subgraph of each node is further decomposed
to obtain their child node. The leaf nodes represent the final decomposition results.

As shown in Fig. 8, each node in the SJ-Tree stores the information of its sibling and
parent nodes and maintains a hash table to store the matching results of the node. When the
data graph is updated, an iterative search of all the leaf nodes on the SJ-Tree is conducted to
obtain the matching result that contains the newly added edge; this matching result is stored
in the hash table of the corresponding node in the SJ-Tree. Simultaneously, where possible,
the matching result of the leaf nodes is integrated with the matching result of its sibling nodes
to form a larger matching result. The larger matching result is stored in the hash table of the
parent node. Furthermore, a join order is defined, where the individual matching subgraphs
will be combined. The join operation is complete when a result that matches the entire pattern
graph is generated. Figure 8 shows an example of a social query decomposition with SJ-Tree.
The leaf nodes candidate set of SJ-Tree {(“George”, “friend”, “Join”)} and {(“Join”, “like”,
“Santana”)} can be connected and integrated to be a greater matching result {(“George”,
“friend”, “Join”), (“Join”, “like”, “Santana”)}.

Although SJ-Tree can perform graph queries in an exponential time relative to its height,
it still has a limitation. In Fig. 8, since the “friend" relationship frequently occurs in the
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data graph during the subgraph matching process, it will undoubtedly take a considerable
amount of time to track all the edges matching “friend". Therefore, matching the “friend"
edge in the pattern graph can be postponed, and the decomposition result with relatively
infrequent occurrences in the data graph is matched first. Based on this idea, Choudhury
et al. [18] proposed a Lazy-search algorithm. Given an initial data graph G, the selectivity
of a k-edge subgraph g in graph G is the ratio of the number of occurrences of g to the
number of all k-edge subgraphs in G, where g is called the selectivity primitive. To both
limit the computational cost of subgraph isomorphism and keep the selectivity primitive
effective when a data graph updates, unilateral or bilateral subgraphs are generally selected
as the selectivity primitive. The Lazy-search algorithm calculates the selectivity of the types
of unilateral or bilateral subgraphs contained in the data graph with an offline method and
sorts these selectivity primitives in ascending order according to their selectivity value. When
the selectivity value is lower, the recognition ability is higher. Subsequently, the query graph
is decomposed according to the order of these selectivity primitives.

In the matching process, in order to ensure that the matching results of adjacent leaf nodes
in the SJ-Tree are still adjacent on the data graph, it constructs a bitmap index, as shown in
Fig. 9b. The rows represent all the nodes in the data graph, and the columns represent the
decomposition results of a pattern graph that satisfies the adjacency relationship. Figure 9a
shows the two adjacent decomposition results of the pattern graph P. If the data graph vertices
are in the matching result of the query fragment g, the corresponding bits are 1, and the
others are 0. For example, as g; matches the edge (u1, uy) in the data graph, the bits of u
and u; corresponding to g1 are 1, and the other bit positions are 0. When matching g», only
the results that meet the matching condition of g, around the vertex for which the bitmap
vector is 1 in g; need to be found. This advantage is that it can use adjacent decomposition
results to ensure that the matching results are still adjacent on the data graph. Therefore, it
can avoid matching results that do not meet the adjacency relation, reduce the search space,
and speed up the matching process.

Based on the decomposition and join methods, Youhuan Li et al. [48] studied continuous
subgraph matching with timing order constraints which meant the occurrence of edges in the
stream followed the time sequence, and proposed the timing subgraph matching algorithm.
All the matching results should meet both structure and timing constraints. An example of
query graph Q with two-timing order constraints is presented in Fig. 10, €] <e; indicate that

@ Springer



A survey of continuous subgraph matching for dynamic graphs 963

/,/A\\ D
8 /,/// D \\\
e \ A B D
A et P! u; u; us uy us o
i @_\\_@ /,/’ gl 1]1]o0 0| o Q
1 N\ -7
ffffffffffff o
> & & A
@r (b) Bitmap-based index ©¢

Fig.9 Bitmap-based index structure

edges matching €| should arrive before edges matching €, in the subgraph matches of Q.
In Fig. 10, the query is decomposed into a set of subgraph queries that contain only one
timing order constraint called timing connect-query, and a match-store tree (MS-tree) for
each subgraph query Q; is constructed to store the intermediate results G(Q;). Then, all the
intermediate results of the subgraphs are joined according to the timing order constraint to
obtain the final matching result G(Q)={G(Q1), G(Q2), G(Q3)}.

Based on timed order constraints, MS-Tree can filter out a large number of discardable
partial matches, which reduces both space costs and maintenance overhead without incurring
any additional data access burden. Unlike the DDST algorithm with the time constraint
mentioned earlier, this is based on subgraph isomorphism rather than graph simulation.
More importantly, it was designed to perform effective concurrency management, using a
fine-granularity locking technique in the computation to improve system throughput. It is
the first work that studied subgraph matching with concurrency management over streaming
graphs.

Join-based matching techniques use subgraph isomorphism in the matching process, which
can obtain accurate matching results, but at an expense. Although the method of query decom-
position can control the size of subgraphs and limit the cost of the subgraph isomorphism, it
still produces many invalid intermediate results. If an index is built for the data graph to reduce
the number of invalid intermediate results, the cost of index construction and maintenance
should also be considered. Simultaneously, how to mine feature structures over frequently
updated dynamic graph data for query decomposition is still a problem that needs to be
solved.

(2) Exploration-based matching technique

Motivated by the above problems, Sun et al. [69] proposed an exploration-based matching
technique, where the obtained results are approximate rather than exact. An example of the
exploration process is shown in Fig. 11. Given a pattern graph P and a data graph G, this
technique starts with vertex a in the pattern graph and finds the matching vertex a; in the data
graph G through a simple index that maps labels to node IDs. Next, the data graph is explored
from vertex aj to reach vertex b, meeting the requirement of the partial query (a, b). Then, it
is explored from b to reach ¢ and c¢;, meeting the requirement of the partial query (b, ¢). In
this way, it can obtain the matching results of the pattern graph from the data graph without
generating and joining large intermediary results or building and maintaining the index for
the data graph like the join-based matching technique does. Certainly, if the approach starts
from a node labeled b or c, it may still get some useless intermediate results. But in general,
it will not generate as many of them unless it is in the worst case. The meaningful advantage
of the exploration-based matching technique is that the join operations are avoided.

Compared with the join-based continuous subgraph matching, the explorat-ion-based
continuous subgraph matching is more suitable for the distributed parallel graph process-

@ Springer



964 X.Wang et al.

€ €.
2
b »c—2>—>¢
I l € <6 <¢
€, (&
€ E 4 6
1 3 € <6 <€
a d f
(a) query graph (b) timing order
€.
c—>>¢ b
(&
2
€ € el o b——c¢

ol
anr)
oo

o

0; 0; 0;
(c) query decomposition

Fig. 10 Continuous subgraph matching with timing order constraints

ing framework. The mainstream distributed parallel graph processing frameworks, such
as Google’s Pregel [51] system, use a node-centric computing model framework. For this
framework, each vertex maintains an input queue and an output queue. Additionally, each
computing task is composed of a series of super-steps. After receiving the input information
from the input queue in each super-step, the vertex will process the information according
to the user-defined script program, and finally, output the processing result to the output
queue. As the storage and processing units are vertices, this computing model, together with
join-based continuous subgraph matching, will produce several intermediate results, thereby
increasing the processing, storage, and data transmission costs of vertices. In summary, the
join-based continuous subgraph matching technique is unsuitable in a distributed parallel
graph processing framework. In comparison, the exploration-based method is more suitable
because it does not require index construction, nor does it produce and process numerous
intermediate results. Furthermore, it naturally meets the potential needs of incremental com-
puting.

The PathMatch algorithm is an exploration-based matching technique used in a distributed
parallel graph processing framework. It finds a Hamiltonian path in the pattern graph that
can access each vertex in the graph. Using this path transfers information to complete the
exploration (matching). However, if we apply the exploration-based matching technique to
a distributed parallel graph processing framework, it still faces the following problems:

— First of all, the matching results obtained by the exploration-based method are approxi-
mate rather than exact;

— When solving some continuous subgraph matching problems, it is more expensive to use
a naive graph exploration than the join operation;

— Not all queries can be answered by relying only on exploration, for example, when
attempting to check whether the next explored vertex is the first matching vertex.

To solve the above problems, Sun et al. [69] presented a novel exploration method, STwig-
Match, that maximizes the benefits of both the join-based approach and the exploration-based
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(a) pattern graph P (b) data graph G

Fig. 11 Continuous subgraph matching via exploration-based method

approach while avoiding their disadvantages. Specifically, this method uses a join-based graph
matching framework on the macro level and an exploration-based matching method to avoid
useless candidates during the join and find matching results. In other words, it decomposes
the pattern graph into a series of small twigs based on the transmitted information in the pat-
tern graph rather than the feature subgraph extracted in the data graph and then stores each
decomposition result on a vertex of the distributed parallel graph processing framework.
Later, it matches these small twigs through the exploration-based approach. The benefit of
this algorithm is the tradeoff between matching calculation cost and matching result accuracy.

Additionally, Gao et al. [30] proposed an exploration-based algorithm, SSD, in the dis-
tributed framework, Giraph. Figure 12 is an illustration of the computation process of the
SSD algorithm. First, a vertex with the maximum degree is labeled as the sink vertex in the
pattern graph (i.e., vertex C in Fig. 12a). Itis called a sink, as all the edges satisfied are passed
to it, and it does not need to send a message out. After selecting the sink vertex, the direction
of the edge is determined via a BFS (breadth-first-searching) strategy. Based on this concept,
the pattern graph can be converted into a directed acyclic graph (DAG) with a single sink
vertex as in Fig. 12b. And regarding the sink vertex as a cut vertex, the DAG can further be
decomposed into three sub-DAGs. In each sub-DAG, there are some source vertices (e.g.,
vertex a and e in sub-DAG 0), which do not have any incoming edge and can initialize the
message transfer.

Figure 12c¢ shows the process of subgraph matching. In sub-DAG 0, information passes
to all its neighbors (vertex 1 and vertex 2) to convert from vertex 0. Then, the converted
information continues to pass to their downstream neighbors and finally reaches vertex 3.
Thus, it can obtain the information transmission rules from the source vertex. Then, it maps
the information transmission rules to the data graph and starts from the vertex in the data
graph with the same attribute as the source vertex to check whether the subsequent vertices
match the query vertices based on the rules. For example, in Fig. 12¢, source vertex 0 matches
the data graph vertex a, and the matching process is completed by a series of super-steps. In
super-step 1, vertex a passes information to its neighbors; in super-step 2, vertices b and ¢ pass
the information to vertex d after receiving it. If vertex d receives two pieces of information
from the same vertex, which is the same as the information transmission rules of sub-DAG
0, the existence of a matching subgraph can be proved.

However, there is still a problem with the SSD algorithm. In super-step 2, if edge (a, b) is
deleted when vertex b and ¢ pass the information to vertex d, vertex d will return an expired,
inaccurate matching result after receiving the information. The problem of inconsistent results
is severe in distributed systems since each distributed parallel graph computing framework
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Fig. 12 Illustration of the SSD algorithm (Taken from [30])

contains many super-steps. In order to solve this problem, Gao et al. [29] proposed the Stp(Q)
algorithm.

The exploration-based matching method is more suitable for processing large-scale
graphs; however, inconsistent matching can produce inaccurate matching results. Therefore,
this type of method is suitable for applications that do not have strict accuracy requirements
for results, such as social network analysis. Determining methods to effectively combine
the exploration-based and join-based matching methods to balance efficiency and subgraph
matching accuracy is a topical issue in current research.

(3) Simulation-based matching technique

Note that the exploration-based matching technique produces inaccurate matching results,
while the join-based matching technique is more expensive. Both methods use the NP-hard
subgraph isomorphism matching method, which limits the improvement of the performance.
Therefore, the simulation-based matching technique has gained attention in the continuous
subgraph matching field. This method generates a matching candidate set for each query
vertex according to its label and then filters out the unmatched vertices according to the
different approximation degrees of the precursors and successors of the query vertices (see
Sect. 2.1 for details on simulation matching).

Wenfei Fan et al. [23] proposed an incremental graph simulation matching (IncSimMatch)
algorithm with the auxiliary data structures, match(v) and candt(v), to maintain the inter-
mediate results and accelerate the matching calculation. Here, v represents a vertex in the
pattern graph, match(v) represents a vertex in the data graph that matches v, and candt(v)
represents a vertex in the data graph that has the same label as that of v but does not meet
other matching conditions.

With these auxiliary data structures, unnecessary update operations can be filtered out:

— For delete edge operation, only when the deleted edge, such as (u;, u;), satisfies u; €
match(-) and u; € match(-), it will cause the reduction of the matching results.

— For add edge operation, only when the added edge, such as (u;, u;), satisfies u; €
candt(-) and u; € match(-) or u; € candt(-) and u; € candt(-), it will cause a new
matching result set.

In addition, Wenfei Fan et al. extended the definition of initial simulation matching and
proposed the concept of bounded simulation, which redefines the pattern graph with edge
weights. Each edge in the pattern graph maintains a constant, k. If there is a vertex in the
data graph that matches the successor vertex of the corresponding vertex in the pattern graph
within k hops, then there is a match. The author further applied the bounded simulation match-
ing technique to the continuous subgraph matching and proposed the incremental algorithm,
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IncBMatch. The IncBMatch algorithm is similar to the IncSimMatch algorithm mentioned
with the auxiliary data structure match(v) and candt (v), which solves the problem of highly
complex isomorphism matching and achieves good results. The advantage of bounded sim-
ulation matching is that the matching process can be completed in polynomial time, which
effectively improves the efficiency of subgraph matching.

The literature [41] was the first work that applied the IncSimMatch algorithm to the vertex-
centric distributed parallel graph processing framework and realized the distributed parallel
computing of dynamic graph simulation matching. During the matching process, the updated
graph was stored in a vertex of the framework, and an execution script allowed the vertex to
filter out edges that would not produce new matching results. Then, the edges were evaluated
against the edge constraint relationship in the graph simulation matching by a vertex of the
framework. The main process would receive the processing information from all vertices
and then evaluate whether these subgraphs meet the edge constraint relationship in the graph
simulation matching to obtain the final matching result.

However, the simulation matching method is based on a binary relationship and can
produce inconsistent results with the structure of the pattern graph; therefore, it is mainly
suitable for applications that do not have very strict requirements for graph structure matching,
such as social network analysis. Further, simulation matching can be used to prune candidate
sets. Wickramaarachchi et al. [76] proposed a distributed pruning algorithm D-IDS over the
dynamic graph, which uses a dual simulation matching method to prune the data graph.
The dual simulation requires that all child and parent nodes of the current node conform
to the binary relationship. When the data graph is updated, the binary simulation is used to
prune the data graph, and a large data graph can be pruned into a relatively small data graph.
Meanwhile, the data graph can be maintained continuously. In the matching process, only
incremental matching needs to be performed on the small graph.

The matching efficiency of simulation matching is high; it is applicable to both dis-
tributed and centralized environments and has some unique advantages. This advantage is
more apparent in the processing of continuous subgraph matching. The bidirectional simula-
tion matching based on graph simulation matching can better tradeoff the effectiveness and
timeliness of simulation matching results and simultaneously obtain a matching result that
is more consistent with the structure of the pattern graph, thereby effectively compensating
for the disadvantages of the join-based matching technique and exploration-based matching
technique.

Although constructing an auxiliary data structure to store intermediate results can reduce
the re-computation overhead and achieve better performance, query-centric representation
still has several limitations. When a data graph vertex v has multiple candidate query vertices,
v needs to be copied as many times as the number of the matched query vertices. Further,
storing many partial results and then joining each other follows a certain order does cause
lots of redundancy. Specifically, the worst storage complexity for SJ-tree is O(|V (g)| *
|E(G)|'E@1), where the |E(G)| represents the number of edge in a graph G, and V(g)
represents the number of vertices in a graph ¢. Finally, when any update occurs for vertex v,
it must find all the partial matches containing v in the query-centric representation. Therefore,
it needs to design and maintain an additional index of duplicate keys to find corresponding
partial matches in the query-centric representation.

Data-Centric Representation All of the above problems of existing methods motivated
[43] to investigate the novel concept representation, called data-centric graph (DCG). It stores
the corresponding query vertex ID as the incoming edge label for each data vertex in the data
graph. Thus, in the DCG, each data vertex appears at most once, and each data edge stores
at most |V (¢)| edges. Thus, its worst-case storage complexity is O(|V(q)| * |E(g)]). For a
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Fig. 13 A running example (taken from [43])

dynamic graph, the execution model allows for fast incremental maintenance. Each edge in
the DCG has one of three states: NULL, IMPLICIT, or EXPLICIT. An explicitedge (v, u’, v")
represents that query vertex u’ is candidate of v and the data path and subtree of u” matches
the corresponding data path and subtree of v’. In an implicit edge (v, u’, v'), only the data
path of u’ matches the corresponding data path of v’, and the subtree does not match. When a
new/expired edge is inserted/deleted, TurboFlux uses an edge transition model to change the
state of each corresponding edge, and finally, it can report positive/negative matches based
on the explicit edge. Furthermore, compared with other auxiliary data structures, as DCG
itself is a graph, whenever the DCG is updated, it can directly access corresponding vertices;
there is no need for an additional duplicate key index like with query-centric representation.

Figure 13 shows a running example of DCG. Figure 13 shows the DCG obtained after the
transformation of the data graph for the query graph g. When (vg, v1) is inserted into g, the
state of (vo, u, v1) in the DCG will be transited from NULL to IMPLICIT, as the inserted
edge matches (1o, u1) and v has an incoming explicit edge with label ug (Fig. 13). Then, the
state of (v1, uq, vq) is transited from NULL to IMPLICIT, because vy is the child vertex of v;
and the state of (vo, u1, v1) is IMPLICIT (Fig. 13e). Next, the state of edge (v1, u4, v4) will
be transited to EXPLICIT (Fig. 13f). Note that the subtree of v; matches that of u;. Thus,
the state of (v, u1, v1) is transited to EXPLICIT (Fig. 13g). Finally, the state of (v, uo, vo)
is also transited from IMPLICIT to EXPLICIT for the same reason (Fig. 13h).

In summary, the concise auxiliary data structure and efficient incremental maintenance
strategy of TurboFlux make it the most advanced method currently. It can efficiently identify
update operations that may cause positive/negative matches with the current partial solutions.

3.2.3 Complexity analysis

Continuous subgraph matching algorithms aim to find the occurrences of a given pattern
on a stream of data graphs online. The dynamic nature of the data graph demands that the
matching results need to be responded to in a little time. Thus, the incremental continuous
subgraph matching algorithms have been widely studied. In Table 3, we summarize the space
complexity of the index and the time complexity of updating the index on each update of four
latest and representative continuous subgraph matching algorithms, including IncIsoMatch,
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Table 3 Comparison of four representative incremental algorithms

Algorithm Classification Index

Space complexity Time complexity
IncIsoMatch Direct computation N/A N/A
Graphflow Direct computation N/A N/A
SJ-Tree Auxiliary data structure O(|E(G)|/E@I) O(|E(G)||E(@DIy
TurboFlux Auxiliary data structure O(IE(GI|IV(Q)D O(IE(G|IV(Q)D

SJ-Tree, Graphflow, and TurboFlux. InclsoMatch and Graphflow are the direct computation
incremental algorithm, and they do not generate any auxiliary data structure. While SJ-Tree
and TurboFlux construct an auxiliary data structure to accelerate the filtration rate.

From Table 3, we can see that for SJ-Tree, the space complexity and time complexity
of the auxiliary data structure (index) are exponential, while for TurboFlux, they are linear.
This is because SJ-Tree built a tree index and uses a lot of join operations. TurboFlux used a
data-centric representation to store the candidate set. Obviously, TurboFlux can effectively
reduce the search space.

4 Continuous subgraph matching for content-based change

Besides the structure-based continuous subgraph matching, the content-based continuous
subgraph matching techniques have also been studied. For example, using this technique,
a server deployment solution that meets user needs can be found in a frequently updated
data center network [60]; advertisers can find closely linked groups of people in frequently
changing social networks; an HR can construct a team in dynamic social networks based
on constrained pattern graph [44]. The labels of nodes or edges in these applications will
frequently change with time. Currently, there are few studies on content-based continuous
subgraph matching techniques. The following are some typical studies.

4.1 Join-based matching approach

Taking resource allocation in a data center network as the application background, Bo Zong
et al. [88] proposed the Gradin algorithm to solve the continuous subgraph matching problem
between the user-defined resource pattern graph and data-center network. It adopts a join-
based matching approach since the data center network has a relatively stable topology but
frequent changes in the node/edge labels, which representing vacant CPU cycles and network
bandwidth. The matching process will include the following two stages.

— Offline index construction: First, the frequent graph structure set is decided by existing
structure selection algorithms [80], and then all the graph fragments in data that contain
the frequent graph structure were obtained by the subgraph mining technique [79]. Based
on these frequent subgraphs, an inverted index is built on the data graph.

— Online query processing: Gradin uses a join-based approach to search the compatible
subgraphs of pattern graphs. The pattern graph is decomposed first based on the frequent
subgraphs. Then Gradin searches the candidates for each query fragment to sional vectors
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Fig. 14 Mapping a frequent dim, A
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and uses indices to efficiently search them. Then, it combines all matched fragments of
the query’s subgraphs via join operation to form compatible subgraphs for pattern graphs.

Obviously, the frequent update is a huge challenge that needs to be addressed. Thus, the
Gradin algorithm further used a grid-based index, FracFilter, which can be used to construct
indices for frequent subgraphs in the graph and avoid redundant comparisons. As shown in
Fig. 14, let s represent a frequent subgraph mined from the data graph. Then, all the subgraphs
in the data graph with the same structure as s1 can be converted into two-dimensional vectors
based on their node labels and further mapped into the two-dimensional grid indices, i.e., all
the black dot in FracFilter. Simultaneously, the subgraph with the same structure as s in the
pattern graph is also mapped to the grid index in the same way indicated by a red square. If
the subgraphs of the pattern graph match that of the data graph, the labels of corresponding
nodes must satisfy the partial order. Therefore, the two-dimensional grid can be divided into
three areas according to the position of the red square. The subgraphs of the data graph,
corresponding to the black dots that fall in the green shadow area, R, will meet the matching
requirements with the subgraphs of the pattern graph. Conversely, the subgraphs of the data
graph, corresponding to the black dots that fall in the brown shadow area, R3, do not meet
the matching requirements with the subgraphs of the pattern graph. Therefore, it is only
necessary to perform matching computation on the subgraphs corresponding to the black
dots in the area between the green and brown shadow areas (i.e., R) to obtain the matching
result.

In the searching processing, the Gradin algorithm requires matching dns/A¢ [(A +
1)/214-" times on average, where A is the density of the grid index, d is the dimension
of the grid index, and ny is the number of pattern graph slices during the offline index con-
struction. When the nodes/edges labels of the data graph are frequently updated, FracFilter
has a lower maintenance cost than other index structures. In average, each graph update only
requires 2(1 — 1/A¢) operations.

The Gradin algorithm can also be directly extended to the case where the edge labels in
the data graph are frequently updated. In addition to using frequent subgraphs mined in the
data graph to decompose the pattern graph, current advanced subgraph structures commonly
used in academia can also be used to decompose the pattern graph.

4.2 Exploration-based matching approach

However, the join-based approach cannot be directly extended to large dynamic graphs [69],
and it is suitable for queries with static or infrequently updated labels. Since the active
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attributes in dynamic graphs would cause a lot of updates to the join indexes. Thus, Mon-
dal et al. [56] designed an exploration-based query evaluation system, called CASQD, to
continuously detect meaningful and up-to-date insights based on subgraph matching over
content-changed graphs.

The principle of the exploration-based approach is to select a set of potential pivot nodes
and then explore their neighbors to get a match. The key of this method is how to select
pivot nodes efficiently and make the best use of additional information about adjacent nodes.
Therefore, CASQD used a monitor, explore and trigger-based approach to select pivot nodes
and reduce the search space:

— Monitor: In the monitoring phase, CASQD summarized the activity node and/or its
activity neighbors via a set of models. The monitoring policies have two methods to
capture the activity information: (1) directly evaluating the node’s activity predicates
and tracking the number of its active neighbors in real-time; (2) calculating probabilistic
“estimates" of the active nodes by historical information.

— Explore: In the exploring phase, if there is a match around a node v based on its model
and neighbors’ knowledge, it is called a pivot node. The exploration phase searches for
a match around the pivot node and finds a possible result. In addition, it further updates
the neighborhood knowledge of the pivot node with the information gathered during the
exploration phase.

— Trigger: The trigger phase is used to let the neighbors of a active node know about any
significant change and update their knowledge based on it.

Compared with Gradin, the advantage of the design is that there is no need for frequent sub-
graph mining on the data graph, and the advanced subgraph structures can be integrated into
any query language that supports subgraph pattern matching. In addition, CASQD extends
simple tree-structured patterns to more complicated structures, e.g., stars, cliques, or bipartite
cliques, and designs different exploration algorithms for finding different primitive patterns.

5 Performance comparison of matching algorithms

In this section, we summarize and analyze the performance of representative algorithms
under different classification respectively. We mainly focus on analyzing the performance of
continuous subgraph matching method based on structural change.

Datasets. There are multiple real datasets and synthetic datasets used in this evaluation
cover a wide range of settings, including:

— MIT datasets: it was obtained from the mobile communication information of the MIT
Media Lab, using a subset of the mobile communication information of 97 fixed persons
from January 2004 to May 2005 as the experimental dataset; 300 graph snapshots were
generated. Each snapshot represents the state of the dynamic graph at a certain moment.

— synthetic data: it was generated using a graph generation tool.

— collection of real datasets: including road network traffic data, telephone communication
data, patent citation data, and Twitter data. Table 4 gives detailed statistics on these
data, including the maximum in/out degrees of the datasets, an average time interval of
increasing edges, and the number of nodes and edges.

— New York Times dataset: it contains 39,523 nodes and 68,682 edges.

— livejournal: a friendship network of an online community site LiveJournai, with
4,847,571 nodes and 68,993,773 edges.
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Table 4 Statistics on the datasets

out_edge in_edge inter_arrival # edges # nodes
Road 3336 2224 048s 686,104 605
Phone 1725 1661 3 min 52,050 6809
Patent 770 779 0,79 min 16,522,438 3,774,768
Twitter 308,636 10,997 6.7 ms 495,544,069 34,664,679

— YouTube: has 14,829 nodes and 58,901 edges, where each node represents a video object
that recorded the length, type, and other attributes.

— citation network: has 17,292 nodes and 61,351 edges, where each node represents a paper
object that recorded the title, author, and publication year of the paper.

— LSBench: comprises an initial graph containing 20,988,361 triples and a graph update
stream containing 2,332,065 triple insertions.

Query graphs. The common query graphs used in this section are a set of 100 queries for
each size and query type by randomly extracting subgraphs from the data graph. There are
two types of queries: tree and graph (having cycles). And query graphs can further be divided
into two types based on the density: sparse (dqvg < 3) and dense (d,yg > 3). Both sparse and
dense are graph queries. For each type, the query graphs are generated with |V (Q)| varied
from 4 to 12 in an increment of two.

Metrics. For structural changed continuous subgraph matching algorithm, the most com-
mon evaluation metrics are the query process time, which is the elapsed time of the online
processing given a graph update stream, and the size of the intermediate results, which
shows the pruning optimization ability of the algorithm. In addition, in the exploration-
based approach comparison, transferred messages and precision are also evaluated. While
for content changed continuous subgraph matching algorithm, the filtering time and query
processing time are the main evaluation metrics.

5.1 Structure-based change

According to the classification method in Sect. 2.2, the structure-based continuous subgraph
matching technique is divided into two types: matching based on snapshot techniques and
matching based on incremental techniques. This section will introduce the performance
evaluation of these two types of algorithms.

5.1.1 Snapshot-based technique

The performance of all algorithm can be evaluated in terms of effectiveness and efficiency.
Wang et al. [75] compared the proposed NNT algorithm with glndex [80] and GraphGrep
[31], using real and synthetic datasets. The real data was obtained from the mobile commu-
nication information of the MIT Media Lab [8], using a subset of the mobile communication
information of 97 fixed persons from January 2004 to May 2005 as the experimental dataset;
300 graph snapshots were generated. Each snapshot represents the state of the dynamic graph
at a certain moment. The synthetic data were generated using a graph generation tool [45].
The experimental results show that in terms of effectiveness (as shown in Fig. 15a), the
GraphGrep algorithm used more than 50% of the matched result as candidate sets, resulting in
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Fig. 15 Comparison of effectiveness and efficiency

poor pruning ability and low effectiveness. There was no significant difference in effectiveness
between the NNT and glndex algorithms, as the NNT algorithm produced a candidate set
below 6%, and the candidate set of the glndex algorithm was between 6% 10%. In terms of
efficiency (as shown in Fig. 15b), the query time of the gIndex algorithm was significantly
higher than that of the other two algorithms. This can be attributed to the frequent subgraph
mining method used in glndex. Although the validity of the matching result is high, frequent
subgraphs of the data graph need to be mined for each snapshot, which is time-consuming.
The NNT and GraphGrep algorithms did not need to mine the subgraph features, making
them more efficient.

Compared with the join-based matching technique (glndex algorithm) used on static
graphs, snapshot-based continuous subgraph matching technique can be improved in two
ways. The first method is to design an effective index structure, which can efficiently process
the update of the data graphs and use the pruning ability of the index to effectively reduce the
size of the matching candidate set. The second method is to use an approximation algorithm,
sacrificing some accuracy in exchange for higher matching efficiency.

In [66], there are several real datasets of dynamic graphs introduced, including road
network traffic data, telephone communication data, patent citation data, and Twitter data.
Simultaneously, the proposed DDST algorithm was compared with the NNT algorithm. The
NNT algorithm does not use time window constraints and instead uses the approximation
algorithm based on the isomorphic matching problem. Note that this led to errors in the
matching results. In the comparison, the DDST algorithm considered the time constraint
relationship on the updated edge of the data graph and used an exact algorithm based on the
simulation matching problem, leading to more accurate results. Because the performance of
the algorithm needs to be compared in the same experimental environment, it was necessary
to ignore the time constraints and the accuracy of the results in the comparison process; only
the efficiency of the algorithm from the perspective of throughput was compared.

As shown in Fig. 16, the experimental results showed that, for the road and phone datasets,
the throughput rate of the DDST algorithm was significantly higher than that of the NNT
algorithm. Simultaneously, as the range of the window increased, the throughput rate of the
NNT algorithm decreased. This is due to the NNT algorithm expending a significant amount
of resources on index maintenance which is more sensitive to the increase of data, and
adopting a more restrictive isomorphic matching method. In contrast, DDST used the graph
simulation method and showed superior performance in terms of throughput (efficiency).

In summary, to meet the needs of real-time applications, the snapshot-based matching
technique can be designed by considering the following two perspectives. First, an efficient
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Fig. 16 Comparison of throughput

index structure needs to be designed. This will ensure no excessive index maintenance costs
exist in the process of updating the data graph. Furthermore, an approximate algorithm needs
to be designed to improve the efficiency. Second, using simulation matching, restrictions need
to be added based on graph simulation to better meet the needs of actual applications. Further,
an accurate algorithm based on the binary relationship of the simulation matching needs to
be designed to improve the matching efficiency of the algorithm. Using either isomorphic
matching or simulation matching is based on the specific application background.

5.1.2 Incremental technique

With the emergence of the incremental technique in continuous subgraph matching, an
increasing number of studies are focusing on this area. The incremental technique is more
suitable for real-time updated graph data, and it can be divided into two categories: directly
computing and building auxiliary data structures. Furthermore, the applied subgraph match-
ing algorithm can be divided into three types: join-based matching, exploration-based
matching, and graph-based simulation matching. Next, the performance of these three types
of continuous subgraph matching algorithms is analyzed and compared. Finally, a compre-
hensive comparison of the different representative incremental algorithms is made.

(1) Join-based matching technique

Choudhury et al. [16] compared the SJ-Tree and InclsoMatch algorithms using the real
New York Times dataset from August to October 2011. In Fig. 17, the experimental results
show that SJ-Tree is faster than IncIsoMatch, and the performance gap between the two
algorithms increased as the data graph size increased. This can be attributed to the fact that
incremental matching techniques search around each newly arrived edge during the matching
process. For IncIsoMatch, when a new edge arrives, it is necessary to find all nodes within
the k-hop range around the edge endpoint, where k represents the diameter of the pattern
graph. When the data graph is dense, the subgraphs in the k-hop range will accumulate
numerous edges, making the search more expensive and the query rate slower. For SJ-Tree
using query decomposition, a large matching graph is transformed into a series of smaller
matching graphs, making the algorithm more efficient.

While the selective lazy-search method proposed in the [17] can filter the candidate sets
based on a selected structure with recognition ability, effectively reducing the search space.
The experimental results show that subgraph isomorphism operations account for 95% of
total query time in the query process, thus reducing the number of subgraph isomorphisms.
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Fig. 18 Comparison of SSD and other methods

This can effectively increase the performance of the algorithm and result in a search speed
that is 10~100 times that of the VF2 algorithm [20].

Furthermore, Youhuan Li et al. [48] compared the time efficiency and space efficiency
between Timing algorithm, SJ-tree, and three other state-of-art static subgraph matching
algorithms which were performed on the affected area window by window, including QuickSI
[63], Turbo;so [34], and Boost;sp [61]. Obviously, the Timing algorithm was faster than
the other approaches. This is because the Timing algorithm uses the incremental strategy
rather than recomputes each snapshot for each time window. Meanwhile, it filters out some
discardable partial matches firstly based on the timing order constraint with MS-tree, while
SJ-tree needs to enumerate all the partial matches to find expired ones.

The above experimental results show that performing incremental matching will result in
low efficiency if the entire pattern graph is matched with the data graph, especially dense
data graphs. Therefore, decomposing the pattern graph is an option but may produce many
invalid intermediate results. Simultaneously, for the join-based matching technique using
a subgraph isomorphism verification method, the invalid intermediate results will lead to
a further reduction in matching efficiency. Therefore, by selecting the feature structure for
query decomposition, the invalid intermediate results can be filtered out to speed up the
matching rate (Fig. 18).

(2) Exploration-based matching technique
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Fig. 19 Precision of SSD and Stp(Q)-SSD

Gao et al. [30] compared the SSD with STwigMatch and PathMatch algorithms on the
distributed platform Giraph [1]. The study used the real dataset livejournal. STwigMatch used
a decomposition framework based on STwig and an exploration-based matching method.
The PathMatch method only used the exploration-based matching method. The experiment
used query time and total transferred messages as evaluation indices. As shown in Fig.
19, the performance of the SSD algorithm and STwigMatch was better than PathMatch
overall, and the SSD algorithm needed to transfer the least information. PathMatch and
STwigMatch transfer larger amounts of information, which is time-consuming; the SSD
algorithm uses DAG decomposition, which can effectively reduce the information delivery
and query response time. In addition, for pattern graphs with a size larger than 7, the memory
limit was exceeded on both STwigMatch and PathMatch algorithms, leading to a slow query
process.

Gao et al. [29] further proposed the Stp(Q) algorithm based on SSD, which solved the
inconsistency of results caused by the super-steps of the SSD algorithm during the process
of data graph changes. For Fig. 19, the UpdateRation represents the update ratio of the data
graph. The experimental results show that the accuracy of the SSD algorithm decreased with
an increase in the degree of change in the data graph or pattern graph. Meanwhile, the SSD
algorithm using Stp(Q) could effectively guarantee an accuracy rate of 100%.

The preceding discussions show that using exploration-based matching alone results in
poor performance. Therefore, a combination method with join-based and exploration-based
approaches could be designed to improve the performance, decomposing the query frame-
work using the join-based method, and using the exploration-based matching method in the
matching process. The effective use of the information transmission method to decompose
the pattern graph is vital. A good decomposition method will reduce the amount of infor-
mation to be transmitted, improving query efficiency. Simultaneously, introducing efficient
algorithms to improve the accuracy of the results is critical.

(3) Simulation-based matching technique

In [23], the IncSimMatch algorithm and IncBMatch algorithm were compared against
their corresponding batch algorithms, Matchy and Matchy,, using real YouTube and citation
network datasets. Figure 20a shows that the incremental algorithm performs better than its
batch counterpart when the number of added or deleted edges does not exceed 40% of the
total number of edges in the data graph. For the IncBMatch algorithm, Fig. 20b shows that
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Fig. 20 Incremental match versus batch counterpart

the incremental algorithm is superior to the batch algorithm when the number of added or
deleted edges does not exceed 20% of the total number of edges in the data graph.

Wickramaarachchi et al. [76] compared the proposed pruning algorithm, D-IDS, with the
IncBMatch algorithm. IncBMatch pruned the data graph using restricted simulation, provid-
ing results that were less consistent with the structure of the pattern graph. Meanwhile, the
D-IDS algorithm produced results that were more consistent with the pattern graph through
binary simulation matching. The experimental results showed that the D-IDS algorithm could
reduce the size of the data graph by an average of 60%. For data graphs with smaller diam-
eters, the performance improvement was greater. The efficiency was also improved for data
graphs with larger diameters, but not significantly. Kao et al. [41] compared the distributed
incremental algorithm with the batch processing algorithm. The experimental results show
that after the 12" update, the matching rate of the incremental algorithm was 3~10 times
that of the batch processing algorithm, and more than 60% of the invalid updates could be
filtered out.

In summary, the research on continuous subgraph matching based on the incremental
technique is becoming increasingly extensive. Generally, the performance of the algorithm
is considered from three perspectives. The first is to design an incremental algorithm that
makes full use of the previous matching results to filter out invalid updates. The second is to
design an efficient incremental subgraph matching algorithm to find candidate sets that may
be matching results around the newly added edges. The third is to design a pruning strategy
to further filter out invalid results in the matching candidate set.

Different application uses will require different approximation methods. For accuracy,
the join-based method can obtain exact-matching results that are suitable for applications
with strict requirements regarding the topology of the graph. In contrast, the join-based
matching technique produces numerous intermediate results, resulting in lower efficiency.
The exploration-based method will improve the matching efficiency, but accuracy will be
lower; therefore, a matching method combining the two previous methods can be used to
optimize performance. Further, graph simulation can be used for applications that do not
have strict requirements for topology structure. Some extended graph simulation matching
methods can obtain matching results with a higher correlation to the pattern graph, thereby
compensating for the deficiencies of the join-based method and exploration-based method.

@ Springer



978 X.Wang et al.

107 10*
TurboFlux —= TurboFlux —=

106 SJ-Tree mmmm SJ-Tree
— Graphflow  mesemm—" _
€5 2 40
10 %
S 10t 5
2 3 402
= 3 7]
7 10 e
5’101 210’

10

10° 100

3 6 9 12 3 6 9 12
Query size Query size
(a) Average elapsed time (b) Average intermediate results size

Fig.21 Comparison of Turboflux and other methods

(4) Comprehensive comparison of incremental algorithms

Kim et al. [43] evaluated the performance of a data-centric representation (TurboFlux)
against the query-centric representation (SJ-tree) and direct computation method (Graph-
flow), using the LSBench dataset, which was used in [17]. The experiment used both tree
and graph queries. In the comparison of experimental results, both average elapsed time
(M(Ag, q)) and storage cost were evaluated.

Figure 21 shows the performance results for the tree queries in LSBench. Notably, match-
ing with an auxiliary data structure outperforms the direct computation method. The smaller
query sizes noted better performance based on the average elapsed time. Further, data-centric
presentation outperforms query-centric presentation. For an average elapsed time, TurboFlux
outperformed SJ-tree by 77.30 «~ 379.22 times and Graphflow by 515.01 «~ 1,275.68 times
regardless of query size. This is because SJ-tree generated a significant amount of partial
solutions using the join operation. Since Graphflow used the direct computation method,
it did not generate any intermediate results; therefore, TurboFlux was only compared with
SJ-tree in terms of the storage cost. SJ-tree showed a notable storage cost problem. The
average storage cost of SJ-tree was obviously larger than that of TurboFlux, up to 142.34
times. Evidently, TurboFlux could efficiently reduce the search space using DCG.

SJ-tree has a significant intermediate result size problem. Among them, the average size of
the intermediate results of the sj tree is significantly larger than TurboFlux, reaching 142.34
times. Obviously, TurboFlux can effectively use DCG to reduce the search space.

From the above experimental results, it can be seen that maintaining intermediate results
could increase the performance. Particularly, the data-centric representation has the best
performance. TurboFlux consistently and significantly outperformed state-of-the-art methods
for varying query sets, datasets, and insertion rates. The auxiliary data structures based on
a graph can help us track affected vertices more quickly and obtain them more easily. In
future research, new auxiliary data structures with higher performance and lower memory
consumption should be considered.

Recently, Sun et al. [68] conducted an in-depth research on continuous subgraph matching.
Instead of comparing tree and graph queries in [43], they also divided graph queries into sparse
graph queries and dense graph queries. They found the latest algorithms do not consistently
outperform the old ones and the direct computation incremental method runs faster than the
incremental method with an auxiliary data structure in some cases. Specifically, (1) on tree
queries, TurboFlux and SJ-Tree run much faster than Graphflow; (2) on sparse graph queries,
Graphflow runs faster than TurboFlux; (3) on dense graph queries, Graphflow generally
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outperforms TurboFlux; (4) if edges are updated at the sparse regions in the data graph,
Graphflow runs faster than TurboFlux.

5.2 Content-based change

Continuous subgraph matching algorithms based on content changes are generally compared
in terms of query time and scalability. In [88], Gradin was compared with VF2, UpdAll,
NaiveGrid, and UpdNo algorithms; VF2 is an indexless subgraph matching algorithm, UpdAll
deploys query sharing into a multidimensional search tree, NaiveGrid is a grid index using
the traditional verification algorithms, while UpdNo uses an inverted index. The experiment
used the real dataset BCUBE, comprising the network architecture of a data center, where
3000 nodes were selected as the experimental dataset. As shown in Fig. 22, the experimental
results demonstrated that the pruning rate and query time of the Gradin algorithm was similar
to the UpdAll algorithm; however, the index construction time was 4 to 10 times that of the
UpdAll algorithm. Simultaneously, the pruning rate of the Gradin algorithm is 10 times that
of the UpdNo algorithm and 5 times that of the NaiveGrid algorithm. The Gradin algorithm
uses join-based matching to speed up the graph matching process, giving it the fastest search
speed in this case.

Continuous subgraph matching for content change, mainly used in the data centers, is
not as widely researched as structural change. Generally, it is considered from the following
two aspects. First, for applications with infrequent attribute updates, a join-based matching
technique can be used, which is similar to static graph matching. Second, for applications
with frequently updated attributes, an exploration-based matching method can be adopted,
as a join-based matching method will produce numerous intermediate results.

6 Application analysis of continuous subgraph matching technique

In recent years, graph data have been widely used to describe complex and constantly chang-
ing relationships between various entities in the real world. Therefore, compared with the
traditional static graph subgraph matching technique, the application scenarios of the contin-
uous subgraph matching technique are more extensive. This section summarizes the practical
applications of continuous subgraph matching techniques.
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Fig.24 Traffic accident monitoring

6.1 Criminal behavior analysis

Currently, criminal behaviors such as drug trafficking and terrorist attacks are causing serious
harm worldwide. By establishing a behavioral relationship graph as a data graph, with people
as nodes and activity relationships as edges, a criminal group behavioral relationship graph
can be used to define a pattern graph. Using this pattern graph and a subgraph matching
technique on a dynamic data graph, potentially criminal behavior can be discovered and
predicted.

For example, a limited simulation matching technique was used on dynamic graphs to
analyze potential drug trafficking groups in [23]. As shown in Fig. 23, where Py is a pattern
graph, with nodes representing criminals and edges representing the trafficking between
them. The value of the edge label on the edge (AM, FW) is 3, indicating that the trafficking
constraint needs to be satisfied from AM to FW within 3 hops. Based on the pattern graph,
potential drug trafficking groups can be found by searching and matching in a large-scale
dynamic behavior relationship graph, providing a strong basis for the detection of criminal
behavior. It is reported that Palantir, a famous American intelligence company, also uses this
technique to conduct investigations and analyze specific scenarios.
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6.2 Road network monitoring

Urban road traffic monitoring is an important application of continuous subgraph matching.
The urban road network can be expressed as a graph, where intersections are represented by
nodes and road segments are represented by edges. Users can define pattern graphs based on
typical road conditions that occur after traffic accidents and match the pattern graph with the
dynamic road network data graph to achieve real-time monitoring of traffic accidents.

Taking the road network monitoring in [66] as an example, Fig. 24a represents typical road
conditions that occur after a traffic accident, and the labels of the edges indicate the condition
of the traffic (congested or smooth). In the matching process, the partial order relationship
of time needs to be satisfied, which can be defined as the time relationship graph shown in
Fig. 24b, where each node corresponds to an edge in Fig. 24a. Only when the subgraphs of the
pattern graph and data graph match the order in the time domain, as defined in Fig. 24b, will
they be considered as a final matching result. Each road traffic report can be regarded as an
update to the road network graph data, and the updated part needs to be validated within the
time window shown in Fig. 24c. Figure 24d, e represents two snapshots of the road network
data graph at different points in time, where the numbers in parentheses represent time. The
real-time traffic accident monitoring can be completed by subgraph matching between the
event pattern graph (Fig. 24a) and the road network data graph that changes dynamically
at different times (Fig. 24d, e). In this example, a subgraph in Fig. 24e matches the pattern
graph.

6.3 Network security monitoring

With the rapid development of the Internet, network security issues have become more serious.
Taking the network attack monitoring in [17] as an example, Fig. 25 shows three user-defined
network attack behavior patterns. In the figure, nodes represent hosts and edges represent
interaction relationships, such as communication between hosts and users during login. Using
continuous subgraph matching between attack patterns and streaming graphs, both real and
potential network attack events can be detected to predict network attack behavior.

6.4 Computational biology data analysis

In biology, molecular structures can be expressed as graphs, providing an important basis
for studying the structure and function of biological tissues. In a protein interaction network,
proteins react with certain enzymes causing mutations. By matching a known protein network
pattern to a dynamic protein interaction network, the mutated protein structure can be found
quickly. For example, Bader et al. [12] found that proteins with large betweenness and small
connectivity are redundant proteins in human genes by calculating the connectivity and
centrality of the protein interaction network and matching structures with known properties
in a protein interaction network, which contained 18,000 proteins (nodes) and 44,000 protein
interaction (edges). This undoubtedly provided an important basis for analyzing the function
of genes and proteins.
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7 Future work

As a widely used data model, dynamic graphs have theoretical significance and wide applica-
tion prospects; therefore, the research of dynamic graph data matching has attracted increasing
attention from academic and industrial circles. With the advent of big data, the scale of data
has increased, data updates have become more frequent, and the relationships between data
have become more complicated. This undoubtedly has brought new challenges and opportu-
nities to the research and application of continuous subgraph matching. We propose a list of
promising future directions as follows.

Distributed Parallel Graph Process Faced with the rapid increase in the scale of graph
data, the scalability of matching techniques for large-scale graph data needs to be improved.
Therefore, methods to realize parallel distributed processing of graph matching, which are
based on mainstream distributed parallel graph processing framework systems, such as Pregel
and Giraph, have to be studied. These mainstream distributed parallel graph processing
framework systems usually adopt a vertex-centric processing mode. Each node, as a basic
computing unit in the framework, stores and processes a partition of the graph data, while
in a block-centric model, the basic calculation unit is a block, which stores and processes a
connected subgraph of the data graph. The two distributed parallel graph processing models
have their own advantages and disadvantages, and researchers can apply the most suited
model according to their application needs.

Incremental Algorithm For frequently updated graph data, the snapshot-based matching
method is not ideal for meeting the real-time requirements of continuous subgraph matching.
Therefore, efficient matching methods and query optimization strategies based on the fea-
ture of dynamic graphs have to be studied. More and more incremental subgraph matching
algorithms have been proposed which use different auxiliary data structures [43], or filtering
strategies [54] or matching order optimization strategies [67]. In order to better perform the
continuous subgraph matching, our main focus is still on the construction of the incremental
algorithm with some optimization strategies to improve matching efficiency.

Matching Technique Join-based matching technique is an effective method to achieve con-
tinuous subgraph matching. However, extracting high-quality features from the pattern graph
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or data graph is one of the core problems faced by this technique. On the one hand, to avoid
failure from data graph updates, current studies generally choose to use simple subgraphs,
such as single-edge subgraphs or double-edge subgraphs, as the characteristics of the data
graph. However, such simple subgraphs do not have strong identifiable characteristics, lead-
ing to many intermediate matching results and an increased processing cost for the subgraph
join phase. Therefore, methods to extract more recognizable features and design efficient
feature maintenance schemes should be the focus of future research. On the other hand,
the exploration-based continuous subgraph matching method has its advantages but delivers
low accuracy matching results. To solve this problem, further research can be conducted to
combine exploration-based and join-based continuous subgraph matching techniques. The
studies should focus on making optimal use of the advantages of the respective techniques
to compensate for the deficiencies. Several studies have focused on the simulation matching
technique that avoids complex subgraph isomorphic matching calculations. Further research
on this topic would be advantageous. In addition, designing a graph matching similarity
measurement model based on specific requirements and developing a more efficient graph
matching approximation algorithm are future research considerations.

Pattern Evolving Most of the current research on continuous subgraph matching is directed
toward situations where the pattern graph remains unchanged and the data graph changes
with time. However, in real life, changes to the pattern graph are also very common. For
example, in network security, viruses are often mutated, and network attack patterns are
constantly evolving; in computational biology, protein denaturation and virus mutations also
occur occasionally. [86] studied the incremental algorithm of graph pattern matching when
the data graph was unchanged, but the pattern graph changed dynamically. And Zhang et
al. [84] modeled network traffic as a large graph and attack behaviors as evolving pattern
graphs. And then the abnormal attacks can be detected through continuous subgraph match-
ing. Therefore, researchers can explore the incremental processing technique required in
these areas; furthermore, techniques that accommodate the changes in both pattern graphs
and data graphs can be explored to expand the application field of continuous subgraph
matching techniques.

Multi-query Answer Most existing continuous subgraph matching studies process only
one query at a time. However, owing to large-scale and constantly evolving graphs, it is more
practical to use multiple queries to monitor and detect continuous patterns of interest. Pugliese
et al. [59] utilized a merged view of multiple query graphs to update results incrementally.
Zervakis et al. [83] designed a query graph clustering algorithm to handle a large number
of continuous queries. Mhedhbi et al. [52] proposed a general greedy optimizer to share
computation among multiple instances of continuous queries. Although some state-of-the-
art methods exist, how to reduce space consumption and time consumption, and how to
quickly detect the queries affected by updates are still the main problems. All these methods
can be further improved via a better filtering strategy and matching order or more efficient
auxiliary data structures.

8 Conclusion

In this paper, we extensively investigate the topic of continuous subgraph matching over
dynamic graphs in 20 research articles published between 2009 and 2020. We first classify
these articles according to different problem indicators. Then, we review and discuss two
different types of continuous subgraph matching approaches based on the different update
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methods of the dynamic graph. In addition, the performance of each algorithm is discussed.
Finally, we point out the future research directions and main challenges. In summary, our sur-
vey outlines the start-of-the-art research achievements about continuous subgraph matching,
which will give researchers a thorough understanding.
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