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Abstract
The main issue in multi-agent planning (MAP) is the agents’ coordination process that is a
computationally hard problem. Thus, many works focus on the planning strategy considering
the computational process, agents’ distribution roles, information privacy, and the resources
coupling level. But domain-independent models that explore the balance between coordina-
tion process and privacy leading to efficient execution are missing. In this manuscript, we
present a Lightweight Coordination Multi-agent Planning (LCMAP), a domain-independent
model that balances the coordination process and privacy through three independent phases:
(i) verification—each agent verifies its capabilities of reaching the goals; (ii) transformation—
the coordinator selects agents through their capabilities and distributes the goals, transforming
the original problem into single-agent problems; and (iii) validation—each plan is validated
to check whether it can be parallel. LCMAP was compared to the state-of-the-art mod-
els to evaluate time efficiency and plan length during the problem-solving process using
loosely and tightly coupled domains with specific evaluation metrics inherited from planning
competitions. Furthermore, we conducted experiments to evaluate the execution efficiency
regarding different configurations concerning planning time and plan length of the models,
when LCMAP execution proves to be efficient.

Keywords Automated planning · Evaluation · Multi-agent planning · Multi-agent systems

1 Introduction

Automated planning and scheduling are related to the deliberation process associated with
performing tasks. This process deals with defining actions able to change the environment to
satisfy the desired configuration. Therefore, the planning process focuses on the choice and
organization of actions through their expected effects [17]. The reasoning algorithms and
models performed by a single agent define the automated planning area. This area has con-
tributed to heuristics and strategies that improve the agent’s deliberation process. Automated
planning has been useful in many applications, from robot path planning to transportation
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logistics [5]. However, the rule of a single agent makes it difficult to solve real-world prob-
lems. For such problems, algorithms and models must tackle the fact that multiple actors
interact by cooperating and competing in a common environment.

In this context, multi-agent planning (MAP) has gained increasing importance by inte-
grating multi-agent systems with practical reasoning agents focusing means-end decisions
with planning capabilities [53,54]. MAP research encompasses factors such as individual or
global objectives, coordination and computational processes, communication and interaction
among agents, privacy, scalability, plan synthesis and heuristic search [40,41,44–48,52,55].
Involving so many factors, MAP computational complexity is NP-hard, but in some cases, it
can scale polynomially considering the number of agents [5].

Usually, MAP studies gather over one factor. In particular, the coordination process and
privacy factors play a highlighted role. The coordination depends on the solving strategy
applied to the searching process. The challenge faced by the coordination process derives
from the complexity that may grow with the number of agents. The distributed approach
uses more than one planner, where each agent tries to find its solution, but the centralized
one searches for solutions for all agents in a unique episode performed by a single planner
agent. Thus, the distributed process may be harder to coordinate, but it can tackle large search
spaces compared to a single planner.

Besides, privacy factor defines how the approach treats and preserves information. Agents
can exchange knowledge about their actions, goals, and states. If this exchange is undergone
without restrictions, information is public and there is no privacy at all. Otherwise, when
agents are selective in spreading their knowledge and information, privacy may vary from
weak to strong levels.

Considering MAP aspects, we conducted a systematic mapping study to highlight recent
works to identify related open problems. This study was enriched by a survey that focused on
the most relevant approaches to MAP that took place in the 2015 Competition of Distributed
and Multi-Agent Planning [44] (see Sect. 3). An open problem identified was the trade-off
between the coordination process and privacy in MAP models. While a centralized approach
reduces interaction levels easing coordination among agents, privacy pays the cost by turning
private information to public. In summary, to maintain the privacy of the agents, a more
sophisticated communication and coordination process is necessary.

Many MAP approaches explore plan refinement process by adding actions to partial
ordered plans (based plans) until a solution is found. However, this strategy does not scale
due to the message bottleneck. Our approach uses goal delegation transforming MAP to
single-agent planning providing conditions to individual and parallel plan searches. Thus,
the agents’ interactions occur in well-definedmoments, and this technique was more efficient
than the strong interaction employed by approaches that explore the plan refinement process.

Therefore, this research has focused on the trade-off between the coordination process
and privacy of the agents to provide an efficient MAP model. As a result, we propose
the Lightweight Coordination Multi-Agent planning (LCMAP) that explores the domain
problem by testing the agents’ problem-solving capabilities individually, partially or com-
pletely during the verification step. Afterward, the goals are assigned to the most capable
agents in the transformation phase. Finally, the individual plans are verified for the paral-
lel execution viability, otherwise they are centralized. LCMAP is considered lightweight
because the coordination is done at specific moments—before goal assignment and during
plan validation—avoiding coordination through message exchange.

LCMAPwas compared to different models considering the hypothesis that it is an efficient
model when compared to different state-of-the-art MAPmodels. The experiments conducted
to test this hypothesis focus on state-of-the-art MAP models. First, the experimentation used
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International Planning Competition (IPC) domains—satellite, rovers, zeno-travel, elevator,
depots and logistics—to collect time and plan-length metrics. Afterward, we checked the
impact of those metrics over the models regarding different configurations of a weighted
average performance metric.

The conducted experiments provide evidence that LCMAP is more efficient than state-
of-the-art approaches. Thus, the main contribution of this paper is the efficient lightweight
coordination model that balances computational process and privacy. Moreover, the main
difference of this work comparing to other MAP approaches is the verification phase carried
out in previous step.Once related tools and algorithms start immediately the planning process,
LCMAP saves time and resources by predicting an impossible solution by searching for lack
of agent capabilities. Also, in the transformation phase, the goal delegation process evaluates
agent capabilities while other approaches do not explore this feature, assigning objectives
blindly to agents.

The rest of the paper is structured as follows. In Sect. 2, we present important MAP
definitions. In Sect. 3, we highlight related work. In Sect. 4, we detail the proposed model.
In Sect. 5, we describe the experimental study comparing LCMAP to the state-of-the-art
models. Finally, we draw conclusions and suggestions for future work in Sect. 6.

2 Background

A multi-agent system (MAS) is formed by a set of software entities able of sensing (sen-
sors) and changing the environment state using their actuators [53,54]. In a MAS, there are
autonomous agents that interact through a defined communication protocol allowing com-
petitive or cooperative behavior with a coordination model. Competitive agents require a
negotiation protocol, while cooperative agents need a planning protocol to define individual
and group goals. Planning strategies of solving planning problems are implemented central-
ized or distributed [53]. Hastily, the planning process in the presence of multiple agents is a
MAP task [22]. One interesting point is that agents in aMAPmodel can play planning and/or
executor roles.

In this research, we assumed restrictive premises to deal withMAP similarly to other work
[5,41,45,47].A state of theworld is formedby a set of logical propositions. The environment is
fully observable and agents can access information immediately. Agents are collaborative, so
they are not competitive (self-interested) and there is no private goal.Actions are deterministic
(well-defined), they always achieve their effects, which are constant, unit cost, instantaneous,
and the only reason for world update. No events take place in the environment apart from the
actions expected effects of the agents. Finally, communication process is free of failures.

In the sequence, we present the most important concepts regarding MAP study. The
definitions of operator, action single-agent andMAP task were based on [17,36]. Most part of
MAP setting relies on action specification. But to define actions, operatorsmust be previously
defined.

Definition 2.1 An operator is a schema that defines actions using variables, (parameters). An
operator is a tuple θ =< name(θ), pre(θ), e f f (θ) >, where

– name(θ) is an identification to the operator;
– pre(θ) is formed by a set of precondition that stands for literals required to apply the

operator;
– e f f (θ) is formed by a set of effects that stands for literals which are added (e f f +) or

deleted (e f f −)from the state of the world after executing the operator.
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Definition 2.2 An action is an instantiated operator. In other words, an action is an operator
where parameters were changed by objects.

When there is only one agent, the propositions, actions and goals sets belong to a single
source. Every environment change results from this agents actions. Hence, it is impossible
to delegate responsibilities. For the same reason, there is no need for a coordination protocol
to manage agents’ cooperation or competition. A single-agent setting defines the planning
tasks.

Definition 2.3 A single-agent planning (SAP) task can be formalized by a tuple � =<

F, A, I ,G >, where

– F is formed by a set of propositions;
– A is formed by a set of grounded actions, derived from operators;
– I is an initial state, I ⊆ F ;
– G is formed by a set of goals, G ⊆ F .

In the presence of more agents, a MAP model must coordinate interdependences
among agents and their tasks. For each agent agi , there is a SAP task �agi =<

Fagi , Aagi , Iagi ,Gagi >.
Amutex is an inconsistence among propositions.We assume that in theMAP setting, there

are nomutexes in the initial state and the set of goals among agents. Therefore, I = ⋃m
i=1 Iagi

and G = ⋃m
i=1 Gagi .

A MAP task describes the combination of all tasks {�ag1 ,�ag2 , . . . , �agm }.
Definition 2.4 A multi-agent planning task can be formalized by a tuple τ =< Ag, F̄,

Ā, I ,G >, where

– Ag = {ag1, ag2, . . . , agm} is formed by a finite set of agents;
– F̄ = ⋃m

i=1 Fagi is formed by a set of propositions;
– Ā is formed by a set of grounded actions, Ā = ⋃m

i=1 Aagi ;
– I is an initial state, I ⊆ F̄ ;
– G is formed by a set of goals, G ⊆ F̄ .

The transition caused by an action α applied in a state s is defined by Eq. 1.

γ (s, α) = (s\e f f −(α)) ∪ e f f +(α) (1)

The result of a planning task, SAP orMAP, is a plan π = [a1, a2, . . . , an], namely, a finite
sequence of actions. When a plan π is applied sequentially from the initial state I , it would
generate in a state sn , where G ⊆ sn . The evolution from the initial state to sn is present by
Eq. 2.

γ (I , π) = γ (I , [a1, a2, . . . , an])
= γ (γ (I , a1), [a2, . . . , an])
= γ (γ (γ (I , a1), a2), [a3, . . . , an])

...

= γ (sn−1, an) = sn (2)

When two or more agents execute their plans simultaneously, they can compete for some
resources or even undo the effects of each other’s actions. However, these plans can provide
cooperation with a minimum level of coordination when plans are independent.
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Definition 2.5 Two plans π1 and π2 are independent iff:

(∗δπ1 ∪ δ∗
π1

) ∩ (∗δπ2 ∪ δ∗
π2

) = ∅, where:

∗δπ =
n⋃

i=1

pre(αi )|αi ∈ π = [a1, . . . , an],

δ∗
π =

n⋃

i=1

e f f (αi )|αi ∈ π = [a1, . . . , an].

The complete listing of operators, actions, initial state and goals regarding the domains is
available in the project repository.1

3 Literature review

In order to identify state-of-the-art MAP research works, we conducted a systematic map-
ping study according to guidelines provided by Kitchenham et al. [23], Cooper [11]. The
study included a protocol defining four research questions to accept or refuse the efficiency
hypotheses of our lightweight coordination model focusing on coordination process and
privacy aspects. The key points of the protocol include the definition of

– Problem: What are the effects of balancing the coordination process and privacy in a
MAP model?

– Intervention: What are the approaches that explore agent selection, validation, and veri-
fication in MAP?

– Comparison: How efficient is planning time compared to other MAP models?
– Outcome: What are the effects of executing a pre-planning2 phase in a MAP?

The systematic mapping was done from February to June 2017 and resulted in 292 works.
The study focused on journal articles and proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS)3 from2011 to 2017.Moreover, after reviewing
some works, we investigated their references in order to include related and helpful work.
The studied journal articles and conference proceedings were available in premier computer
area digital libraries such as

– The IEEE Xplore digital library provides proceedings of important conferences such as
the IEEE/WIC/ACM International Joint Conferences onWeb Intelligence and Intelligent
Agent Technology (WI-IAT); the Symposium on Computational Intelligence in Control
andAutomation (CICA); and the Brazilian Conference on Intelligent Systems (BRACIS)
- the leading AI research conference in Brazil;

– In the ACM Digital Library, there are proceedings from important conferences, such as
(i) International Conference onAutonomousAgents andMulti-agent Systems (AAMAS)
the world’s leading scientific conference for research in autonomous agents and multi-
agent systems; and (ii) EuropeanConferenceonArtificial Intelligence (ECAI), theEurope
premier AI research venue;

1 https://gitlab.com/InfoKnow/AutomatedPlanning/LeonardoMoreira-LCMAP.
2 Pre-planning tries to guarantee that the agents’ plans can be combined into a solution that satisfies the goals
of the MAP task [44].
3 http://www.icaps-conference.org/.
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Table 1 Questions of quality criterion

Item Question

Q1 Does the study discuss the soundness and/or completeness of the proposed algorithm/model?

Q2 Does the proposed model discuss scalability aspects?

Q3 Does the study present evaluated results and comparison with other studies?

Q4 Do the tests use the IPC domains?

Q5 Does the model use a standard planning language (PDDL, ADL, STRIPS)?

Q6 Is there any executable implementation available to reproduce the experiments?

Q7 Is there any agent selection prior to planning?

Q8 Is there any problem checking prior to planning?

– The Springer-Link digital library includes important journals in the domain of intelligent
planning such as (i) Applied Intelligence; (ii) Journal of Research on Intelligent Systems
for Real Life Complex Problems; and (iii) Knowledge and Information Systems (KAIS).

Regarding the ICAPS proceedings, it is considered the premier forum for exchanging
news and research results on theory and applications of intelligent planning and schedul-
ing technology, enabling smart decision-making in autonomous systems. As a part of the
workshop on Distributed andMulti-agent Planning (DMAP) at the ICAPS 2015 Conference,
the Competition of Distributed and Multi-Agent Planners (CoDMAP) was organized with
the aim to consolidate the planners in terms of input format; to promote development of
multi-agent planners both inside and outside of the multi-agent research community; and to
provide a proof-of-concept of a potential futuremulti-agent planning track of the International
Planning Competition (IPC).

3.1 Research criteria

The research work inclusion was based mainly in two criteria: scope of application and pub-
lication vehicle quality (impact factor). The work should present MAP models or algorithms
independent of domain. As a result, 35 research works were chosen.

In relation to the quality criterion, a set of eight binary questions (yes/no) were defined
(Table 1). Works were classified through the sum of affirmative answers. Table 2 presents the
35 included works and highlights six works with the sum of affirmative answers greater than
or equal to three. This value was stipulated from the average of the works that presented at
least one positive answer. In Table 3, we present the works used in the comparative study to
validate our hypotheses.

3.2 Comparative study works

FMAP is presented in [47], a domain-independent solver that integrates planning and coordi-
nation in a distributed environment preserving information privacy. Agents interact toward a
solution by refining partial plans defined by a round-robin leader. FMAP uses an interaction
protocol with lot of message exchange during the plan refinement process. Thus, the number
of agents increase affects the model performance and scalability.

MADLA is presented in [41], a domain-independent MAP centralized solver but unlike
others, it combines two types of heuristics. The agents’ information is processed isolatedly in
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order to compute the heuristic value which is shared to define a final value. Authors claim that
such heuristic combination increases the possibility of solving problems, but no experimental
validation was presented.

Chouhan and Niyogi [9] suggest a domain-independent approach that consider the capa-
bility of agents to solve MAP problems with cooperative goals involving joint actions. In the
proposal, coined asMAPJA, the original problem is checked whether it can be solved by any
available multi-agent planner or it must be processed in a centralized way.

In [3], the strategy of transforming the original problem into smaller instances (SAP
tasks—Definition 2.3) is employed. In the MAPR model, agents interact through a ring
structure in which the first one becomes responsible for the goals it can satisfy removing
them from the set of targets. Then, the set of targets is sent to the next agent until the set is
empty. MAPR is a centralized coordination model.

Agents’ interaction in [55] is discussed and a formal characterization of situations where
cooperation is required to achieve goals in a multi-agent environment is presented. The key
contribution is the discussion of the question: Under what conditions are multiple agents
need to solve a planning problem? A centralized planner, Multi-agent Planner for Required
Cooperation (MARC), is proposed which aims to use the minimum amount of agents to
satisfy the goals.

In [28], the resource saving aspect is discussedwhengoals are distributed to agents inMAP.
Although experiments were also limited to scenarios without cooperation requirements, the
results highlighted that a delegation strategy is able to improve planning time about 96%.

3.3 MAP solvers taxonomy

Concerning the presented works, it is possible to create a taxonomy that classifies the MAP
solvers according to the following features (Table 3):

– Evaluation (F1): the evaluation of agents’ capabilities of reaching goals is one important
property, but rarely presented in MAP models. Therefore, this evaluation may enhance
the planning process since it avoids searching for impossible solutions;

– Cooperation analysis (F2): through cooperation analysis, the agents’ interaction is
checked in order to define the coupling level among agents;

– Agent selection (F3): by selecting only the agents thatmay contribute to problem-solving,
MAP models may improve their performance and also adopt an efficient resource usage;

– Transformation (F4): the original problem is transformed into many instances of simpler
cases by agent delegation and goal assignment;

– Coordination process (F5): planning design that can be centralized (C) or distributed (D);
– Privacy (F6): agents’ information privacy, that can be flexible (F), ignored (I) or preserved

(P).

In addition to our systematic study, a MAP survey considering the 2015 Competition of
Distributed and Multi-agent Planning approaches was presented by Torreño et al. [44]. This
survey highlights the state-of-the-art solvers. Concerning coordination process, seven works
from 23 adopted distributed approaches: FMAP [47], MH-FMAP [48], MAP-POP [45],
MAPlan [16], PSM [50], MAFS [32] and MAD-A∗ [32]. Most of the work did not address
privacy issues and only two addressed in a significant way [6,27].

Although our systematic mapping study and the survey had different purposes and specific
periods, they reached similar results. Our study considered explicitly nine of the 23 solvers
highlighted in the survey: MARC [55], FMAP [47], MADLA [41], MH-FMAP [48], MAP-
POP [45], MAPR [3], PSM [50], MAFS [32] and MAD-A∗[32]. However, if the evaluations
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Table 2 Reviewed works Item Work Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

1 [2] N N N N N N N N 0

2 [3] N N Y Y Y Y N N 4

3 [7] N N N N N N N N 0

4 [8] N N N Y Y N N N 2

5 [9] Y N Y N Y N Y N 4

6 [10] N N N N Y N N N 1

7 [13] N N N Y N N N N 1

8 [14] N N N Y N N N N 1

9 [15] N N N N Y N N N 1

10 [18] N Y N N N N N N 1

11 [19] N N N N N N N N 0

12 [20] N N N N N N N N 0

13 [24] N N N N N N N N 0

14 [26] Y N N Y N N N N 2

15 [28] N Y Y N Y N N N 3

16 [30] N N N N N N N N 0

17 [31] N N N N N N N Y 1

18 [32] N N N N N N N N 0

19 [33] N N N N N N N N 0

20 [34] N N N N N N N N 0

21 [35] N N N N N N N N 0

22 [37] N N N N N N N N 0

23 [38] N N N N N N N N 0

24 [39] N N N N N N N N 0

25 [40] N N N Y Y N N N 2

26 [41] N N Y Y Y Y N N 4

27 [42] N N N N N N N N 0

28 [43] N N N N N N N N 0

29 [46] N Y N N N N N N 1

30 [47] Y Y Y Y N Y N N 5

31 [48] N Y Y N N N N N 2

32 [49] N N N Y Y N N N 2

33 [51] N N N N N N N N 0

34 [52] N Y N N Y N N N 2

35 [55] Y N Y N Y Y Y Y 6

of MAPR [3] were also considered CMAP [4] and PMR [25], the intersection between both
reviews would be 11 works. This survey completes our systematic mapping study.

Regarding an initial version published by Moreira and Ralha [29], LCMAP was designed
to solve only loosely coupled domains. In this work, LCMAP is updated to tackle privacy on
tightly coupled domains as detailed in Sect. 4.

123



An efficient lightweight coordination model to multi-agent planning 423

Table 3 Related work features Work Features
F1 F2 F3 F4 F5 F6

FMAP [47] – – – – D P

MADLA [41] – – – � C P

MAPJA [9] – – � � C I

MAPR [3] – – – � D P

MARC [55] – � � – C I

[28] – – � � C I

4 LCMAP overview

LCMAP focuses on the planning strategy mainly considering efficient coordination process.
The coordination relies on assigning goals concerning the capabilities of the agents, keeping
information privacy considering the resources coupling level. In Fig. 1, the lightweight MAP
approach is illustrated through an efficient coordination process. The arrows in Fig. 1 define
important steps of the workflow regarding problem definition, as follows:

– C: the agent sends its capabilities to the coordinator;
– G: the coordinator delegates goals to an agent regarding its capabilities;
– π : agent sends its individual plan to the coordinator;
– CP: the coordinator performs a centralized planning whenever individual plans cannot

be carried out in parallel or goals cannot be delegated.

The efficiency of LCMAP is the result of using the characteristics of the planning problem
to leverage the search for a solution. Whenever the agents can work in isolation regarding
their capabilities (C), their commitments (G) are organized at specific moments, before
assignment of goals (pre-planning) and during the validation of the plans (π), avoiding
the need of message exchange to provide coordination. Otherwise, the coordinator assumes a
centralized planning (CP) function and sends agents their plans rather than goals. Therefore,
efficiency is supported by pre-planning and validation coordination steps. Independent of the
path followed in the workflow, there are no exchange of messages among agents. Therefore,
the coordination process and privacy coexist in the LCMAP model.

LCMAP explores the transformation of a MAP problem into simpler instances (SAP).
Although other works explore this strategy [3,12,28], the verification of agents’ capabilities
and the goals each agent can satisfy is a novel approach. In order to identify those capabilities
and goals, LCMAP exploits a delete-relaxation algorithm to check the reachablity of agents’
goals as detailed in Sect. 4.1. If every single goal, g ∈ G is satisfied at least by one agent,
goals can be indiscriminately distributed among agents. But at the distribution moment, it
is not possible to guarantee that the individual calculated plans are independent, so they are
checked later during the validation phase. When the distribution of goals is possible, agents
carry out their plans independently, being accompanied by the coordinator that assigns goals
and validate plans. But when the delegation of goals is impossible or plan validation fails,
the coordinator carries out a centralized planning process to find a new valid plan.

Regarding the privacy issues, LCMAP holds a flexible approach.When the transformation
of the problem is possible in a SAP, agents, but the coordinator, do not need to know each
other and the information privacy is preserved. Otherwise, when centralized planning is done,
the coordinator is the only agent that knows other agents’ information. Therefore, privacy
management is considered flexible because:
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Fig. 1 LCMAP workflow

– there is no information exchange among agents when the goals can be distributed;
– agent’s capabilities are known only by the coordinator and its owner when a centralized

planning is carried out.

Concerning the computational process that relates the agent’s roles and capabilities, the
information privacy and the problem coupling level, LCMAP explores these factors in three
different phases: verification, transformation and validation. The LCMAPphases and compo-
nents are presented in Fig. 2 and the details of each component are described in the sequence.
Whenever possible, the planning problem is transformed into smaller instances easier to
solve. While the components within the agent blocks of Fig. 2 are responsible for verifica-
tion and planning tasks, those inside the coordinator block guarantee the transformation and
validation of the path toward a solution.

Therefore, the design of the LCMAP model explores the possibility of easing the search
for a plan by verifying the agents’ capabilities preliminary, by transforming the original
problem and checking whether the decisions were correct. In summary, LCMAP balances
the tasks’ coordination and planning process along its three phases.
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4.1 Verification

In this phase, each agent verifies its capabilities of reaching the goals by itself. The agents are
defined in an input file of the user interface module. The input handler component identifies
each agent to instantiate them in parallel processes by the agent instantiator. During the
instantiation phase, every agent uses its parser to process the domain and problemfiles in order
to gather information about initial state, goals and available actions. Then, the verification
phase, which was started by the user interface module, is carried out by the agents’ modules
to identify their capabilities. Agents also have a planner component which provides planning
autonomy.

Parser and verifier

Using the Planning Domain Definition Language (PDDL) [1], agents are described by
domain and problem files that are computed by the parser component. These files contain the
propositions used to generate the complete set of possibilities that define any environment
state.

The set of all propositions is generated by a Cartesian product over each domain’s vari-
ables. This information is computed in parser, and it is used by the verifier and planner
components.

In the verifier component, each agent uses a delete-relaxation heuristic (DRH) to test
its capabilities [17]. Briefly, this technique explores the actions of a single agent, adding
new effects and never removing old ones. A relaxed state ŝ is a state in which new and old
effects coexist. This heuristic family returns a cost value of reaching a state from another.
LCMAP model is worried about the possibility of reaching the goals, therefore the heuristic
was adapted to return only True when the target is reached, or False, otherwise.

An action a is applicable in a relaxed state ŝ if ŝ satisfies pre(a). The transition from a
state ŝ after applying an action a is defined by Eq. 3.

γ +(ŝ, a) = ŝ ∪ γ (s, a) (3)

Algorithm 1 presents the delete-relaxation approach used. The set of actions Aagi is
an input parameter. The applicable actions are identified (Line 5) and the ŝk results from
unifying the effects of all operators a ∈ Ak (Lines 6 and 7). The algorithm is finished when
ŝk = ŝk−1 (Line 9), which means that no new effect was added. Otherwise, the set goals are
satisfied (Line 4) by ŝk . In summary, the purpose of Algorithm 1 is to simulate all possible
executions by adding the effects of the available actions until no further update is caused
to the environment state. In the end, the output will be the assessment of the possibility of
reaching the goals.

This heuristic is used when each agent needs to identify which goals it may satisfy by
itself. Following Algorithm 1 design, the set of goals is first evaluated in a global way, to
check if there is a state in which every g ∈ G holds. Otherwise, the agent checks each goal
g individually.

Another important function of the verifier is the definition of rigid literals, propositions
that remain constant from its initial state assignment. Thus, the preconditions pre(α) and
effects e f f (α) of each action are processed to identify elements that are not modified. This
information is important in the plan validation phase.
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Fig. 2 LCMAP phases and components

4.2 Transformation

In the transformation phase, the coordinator selects agents regarding their capabilities and
distributes the goals transforming the original problem into single-agent problems. In this
sense, the original problem is transformed by assigning goals after each agent checks the
goals it may reach without cooperation or interaction.

The coordinator queries all agents to unify information in the tuple τ (Definition 2.4) and
with it, the selection of agents is performed. Following, the coordinator starts the assignment
process using a load-balance or saving-resource strategy, based on standard round-robin and
greedy techniques, respectively. The strategy is defined as an input parameter. For instance,
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Algorithm 1 Delete-relaxation
Require: Aagi , Iagi ,G
Ensure: True or False
1: ŝ0 ← Iagi
2: A0 ← ∅
3: k ← 1
4: while �s ⊆ sk that satisfies G do
5: Ak ← {all applicable actions in ŝk−1}
6: for a ∈ Ak do
7: ŝk ← ŝk ∪ {γ +(ŝk−1, a)}
8: end for
9: if ŝ = ŝk−1 then
10: return False
11: end if
12: k ← k + 1
13: end while
14: return True

under a load-balance strategy, LCMAP will assign each agent only one goal per round
according their capabilities. When LCMAP adopts a saving-resource policy, it employs the
lowest number of agents by assigning goals to an already selected agent as much as possible.
Whatever the strategy is, there is no plan length estimation during the goal assignment phase.
Furthermore, this allocation is based purely on the number of goals and capabilities of the
agents. Any assessment of the size of the plans is possible only at the end of the transformation
phase, when the agents plan considering the assigned goals.

MAP analyzer

After unifying all information in tuple τ , the coordinator queries agents about their reachable
goal (RGoals) and rigid literals. Thus, it analyzes the MAP problem to check whether it can
be transformed into simpler instances (SAP), regarding agents’ capabilities. Therefore, the
union of the RGoals sets is compared to the original set G.

This union and G can only be different if there is a goal that is not reached by any agent.
Therefore, the cardinality (	) of these sets is enough to define if the transformation is possible.
If Eq. 4 is satisfied, the coordinator starts the agent selection phase; otherwise, it assumes a
centralized planning.

	

m⋃

i=1

RGoalsagi = 	G (4)

Agent selector and goal assigner

This component aims to identify agents capable of individual planning and execution. In
this sense, the coordinator analyzes the RGoals sets of all agents. The collection of agents
chosen is defined as {ag ∈ Ag|	RGoalsag > 0}.

After the verification phase, agents discover which goals they may satisfy returning no
estimate of cost. Although disregarding cost estimate avoids sorting agents regarding their
efforts, it does not impair the transformation of the problem since all agents chosen can reach
some goal. Once the selector chooses agents, the coordinator assigns goals to avoid agents
working toward the same goal simultaneously.
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LCMAP can carry out this assignment following two strategies defined as an input param-
eter. In the first option, the coordinator allocates the smallest number of agents to be used in
the planning phase. Therefore, even if all goals are reachable by all agents, only one of them
is allocated. In this sense, the saving-resource strategy is based on a greedy algorithm. The
agent with the largest number of RGoals items will be the first to be assigned goals. In the
load-balance strategy, LCMAP organizes agents in a ring topology, thus selecting agents in
a round-robin way and allocating one goal per iteration.

After the assignment, each chosen agent is committed to fulfill a part of the planning
problem. This commitment is formed by a set of goals, presented in Eq. 5.

Gagi = {g|g ⊆ RGoalsagi ⊆ G}. (5)

Minimum set of agents

Once individual plans were considered invalid or the transformation MAP to SAP was not
possible (Eq. 4 was not held), the coordinator starts defining the minimum set of agents to the
planning phase. Agents are organized in teams, initially in pairs, and the goals’ reachability
is evaluated using the modified delete-relaxation heuristic (see Algorithm 2). Unlike the
verification phase, here the coordinator uses all operators from all team members. Whenever
the current evaluation returnsFalse, the team is updatedby changing itsmembers or increasing
its size.

Algorithm 2 highlights the team definition. First, two agents are randomly chosen (Line
1), and this team is evaluated by the delete-relaxation heuristic function (Line 3) which runs
slightly different fromAlgorithm 1 since it considers the set of actions from all teammembers
(Line 15–16). In each iteration, the main loop (Lines 2–8) checks each team and whenever a
failure (False) is returned by DRH function, this team is updated (Line 6). The algorithm is
finished when a team shows enough condition to satisfy the goals (Line 3) or after all agent
combinations are evaluated as failure. In summary, the purpose of Algorithm 2 is to define
the smallest team of agents to meet the goals. In this sense, the team of agents is increased
step by step and continuously evaluated to determine the possibility of finding a solution.
Similarly to Algorithm 1, Algorithm 2 highlights a possibility for a solution rather than a
plan.

4.3 Validation

Once every goal has been assigned to a specific agent, each agent starts the planning process
individually. After finding their plans (πagi ), agents send them to the coordinator that ana-
lyzes their interaction. Therefore, the validation phase checks whether the plans, individually
defined, can be carried out centralized or distributed in parallel (see Definition 2.5). Individ-
ual plans are validated whenever Eq. 6 holds. In other words, if every two different assigned
agents have independent plans, their plans will be valid.

∀agi , ag j ∈ Ag(((∗δπagi
∪ δ∗

πagi
) ∩ (∗δπag j

∪ δ∗
πag j

) = ∅)

∧ (agi �= ag j ) ∧ (#Gagi > 0) ∧ (#Gag j > 0)) (6)
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Algorithm 2Minimum set of agents
Require: I ,G
Ensure: True or False
1: team ← two randon agents
2: while si ze(team) �= 	Ag do
3: if DRH(I ,G, team) = True then
4: return team
5: else
6: update(team)

7: end if
8: end while
9: return False
10: function DRH(I ,G, team)
11: ŝ0 ← IagId
12: A0 ← ∅
13: k ← 1
14: while �s ⊆ sk that satisfies G do
15: for ag ∈ team do
16: Ak ← {all actions ∈ Aag applicable in ŝk−1}
17: for a ∈ Ak do
18: ŝk ← ŝk ∪ {γ +(ŝk−1, a)}
19: end for
20: end for
21: if ŝ = ŝk−1 then
22: return False
23: end if
24: k ← k + 1
25: end while
26: return True
27: end function

Planner and plan validator

The LCMAP model is designed to be modular, and its components can be replaced without
impairing its usage. Therefore, each agent can use a different planning tool. After the goal
assignment phase, each agent starts its planning using the defined planner tool as an external
procedure call. So, it must be able to retrieve and compute the output to identify the plan or
a failure.

Regarding the coordinator agent, this planner component has an extra task. It must gather
all information from the defined team in a pair of PDDL files, a domain file in which actions,
predicates, and types are unified. In the problem file, the initial state and objects are listed.

Finally, the plan found by each planner must be mapped into a sequence of operators, with
the sets of preconditions and effects. This translation is important because the plan validator
requires a well-defined data structure that is expected and used during all phases of themodel.

Once every agent allocated in the goal assignment phase has received its goals and found
its plan, the coordinator tests whether all agents’ solutions can be performed parallel. Thus,
plans are analyzed two by two to check whether they are independent (Definition 2.5). Each
plan is visited and from every action, the preconditions and effects are visited in order to
compute ∗δπ and δ∗

π . Whenever the plans are not considered independent, the coordinator
executes a centralized planning. Thewhole process finisheswhen the problem has no solution
orwhen the final plan is present, as the result of the union of individual plans or as a centralized
planning response.
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5 Experiments and results

In this section, we first present the experimental settings including setup (Sect. 5.1), domains
(Sect. 5.2) and computational resources (Sect. 5.3). In the sequence, we describe the sets of
experiments and the comparison with other state-of-the-art MAP models (Sect. 5.4). All the
results are available in the project repository.4

5.1 Setup description

The hypothesis is whether LCMAP is an efficient model when compared to state-of-the-art
MAP models. We use two metrics to test the performance of each model for a given MAP
task τ attributing zero score when the planner did not solve the planning task.

The time25 metric computes the score of a planner for a given task as the quotient between
the minimum time, T ∗, required by any planner to solve the same task and the time, T , a
particular planner took to solve the same task, as presented in Eq. 7.

time2 = log(1 + T ∗)
log(1 + T )

, such that time2 ∈ [0, 1] (7)

The quality metric computes the quality of the best plan found, Q∗, for the task with the
quality of the plan, Q, produced by a particular planner (Eq. 8). We use the quality metric to
report the plan length score. For instance, letπA, πB , πC be plans computed by three different
planners (A, B and C) for the same planning problem. Now, consider the number of actions
in each plan as length(πA) = 10, length(πB) = 20, length(πC ) = 100. Clearly, the best
planner is A because of its smallest length, hence Q∗ = 10. The quality of πA is 10

10 = 1.
Regarding πB and πC , the qualities are 10

20 = 0.5 and 10
100 = 0.1, respectively. Therefore, the

greater the quality is, the better the plan is. The same reasoning can be applied to time2.

quali t y = Q∗

Q
, such that quali t y ∈ [0, 1] (8)

Experiments were defined as configuration tests regarding domains, number of agents,
number of goals and the MAP model used. Each configuration was repeated three times, and
the average value was used.

5.2 Domains

The IPC6 domains are used to compare to the state-of-the-art MAP models. Regarding the
most used domains described in the related work, the domains chosen from IPC are

– Satellite (loosely coupled)—each agent symbolizes a satellite that is defined by its
attributes regarding position, orientation (direction) and available instruments. Although
they have different qualities, this condition favors the transformation of the original prob-
lem because agents do not need cooperation to carry out their actions. The problem is
to scale satellite observations that include collecting and storing data using different
instruments to observe a collection of targets;

4 https://gitlab.com/InfoKnow/AutomatedPlanning/LeonardoMoreira-LCMAP.
5 http://www.plg.inf.uc3m.es/sw-ipc2011/IPCReport.
6 IPC is a biennial event organized in the International Conference on Planning and Schedulingwith objectives
such as to provide a forum for an empirical comparison of planning systems. (http://www.plg.inf.uc3m.es/
ipc2011-deterministic/).
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Table 4 Setup description

Experiment Domains

Rovers Satellite Zeno-travel Logistics Elevators Depots

A G A G A G A G A G A G

1 1 3 1 3 1 3 3 4 3 3 5 4

2 2 3 2 5 2 4 4 8 4 3 8 4

3 3 6 3 8 3 7 5 10 5 3 – –

4 4 8 4 9 5 9 – – – – – –

5 5 12 5 13 – – – – – – – –

– Rovers (loosely coupled)—motivated by the exploration missions of Mars. The goal
is to use a set of robots (agents) to traverse planet points by performing a variety of
sample collection and data transmission operations to the base. The problem includes the
visibility constraints of this base from various positions and the ability of each agent to
traverse paths between pairs of points. Robots are differentiated by the set of equipment
they own and use to perform the tasks. There is no need for cooperation during the
execution, and the only interaction is when an agent collects a sample and therefore turns
it unavailable to the other agents;

– Zeno-travel (loosely coupled)—related to a matter of transport in which people should
board airplanes, travel between localities and then disembark. Airplanes use fuels at
different rates according to the speed of the displacement;

– Depots (tightly coupled)—comprises two types of agents, warehouses and trucks, which
must cooperate to meet the objectives. This is the most complex case of the tests and
configures a tightly coupled domain with many dependencies between the agents;

– Elevators (tightly coupled)—the agents in this field are elevators that vary in speed, being
able to be fast or slow, and in the floors that can access. This last feature defines the need
for cooperation enabling objectives execution. For example, an elevator may not stop at
a certain floor, then it will go to an intermediate floor so that the passenger can enter
another elevator that reaches the final destination;

– Logistics (tightly coupled)—the agents in this domain are airplanes and trucks. The
delivery of some packages involves the cooperation of elements of both types, since the
trip between cities is realized by airplanes and the displacement within the same city is
the responsibility of the trucks.

The experimental setup description regarding the number of agents (column A) and goals
(column G) in each domain is summarized in Table 4.

5.3 Computational resources

We carried all experiments out in a single computer with a Dual-Core Intel Core i5-2410M
with four executable threads and 6 GB RAM. The operational system was Linux Mint 18.1
Serena 64-bit.

The reported times describe all complete processes, from the input to the plan generation
or failure. In case the approach is executed by the command line (java or shell script), we use
the time7 command to the measure time between the beginning and the end of the process.

7 https://linux.die.net/man/1/time.
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Table 5 Time2 metric comparison

Model Rovers Satellite Zeno-travel Logistics Elevators Depots

FMAP 0.491 0.459 0.951 0.121 0.930 0.101

LCMAP-LB 0.984 0.977 0.636 1.000 0.857 1.000

LCMAP-SR 0.953 0.985 0.630 0.948 0.845 0.522

MADLA 0.220 0.109 0.069 0.021 0.000 0.063

MAPJA – – – – – –

MAPR – – – – – –

MARC – – – – – –

In case the approach does not terminate at the end of the planning, for example, when there
is a graphical user interface, we cannot apply this technique. However, typically time spent
by each agent is displayed as soon as the plan is found, and therefore can be assumed as the
highest values presented.

The planning tool defined by all agents was the Fast-Forward [21]. Since LCMAP pro-
vides two different assignment strategies as presented in Sect. 4.2.We labeled the results with
LCMAP-LB and LCMAP-SR, which stands for load-balance and saving-resource, respec-
tively.

5.4 Comparison with MAPmodels

In this section, we compare LCMAP results against other MAP approaches. Specifically, we
compared the results against FMAP [47] andMADLA [41] for particular reasons. According
to the detailed results of CoDMAP-15,8 MARC [55] solved only one instance of the logistic
and none of the other domains. Therefore, we did not run experiments with MARC. We
asked the authors of MAPJA [9] for sharing the code but we had no answer. Experiments
with MAPR [3] were also impossible because some libraries required to compile the code
were no longer available.

In the loosely coupled domains (satellite, rovers, zeno-travel), experiments ranged the
number of agents from one to five. In tightly coupled domains (depots, elevators, logistics),
the limits were defined from three until eight, regarding the problem conditions. In both types
of domain, the upper limit was defined as the configuration (number of agents) that the other
approaches begun to halt without solving the problem. The lower limit in tightly coupled
domain was defined as the minimum configuration that guaranteed the solution.

The first evaluation explores the time2metric. To improve the visualization of the values,
the comparison of the performance in Table 5 is facilitated by the results shown in Fig. 3 and
in the project repository. Each cell in Table 5 shows the average of time2 metric values from
the different experiment configurations. The highest values are highlighted.

The variation in values was significant, being able to reach a 100× increase between the
simulations of one and five agents (in the satellite and zeno-travel domains). Therefore, the
graphs in Fig. 3 follow a logarithmic scale in the Y axis to ensure that all values are displayed.
The reason for a suddenly drop in MADLA values with four and five agents is because it
was unable to solve the problem and finished with error.

8 http://agents.fel.cvut.cz/codmap/results/presentation-RESULTS.pdf.
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Fig. 3 Planning time

From rovers, satellite and zeno-travel domains, LCMAP results were better than other
models in 71.43% (10 in 14) of the experiments. This behavior highlights the lack of cooper-
ation requirements among agents, both in planning and execution phases, as an alternative to
mitigate the effects of increasing the number of agents. While FMAP uses a strong agents’
interaction during plan refinement, LCMAP explores the agents’ decoupling, reaching better
results. MADLA had the worst results in planning time. Regarding coverage, MADLA could
not solve five problems, while FMAP just one. LCMAP solved all tests.

From depots, elevators and logistics domains, LCMAP results were better than other
approaches in 75% (6 in 8). In these cases, despite verification, transformation and validation
phases, the gain was because of the centralized role of the coordinator that planned without
interactingwith other agents. In the experiments inwhichLCMAPdid not have the best results
(elevators with four and five agents), it was 2× slower. However, in the other experiments,
it was about 100× faster (logistics with five agents). Regarding the two types of domain,
LCMAP was superior in 72.72% (16 of 22) of the experiments, regardless the objective
strategy attribution.

The second evaluation explores the quality metric. Concerning the size of the plans,
LCMAP showed solutions with fewer actions than FMAP andMADLA in nine experiments.
Although LCMAP plans were about one or two actions shorter than FMAP solutions, this
property must be considered as an advantage of the proposed model over other planners.

To improve the visualization of the values, the comparison of the performance in Table 6
is facilitated by the results shown in Fig. 4. The values are presented in Table 6 as average,
similarly to Table 5. The highest values are highlighted.

Figure 4 uses a logarithmic scale in the Y axis to ensure that all values are displayed.
MADLA results are higher than other values; therefore, they can impair the representation
of smaller values.

Regarding both metrics, LCMAP presents the best two results. The difference between
LCMAP and FMAP results answers the hypothesis about efficiency. LCMAP metric scores
are better than FMAP in tightly coupled domains. The transformation phase leverages the
highest part of this result by improving time2metric. The plan length metric by itself causes
an impact lower than 1.0 and can not significantly influence the results. The balance between
the computational process and privacy is the key reason for his behavior, since LCMAP

123



434 L. Moreira, C. Ralha

Table 6 Plan length quality metric comparison

Model Rovers Satellite Zenotravel Logistics Elevators Depots

FMAP 0.991 0.936 0.917 0.973 0.933 0.429

LCMAP-LB 0.926 0.748 0.906 0.984 1.000 1.000

LCMAP-SR 0.892 1.000 0.911 0.984 0.939 1.000

MADLA 0.522 0.249 0.255 0.010 0.000 0.200

MAPJA – – – – – –

MAPR – – – – – –

MARC – – – – – –

Fig. 4 Plan length

explores the decoupling level of planning tasks. MADLA is excluded from this comparison
since it could not perform.

A performance metric is computed concerning the results of eachmodel, using a weighted
average of time2 and quality, shown in Tables 5 and 6, following Eq. 9. Here, the purpose
is to check each model regarding the impact of planning time and number of actions over
its performance. This evaluation is important because, in some cases, the time spent during
planning process is critical, for instance, in rescue operations, where time is key to mission
success. In other conditions, agents must care about their resources, such as battery and fuel,
more than the time. Thus, in scenarios such as robotics path finding, smaller plans avoid
resource misuses resulting in a better final plan.

per f ormance = α ∗ time2 + β ∗ quali t y

α + β
(9)

The evaluation of the performance metric is presented by heat maps in Fig. 5 where each
model is checked regarding the experiments and varying the weight of alpha from 0.0 to
1.0. High levels of α indicate that time is more important than plan size. The performance of
LCMAP-LB (Fig. 5b) improves when the weight related to time2 increases in four domains,
but zeno-travel and elevators. On the other hand, the performance of LCMAP-SR (Fig. 5c)
and FMAP (Fig. 5a) is impaired by the increase in α in all domains but rovers and zeno-travel,
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Fig. 5 Performance metric
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Fig. 6 Final comparison

respectively. At last, MADLA (Fig. 5d) had the worst behavior, no matter the level of α. The
performance metric shows that a quick planning process costs non-optimal plans and the
search for saving resources depends on a greater consumption of time.

Finally, a final comparison is studied considering all the experiments. The mean values9

of time2 and quality of each model are used, according to Eq. 10, to rank the models under
different conditions. The variation in the final performance is presented in Fig. 6. It is impor-
tant to highlight that LCMAP had the best scores regardless the value of alpha. Moreover,
from alpha = 0.3, LCMAP-LB shows the best performance, indicating that it can balance
planning time and plan size in most of the problems.

per f ormance = α ∗ time2 + β ∗ quali t y

α + β
. (10)

6 Conclusions

The main contribution of this work is the presentation of the Lightweight Coordination
Multi-Agent Planning model that balances coordination process and privacy through three
independent phases: verification, transformation and validation. LCMAP is proved to be
an efficient solution to MAP when compared to the state-of-the-art models regarding time
efficiency and plan length during the problem solving process. LCMAP has been tested on
IPC loosely and tightly coupled domains proving to be a domain-independent model.

The comparison among LCMAP and other related models shows that balancing com-
putational process and privacy provides efficiency to MAP models. Hence, the hypothesis
whether LCMAP is an efficient model when comparing to state-of-the-art can be accepted.

Although LCMAP outperforms the state-of-the-art models, such as FMAP and MADLA,
some future works can be suggested. Other MAP implementations and planning domains
may be evaluated to reinforce the flexibility and modularity aspects of the proposed model.

9 metric describe the arithmetic mean of the values of the model considering all the experiments.
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The support to probabilistic models and more dynamic planning aspects would be inte-
grated into the LCMAP model to decrease distance to real-world problems.

Acknowledgements Prof. Célia G. Ralha thanks the support received from the Brazilian National Council for
Scientific and Technological Development (CNPq) for the research productivity Grant Number 311301/2018-
5.

References

1. PDDL Resources - IPC - 2008 (2016) Available at http://icaps-conference.org/ipc2008/deterministic/
PddlResources.html

2. Baldoni M, Baroglio C, Micalizio R (2015) Social continual planning in open multiagent systems: a first
study. In: PRIMA, pp 575–584

3. Borrajo D (2013) Multi-agent planning by plan reuse. In: International conference on autonomous agents
and multiagent systems (AAMAS), IFAAMAS, pp 1141–1142

4. BorrajoD, Fernández S (2015)MAPRandCMAP. In: Competition of distributed andmulti-agent planners
(CoDMAP 2015), pp 1–3

5. Borrajo D, Fernández S (2019) Efficient approaches for multi-agent planning. Knowl Inf Syst 58(2):425–
479

6. Brafman R (2015) A privacy preserving algorithm for multi-agent planning and search. In: Proceedings
of the 24th international conference on artificial intelligence. AAAI Press, pp 1530–1536

7. Cardoso R, Bordini R (2016) Allocating social goals using the contract net protocol in online multi-agent
planning. In: Proceedings of the 5th Brazilian conference on intelligent systems (BRACIS), IEEE, pp
199–204

8. Chouhan SS, Niyogi R (2016) Multi-agent planning with quantitative capability. In: International confer-
ence on advances in computing, communications and informatics (ICACCI), IEEE, pp 602–606

9. Chouhan SS, Niyogi R (2017) MAPJA: multi-agent planning with joint actions. Appl Intell 47(4):1044–
1058

10. Chouhan SS, Singh A, Niyogi R (2015) Multi-agent planning with joint actions. In: 2015 International
conference on advances in computing, communications and informatics (ICACCI), IEEE, pp 1284–1290

11. Cooper ID (2016) What is a mapping study? J Med Libr Assoc 104(1):76
12. CrosbyM, JonssonA,RovatsosM (2014)A single-agent approach tomultiagent planning. In: Proceedings

of the 22nd European conference on artificial intelligence (ECAI), pp 237–242
13. DukemanA (2017)Hybridmission planningwith coalition formation. Ph.D. Thesis,Vanderbilt University
14. Elkawkagy M, Biundo S (2011) Hybrid multi-agent planning. In: Multiagent system technologies, pp

16–28
15. FerrandoSP,OnaindiaE (2012)Defeasible argumentation formulti-agent planning in ambient intelligence

applications. In: 11th international conference on autonomous agents and multiagent systems (AAMAS),
IFAAMAS, pp 509–516

16. FiS̆er D, S̆tolba M (2015). MAPlan. In: Competition of distributed and multi-agent planners (CoDMAP
2015), pp 8–10

17. Ghallab M, Nau D, Traverso P (2016) Automated planning: theory and practice. Cambridge University
Press

18. Gordon G, Varakantham P, Yeoh W, Lau HC, Aravamudhan A, Cheng S-F (2012) Lagrangian relaxation
for large-scalemulti-agent planning. In: International joint conferences onweb intelligence and intelligent
agent technology, IEEE Computer Society, vol 2, pp 494–501

19. Guzman C, Castejon P, Onaindia E, Frank J (2014) Robust plan execution in multi-agent environments.
In: 26th international conference on tools with artificial intelligence (ICTAI), IEEE, pp 384–391

20. Hadad M, Kraus S, Hartman IB-A, Rosenfeld A (2013) Group planning with time constraints. Math Artif
Intell 69(3):243–291

21. Hoffmann J, Nebel B (2001) The FF planning system: fast plan generation through heuristic search. J
Artif Intell Res 14:253–302

22. JonssonA,RovatsosM (2011) Scaling upmultiagent planning: a best-response approach. In: International
conference on automated planning and scheduling (ICAPS)

23. Kitchenham B, Budgen D, Brereton P (2010) The value of mapping studies-a participant-observer case
study. In: EASE, vol 10, pp 25–33

123

http://icaps-conference.org/ipc2008/deterministic/PddlResources.html
http://icaps-conference.org/ipc2008/deterministic/PddlResources.html


438 L. Moreira, C. Ralha

24. Klöpper B, Honiden S, Dangelmaier W (2011) Divide & conquer in planning for self-optimizing mecha-
tronic systems-a first application example. In: Symposium on computational intelligence in control and
automation (CICA), IEEE, pp 108–115

25. Luis N, Borrajo D (2014) Plan merging by reuse for multi-agent planning. In: 2nd ICAPS workshop on
distributed and multi-agent planning (DMAP’14), pp 38–44

26. Maliah S, Brafman R, Shani G (2017) Increased privacy with reduced communication in multi-agent
planning. In: International conference on automated planning and scheduling (ICAPS)

27. Maliah S, Shani G, Stern R (2016) Stronger privacy preserving projections for multi-agent planning. In:
Proceedings of the 26th international conference on international conference on automated planning and
scheduling. AAAI Press, pp 221–229

28. Moreira LH, Ralha CG (2016) Transforming multi-agent planning into single-agent planning using best-
cost strategy. In: Brazilian conference on intelligent systems (BRACIS), IEEE, pp 462–467

29. Moreira LH, Ralha CG (2017) Improving multi-agent planning with unsolvability and independent plan
detection. In: Brazilian conference on intelligent systems (BRACIS), IEEE, pp 103–108

30. Nath A, Niyogi R (2015a) An extension of FMAP for joint actions. In 8th international conference on
contemporary computing (IC3), IEEE, pp 487–492

31. Nath A, Niyogi R (2015b) Validation and verification of joint-actions in multi-agent planning. In: Inter-
national conference on information technology (ICIT), IEEE, pp 187–192

32. Nissim R, Brafman R (2012) Multi-agent A* for parallel and distributed systems. In: Proceedings of the
11th international conference on autonomous agents and multiagent systems (AAMAS), AAMAS’12.
Richland, SC. IFAAMAS, pp 1265–1266

33. Palomares I, Bauters K, LiuW, Hong J (2016a) A two-stage online approach for collaborative multi-agent
planning under uncertainty. In: International conference on scalable uncertainty management. Springer,
pp 214–229

34. Palomares I, Killough R, Bauters K, Liu W, Hong J (2016b) A collaborative multiagent framework
based on online risk-aware planning and decision-making. In: 28th international conference on tools with
artificial intelligence (ICTAI), IEEE, pp 25–32

35. Pardo P, Pajares S, Onaindia E, Godo L, Dellunde P (2011) Multiagent argumentation for cooperative
planning in delp-pop. In: 10th international conference on autonomous agents and multiagent systems
(AAMAS). International Foundation for Autonomous Agents andMultiagent Systems, vol 3, pp 971–978

36. Pellier D, Fiorino H (2018) PDDL4J: a planning domain description library for java. J Exp Theor Artif
Intell 30(1):143–176

37. Qing C, Wen Z, Yulong H (2012) Find a multi-agent planning solution in nondeterministic domain. In:
International conference on automatic control and artificial intelligence (ACAI), pp 1053–1056

38. Redding J, Ure K, How J, Vavrina M, Vian J (2012) Scalable, MDP-based planning for multiple, coop-
erating agents. In: American control conference (ACC), IEEE, pp 6011–6016

39. Sapena Ó, Torreño A, Onaindia E (2011) On the construction of joint plans through argumentation
schemes. In: 10th international conference on autonomous agents and multiagent systems (AAMAS),
IFAAMAS, vol 3, pp 1195–1196

40. Štolba M, Fišer D, Komenda A (2016a) Potential heuristics for multi-agent planning. In: Proceedings
of the 26th international conference on international conference on automated planning and scheduling.
AAAI Press, pp 308–316

41. Štolba M, Komenda A (2015) MADLA: planning with distributed and local search. In: Competition of
distributed and multi-agent planners (CoDMAP 2015), p 21
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