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Abstract
Physical or geographic location proves to be an important feature in many data science mod-
els, because many diverse natural and social phenomenon have a spatial component. Spatial
autocorrelationmeasures the extent to which locally adjacent observations of the same phe-
nomenon are correlated. Although statistics like Moran’s I and Geary’s C are widely used to
measure spatial autocorrelation, they are slow:All popularmethods run in�(n2) time, render-
ing them unusable for large datasets, or long time-courses with moderate numbers of points.
We propose a new SA statistic based on the notion that the variance observed when merging
pairs of nearby clusters should increase slowly for spatially autocorrelated variables. We
give a linear-time algorithm to calculate SA for a variable with an input agglomeration order
(available at https://github.com/aamgalan/spatial_autocorrelation). For a typical dataset of
n ≈ 63, 000 points, our SA autocorrelation measure can be computed in 1 second, versus
2 hours or more for Moran’s I and Geary’s C . Through simulation studies, we demonstrate
that SA identifies spatial correlations in variables generated with spatially-dependent model
half an order of magnitude earlier than either Moran’s I or Geary’s C . Finally, we prove
several theoretical properties of SA: namely that it behaves as a true correlation statistic and
is invariant under addition or multiplication by a constant.
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1 Introduction

Physical or geographic location proves to be an important feature in many data science
models, because many diverse natural and social phenomenon have a spatial component.
Geographic features such as longitude/latitude, zip codes, and area codes are often used in
predictive models to capture spatial associations underlying properties of interest. Some of
this is for physical reasons: The current temperature at location p1 is likely to be similar
to that at p2 if p1 is near p2, and the amount of synchrony between two regions in the
brain is a function of the network of physical connections between them. But social and
economic preferences in what people like, buy, and do also have a strong spatial component,
due to cultural self-organization (homophily) as well as differential access to opportunities
and resources.

Correlation measures (including the Pearson and Spearman correlation coefficients) are
widely used to measure the degree of association between pairs of variables X and Y . By
convention, corr(X , Y ) = 0 signifies that X and Y are independent of each other , values
0 < corr(X , Y ) ≤ 1 denote positive dependence on each other and −1 ≤ corr(X , Y ) < 0
signify inverse dependencies. The strength of dependency, and our ability to predict X given
Y , increases with |corr(X , Y )|. Autocorrelation of time series or sequential data measures
the degree of association of zi and sequence elements with a lag-l, i.e., zi+l . Spatial autocor-
relationmeasures the extent to which locally adjacent observations of the same phenomenon
are correlated.

Spatial autocorrelation proves more complex to measure than sequence autocorrelation,
because the association is multi-dimensional and bidirectional. Social scientists and geo-
science researchers have developed a rich array of statistics, which endeavor to measure the
spatial correlation of a variable Z , including Moran’s I [1], Geary’s C [2], and the Matheron
variogram [3]. For example, political preferences are generally spatially autocorrelated, as
reflected by the notion of “Red” states and “Blue” states in the USA. There is a general
sense that political preferences are increasingly spatially concentrated. Spatial autocorrela-
tion statistics provide the right tool tomeasure the degree towhich this and related phenomena
may be happening.

These statistics are widely used, particularly Moran’s I and Geary‘s C , yet our experi-
ence with them has proven disappointing. First, they are slow: All popular methods run in
�(n2) time, rendering them unusable for large datasets, or long time-courses with moderate
numbers of points. Second, although they are effective at distinguishing spatial correlated
variables from uncorrelated variables from relatively few samples, they appear less satisfy-
ing in comparing the degree of spatial association among sets of variables. Other inroads
to efficient spatial data analysis primarily concern with detection of outliers and anomalies
[4,5]. In this paper, continuing the naming tradition of Moran’s I and Geary’s C, we humbly
propose a new spatial autocorrelation statistic: Skiena’s A or SA. We will primarily consider
a dataset of 47 demographic and geospatial variables, measured over roughly 3,000 counties
in the USA [6–10], with results reported in Table 1. The dataset was previously used in iden-
tification of socio-demographic variables determining county-level substance abuse statistics
in the USA [11]. With our preferred statistic, the median-clustered SA, the six geophysical
variables measuring sunlight, temperature, precipitation, and elevation all scored as spatially
autocorrelated above 0.928, whereas the strongest demographic correlation (other language)
came in at 0.777, reflecting the concentration of Hispanic-Americans in the Southwestern
USA.
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Fast spatial autocorrelation 921

Table 1 Spatial autocorrelation for 47 geophysical and demographic variables on US counties, sorted by their
median-clustered SA value.We note that themedian-linkage agglomeration order produced themost satisfying
ranking of variables by spatial autocorrelation compared to classical statistics and the weaker single-linkage
aggregation order. Median-clustered SA ranks all geophysical variables as more spatially autocorrelated than
any demographic variable, and exhibits a stronger correlation with Geary’s C (−0.943) and comparable with
Moran’s I (0.879) than they do with themselves (−0.922). For both SA metrics, the agglomeration order was
computed only once and reused for all variables

Geary Moran SA

Variable N C I Single Median

Maxtemp 3106 0.678 0.272 0.540 0.966

Sunlight 3106 0.684 0.258 0.519 0.965

Mintemp 3106 0.674 0.273 0.555 0.962

Precipitation 3106 0.651 0.273 0.722 0.942

Max heat index 3106 0.688 0.268 0.550 0.930

Elev 3142 0.662 0.250 0.802 0.928

Other language 3142 0.778 0.130 0.598 0.777

Med house val 3141 0.752 0.161 0.434 0.772

Log med house val 3141 0.782 0.170 0.378 0.749

Log pop density 3141 0.758 0.190 0.438 0.688

Main protestant 3113 0.820 0.162 0.395 0.675

Percent black 3142 0.835 0.194 0.049 0.672

Rep sen 2010 2115 0.804 0.161 0.406 0.668

Foreign born 3142 0.811 0.102 0.401 0.654

Percent white 3142 0.853 0.131 0.155 0.635

Evan protestant 3122 0.838 0.169 0.231 0.625

Percent physically inactive chr 3137 0.826 0.152 0.325 0.616

Rep pre 2012 3128 0.843 0.107 0.332 0.608

Catholic 2958 0.861 0.111 0.330 0.605

Total pop 3142 0.846 0.032 0.552 0.602

Percent obese chr 3137 0.837 0.131 0.350 0.588

High school 3142 0.851 0.143 0.213 0.582

Rep pre 2008 3112 0.864 0.114 0.281 0.566

Year potential life lost rate chr 2861 0.856 0.131 0.222 0.558

Percent excessive drinking chr 2591 0.860 0.145 0.252 0.539

Log med house income 3141 0.895 0.104 0.089 0.531

Percent fair or poor chr 2738 0.874 0.150 0.126 0.525

Med house income 3141 0.888 0.104 0.073 0.515

Rep hou 2010 3091 0.914 0.075 0.212 0.512

Separated 3142 0.847 0.154 0.130 0.500

Motorvehicle mortality rate chr 2828 0.888 0.086 0.281 0.493

Below poverty 3141 0.904 0.099 0.117 0.464

Percent smokers chr 2502 0.889 0.103 0.219 0.414
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922 A. Amgalan et al.

Table 1 continued

Geary Moran SA

Variable N C I Single Median

Divorced 3142 0.907 0.071 0.237 0.391

Physically unhealthy days chr 2954 0.917 0.116 0.044 0.388

Med age 3142 0.930 0.031 0.287 0.375

Bac 3142 0.918 0.075 0.074 0.357

Mentally unhealthy days chr 2953 0.924 0.096 0.100 0.321

Grad 3142 0.910 0.078 0.043 0.319

Married 3142 0.908 0.086 0.118 0.307

Agasltrate 2056 0.967 0.058 −0.021 0.179

ls 10 avg 2004 0.945 0.033 0.069 0.165

Percent male 3142 0.937 0.030 0.134 0.164

Same sex 3142 0.958 0.026 0.087 0.120

Pop density 3141 0.906 0.073 −0.598 0.116

Robberyrate 2056 0.971 0.052 −0.098 0.085

Murderrate 2056 1.029 0.019 −0.172 -0.092

Fig. 1 Representative traces of within-cluster sum of squared deviations SS(t) as a function of the number
of merging events, for selected US county variables: elevation, household income and population density.
Intuitively, in left panel, the initial slower increase indicates that counties being clustered together early-on
have similar elevation values. In right panel, the variability in population densities of counties are shown to
quickly take off as nearby counties are clustered

Our statistic is based on the notion that spatially autocorrelated variables should exhibit
low variance within natural clusters of points. In particular, we expect the variance observed
when merging pairs of nearby clusters to increase less the more spatially autocorrelated the
variable is. The within-cluster sum of squares of single points is zero, while the sum of
squares of a single cluster after complete agglomerative clustering is (n − 1)σ 2. The shape
of this trajectory from 0 to (n− 1)σ 2 during the n− 1 merging operations defines the degree
of spatial autocorrelation, as shown in Fig. 1. The linearly-transformed (to enforce a range
on the value of the final statistic) version of the trajectory shown in Fig. 2 then becomes the
basis for the SA statistic.

Our major contributions in this paper include:

• Linear-time spatial correlation—The complexity to calculate SA for a variable defined
by n points and an input agglomeration order is O(n), where traditional measures such
as Moran’s I and Geary’s C require quadratic time. This matters: for a typical dataset of
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Fast spatial autocorrelation 923

Fig. 2 Representative traces of the single-linkage SA statistic (sum of squared deviations SS(t) scaled with
L(x) = 2(1 − x) − 1 to be in range [−1, 1]) as a function of the number of merging events, for selected US
county variables. The area under the curve shows Elevation as strongly spatially correlated ( SA = 0.802),
Median Income as uncorrelated (SA = 0.073), and Population Density as spatially anti-correlated (SA =
−0.598)

Statistic Number of data points

100 1000 10000 39810 63095

Moran I ≤ 1 ≤ 1 60 1036 6784
Geary C ≤ 1 2 169 3112 11901
SA single ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
SA median ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1

n ≈ 63, 000 points, our SA autocorrelation measure can be computed in 1 second, vs. 2
hours for Moran’s I and Geary’s C . Times shown are in seconds.
For points in two dimensions, the single-linkage agglomeration order can be computed
in O(n log n). Constructing more robust agglomeration orders like median-linkage may
take quadratic time; however, this computation needs to be performed only once when
performing spatial analysis over m distinct variables or time points.
We demonstrate the practical advantages of this win in an application on a brain fMRI
time series data—analyzing the results of a dataset roughly 36,000 times faster than
possible with either Moran’s I or Geary’s C, had they not run out of memory in the
process.

• Greater sensitivity than previous methods—We assert that the median-clustered SA cap-
tures spatial correlations at least as accurately as previous statistics. Through simulation
studies, we demonstrate that it identifies spatial correlations in variables generated with
spatially dependent model half an order of magnitude earlier than either Moran’s I or
Geary’sC (Fig. 11). On the US county data, we show that median-clustered SA correlates
more strongly with Geary’s C (−0.943) and comparably with Moran’s I (0.879) than
they do with themselves (−0.922).

• Theoretical analysis of statistical properties—We demonstrate a variety of theoretical
properties concerning SA. We prove that it behaves as a true correlation statistic, rang-
ing from [−1, 1) with an expected value of 0 for any i.i.d. random variable generated
independently of coordinates. We show that SA(X) = SA(a+ X) = SA(a · X), meaning
it is invariant under addition or multiplication by a constant applied to the variable z.
Further, we show that SA measures increased spatial correlation as the sampling density
increases, as should be the case for samples drawn from smooth functions—but is not
true for either Moran’s I or Geary’s C .

The implementation of our statistic is available at https://github.com/aamgalan/spatial_
autocorrelation. This paper is organized as follows. Section 2 introduces previous work on
spatial autocorrelation statistics, with descriptions of six such statistics including the popular
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Fig. 3 The spatial distributions of the demographic variables (US counties dataset)

Fig. 4 Scatter plot of variables Moran’s I , Geary’s C , and SA . US counties dataset

Moran’s I andGeary’sC . Our new SA agglomerative clustering statistic, with a fast algorithm
to compute it, is presented in Sect. 3. Theoretical and experimental results are presented in
Sects. 4 and 5, respectively.

2 Previous work

2.1 Moran’s I

The most well known of spatial autocorrelation metrics, Moran’s I [1], has been around for
more than 50 years. Originally proposed as away of capturing the degree of spatial correlation
between neighboring elements on a two-dimensional grid data from agricultural research, it
calculates the following in its current form:

I = N

W

∑
i
∑

j wi j (zi − z)(z j − z)
∑

i (zi − z)2

where zi is the value of random variable z at each of the N spatial locations, wi j is the
weight between spatial locations i and j , with W = ∑

i, j wi j and z = ∑
i zi/N . Moran’s I

provides a global measure of whether the signed fluctuations away from the mean of quantity
of interest z at a pair of spatial locations correlates with the weight (frequently the inverse
distance is used) between the locations. The metric found extensive use in fields that concern
mapped data: econometrics [12], ecology [13], health sciences [14], geology, and geography
[15]. Statistical distributions and their moments for Moran’s I under various conditions have
been derived [16–18].
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2.2 Geary’s C

Another early contender in the field is theGeary’sC , originally named the contiguity ratio [2].
First demonstrated as a viable metric of spatial correlation on the example of demographic
and agricultural data from counties of Ireland, it is defined as

C = N − 1

2W

∑
i
∑

j wi j (zi − z j )2
∑

i (zi − z)2

Moran’s I and Geary’s C have several features in common: Both take the form of an outer
product weighted by the spatial weights between the locations and both are normalized by
the observed variance of z and the sum of all spatial weights. The distinction between them
is the exact outer product operations carried out: Moran’s I multiplies the signed fluctuations
away from the mean of z: (zi − z)(z j − z), whereas Geary’s C takes the square of difference
between values of z at spatial locations i and j : (zi −z j )2. As such, Geary’sC takes on a large
value for a variable that displays large variation among closely neighboring (large weight
wi j ) spatial locations, whereasMoran’s I is large when the neighboring values fluctuate from
the mean in the same direction.

2.3 Matheron’s Variogram and �

Another metric is the variogram method of Matheron [3] intended to quantify the typical
variation of spatial data points as a function of the distance separating them. Empirical
variogram is often utilized in practice and is defined as follows:

γ̂ (h ± δ) = 1

|N (h ± δ)|
∑

(i, j)∈N (h±δ)

|zi − z j |2

where h is the distance between spatial locations with allowed tolerance δ, N (h ± δ) is the
set of all pairs of points (i, j) such that distance between them lies in range h ± δ, and zi
and z j are the values of the variable of interest at locations indexed i and j , respectively.
Variogram analysis results in intuitive quantities: sill and range extracted from the curve of
γ̂ (h ± δ), where sill indicates the eventual level of variability reached at asymptotic length
scales, and range denotes the length scale required to reach variability indistinguishable
from the eventual sill. Variogram is extensively used in geology as part of kriging in mineral
surveillance process [19].

2.4 0 index and local 0 index

The global � index, proposed in 1967, as a generalized method for identifying time-space
clustering of cancer cases and other geographically labeled incidence data, tries to capture
not only spatial, but also temporal information, albeit on binary variables indicating whether
an incidence occurred or not [10].� index considers twomatrices: ai j and bi j , one containing
the measure of spatial similarity between incidences and the other containing the temporal
similarity information. The statistic then is

� =
∑

i< j

ai j bi j .

123



926 A. Amgalan et al.

The local version of � statistics avoids summation over index i , making it a quantity specific
to the observation: �i = ∑

j ai j bi j , and when summed equal to the global �, a property
discussed in 2.6.

2.5 Getis-Ord G∗
i

The 1990s saw a rapid development in the field and what some termed the global-to-local
transition [20]. Known as the G and Gi statistics, a class of metrics first formalized by Getis
and Ord [21] appeared as circumventing the shortcomings of the Moran’s I statistics. The
local version of the statistic, Gi , is defined as follows:

Gi (d) =
∑

j �=i wi j (d)z j
∑

j �=i z j

where d is the length scale of concentration of variable z being tested, and wi j is a binary
weight indicating whether spatial locations i and j are within distance d of each other. A
minute modification of including the i th element in the summation over index j turns the
metric into G∗

i (d). The global version of Getis-Ord statistics, measuring the overall level of
concentration of variable z in the neighborhood of linear scale d , is defined as follows:

G(d) =
∑

i
∑

j wi j (d)zi z j
∑

i
∑

j zi z j

The global G(d) differs from Moran’s and Geary’s measures by taking the cross-product by
multiplying the variables at locations i and j together: zi z j , instead of (zi − z)(z j − z) in
the case of Moran’s and (zi − z j )2 in the case of Geary’s. For the G∗

i statistic, a negative
number reveals proximity of low values of the variable, and a positive number—proximity
of high values. The first empirical use case of G statistics was to rule out significant spatial
correlation on the county-level data of sudden infant death syndrome for US state of North
Carolina and to reveal concentration of low home values in San Diego County beyond what
Moran’s I would have indicated [21].

2.6 Anselin’s LISA and local Moran and Geary

Anselin proposed a generalized procedure for localizing the contribution of individual mea-
surements on the global measure of spatial autocorrelation termed local indicators of spatial
association (LISA). The method also serves to identify hot spots or pockets of local variation
in the mapped variable. LISA, broadly defined using two requirements: (i) The statistic for a
specific measurement should report whether similar values are clustered around it and (ii) the
sum over all measurements should be proportional to a global statistic of spatial autocorre-
lation, generalizes the localized Moran’s Ii and Geary’s ci statistics, also defined by Anselin
[22]:

Ii = (zi − z)
∑

j

wi j (z j − z) and ci =
∑

j

wi j (zi − z j )
2

Both local statistics are, in fact, proportional to their global counterparts with straightforward
proportionality constants, when summed up over all spatial locations. LISA’s (specifically
local Moran’s Ii ) first demonstrated usage was on dataset of international conflict among
African nations, quantitatively identifying the hotbed of instability in Northeastern Africa.
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Fast spatial autocorrelation 927

In the same category of techniques is the Moran’s scatter plot, also outlined by Anselin [23],
which disassociates low spatial autocorrelation into quadrants of low values surrounded
by high values and high values surrounded by low values, as well as high value of spatial
autocorrelation into quadrants of low values among other low values and high values among
other high values. See Getis [20] for a thorough history of spatial autocorrelation analysis.

3 The SA Algorithm and statistic

Our proposed method, which we term SA, produces a measure of spatial autocorrelation
given a particular agglomeration order of n locations {x̂i } embedded in Euclidean space and
values of random variable {zi } (with variance σ 2) paired with them. SA is agnostic to the
exact clustering used, provided it is agglomerative and two clusters of spatial locations are
merged at each step.

SA exploits the fact that the total sum of squared deviations (SS(t)) from the cluster mean
of the variable zi increases monotonically as clusters are joined (proof in Sect. 4.1). This
quantity is traced at a cost of constant time per merge event, starting when the first pair of
observations are joined into a cluster and reaching (n − 1)σ 2 when all observations are in a
single cluster. We are interested in how quickly during the agglomeration process this trace
of sum of within-cluster squares takes off and reaches its eventual value of (n − 1)σ 2.

Formally, computation of SA starts with all coordinates as their own singleton clus-
ters and keeps track of the geographic centroids of clusters (x̂C1 and x̂C2 ), their sizes
(|C1| and |C2|), means (zC1 and zC2 ), and the total sum of squares over all clusters:

SS(t) = ∑
Ck∈C(t)

∑
i∈Ck

(
zi − zCk

)2 where C(t) denotes the set of all clusters at time
t of the agglomeration order. During a merge event, clusters C1 and C2 are joined into a new
cluster C12 (C12 ← C1 ∪ C2), with size |C12| ← |C1| + |C2|, coordinate centroid

x̂C12 ← (|C1|x̂C1 + |C2|x̂C2)/|C12|
and mean zC12 ← (|C1|zC1 + |C2|zC2)/|C12|. The trace of sum of squares is updated as

SS(t) ← SS(t − 1) + |C1|(zC12 − zC1)
2 + |C2|(zC12 − zC2)

2

Sample traces are shown in Fig 1. It is then normalized by its final value, averaged over all
agglomeration steps, and linearly transformed with L(x) = 2(1 − x) − 1 to give the SA
value:

SA = 2

⎛

⎝1 − (
∑

t≤n−1

SS(t))/((n − 1) · SS(n − 1))

⎞

⎠ − 1

with n − 1 indicating the total number of merge events. Sample traces of the linearly trans-
formed sum of squares are shown in Fig. 2, with their corresponding geographic distributions
for the variables shown in Fig. 3.

Just like conventional correlation coefficients, SA can range in the interval from -1 to 1.
It will take 0 value when there is no spatial structure, larger value when similar values of zi
are spatially nearby and negative values if neighboring values are anti-correlated. Intuitively,
both nearby locationswith very different values of feature zi and distant locationswith similar
values will decrease SA, while nearby locations with similar values and distant locations with
differing values will contribute to the increase in SA. We note here that each update in the
total sum of within-cluster squares due to a joining event is done in constant time, making
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928 A. Amgalan et al.

calculation of SA for variable zi and any particular pre-specified agglomeration order an
O(n) algorithm. The required pre-computation of an agglomeration order can be performed
in O(n log n) time, using single-linkage clustering in the plane.

3.1 Dependence on agglomeration order

Multiple agglomerative clustering criteria are in common use, reflecting a trade-off between
computational cost and robustness. In this paper, we investigate four distinct criteria and their
impact on observed spatial autocorrelations:

• Single linkage—Here, the distance between clusters C1 and C2 is defined by the closest
pair of points spanning them:

d(C1,C2) = min
z1∈C1,z2∈C2

||z1 − z2||

This is akin to the criteria ofKruskal’s algorithm for findingminimum spanning trees, and
runs inO(n log n) time for the primary use case of points in the plane. TheO(n log n) time
is due to the disjoint set data structurewith complexity bound of O(α(n)) onmerge/search
operations.α is an extremely slowly increasing inverseAckermann function and is a small
constant for all practical purposes.

• Average linkage—Here,we compute distance between all pairs of cluster-spanning points
and average them for a more robust merging criteria than single link:

d(C1,C2) = 1

|C1||C2|
∑

z1∈C1

∑

z2∈C2

||z1 − z2||

This will tend to avoid the skinny clusters of single link, but at a greater computational
cost. The straightforward implementation of average link clustering is O(n3), because
each of the n merges will potentially require touching O(n2) edges to recompute the
nearest remaining cluster.

• Median linkage—Here, we maintain the centroid of each cluster and merge the cluster
pair with the closest centroids. The newmerged cluster’s centroid is given by the average
of the centroids of the clusters being merged. This has two main advantages. First, it
tends to produce clusters similar to average link, because outlier points in a cluster get
overwhelmed as the cluster size (number of points) increases. Second, it is much faster to
compare the centroids of the two clusters than test all |C1||C2| point pairs in the simplest
implementation.

• Furthest linkage—Here, the cost of merging two clusters is the farthest pair of points
between them:

d(C1,C2) = max
z1∈C1,z2∈C2

||z1 − z2||

This criterion works hardest to keep clusters round, by penalizing mergers with distant
outlier elements. Efficient implementations of furthest linkage clustering are known to
run in O(n2) time.

All linkagemethods except for single linkage, produce similar results, while single linkage
produces a slightly lower SA autocorrelation. This is natural as single linkage method merges
only locally and suffers from what is known as the chaining phenomenon. The larger linear
dimensions of the single linkage clusters reach the variability of the variable zi earlier driving
the sum of squares up and the SA down (Fig. 5).
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Fig. 5 SA calculated on
subsample of the elevation data
with different agglomeration
methods. All methods considered
produce similar values of SA ,
except for single linkage

3.2 Comparison with Moran’s I and Geary’s C

The comparison of median clustered SA with Geary’s and Moran’s can be seen in the scatter
plot of Fig. 4 with each point representing a feature in the US counties dataset. All three
pairwise comparisons show large magnitude correlations |r | > 0.8. In the bottom panel,
single and median linkage methods are compared for SA.

4 Analysis of statistical properties

In this section, we prove three important properties of SA, namely (1) monotonicity under
merging, (2) that it is a well-defined correlationmeasurewith zero corresponding to no spatial
correlation, and (3) invariance under addition and multiplication by a constant.

4.1 Monotonicity

For demonstration of the monotonicity of the total sum of within-cluster squared deviations
from the mean of variable zi , it suffices to show that an arbitrary cluster C1 merging with
another (C2) would have non-decreasing squared deviation from the new cluster’s mean zC12

compared to the original mean zC1 . Setting the mean shift equal to δz = zC12 − zC1 , we
compute the difference between the sum of squared deviations from mean for zi values in
cluster C1 before and after the merge event as

∑

i∈C1

(zi − zC12)
2 − (zi − zC1)

2 = z2C12
− 2zi zC12 − z2C1

+ 2zi zC1

Substituting the mean shift δz and simplifying, we obtain

∑

i∈C1

2zC1δz + δ2z − 2ziδz =
∑

i∈C1

δ2z = |C1|δ2z ≥ 0

where we have used the definition of mean to eliminate zi and zC1 . The change in sum of
squared deviations for the clusters C1 and C2 being merged is, therefore, nonnegative for
all merge events, making the trace of SS(t) a monotonic quantity. Its monotonicity, coupled
with a suitable agglomeration order, which merges close-by coordinates earlier on, enables
us to single out the area under its curve as a measure of spatial autocorrelation indicating
how early/late in the agglomeration the variability increases from 0 to (n − 1)σ 2.
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Fig. 6 Random shuffling of the
county labels gives a distribution
of SA values centered on 0. Each
variable from the US counties
dataset was shuffled 10 times,
and the statistic values were
computed. The distributions for
all variables were combined into
a single histogram

4.2 Expected value

Intuitively, SA is the (linearly transformed with L(x) = 2(1−x)−1) mean of the (monotoni-
cally increasing) sum of squared deviations of values of zi from their cluster means while the
observations are gradually merged into a single cluster made up of all coordinates X̂ . Under
lack of spatial dependence, the sum of squared deviations will increase in even steps with
no particular time structure and produce a mean over time equal to half its eventual value
((n − 1)σ 2/2). After normalization and a linear transformation to flip the sign and adjust
the range (L(x) = 2(1 − x) − 1), we will obtain 0. Empirically, we verify that the random
reshuffling of the county data zi values, while keeping the spatial locations intact, produces
a narrow distribution centered at 0, similar in width to the distribution of Geary’s C (see
Fig. 6).

For a formal proof, let us first consider n real numbers Z = {z1, . . . zn} with mean z
and Euclidean coordinates X̂ = {x̂1, . . . x̂n}. Let A(X̂) = {e1, . . . en−1} a merge order that
determines an agglomerative clustering on the symmetricweighted graph (with no self-edges)
induced by a similarity metric on coordinates X̂ . Define the stages of this agglomeration at
time t as A(X̂ , t) = {e1, . . . et } (with a shorthand A(t)) such that A(X̂ , n − 1) = A(X̂). Let
C(t) denote the set of disjoint clusters present at time t of agglomeration process such that
C(0) = {{1}, {2}, . . . {n}} and C(n − 1) = {{1, 2, . . . n}}.
Definition 4.1 SA. Define the SA statistic as

SA(A(X̂), Z) = 2

(

1 −
∑n−1

t=1 SS(A(t), Z)

(n − 1)
∑n

i=1(zi − z)2

)

− 1

where SS(A(t), Z) = ∑
Ck∈C(t)

∑
i∈Ck

(zi − zCk )
2 (with a shorthand notation SS(t)) denot-

ing the sum of within-cluster squared deviations at time t of the agglomeration given by
A(t).

Theorem 4.1 Let Z = {z1, z2, . . . zn} be a set of normal i.i.d. random variables with mean
0 and variance σ 2 and X̂ = {x̂1, x̂2, . . . x̂n} their coordinates in Euclidean space. Then, the
random variable SA(A(X̂), Z) converges to zero in limit of large n:

lim
n→∞E[SA(A(X̂), Z)] = 0

Proof We proceed by considering the contribution of each cluster joining event on the even-
tual metric SA. During a given merge event, clusters C1 and C2 with sizes n1 and n2 and
means zC1 and zC2 join to make the cluster C12 with size n12 = n1 + n2 and mean zC12 . At
the same time, the running sum of within-cluster squares changes as follows (see Sect. 4.1):

δSS(t + 1) = SSC12(t + 1) − (SSC1(t) + SSC2(t))

= n1(zC12 − zC1)
2 + n2(zC12 − zC2)

2
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Fig. 7 Summation carried out in “horizontal slabs,” each with height in expectation equal to σ 2 and determin-
istic width of n − t

The expectation of change in sum of squared deviations due to merge event E[δSS(t + 1)]
is then given by the difference in the expectations of sum of squares before and after the
merge.

E[δSS(t + 1)] = E[SSC12(t + 1)] − (E[SSC1(t)] + E[SSC2(t)])
= (n12 − 1)σ 2 − ((n1 − 1)σ 2 + (n2 − 1)σ 2)

= (n12 − n1 − n2 + 1)σ 2 = σ 2

Here, we use the fact that for a given cluster C , SSC—its sum of squared deviations from
mean, is an estimate of the population variance biased by a factor of n − 1. The summation
in definition of SA can then be carried out “horizontally,” by considering the jump in the
global sum of squares times the number of time intervals for which this jump contributes to
the metric as shown in Fig. 7.

It then follows that

E[SA(A(X̂), Z)] = 2

(

1 − E

[ ∑n−1
t=1 SS(t)

(n − 1)SS(A(X̂), Z)

])

− 1

= 2

(

1 −
∑n−1

t=1 E [SS(t)]

(n − 1)SS(A(X̂), Z)

)

− 1

= 2

(

1 −
∑n−1

t=1 (n − t)E[δSS(t)]
(n − 1)(n − 1)σ 2

)

− 1

= 2

(

1 − ((n − 1)n − (n − 1)n/2) σ 2)

(n − 1)(n − 1)σ 2

)

− 1

= − 1

n − 1

123



932 A. Amgalan et al.

Here, we use the fact that the distribution of overall sum of squares in the denominator is
related to the sampling distribution of sample variance:

SS(A(X̂), Z)

σ 2 =
∑n

i=1(zi − z)2

σ 2 ∼ χ2(n − 1)

making SS(A(X̂), Z) a self-averaging quantitywithmean (n−1)σ 2 and variance 2(n−1)σ 4,
and hence vanishing relative variance in the limit of large n:

lim
n→∞

Var [SS(A(X̂), Z)]
E[SS(A(X̂), Z)]2 = lim

n→∞
2(n − 1)σ 4

(n − 1)2σ 4 = 0

This lets us treat SS(A(X̂), Z) in denominator as a constant factor and taking the limit of
large n of E[SA(A(X̂), Z)], we obtain

lim
n→∞E[SA(A(X̂), Z)] = lim

n→∞

(

− 1

n − 1

)

= 0

as desired. 
�

4.3 Invariance

The SA statistic has the nice property of invariance under addition and multiplication by a
constant. Letting Z a spatial variable with SA(Z) = s and considering SA(Z +c)with c ∈ R,
we note that the sum of squared deviations is unaffected by addition of a constant, making
our statistic invariant to addition of a constant c.

SS(T (t, X̂), Z + c) =
∑

Ck∈C(t)
ei∈Ck

(

zi + c −
∑

e j∈Ck
z j + c

|Ck |

)2

=
∑

Ck∈C(t)
ei∈Ck

(

zi −
∑

e j∈Ck
z j

|Ck |

)2

= SS(T (t, X̂), Z).

Considering multiplication of variable Z by an arbitrary constant c ∈ R, we note that a factor
of c2 appears both in denominator and in numerator due to the squared deviation from the
mean being considered, canceling each other and returning the same value as the original
variable SA(c · Z) = SA(Z).

5 Experimental evaluation

Here, we present the results of simulations which demonstrate (1) the running time of SA is
indeed an order of magnitude faster to compute than competing statistics, (2) SA identifies
substantially weaker spatial correlations in synthetic data thanMoran’s andGeary’s statistics,
(3) SA appears to be influenced less by non-uniform sampling than competing statistics, and
finally (4) SA appropriately reports increased autocorrelation with greater sampling density
while still converging to a limit below the perfect autocorrelation of 1.
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Fig. 8 Experiments concerning
running time. Single-link and
median-link agglomeration
orders cost less to compute than
single runs of Moran I and
Geary’s C metrics. SA
outperforms I and C drastically
given the merge order on a
dataset of size ≈ 63000

5.1 Running time

SA substantially outperforms both Moran’s and Geary’s metrics in computation time, in
establishing the agglomerative merging order both to use and to compute the statistics. In our
experiments, computing a single median-linkage agglomeration order costs approximately
10% of a singleMoran or Geary computation on the same points, as shown in Fig. 8 (left). By
reusing this agglomeration order, we can save a linear factor of running time on subsequent
autocorrelation analyses. Figure 8 (right) shows that for a typical dataset of n ≈ 63, 000
points, our SA autocorrelation measure can be computed in 1 second, versus 2 hours or more
for Moran’s I and Geary’s C .

Timing experiments were done as follows: Starting from coordinates, agglomeration order
was computed using Kruskal’s routine with disjoint set structure (for SA single), scipy’s
linkage tool (for SA median) and numpy’s linear algebra toolbox with vectorization (for
weight matrix of Moran’s I and Geary’s C) and metrics were computed using our streaming
tool (SA) and pysal library for Python (Moran’s I and Geary’s C). All tools were written in
Python 3.7.

5.2 Reusing agglomeration order: fMRI time series analysis

Much of the efficiency gains of SA accrue from its ability to reuse a once-computed agglom-
eration order for new data points arriving from the same spatial coordinates. We demonstrate
this with an application to functional neuroimaging data (fMRI), which gives a time series
readout for each spatial location in the brain. In order to study the dynamics of brain net-
works, neuroscience is concerned with extracting summary statistics from the brain images
of potentially > 106 voxels (3D pixels) at the resolution of sampling period. Statistical tools
are then used in downstream prediction and classification tasks of clinical significance. In this
experiment, we used a publicly available fMRI neuroimaging dataset with 36 fMRI scans (12
human subjects×3 experimental conditions)with each scan consisting of 2×2, 320 = 4, 640
repeated measurements of the entire brain at 0.8s sampling period [24]. We focused on the
greymatter data, which consist of readings from n = 133, 000±13, 000 (mean± std) voxels
at each time point. To compute SA, we constructed a single agglomeration order for each
scan, using k-d tree structure by treating the grey matter voxels of brain as points in space to
be partitioned into singletons. We cycled through the three axes of brain recursively splitting
each partition between its median pair of planes perpendicular to the axis until all partitions
reached size of 1. The splitting events then define an agglomeration order in reverse. The time
complexity of partitioning space using k-d tree structure is O(n) in the case of unbalanced
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Fig. 9 The divisive clustering routine applied to MRI brain image voxels (3D pixels): We cycle through the
three Cartesian axes, splitting each existing cluster along its medial wall perpendicular to the current axis.
The whole brain at the top left panel eventually partitions into individual voxels. The partition steps progress
left-to-right, followed by top-to-bottom

tree, and O(n log n) for a balanced tree using a median finding subroutine. See Fig. 9 for a
demonstration of the individual partition steps.

Due to the highly irregular shape of the grey matter, we resorted to finding the medians for
balanced partitions, with the average time to establish an agglomeration order of twominutes,
but it can be reused for each of the m time points of a given scan. This reduces the run time
from O(mn2) for Moran’s I and Geary’s C to O(n log n+mn). In our case, with m = 4640
time points and n ≈ 133, 000 coordinates, SA took 3500 ± 300 seconds, or 0.75 ± 0.07
seconds per feature (time step). On the other hand, we were not able to compute Moran’s
I and Geary’s C for 133, 000 coordinates on an average workstation hardware using the
standard implementation (pysal), due to space limitations. We give a linear-time algorithm
to calculate SA for a variable with an input agglomeration order (available at https://github.
com/aamgalan/spatial_autocorrelation).

Extrapolation from computations of Moran’s I and Geary’s C on smaller samples indi-
cates that if memory requirements were lifted, it would take more than 7.5 and 13.5 hours,
respectively, for each time step of the time series data, or roughly 36, 000 times longer than
SA. Figure 10 shows representative autocorrelation time series from brain fMRI data. This
shows that SA not only improves computation for each data feature, but also processes each
additional feature in linear time by reusing the agglomeration order once it is computed. SA’s
runtime for each time step is comparable to the sampling period of the fMRI data. This permits
future applications in closed-loop systems that process data and provide feedback stimuli or
electromagnetic stimulation to the brain in real time for improved clinical intervention.

5.3 Sensitivity to true autocorrelation: synthetic data

Ground truth on the degree of spatial autocorrelation can only be obtained from simulation
results, wherewe explicitly generate datawith specified amount of spatial autocorrelation and
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Fig. 10 Spatial autocorrelation
(measured by SA) time series for
fMRI data, showing visibly
different degrees of coherence on
two different human subjects. We
estimate that this computation
would have taken roughly 36,000
times as long using either the
Moran’s I or Geary C statistic.
The two colors indicate the two
halves of the scanning session,
with a short break in the middle

Fig. 11 SA is more sensitive to true autocorrelation than Moran’s I and Geary’s C , on a “disk-averaging”
generative model as a function of disk radius. Moran’s I , Geary’s C values are rescaled to match the range
of SA . SA detects the autocorrelation > 0.5 order of magnitude earlier. Note the entire range of [0, 0.9] is
covered with SA within 2 orders of magnitude of the disk radius. Vertical dashed lines indicate disk radii
where metrics reach half of their ranges

see howmuch bias must be added for statistics to identify the phenomenon. For this purpose,
we carry out a disk-averaging experiment, whereby a normally distributed independently
sampled random variable zi is assigned to uniformly distributed coordinates and undergoes
an averaging procedure. The averaging takes all values of z j for locations within disk of
radius r around coordinate x̂i , and reassigns the average of the within disk values to it:
zi ← mean({z j | d(x̂i − x̂ j ) < r}). See Algorithm 1 for details of the averaging routine. The
SA statistic of the disk-averaged zi values were computed and compared to Moran’s I and
Geary’s C . Random sampling, disk-averaging and statistic computation were each repeated
100 times.

Figure 11 summarizes the results of these experiments for 1000 points. SA (both single
and median linkage) demonstrates far greater sensitivity, identifying significant and rapidly
increasing amounts of spatial autocorrelation for disk radii half an order ofmagnitude smaller
than that of Geary’s C and Moran’s I . Although both Moran and Geary statistics support
problem-specific weight matrices to tune their sensitivity, the interesting autocorrelation
distance scales are a priori unknown and difficult to determine, so methods without tunable
parameters are preferred.
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input : radius of disk r
input : number of samples m
output: Spatial data zr with spatial correlation given by radius r

1 for i ← 1 to m do
2 z[i] ← random sample from N (0, 1);

3 x̂[i] ← random sample from Uniform([0, 1]2);
4 end
5 for i ← 1 to m do
6 zr [i] ← mean({z[ j] |d(x̂ [i] - x̂ [j]) < r});
7 end
Algorithm 1: Disk-averaging algorithm for inducing spatial autocorrelation on synthetic
data

5.4 Sensitivity to sample size and coordinate subsampling: US elevation data

Spatial autocorrelation depends on the exact sampling of the coordinates as well as the spatial
distance/weight matrix. We note that for historical and demographic reasons, US counties
are not of equal size and shape, but generally smaller and more irregular in the east rather
than the west. A spatial autocorrelation statistic should ideally report similar values on the
same underlying geographic variable regardless of the details of the sampling method.

To interrogate whether SA computed on subsamples of real data differs from Moran and
Geary’s statistics in its dependence on the exact subsample of coordinates, we use the fol-
lowing procedure. n random data points are drawn from the US elevation data (itself sampled
at 1km2) [25], and SA, Moran’s I and Geary’s C are computed from their coordinates x̂i and
elevation values zi . Performing the experiment at sample sizes up to 40,000 points (limited
by the O(n2) running time of Moran and Geary’s), we compute autocorrelation metrics and
compare them with the values obtained from the elevation column of the US counties dataset

Fig. 12 SA reveals autocorrelation independent of the exact coordinates sampled. The random subsampling
experiment on 1km2 scale US elevation data carried out up to subsample size 40000. Vertical and horizontal
lines indicate the number of counties in the US counties dataset and the value of metric computed from them,
respectively
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Fig. 13 The SA estimate quickly converges to its full sample value as a function of the subsample size. The
mean and standard deviation (error bar) of the SA at the subsample size from 10 repeats are shown. SA reveals
autocorrelation independent of the exact coordinates sampled. The variables from the US counties data shown
are in a descending order in SA , but with all estimates at small subsample size starting out close to their
eventual full sample values

at a sample size of 3142. The details of the routine are described in Algorithm 2, and the
results are shown in Fig. 12.

input : zelev (US elevation data at 1km2 resolution)
input :m (number of random samples to take from US elevation data)
output: SA (SA value from US elevation data zelev at m samples)

1 for i ← 1 to m do
2 choice ← RandChoice({1, . . . |x̂elev |});
3 x̂[i] ← x̂elev[choice];
4 z[i] ← zelev[choice]
5 end
6 SA ← SA(x̂ , z)

Algorithm 2: Routine for subsampling elevation on the continental US data.

Both Moran’s I and Geary’s C report different values when the coordinates are sampled
uniformly, compared to the irregular sample of coordinates given by US counties’ locations.
On the other hand, both single- and median-linkage SA report similar values with equal
number of uniformly sampled coordinates as it did with coordinates of US counties, showing
robustness to changes in the exact subsampling of coordinates.

5.5 Sensitivity to sample size: US Counties Demographic data

In order to further validate the subsample stability of SA estimates on variables other than
the US elevation, we repeated the procedure on the rest of the variables from the US counties
dataset.We randomly subsampled the counties and computed the SA statistic for an indication
of whether the initial small subsample estimates were close to the eventual full sample value
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of SA. Our observation indicates that for a range of SA autocorrelation, the estimates can
quickly converge to its eventual value. See Fig. 13 for details.

5.6 Convergence evaluation and analytical fit

To test convergence of SA, Moran’s, and Geary’s metrics, we perform the following sampling
procedure on grids of random values of varying sizes. For a rectangular grid of finite size,
e.g., k-by-k, we assign a uniformly random zi j value to each of the k2 grid cells, then
randomly sample n real-valued coordinates from the support given by [0, k]2, and take their
corresponding cell’s zi j values to compute SA. This procedure locks a particular correlation
length into the data by choosing the number of grid cells and forces the metrics to capture it
as number of sample coordinates increases. See Algorithm 3 for full description of the grid
sampling routine. We expect 1/k2th of all samples to fall in each grid cell, thus taking on the
same z value, and raising the autocorrelation as the number of samples increases to a natural
limit, because there will also be nearby pairs of points that sit across a grid boundary and
take different z values. Thus, a meaningful metric should converge to a large value (but less
than the maximum possible 1) that decreases for shorter autocorrelation lengths induced by
larger number of grid cells.

Figure 14 (left) reports that Moran’s I converges to values increasingly closer to 0 as the
grid size increases, indicating that it captures the de-correlated structure of large number of
random grid cell entries zi j . Geary’s C does similarly, reporting values increasingly closer
to 1. But SA sees the coarser, more correlated structure of smaller grids using fewer samples,
reporting earlier increase for 10-by-10 grid than for 100-by-100 (Fig. 14, right panel).

input : n (number of grid cell along each axis)
input :m (number of samples)
output: SA (SA value for grid size n2 at m samples)

1 for i ← 1 to n do
2 for j ← 1 to n do
3 zgrid [i, j] ← sample from Uniform([0, 1]2);
4 end
5 end
6 for i ← 1 to m do
7 x̂[i] ← sample from Uniform((0, n]2);
8 z[i] ← zgrid [Ceiling(x̂[i, 1]), Ceiling(x̂[i, 2])];
9 end

10 SA ← SA(x̂ , z)
Algorithm 3: Routine for randomly sampling from a grid of values.

In order to estimate the asymptotic value of the SA metric, we fit the following log-
sigmoidal functional form to the observed values of SA as a function of samples taken:
SA(n) = Smax/(1 + e−a(log n−b)). The parameter Smax has a natural interpretation of the
asymptotic value of SA at unlimited number of samples turning the task of finding the asymp-
tote into a parameter estimation for Smax . In Fig. 15, we report that with sample size > 105,
the confidence interval for estimated Smax includes the eventually best estimate (dark hor-
izontal thick line) computed using 107 samples. None of the estimates of Smax in Figs. 14
and 15 includes the value of 1.
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Fig. 14 Asymptotic behavior of spatial autocorrelationmetrics. Random coordinates are sampled at increasing
sample size from square grid of independent random values from [0, 1] interval. Left: Moran’s I , center:
Geary’s C , and right: SA , solid lines represent best fit of log-transformed sigmoid curves for data drawn from
grids of size 10 x 10. Note the asymptote of single-linkage SA converging to values < 1: S10max = 0.925,
S32max = 0.905, and S100max = 0.87

Fig. 15 Estimation of Smax .
Yellow curve: best fit to SA as a
function of sample size SA(N ) =

0.942
1+exp(−0.361(log N−3.035)) using
data points in blue. Red curve:
the confidence interval of
parameter estimation for the
asymptotic value Smax using the
SA computed only up to the
sample size on the x-axis. US
elevation data

6 Conclusion

The Skiena’s A (SA) algorithm and statistic we propose provide an efficient, improved
sensitivity procedure for computing the spatial autocorrelation, running in linear time
after computing the agglomeration order (implementation available at https://github.com/
aamgalan/spatial_autocorrelation). Separating the computation into two steps: i) obtaining
the agglomeration order and ii) computing of the statistic, provides additional improvements
by reusing the agglomeration order for new data that arrive from the same coordinates. SA
achieves run time of O(n log n + mn) for m separate features, improving upon the stan-
dard O(mn2). As demonstrated in the fMRI example, it can be thousands of times faster in
natural time series applications of spatial autocorrelation than previous methods. Even for
single-shot applications in the plane where we can compute single-linkage agglomeration
in O(n log n) run time, we beat previous O(n2) algorithms. We have also shown that SA
has the convenience of converging to 0 for random data, invariance under linear transforms
uniformly applied to data, making it an attractive addition to standard toolbox for analysis
of spatial data irrespective of the domain.
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