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Abstract
Next point-of-interest recommendation has become an increasingly significant requirement
in location-based social networks. Recently, RNN-based methods have shown promising
advantages in next POI recommendation due to their superior abilities in modeling sequential
transitions of user behaviors. Despite their success, however, exploring complex correlations
between POIs and capturing user dynamic preferences are still challenging issues. To over-
come the limitations, we propose a novel framework namedMPGI (Mining Preferences from
Geographical and Interactive Correlations) for next POI recommendation. Specifically, we
first design a POI correlationmodeling layer to capture geographical distances and interactive
correlations between all of POI pairs. Then, we fuse relevant signals from highly correlated
POIs into target POI for high-quality POI representations. Furthermore, for user long- and
short-term preferences modeling, we propose position-aware attention unites and attention
network to dynamically select the most valuable information in check-in trajectories. Exper-
imental results on two real-world datasets demonstrate that MPGI consistently outperforms
the state-of-the-art methods.

Keywords Next POI recommendation · Geographical distance · Interactive correlation ·
User preference · Node2Vec · Position-aware attention

1 Introduction

With the advances in wireless community technologies, location-based social networks
(LBSNs) such as Foursquare and Gowalla have grown rapidly and become pervasive in
our daily lives. Millions of people on LBSNs share their experience on points of interest
(POIs) when they check-in at locations. The huge amount of accumulated check-in data
could be utilized to determine users’ preferences on POIs and further predict their mobility
behaviors. Therefore, many POI recommendation methods have been proposed [1–4]. As an
essential service of LBSNs, POI recommendation not only improves user experience but also
increases advertising revenue of e-commerce platforms [5].
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Amongavariety ofPOI recommendation tasks, next POI recommendation is absolutely the
most challenging one. It aims to capture sequential dependencies of user travel behaviors and
recommend exactly the next POI to visit [6]. In recent years, a large number of methods have
been proposed to model such sequential transitions. Previous studies mainly adopt Markov
Chains technique [7, 8], which exploit user’s latest check-in in the check-in sequence. Such
models would degrade recommendation performance since user’s next check-in is also highly
dependent on other visited POIs [9]. With the superiority of modeling long-term sequential
transitions, recurrent neural networks (RNNs)-based methods are currently the state-of-the-
art solutions [9–11]. Based on the assumption that the spatiotemporal factors along with
nearby check-ins restrict user movements [10], these models first integrate various contextual
information, such as transition time and transition distance between consecutive visited POIs,
with user’s check-in sequence, and further applyRNN to estimate user’s temporal preferences
on POIs to predict the next visit.

Although existing methods have achieved satisfactory results, there are still two major
limitations.

Firstly, most of previous works only capture the transition distances between consecutive
visited POIs in users’ independent check-in sequences [10–15]. However, since a POI is
geographically adjacent tomultiple other POIs, the geographically adjacent relations between
POIs are not thoroughly captured. In addition, the collaborative relations between POIs,
whose importance has been verified in collaborative filtering-based models [16], are barely
considered in next POI recommendation. In real scenarios, the correlations between POIs
are fairly complex. First, it is common that people would consecutively visit geographically
adjacent POIs. As shown at the bottom part of Fig. 1, POI l3 is geographically close to both l4
and l5. More generally, a POI is geographically adjacent to multiple other POIs in real world.
Therefore, it would be better to construct a POI graph to fully capture the geographically
adjacent relations for better recommendations.

In addition, collaborative filtering-based methods have demonstrated that items interacted
by the sameusers are similar to some extent [17, 18].As shownat the top part of Fig. 1, l2 and l5
are simultaneously visited by all users, i.e., u1, u2 and u3. Thus, l2 and l5 tend to share similar
user preferences. If another user has visited POI l2, the user may also be fond of l5. Inspired
by this, we define the “interactive correlation” to capture the important collaborative signals
from similar POIs to refine POI representations. By thoroughly exploring the geographical
distances and interactive correlations using POI graph, the POI characterizations will be
refined and the recommendation performance will be further improved.

Secondly, most existingmodels only capture user’s short-term preference based on several
recent check-ins [12, 19]. Nevertheless, user’s long-term preference, which contains both
relevant and irrelevant information, also has contributions to user’s behaviors. Several recent
studies tried to capture both long- and short-term preferences for user representation [20,
21]. However, they failed to adaptively differentiate the importance of POIs to find valuable
check-ins of users. In fact, different POIs have distinguished meanings to a certain user
according to their significances at different time-points. Therefore, weighting relevant POIs
dynamically is necessary for enhancing recommendation performance.

To overcome the above limitations, we propose a novel method named MPGI (Mining
Preferences from Geographical and Interactive Correlations) for next POI recommendation.
Specifically, we design a POI correlation modeling layer to capture geographical distances
and interactive correlations between all of POI pairs. Then,we connect highly correlated POIs
through weighted edges and employ Node2Vec to train embeddings of POIs. Furthermore,
we develop position-aware attention units and an attention network to adaptively select the
most valuable information, so as to obtain both of user’s long-term and short-term preferences
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Fig. 1 A toy example of POI correlation modeling

dynamically. Finally, we compute the visiting probability distribution over all POIs using a
softmax function in the prediction layer.

Our primary contributions could be summarized as follows:

-We propose a novel next POI recommendation model to learn POI embeddings by explicitly
capturing the complex correlations, i.e., geographical distances and interactive correlations
between all of POI pairs.
-We design position-aware attention units and an attention network to adaptively select the
most valuable check-ins for modeling user’s long- and short-term preferences.
-We conduct extensive experiments on two real-world datasets, which demonstrates the effec-
tiveness of MPGI against the state-of-the-art methods in next POI recommendation.

2 Related work

In this section, we delve into relevant previous works on general POI recommendation, next
POI recommendation and attention mechanism in recommendations.

2.1 General POI recommendation

General POI recommendation captures user’s general preferences for POIs without con-
sidering the sequential transitions of user behaviors. Generally, the most well-known
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recommendation method is collaborative filtering (CF). Earlier studies mainly integrated
CF with various contextual information to estimate user’s general preferences [22–26]. For
example, Ren et al. [22] presented a context-aware probabilistic matrix factorization method
which fused five kinds of contextual information comprehensively. Furthermore, Davtalab
et al. [27] integrated POI similarity and user similarity into the framework of probabilistic
matrix factorization to capture the implicit correlations. Nowadays, deep learning has been
introduced into POI recommendation to model nonlinear complex relationships between
users andPOIs [5, 28–32]. For example, Pang et al. [5] developed a structure of local-to-global
to attentively minemore hidden information frommultiple features of POIs. Considering that
user preference was the key factor influencing user behaviors, Liu et al. [29] proposed a pair-
wise ranking-based method to enhance the feature learning of POIs and preference learning
of users.

2.2 Next POI recommendation

Comparedwith general POI recommendation, next POI recommendation emphasizes sequen-
tial dependencies of check-ins andmodels dynamic evolutions of user preferences [9]. Earlier
studies mainly used the first-order Markov chains to capture the transition relationships
between consecutive POIs [7, 8, 33]. For instance, Cheng et al. [8] developed FPMC-LR
model which not only applied personalizedMarkov chains to the check-in sequence, but also
considered user’s movement constraints. However, these methods only exploited user’s lat-
est check-in of a sequence, thus failed to capture high-order transition relationships between
previous visited POIs and the predicted one.

Recently, recurrent neural networks (RNNs) have beenwidely applied in sequential recom-
mendations to model the long-term sequential patterns. Numerous studies integrated various
contextual information into RNNs for next POI recommendation. For example, Liu et al.
[13] considered time intervals and geographical distances between consecutive check-ins
and integrated them into vanilla RNN. DSPR explored user’s preferences and real-time
demands simultaneously, both of which are crucial factors to determine user’s behaviors
[11]. To overcome the data sparsity problem, Yu et al. [34] incorporated POI category and
geographical influence into RNN to reduce search space. DeepMovewas an earlier attempt to
combine user’s long-term preference and short-term preference, which, respectively, repre-
sented user’s behavior periodicity and real-time needs [14]. To pursue this further, Sun et al.
[21] developed a nonlocal network to model long-term preference and a geo-dilated RNN
to model short-term preference. Similarly, PLSPL [35], NATR [20] and RTPM [36] learned
user’s both long-term and short-term preferences to get a comprehensive user representation.
However, complex relationships between POI pairs are seldomly considered in the above
works. GT-HAN [9] was a beneficial attempt which developed three matrices to explicitly
capture geographical interactions between POI pairs in user’s check-in history.

Although RNN-based methods have demonstrated great superiority in next POI recom-
mendation, one major issue is that the geographical distances and interactive correlations
between any pair of POIs in the entire POI set are not thoroughly explored. In contrast, the
proposed model constructs a POI graph to incorporate geographical distances and interactive
correlations between POIs for more accurate POI representations. At the same time, it is
of great importance to capture user long- and short-term preferences simultaneously. How-
ever, existing methods fail to differentiate the importance degrees of POIs in user’s check-in
trajectories, thus cannot capture user dynamic preferences to boost recommendation.
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2.3 Attentionmechanism in recommendations

The attention mechanism [37], which derives from the study of human vision, has shown
great power in recommendation systems. The advantage of attention mechanism lies in its
ability to adaptively capture the important parts of input data. For example, Zhou et al. [38]
employed attention mechanism in the interest evolving layer to strengthen the effects of
relative information during interest evolution, and further captured the latent user interests
dynamically. Considering the importance of the latest interacted item that usually plays a
decisive role in the next behavior, SR-GNN [39] and CaSe4SR [40] took last item’s repre-
sentation as query vector to attentively represent the global session preference. To recommend
POIs in the target time, Shi et al. [41] assigned visited POIs into corresponding time slots
and designed a temporal-level attention mechanism to adaptively give different weights to
history time slots. Zheng et al. [42] analyzed the contributions of attributes and interaction
behaviors using attention mechanism to better represent users and items. Similarly, Ni et al.
[43] developed multi-attention-based convolutional neural networks to refine the features
of users and items. Inspired by previous attempts, we will leverage attention mechanism to
adaptively select valuable check-in information to improve recommendation quality.

3 Preliminaries

Formally, the set of users is defined asU = {
u1, u2, . . . , u|U |

}
and the set of POIs is defined as

L = {
l1, l2, . . . , l|L|

}
, where |U | and |L| are the total number of users and POIs, respectively.

Since POIs are spatial entities with specific longitudes and latitudes, each POI l could be
geocoded as (lonl , latl). For each user u ∈ U , we split his/her long check-in sequence into
multiple trajectories S = {S1, S2, . . . , Sn}, according to time intervals between consecutive
check-ins. Here n represents the total number of trajectories. Each trajectory Sh ∈ S is

denoted by Sh =
{
lh1 , lh2 , . . . , lh|Sh |

}
, representing a set of POIs visited by u in chronological

order. Key notations and explanations are listed in Table 1.
Given history trajectories Shis = {S1, S2, . . . , Sn−1} and current trajectory Sn of target

user u ∈ U , the recommendation task is to generate Top-k POIs that u will probably visit
next.

4 The proposedmethod

In this part, we detail the proposed model MPGI. The illustration of the overall framework is
shown in Fig. 2.MPGI consists of three parts: POI correlationmodeling layer, long- and short-
term preferences modeling layer and prediction layer. Specifically, POI correlation modeling
layer is included to capture the geographical distances and interactive correlations between all
of POI pairs for learning POI representations. Sequentially, position-aware attention units and
attention network are developed to select the most valuable information for better inferring
user long- and short-term preferences. Lastly, comprehensive user representation is obtained
to calculate the possibilities of POIs being visited next by the target user. Top-k POIs will be
selected as the recommendation result.
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Table 1 Notations and
explanations Notation Explanations

U , L Sets of users and POIs

S Set of all trajectories of user u

Shis Set of all history trajectories of user u

Sn Current trajectory of user u

D The geographical distance matrix

I The interactive correlation matrix

Ul Set of users who have visited POI l

dist The threshold of geographical distances

θ The threshold of interactive correlations

el Embedding of POI l trained by Node2Vec

E POI embedding matrix

P Position embedding matrix

{W}, q, {b} Weight matrices, weight vector and bias vectors

sShort Short-term preference representation of user u

sLong Long-term preference representation of user u

n Total number of trajectories

m Maximum length of all trajectories

d Embedding size of POIs and position vectors

| · | The Cardinality of the set

4.1 POI correlationmodeling layer

Most studies only capture the transition time and transition distance between consecutive
check-ins, neglecting complex correlations between POIs. Consequently, the features of
highly correlated POIs could hardly be fused into the target POI, which heavily constrains the
expressiveness of POI embeddings. To this end, we take the complex correlations between
POIs into consideration. Here, the “complex” property stems from two aspects. First, the
geographical distances and interactive correlations are supposed to be considered simulta-
neously. Second, these two correlations of all of POI pairs, not a part of POI pairs, will be
thoroughly captured in this paper. After capturing such correlations via Node2Vec training,
similar POIs would have similar representations in specific aspects, laying a foundation for
the following user preferences learning.

First, the geographical distance matrix D ∈ R
|L|×|L| is defined as follows:

D =

⎡

⎢⎢⎢
⎣

d1,1 d1,2 · · · d1,|L|
d2,1 d2,2 · · · d2,|L|
...

...
. . .

...

d|L|,1 d|L|,2 · · · d|L|,|L|

⎤

⎥⎥⎥
⎦

(1)

dpq = Haversine
(
lonl p , latl p , lonlq , latlq

)

= 2Rarg sin

(√

sin2
(
latl p − latlq

2

)
+ cos

(
latl p

)
cos

(
latlq

)
sin2

(
lonl p − lonlq

2

))

(2)
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Fig. 2 The framework of the proposed model MPGI

where geographical distance dpq between POI l p and lq is calculated by Haversine distance.
R denotes the radius of the earth; lonl p and latl p are the longitude and latitude of POI l p;
lonlq and latlq are the longitude and latitude of POI lq .

Haversine distance is widely used in the existing studies [1, 21, 44], which assume that the
earth is a sphere and calculate the great-circle distances between POIs along the surface of the
sphere. Compared with other metrics such as Euclidean distance, the advantage of Haversine
distance is that it takes the earth sphere into consideration to approximately estimate real
path distances between POIs. Although users care more about the distance traveled by the
actual path between the POIs, the travel distance data are not available. Therefore, we use
Haversine distance as calculation method.

Next, the interactive correlation is defined as the collaborative relationship between POIs
reflected in overall user check-in behaviors. For example, if two POIs have always been
simultaneously visited by users, they are supposed to have high interactive correlations in
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some aspects. In this way, we consider not only the geographical distances between POIs
from the perspective of physical space, but also the interactive correlations observed from
all users’ check-in data.

The interactive correlation matrix I ∈ R
|L|×|L| is defined as follows:

I =

⎡

⎢⎢⎢
⎣

i1,1 i1,2 · · · i1,|L|
i2,1 i2,2 · · · i2,|L|
...

...
. . .

...

i|L|,1 i|L|,2 · · · i|L|,|L|

⎤

⎥⎥⎥
⎦

(3)

i pq =
∣∣Ulp ∩Ulq

∣∣
∣∣Ulp ∪Ulq

∣∣ (4)

where the interactive correlation i pq between POI l p and lq is estimated by the Jaccard
similarity of the visitor sets Ulp and Ulq .

We define two hyperparameters: the threshold of geographical distances dist and the
threshold of interactive correlations θ . For any pair of POIs l p and lq , if dpq ≤ dist and
i pq ≥ θ are simultaneously met, l p and lq are considered as highly correlated POIs, i.e., l p is
one of the correlation context LPos

q for lq , at the same time, lq is one of the correlation context
LPos
p for l p . By traversing values in the geographical distance matrix and the interactive

correlation matrix, the correlation context for each POI is obtained. Then, POIs and their
corresponding correlation contexts are connected by edges to form a network. After that, we
employ Node2Vec to learn representations of all POIs.

It is worth noting that the higher the interactive correlation value between l p and lq , the
more similarities they share. Therefore, the interactive correlation value i pq is assigned as the
weight of the edge between them. Specifically, when we construct the weighted graph, we
have already considered the geographical distances through the condition dpq ≤ dist ;thuswe
only take the interactive correlations as the edge weights for simplicity. More complicated
method fusing geographical distances and interactive correlations explicitly will also be
welcomed.After constructing theweighted graph,more information from themost correlated
POIs will be fused to accurately characterize the target POI.

We use negative sampling technique. The embeddings of all POIs are learned by mini-
mizing the loss function defined as follows:

loss = −
∑

l p∈L

∑

lq∈LPos
p

log

⎛

⎜
⎝σ

(
epeq

) − 1

r

∑

lnegq ∈LNeg
p

σ
(
epe

neg
q

)
⎞

⎟
⎠ (5)

where POI l p is each POI in L , lq is one of the correlation context LPos
p for l p , L

Neg
p is a set of

r negative POI samples for l p . ep , eq and enegq are POI representations trained by Node2Vec
model.

The POI correlation modeling algorithm is depicted in Algorithm 1.
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4.2 Long- and short-term preferences modeling layer

So far, we have obtained POI embedding matrixE ∈ R
|L|×d which composes of embeddings

of all POIs learned via Node2Vec training. Next, taking the POI embedding matrix as input,
we retrieve the embedding representations of check-in records to capture user’s preferences.

Previous studies have shown that it is crucial to model both long- and short-term prefer-
ences of users in the task of next POI recommendation. Nevertheless, they failed to select
the most valuable check-ins dynamically to get user’s temporal preferences. To this end, for
history trajectories Shis = {

S1, S2, . . . S|n−1|
}
and current trajectory Sn , we design position-

aware attention units to capture preference representation of each trajectory. Moreover, an
attention network is developed to adaptively select important trajectory representations that
conform to user’s short-term demand for long-term preference modeling.

4.2.1 Preference representation of each trajectory

In this paper, user’s long check-in sequence is divided into multiple trajectories based on
the threshold of time intervals. This means that user’s behaviors and preferences in each
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trajectory are homogeneous and can change immediately across different trajectories. There-
fore, trajectories are relatively independent from each other, and we will model different
trajectories, respectively. Note that the existing literature has demonstrated that extracting
preferences from multiple sessions or trajectories would model user’s sequential behaviors
more effectively [45, 46]. Next, we employ position-aware attention unit to extract user
preferences from each trajectory.

Taking the current trajectory Sn as example, the impact of check-ins in the trajectory
increases along with time. In other words, POIs on different positions have different contri-
butions to the trajectory representation. Therefore, we define a position embedding matrix
P = [

p1,p2, . . . pm
] ∈ R

m×d to indicate the specific position of each POI in the trajectory,
where m is the maximum length of trajectories in the dataset and d is the dimensionality
of position vectors. Inspired by GCE-GNN [47], the last POI can be regarded as user’s cur-
rent preference, meanwhile, the distance between a POI and the last POI in the sequence
contains more meaningful information. For example, given two trajectories S′ = {l1, l2, l4}
and S′′ = {l1, l2, l3, l7, l8}, the distance between l2 and the last check-in POI is smaller in
S′ than that in S′′, which means that l2 is more representative of user’s current preference
in S′. Therefore, POI l2 is more important for recommendation in S′ than in S′′. Given that,
reversed position embeddings are assigned to check-ins in the trajectory. In addition, we map
the representation of the last POI to a query vector and map the representation of each POI in
the trajectory to the key and value, which is an effective way to remove noise data. Similarly,
the preference representations of history trajectories are also captured by the position-aware
attention units. Following the design of LSTPM [21], the parameters of attention mechanism
in all history trajectories are shared with each other but not shared with that in the current
trajectory.

The attention weight of the p-th POI lhp in trajectory Sh is defined as follows:

αh
p = qT σ

(
W1ehp + W2eh|Sh | + W3p|Sh |−p+1 + b1

)
(6)

where ehp and e
h|Sh | are, respectively, representations of l

h
p and the last POI l

h|Sh |,p|Sh |−p+1 is the

reversed position embedding for lhp , σ(·) is the sigmoid activation function. W1,W2,W3 ∈
R
d×d and q,b1 ∈ R

d are trainable parameters.
The importance weight αh

p of POI l
h
p is then normalized by the softmax function:

βh
p =

exp
(
αh
p

)

∑|Sh |
k=1 exp

(
αh
k

) (7)

Finally, the preference representation of Sh is obtained from the weighted sum of repre-
sentations of all POIs in the trajectory:

sh =
|Sh |∑

p=1

βh
pe

h
p (8)

4.2.2 Long- and short-term preferences representation

User’s short-term preference is extracted from the current trajectory Sn , i.e., sShort = sn .
Accordingly, user’s long-term preference is extracted from set of all history trajectories
Shis = {S1, S2, . . . , Sn−1}. After 4.2.1, preference representations of all history trajectories
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have been obtained, i.e., shis = {s1, s2, . . . , sn−1}. We suppose that trajectories that are
highly relevant to the current trajectory play important roles in deciding user’s long-term
preference [48]. It will inevitably introduce noise that all history trajectories are given the
same importance. Therefore, an attention network is introduced to adaptively give relevant
history trajectories more weights.

Specifically, we calculate the affinity scores between history trajectories and the current
trajectory:

γh = exp
(
sShortT sh

)

∑n−1
j=1 exp

(
sShortT s j

) (9)

We transform sh through a feedforward neural network to get the final trajectory represen-
tation. Then, we multiply the final representation by the trajectory’s corresponding weight
and sum all multiplication results to obtain user’s long-term preference:

sLong =
n−1∑

h=1

γh(W4sh + b2) (10)

where W4 ∈ R
d×d and b2 ∈ R

d are trainable parameters.

4.3 Prediction layer

In this part,we obtain user’s preference representation by concatenating short-termpreference
sShort and long-term preference sLong together. Then, we calculate user’s visiting possibility
distribution ŷ over all |L| POIs:

ŷ = softmax
(
Wu

[
sLong; sShort

] + bu
)

(11)

where [·; ·] is the concatenation operation, Wu ∈ R
|L|×2d and bu ∈ R

|L| are trainable
parameters. Let ŷtrue ∈ ŷ denote the visiting possibility of the ground-truth POI, then log
likelihood function is used to measure the loss of model training:

L = −
N∑

i=1

log
(
ŷtruei

)
(12)

where N represents the total number of training samples and ŷtruei is the possibility of the
ground-truth POI generated by our model in the i-th training sample.

To recommend next POI for user u, we take user’s all check-in trajectories as input and
generate visiting possibility distribution ŷ. POIs that have k largest probability values in ŷ
are selected as Top-k recommendation list.

4.4 Model size analysis

Firstly, in the POI correlation modeling layer, the POI embedding matrix has the parameter
of size |L|×d . Secondly, in the long- and short-term preferences modeling layer, the position
embedding matrix has the parameter of size m × d . In each trajectory, the weight matrices
W1,W2 andW3 for the attention mechanism are of the same size d × d , and the parameters
of q and b1 are of size d . Since MPGI has two sets of trajectory parameters (one for history
trajectories and one for the current trajectory), the total parameters of position-aware attention
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units aremd+2
(
3d2 + 2d

)
. Besides, as for the attention network, parameter is d2+d . Finally,

in the prediction layer,Wu of size |L| × 2d and bu of size |L| are required for classification.
Therefore, the total model size approximates (3|L| + m + 5)d+7d2 +|L|. Considering that
d is small number generally not greater than 256, and m is usually less than 10, the proposed
model is fairly light. As will be verified in the following experiments, 160 thousand check-ins
in NYC are enough to learn the model with fairly good performance.

5 Experiments

We conduct extensive experiments on two real-world datasets, to demonstrate the effective-
ness of the proposed MPGI model. In this section, we first introduce the experimental setup,
then report the experimental results and corresponding analysis.

5.1 Experimental setup

5.1.1 Datasets

We evaluate our model on two real-world datasets: the Foursquare check-ins in New York
and Tokyo [49] from April 12, 2012, to February 16, 2013. They are, respectively, denoted as
NYC and TKY in the following contents. Each original check-in record in the two datasets
consists of user ID, POI ID, POI category ID, POI category name, longitude and latitude of
the POI and check-in timestamp.

For both datasets, we remove inactive users that have less than 10 check-ins and unpopular
POIs visited less than 10 times. Next, for each user, we split the user’s long check-in sequence
into multiple trajectories according to the time intervals between consecutive check-ins. In
detail, if the time interval exceeds 48 h, two consecutive POIs are divided into different
trajectories. Then, we eliminate trajectories that have less than 3 POIs and remove users who
have less than 5 trajectories. Thus, the statistics of both datasets after pre-processing are
summarized as Table 2.

In Table 2, the sparsity of the datasets is calculated by:

sparsity = 1 − #check − ins

#users · #POIs (13)

where #check-ins, #users and #POIs represent the total number of check-ins, users and POIs,
respectively.

Similar to most studies, the first 80% of each user’s trajectories are used as the training
set to train the model, and the last 20% are used as the test set to evaluate the model’s
performance.

Table 2 Statistics of datasets after pre-processing

Datasets #Users #POIs #Check-ins #Trajectories Sparsity (%)

NYC 1074 15,514 159,676 22,439 99.04

TKY 2285 23,441 450,976 62,039 99.16
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5.1.2 Baselines

We compare MPGI with the following state-of-the-art next POI recommendation models.
LSTM [50]: LSTM is known as a variant of RNN. It solves the problem of vanishing

gradient and exploding gradient, thus gains widespread applications in sequential models.
Here, we leverage LSTM as a baseline model for next POI recommendation.

TMCA[19]: TMCAembeds spatiotemporal transitions aswell as POI categories. It further
combines these embeddings with POI representations for next POI recommendation. Here,
we remove the POI category because none of other models incorporates it. Especially, TMCA
leverages only several check-ins to capture user’s short-term preference for recommendation.

DeepMove [14]: DeepMove models both of user’s long-term and short-term preferences
for next POI recommendation. In particular, it learns short-term preference using RNN and
aggregates long-term preference from history activities using the attention mechanism.

STAN [51]: STAN is one of the state-of-the-art models. To capture complex relationships
between non-consecutive check-ins in the entire check-in sequence, STAN fuses spatiotem-
poral transitionmatrices into self-attention and further refines representations of visited POIs.

LSTPM [21]: LSTPM is currently one of the state-of-the-art methods, learning both of
the short-term and long-term preferences. Specifically, LSTPM takes spatiotemporal rela-
tionships between history check-ins and the latest check-in into consideration and then fuses
these relationships together.

5.1.3 Evaluation criterion

To evaluate recommendation performance of different models, we adopt two widely used
metrics: Recall@k and Normalized Discounted Cumulative Gain (NDCG@k). Here, k rep-
resents the number of recommended POIs. The two metrics measure the performance of
recommendation models from different perspectives. Recall@k denotes whether the truly
visited POI appears in the recommendation list. NDCG@k is a position-based ranking met-
ric. The value of NDCG@k would be larger if the truly visited POI appears on a higher
position of recommendation list. In this paper, we report Recall@k and NDCG@k with
k ∈ {1, 5, 10, 20}.

5.1.4 Parameter settings

The optimal parameters for all models are achieved by experimental analysis or adopting
default settings in original papers. As for our model, MPGI is implemented in python with
PyTorch deep learning library. On both datasets, the embedding size of POIs d is searched in
the range of {32, 64, 128, 256}, and the optimal value is finally determined as d = 128. The
optimal setting for the threshold of interactive correlations θ is searched in {0.01, 0.03, 0.05,
0.07, 0.09, 0.11}, and the best setting on both datasets is θ = 0.05. The optimal threshold of
geographical distances on both datasets is dist = 5.

The best settings for hyperparameters in Node2Vec model are as follows: the walk length
l and the number of walks r are set as l = 15, r = 20; the return parameter p and in–out
parameter q are set as p = 0.2, q = 2; the context size k, the number of iterations iter and the
number of negative samplings num are, respectively, set as k = 2, iter = 30, num = 5. As
for the learning rate lr of our MPGI model, the initial value is lr = 0.001 and becomes 0.1
times after every 10 epochs. The detailed analysis of representative parameter settings will
be introduced in 5.2.3.
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5.2 Results and discussions

5.2.1 Methods for comparison

The results of different models for next POI recommendation on both of the NYC and TKY
datasets are illustrated in Table 3 and Fig. 3.

Firstly, the proposed MPGI model significantly outperforms all baselines in terms of
Recall and NDCG on both datasets. As for the NYC dataset, MPGI achieves the optimal
performance on all metrics except for Recall@20. Compared with LSTPM which has the
best performance among baseline models, MPGI has an improvement of 6.3%, 4.3% and
4.3% on Recall@1, Recall@5 and Recall@10, respectively. At the same time, MPGI has
an improvement of 6.3%, 5.1%, 5.0% and 5.9% on NDCG@1, NDCG@5, NDCG@10 and
NDCG@20, respectively. As for the TKY dataset, MPGI consistently outperforms all the
baselines in terms of all metrics, where the overall improvement over LSTPM achieves 6.8%
on average. Moreover, although STAN shows advantage in terms of Recall@20 on the NYC
dataset, it gains poor performance in terms of other metrics. In addition, the metrics we
normally focused on for recommendation are Recall@k and NDCG@k with k ∈ {1, 5, 10}.
Therefore, the experimental results consistently demonstrate the superiority of the proposed
MPGI model.

Secondly,we observe that TMCAconsistently outperformsLSTM,which implies that spa-
tiotemporal transitions are important for next POI recommendation. Furthermore, DeepMove
and LSTPM, both of which simultaneously capture long-term and short-term preferences,
achieve higher prediction accuracy than TMCA that only captures user’s short-term pref-
erence. This phenomenon highlights the necessity of modeling user’s long-term preference
from history check-ins. Moreover, although both of LSTPM and DeepMove try to simultane-
ously capture long- and short-term preferences, LSTPM outperforms DeepMove. The reason
is that DeepMove fails to make full use of important spatiotemporal context. On the contrary,
LSTPM not only captures relationships between history check-ins and user’s current status,
but also applies a geo-dilated RNN to capture geographical connections between POIs in the
current trajectory.

Besides, the performance improvement of MPGI over LSTPM is attributed to the POI
correlation modeling layer. LSTPM captures the spatial impacts by incorporating the
geographical distances into attention weights of history check-ins. However, apart from geo-
graphical distances, MPGI captures interactive correlations to thoroughly model the complex
correlations between POIs, and further learns high-quality POI embeddings, thus achieves
higher recommendation performance.

5.2.2 Ablation analysis

To verify the effects of key components in MPGI, we implement six degraded versions of
MPGI variants by eliminating one component each time in the following ablation study. Here,
we divide these ablation versions into two groups for discussions.

(1) Ablation analysis of three components of MPGI

In this part, the following variants of the proposed MPGI are constructed to validate the
effects of both the long- and short-term preferences of users as well as the POI correlation
modeling:

MPGI-WL: the first degraded version by removing the long-term preference modeling
part.
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Fig. 3 Performance comparisons on NYC and TKY datasets

MPGI-WS: the second version by removing the short-term preference modeling part.
MPGI-WC: the third version by removing the POI correlation modeling layer. Instead,

POI embeddings are randomly initialized similar to most studies.
The experimental results are shown in Fig. 4. We observe that all the variants have

poorer performance than the complete MPGI model on both datasets. Among three abla-
tion versions, MPGI-WL performs worst among all models on both datasets. For instance,
on the NYC dataset, MPGI outperforms MPGI-WL by 27.6% and 26.7% on Recall@5
and NDCG@5. On the TKY dataset, MPGI outperforms MPGI-WL by 40.6% and 45.2%
on Recall@5 and NDCG@5. This observation indicates that user’s long-term preference
plays a significant role in recommendations. Therefore, it is important to select the valu-
able information in user’s long-term check-in trajectories for user preferences modeling.
Moreover, except MPGI-WL, MPGI-WS also does not perform well on both datasets,
indicating that capturing user’s short-term preference is a necessity in next POI recom-
mendation. In fact, many models such as TMCA only capture user’s short-term preference
and could achieve decent performance. Furthermore, the performance of MPGI-WC also
suffers a significant decrease, especially on the NYC dataset. It is worth noting that the POI
embeddings in MPGI-WC are randomly initialized. So, explicit POI correlation modeling
is indispensable for obtaining accurate POI representations and further boost recommenda-
tions.
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Fig. 4 Performance comparison among four versions of MPGI variants

(2) Ablation analysis of three key technologies

So far, the effects of subtle components of MPGI, such as the position-aware attention
unit, have not been fully explored. To this end, we further remove three key technologies to
prove their effectiveness. The ablation versions are described as follows:

MPGI-WP: MPGI that removes position-aware attention units. Instead, the mean pooling
is used to capture the preference representation of each trajectory.

MPGI-WA: MPGI that removes the attention network. Instead, mean pooling is applied
to all history trajectories to get user long-term preference.

MPGI-WW: In POI correlation modeling layer, we construct an unweighted graph where
the different weights of edges are removed.

As shown in Table 4, MPGI has the best performance, demonstrating that all the key com-
ponents are effective in boosting recommendation. On theNYCdataset, the attention network
contributes most to the performance improvement. This verifies that it is inappropriate to
assign the same weights to different history trajectories. Therefore, an attention network is
needed to adaptively aggregate history trajectories’ representations for long-term preference
modeling. On the TKY dataset, however, MPGI-WP gains the most performance drop. This
clearly demonstrates that position-aware attention units are able to adaptively select valuable
information and avoid noise for effective trajectory representations. Lastly, MPGI-WW also
performs worser thanMPGI. By assigning different weights to edges, important signals from
more correlated POIs are incorporated into the central POI to refine its representation.
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Table 4 Validation of three key technologies in MPGI

Methods NYC TKY

Recall@5 NDCG@5 Recall@5 NDCG@5

MPGI-WP 0.4214 0.3026 0.4132 0.2975

MPGI-WA 0.4051 0.2898 0.4208 0.3125

MPGI-WW 0.4285 0.3166 0.4359 0.3256

MPGI 0.4331 0.3195 0.4367 0.3260

Bold values indicate experimental results in best score

5.2.3 Sensitivity analysis of parameters

Now we take Recall@5 and NDCG@5 as example to investigate how representative hyper-
parameters affect the performance of MPGI, including the embedding size of POIs d, the
threshold of interactive correlations θ , and the threshold of geographical distances dist. In the
following experiments, a hyperparameter is tested while the settings for the rest parameters
are optimal as introduced in 5.1.4.

(1) Effect of embedding size d

We evaluate how the embedding size of POIs d impacts the recommendation performance
by varying the value of d in {32, 64, 128, 256}. As shown in Fig. 5, on NYC dataset, the
performance of MPGI first climbs up and yields the best performance with d = 128, while
significantly drops with further increase in d (d = 256). On TKY dataset, the performance
first grows dramatically while then improves very slowly as the increase in d (d = 256).
The results demonstrate that a larger value of d is able to encode more valuable information
to sufficiently capture the characteristics of POIs. However, oversized embeddings are too
complicated to describe the POIs, and even over-represent POIs. In this work, we choose the
embedding size d = 128 for both datasets.

(2) Effect of the threshold of interactive correlations θ

Fig. 5 Parameter sensitivity of d on Recall@5 and NDCG@5
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Fig. 6 Parameter sensitivity of θ on Recall@5 and NDCG@5

In POI correlation modeling layer, the threshold of interactive correlations θ plays an
important role in selecting the correlation context for the target POI. Therefore,we vary values
of θ in the range of {0.01, 0.03, 0.05, 0.07, 0.09, 0.11} to study its impact on recommendation
performance.As shown inFig. 6, onboth datasets, the performance improveswith the increase
in θ from 0.01 to 0.05, since a larger value of θ introduces more useful information of highly
correlated POIs to enrich the representation of the target POI. The optimal performance of
MPGI is obtained when θ = 0.05 on both datasets. However, the performance drops with
further increase in θ , as too large value of θ will inevitably propagate the information from
irrelevant POIs into the target POI, thus introducing noise and misleading the inference of
POI features.

(3) Effect of the threshold of geographical distances dist

The threshold of geographical distances dist is another factor affecting the selection of
highly correlated POIs. To this end, we examine the influence of dist by varying dist in the
range of {1, 5, 9, 13, 17}. From the results shown in Fig. 7, we note that both Recall@5 and
NDCG@5 increase with larger dist, while significantly drop on NYC and slightly drop on
TKY after dist reaches the optimal setting dist = 5. Similar to θ , the value of dist is supposed
to be cautiously set to facilitate the effective construction of POI correlation contexts.

Fig. 7 Parameter sensitivity of dist on Recall@5 and NDCG@5
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Fig. 8 Visualization of POI embeddings trained by different models

5.2.4 Visualization of POI embeddings

Next, we examine whether the POI correlation modeling layer is able to learn effective POI
representations. Taking NYC dataset as example, we randomly select 20 users’ visited POIs.
Note that each POI is visited by one of 20 users; therefore, each POI is labeled by the
corresponding user’s ID. For these selected POIs, we use t-SNE method [52] to visualize
their embeddings learned from four models, namely LSTPM,MPGI-WC,MPGI-Correlation
and MPGI. Here, MPGI-Correlation represents our degraded model that only contains POI
correlation modeling layer. Specifically, we map these POI embeddings as two-dimensional
vectors, and visualize them as points with different colors. The visualization results are
presented in Fig. 8.

As shown in Fig. 8a, for the LSTPMmethod, POIs visited by the same users are scattered
randomly, which indicates that LSTPM fails to explicitly capture the complex correlations
between POIs, thus achieving sub-optimal performance. Similarly, as for the MPGI-WC
method, the distribution of POIs in Fig. 8b is irregular.

Instead, Fig. 8c verifies the effectiveness of POI correlation modeling: POIs visited by
same users are close to each other, tending to form multiple clusters. The clustering phe-
nomenon verifies that POI correlationmodeling layer of the proposedmodel is able to capture
correlations between POIs visited by same users. This is reasonable because users tend to
visit POIs that have short geographical distances and high interactive correlations in real sce-
narios. Furthermore, POIs in Fig. 8d also exhibit discernible clustering, while the clustering
situation is different from that in Fig. 8c. This is because that POI embeddings are further
adjusted in the training process. In fact, the POI correlation modeling layer only captures
the general features of POIs, which is irrelevant to the specific next POI recommendation
task. Only in the following training process can the proposed model capture user’s temporal
preferences and characterize POIs more precisely.
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6 Conclusions

In this paper, we propose a novel next POI recommendation framework named MPGI to
capture the complex correlations between POIs and further model user dynamic preferences.
Specifically, we explore the complex correlations, i.e., geographical distances and interactive
correlations between all of POI pairs, to obtain the correlation context for each POI. Then, we
construct a weighted graph and apply Node2Vec to learn high-quality POI representations.
Corresponding POI representations in user’s trajectories are retrieved from the learned POI
embeddings. Furthermore, position-aware attention units and attention network are designed
to adaptively select the most valuable information for user’s long- and short-term preferences
modeling. Experimental results on two real-world datasets demonstrate that MPGI consis-
tently outperforms all the baselines. Further, six ablation experiments and a visualization
study demonstrate the effectiveness of the key components in our model.

For future work, we will enhanceMPGI from the following aspects. First, we will employ
graph neural networks to implement our idea in an end-to-end framework. Second, we will
assign more effective edge weights on the constructed weighted graph. Finally, we consider
as a promising direction the exploration of descriptions associated with POIs and users’
comments.
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