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Abstract
Graph representation learning has attracted lots of attention recently. Existing graph neural
networks fed with the complete graph data are not scalable due to limited computation and
memory costs. Thus, it remains a great challenge to capture rich information in large-scale
graph data. Besides, these methods mainly focus on supervised learning and highly depend
on node label information, which is expensive to obtain in the real world. As to unsupervised
network embedding approaches, they overemphasize node proximity instead, whose learned
representations can hardly be used in downstream application tasks directly. In recent years,
emerging self-supervised learning provides a potential solution to address the aforementioned
problems. However, existing self-supervised works also operate on the complete graph data
and are biased to fit either global or very local (1-hop neighborhood) graph structures in
defining the mutual information-based loss terms. In this paper, a novel self-supervised rep-
resentation learning method via Sub-graph Contrast, namely Subg- Con, is proposed by
utilizing the strong correlation between central nodes and their sampled subgraphs to capture
regional structure information. Instead of learning on the complete input graph data, with
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a novel data augmentation strategy, Subg- Con learns node representations through a con-
trastive loss defined based on subgraphs sampled from the original graph instead. Besides,
we further enhance the subgraph representation learning via mutual information maximum
to preserve more topology and feature information. Compared with existing graph represen-
tation learning approaches, Subg- Con has prominent performance advantages in weaker
supervision requirements, model learning scalability, and parallelization. Extensive experi-
ments verify both the effectiveness and the efficiency of our work. We compared it with both
classic and state-of-the-art graph representation learning approaches. Various downstream
tasks are done onmultiple real-world large-scale benchmark datasets from different domains.

Keywords Self-supervised learning · Graph representation learning · Subgraph contrast ·
Graph neural networks

1 Introduction

Graph representation learning [10] has attracted much attention recently. Its basic idea is
to extract the high-dimensional information in graph-structured data and embed it into low-
dimensional vector representations. These node representation vectors can be potentially
used in various downstream tasks such as node classification [17], link prediction [8], graph
classification [19], and graph alignment [13]. Graph representation learning problems have
been studied on graph data frommany different domains such as social networks [3], chemical
molecular graphs [20], and bio-medical brain graphs [32].

Most existing successful methods are based on graph neural networks (GNNs) [17,25,30,
33] , which learn nodes’ contextualized representations via effective neighborhood informa-
tion aggregation. These methods usually take a complete graph as the input, which can hardly
be applied to large-scale graph data, e.g., Facebook and Twitter with millions or even billions
of nodes. What’s more, the inter-connected graph structure also prevents parallel graph rep-
resentation learning, which is especially critical for large-sized graph data. In addition, most
of these existing graph neural networks focus on supervised learning. They encode the graph
structure into representation vectors with the supervision of label information. However,
for real-world graph data, manual graph labeling can be very tedious and expensive, which
becomes infeasible for large-scale graphs. To overcome this challenge, some works try unsu-
pervised learning settings instead. They optimize models with objective functions defined for
capturing node proximity [10] or reconstructing graph structures [18]. However, detached
from supervision information, representations learned by such unsupervised approaches can
hardly work well in downstream applications with specific task objectives [21].

Self-supervised learning [14] has recently emerged as a promising approach to overcome
the dilemma of lacking available supervision. Its key idea is defining an annotation-free
pretext task, which can generate surrogate training samples automatically without human
annotation. These training samples are used to train an encoder for representation learning.
In the field of computer vision, data augmentation [28], such as flipping or cropping, is
commonly used for training sample generation, which can improve the generalization of
self-supervised learning. However, due to the unordered vertexes and extensive connections
in graph data, such existing techniques mentioned above cannot work anymore and new data
augmentation methods for graph data specifically are needed.

Self-supervised graph representation learning is a new research problem, but there’re
still existing some prior works on this topic, e.g., Deep Graph Infomax [31] and Graphical
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Fig. 1 An illustration of DGI (upper left), GMI (bottom left), and our proposed Subg- Con (right). Little
colored squares denote learnt representations. Red nodes denote central nodes of context subgraphs. Subg-
Con utilizes the strong correlation between central nodes and their context subgraphs sampled from the original
graph. Note that Subg- Con encodes the sampled subgraphs while the other two methods take the complete
graph as the input. Besides, Subg- Con captures structure information from regional neighborhoods instead
of tending to be biased in fitting either the overall or very local (1-hop neighbor) graph structures

Mutual Information [23] (even though these approaches pose themselves as unsupervised
models initially). Deep Graph Infomax (DGI) [31] introduces a global level pretext task to
discriminate actual node representations from the corrupted ones based on the global graph
representation. Graphical Mutual Information (GMI) [23] is centered about local structures
by maximizing mutual information between the hidden representation of each node and the
original features of its directly adjacent neighbors. As illustrated in the left of Fig. 1, these
works tend to be biased in fitting either the overall or very local (1-hop neighbor) graph
structures in defining the mutual information based loss terms, which would harm the quality
of learned representations. Besides, these self-supervisedworks adopt a graph neural network
as the encoder and also need to take the complete graph as the input, which restricts their
scalability on large-sized graphs.

Intuitively, nodes and their regional neighbors are more correlated while other nodes that
are very far away hardly influence them, especially in large-scale graphs. Therefore, sub-
graphs consisting of regional neighborhoods play a critical role to provide structure contexts
for node representation learning. In this paper, we propose a novel scalable self-supervised
graph representation via Sub-graph Contrast, Subg- Con [35]. It takes strong correlation
between central nodes and their regional subgraphs (involving both direct neighbors and
other nodes that are further away) into consideration as illustrated in Fig. 1. More specif-
ically, we introduce a data augmentation strategy on graphs firstly, including global-based
and local-based subgraph sampling. The central nodes together with their closely related
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surrounding nodes are sampled from the original graph to compose context subgraphs. Then,
these subgraphs are fed into graph neural network encoders to obtain the representations of
central nodes and subgraphs after pooling. Finally, a contrastive loss is introduced in the
latent space to train the encoder to distinguish the generated positive and negative samples
(to be introduced later), so that nodes with different regional structures can be well dif-
ferentiated. Besides, to preserve topology and feature information as much as possible in
subgraph representations, we enhance subgraph representation learning by maximizing the
mutual information between the subgraph representations and the original context subgraphs.
This enhanced graph representation learning method is denoted as Subg- Con+. Compared
with previous methods operating on the complete graph structure, Subg- Con and Subg-
Con+ can capture regional information in context subgraphs of smaller sizes and simpler
structures with lower time and space costs. Besides, based on sampled subgraph instances,
Subg- Con and Subg- Con+ are easy to parallelize, which is critical for large-sized graph
data.

Through an empirical assessment on several benchmark graph datasets with different sizes
frommultiple diverse fields, we demonstrate that the representations learned by our proposed
model are consistently competitive on various downstream tasks. It often outperforms both
supervised and unsupervised strong baselines. We carefully studied the influence of different
components in our framework on the model performance. Besides, we verify the efficiency
of our proposed model, both on training time and computation memory, compared with
state-of-the-art self-supervised methods that work on the complete graph.

To summarize, our major contributions include:

– We propose a novel self-supervised graph representation learning method via sub-graph
contrast. It utilizes the correlation of central nodes and context subgraphs to capture
regional graph structure information.

– We introduce a data augmentation strategy on graphs, which aims at increasing the
training samples from the existing graph using subgraph sampling for self-supervised
graph representation learning.

– By training with subgraphs of small sizes and simple structures, our proposed methods,
Subg- Con and Subg- Con+, require lower training time and computationmemory costs
for graph representation learning.

– Based on the sampled subgraph instances, our method enables parallel graph represen-
tation learning to further improve efficiency and scalability.

– Extensive experiments verify both the effectiveness and the efficiency of our work com-
pared with prior unsupervised and supervised approaches on multiple real-world graph
datasets from different domains.

2 Method

In this section, we will present our framework in a top-down fashion. It starts with an abstract
overview of our specific subgraph-based representation learning setup, followed by an expo-
sition of subgraph sampling based data augmentation, subgraph encoding for representations,
enhanced subgraph representation learning, and our self-supervised pretext task for model
optimization. Finally, we introduce parallel Subg- Con briefly.

123



Scalable self-supervised graph representation learning via… 239

2.1 Subgraph-based self-supervised representation learning

Prior to going further, we first provide the preliminary concepts used in this paper.We assume
a general self-supervised graph representation learning setup: For a graphG = (X,A), a set of
node features are provided,X = {x1, x2, ..., xN }, where N is the number of nodes in the graph
and xi ∈ R

F represents the features of dimension F for node i . We are also provided with
relational information between these nodes in the form of an adjacency matrix, A ∈ R

N×N .
While A may consist of arbitrary real numbers (or even arbitrary edge features), in all our
experiments we will assume the graphs to be unweighted, i.e., A(i, j) = 1 if there exists an
edge i → j in the graph and A(i, j) = 0 otherwise.

Traditional graph representation methods target on training an encoder E : R
N×F ×

R
N×N → R

N×F ′
to encode a complete graph, so that latent node representations H =

E(X,A) ∈ R
N×F ′

can be produced, where F ′ is the dimension of latent representations.
For convenience, we represent the learned representation of each node i as hi . These rep-
resentations then are generated at once and retrieved for downstream tasks, such as node
classification. However, due to limited computation time and memory, it remains a great
challenge for traditional methods taking the complete graph structure as the input to handle
large-scale graphs.

To overcome the limitation of traditional methods, we propose a novel subgraph-based
representation learning approach. For a central node i , a subgraph sampler S, i.e., a proxy
of data augmentation, is designed to extract its context subgraphs Xi ∈ R

N ′×F from the
original graph. The context subgraph provides regional structure information for learning
the representation of node i . Xi ∈ R

N ′×F denotes the node features of the i th context
subgraph. Ai denotes the relational information among node i and its neighbor nodes. N ′
indicates the context subgraph size. We target at learning a encoder for context subgraphs,
E : RN ′×F × R

N ′×N ′ → R
N ′×F ′

, which serves for acquiring node representations within
context graphs. It should be noted that different from traditional methods, the input of the
encoder are context subgraphs whose sizes are much smaller than the original graph. And
node representations can be retrieved based on their context subgraph structures flexibly
without the complete graph. Thus, by operating on sampled subgraph instances, Subg- Con
has prominent performance advantages in model learning scalability. Besides, it is easy to
parallelize, which is critical for large-sized graph data.

Here we will focus on three key points for our subgraph-based self-supervised learning
method: context subgraph extraction, subgraph encoding for representations, and the self-
supervised pretext task for model optimization.

– For context subgraph extraction, the subgraph sampler S will serve as the proxy of
data augmentation. It measures the importance scores of neighbors and samples a few
closely related nodes to compose a context subgraphs which provide regional structure
information for representation learning.

– For subgraph encoding, we target on encoding the structures and features of context
subgraphs by the encoder E , to produce the central node representations hi . The other
key consequence is summarizing the subgraph centered around node i as the subgraph
representation si .

– For the self-supervised pretext task, it can optimize the encoder by taking advantage
of the strong correlation between central nodes and their context subgraphs so that the
regional information captured from the context subgraphs embeds into the central node
representations.
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2.2 Subgraph sampling based data augmentation

To overcome the dependence of manual labels, it is important for self-supervised learning
to generate surrogate training samples automatically to train an encoder for representation
learning.Data augmentation is a popular technique for training sample generation in computer
vision. However, due to unordered vertexes and extensive connections, it hasn’t been used
explicitly in graph data. For self-supervised graph representation learning, we introduce the
concept of data augmentation on graph formally here.

Definition 1 (Data augmentation on graph): Given a graph G = (X,A), where X denotes
node features and A denotes relations, data augmentation is a strategy to produce a series of
variant graphs G′ = (X′,A′) using various transformations on features and relations of G .

There are various transformations for graph data, such as node masking or feature corrup-
tion. In this paper, we adopt a subgraph sampling based data augmentation strategy. Because,
intuitively, nodes and their regional neighborhoods are more correlated while long-distance
nodes hardly influence them. This assumption is more reasonable as the size of graphs
increases. Therefore, we sample a series of subgraphs including regional neighborhoods
from the original graph as training data.

The most critical issue now is to sample a context subgraph, which can provide sufficient
structure information for learning a high-quality representation for the central node. Here
we provide several strategies for sampling subgraphs, analyze the algorithm complexity of
different strategies, and evaluate them in the following experimental part.

2.2.1 Global structure based strategy

The first sampling strategy is based on personalized pagerank algorithm [12] as introduced
in [38]. Considering the importance of different neighbors varies, for a specific node i ,
the subgraph sampler S first measures the importance scores of other neighbor nodes by
personalized pagerank algorithm. Given the relational information between all nodes in the
form of an adjacency matrix, A ∈ R

N×N , the importance score matrix S can be denoted as

S = α · (I − (1 − α) · Ā), (1)

where I is the identity matrix and α ∈ [0, 1] is a parameter which is always set as 0.15.
D denotes as the corresponding diagonal matrix with D(i, i) = ∑

j A(i, j) on its diagonal

and Ā = AD−1 denotes the column-normalized adjacency matrix. S(i, :) is the importance
scores vector for node i , which indicates its correlation with other nodes.

It is noted that the importance score matrix S can be precomputed before model training
starts. And we implement node-wise PPR to calculate importance scores to reduce compu-
tation memory, which makes our method more suitable to work on large-scale graphs.

2.2.2 Local structure based strategy

Sampling using the global structure can take the topological structure of the complete graph
into consideration, but the computational complexity is relatively high. Inspired by [5], the
second subgraph sampling strategy introduced here is a random walk based method, which
captures local structural features to build the most relevant subgraph connecting a central
node in a large graph. Similar to the first strategy, the extracted subgraphs contain the most
important edges and the nodes.Wemeasure the importance score of an edgewith the expected

123



Scalable self-supervised graph representation learning via… 241

number of times it is visited along randomwalks connecting the central node. These expected
times can reflect both local graph structures and the edge weights. These expected passage
times can be obtained in a probability matrix with basic Markov chain theory [5]. But in
the straightforward implementation, it is time-consuming since it relies on matrix inversions,
which are usually performed with cubic time complexity in terms of the number of nodes in
the graph.

To reducing the high computational demanding, here we approximate the probability
matrix by repeated random walk experiments. For each central node, we perform random
walks from it repeatedly and limit the walks to a maximal number of the specific step. Then,
we count the average number of times that all nodes have been passed. The importance score
matrix S can be obtained by measuring the average importance scores of different neighbor
nodes.

Here, the step of walks and the number of central nodes can be typically fixed, whose
magnitude of the value is less than the number of graph edges. Thus, this strategy essentially
provides linear time complexity relative to the number of graph edges. By restricting the
walking steps, it can be convenient from a computational point of view. Besides, it controls
the level of locality when connecting central nodes. In this way, the extracted subgraphs will
be avoided from being too diffused or too local.

As such the sampling strategy computes edge and node relevance from random walks
connecting the central nodes. A subgraph is obtained by keeping only those edges above a
minimal importance threshold. In our experiments, the relevance importance is automatically
fixed such that the subgraphs extracted by the selected edges is weakly connected.

Besides, the importance scores for edges can also be computed by this strategy and serve
as new edgeweights. It can then be run on the input graphwith updatedweights. This iterative
process may be repeated a number of times to increase the discrimination between more and
less important edges. We can use a parameter to determine how often it is iterated. In the
subsequent process of encoding the subgraphs, the newly generated edge weights can be
token into consideration to obtain better representations of the subgraphs.

So far, according to two sampling strategies, the importance scorematrixS can be acquired.
For a specific node i , the subgraph samplerS chooses top-K important neighbors to constitute
a subgraph with the score matrix S. The index of chosen nodes can be denoted as

idx = top_rank(S(i, :), K ),

where top_rank is the function that returns the indices of the top K values and K denotes
the size of context graphs.

The subgraph sampler S will process the original graph with the node index to obtain the
context subgraph Gi of node i . Its adjacency matrix Xi and feature matrix Ai are denoted,
respectively, as

Xi = Xidx,:, Ai = Aidx,idx ,

where ·idx is an indexing operation. Xidx,: is the row-wise (i.e., node-wise) indexed feature
matrix.Aidx,idx is the row-wise and col-wise indexed adjacency matrix corresponding to the
induced subgraph.

So far, we can acquire the context subgraph Gi = (Xi ,Ai ) ∼ S(X,A) for any specific
node i . For large-sized input graphs, this procedure can support parallel computing to fur-
ther improve efficiency. These context subgraphs produced by data augmentation can be
decomposed into several mini-batches and fed to train Subg- Con.
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2.3 Encoding subgraph for representations

Given the context subgraph Gi = (Xi ,Ai ) of a central node i , the encoder E : RN ′×F ×
R

N ′×N ′ → R
N ′×F ′

encodes it to obtain the latent representations matrix Hi denoted as

Hi = E(Xi ,Ai ),

Here we adopt graph neural networks (GNN), a flexible class of node embedding architec-
tures, as the encoder E . Node representations are generated by aggregating information from
neighbors. We study the impact of different graph neural networks in the experiments and
will discuss later. The central node embedding hi is picked from the latent representations
matrix Hi

hi = C(Hi ),

where C denotes the operation picking out the central node embedding.
As mentioned before, the other key consequence is summarizing the subgraph centered

around node i as the context subgraph representation si . In order to obtain the subgraph-
level summary vectors, we leverage a readout function, R : RN ′×F ′ → R

F ′
, and use it to

summarize the obtained node representations into a subgraph-level representation, si , denoted
as

si = R(Hi ).

So far, the representations of central nodes and context subgraphs are produced, which
will play a key role in the generation of positive and negative samples for self-supervised
pretext tasks.

2.4 Enhanced subgraph representation learning

We plan to utilize the strong correlation between central nodes and subgraphs to design
self-supervised learning pretext tasks. Therefore, the quality of subgraph representations is
crucial for self-supervised learning. According to the previous section, currently, the sub-
graph representations are obtained after a readout function based on the node representation,
which is difficult to ensure that the subgraph representations can fully inherit the structural
information. Therefore, to preserve the topology and feature information as much as possible
in the subgraph representations, we want to enhance subgraph representation learning by
maximizing the mutual information between the subgraph representations and the original
context subgraphs.

For any specific node i , given its context subgraph Gi = (Xi ,Ai ) and subgraph repre-
sentation si , the mutual information between them is denoted as I (si ;Xi ). According to the
information theory, I (si ;Xi ) can be defined as

I (si ;Xi ) =
∫

s

∫

X
p (si ,Xi ) log

p (si ,Xi )

p (si ) p (Xi )
dsidXi ,

where p (Xi ) denotes the empirical probability distribution of node featuresXi ; p (si ) denotes
the probability of si ; and p (hi , X i ) is the joint distribution.

Here we suppose the conditional probability p (si | Xi ) is multiplicative. Inspired by [23],
I (si ;Xi ) can be decomposed as a weighted sum of mutual information between the subgraph
and its nodes, namely
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I (si ;Xi ) =
ni∑

j

wi j I
(
si ; x j

)
,

where x j is the initial feature of the j-th node in the subgraph Gi . ni is the number of all
nodes in Gi . The weight wi j satisfies 1

ni
≤ wi j ≤ 1 for each j . It can be set to a fixed

value, for example, the edge importance in the second subgraph sampling strategy. But
by introducing more subgraph structure attributes, we train a learnable weight to relate its
underlying distribution with the subgraph topology. More specifically, we denote the mutual
information between the subgraph representations and the original context subgraphs as

I (si ;Gi ) :=
ni∑

j

wi j I
(
si ; x j

) + I
(
wi j ; ai j

)
,

where ai j represents the score of node j in the importance matrix of the subgraph Gi .
wi j = σ

(
sTi h j

)
indicates the relevance between the subgraph representation and the node

representation. We hope to enhance the quality of learning by maximizing the mutual infor-
mation between the original subgraphs and the representations. The objective function and
training details will be introduced later.

2.5 Contrastive learning via central node and context subgraph

The key idea of self-supervised contrastive learning is defining an annotation-free pretext task
and then generating positive and negative samples. The encoder can be trained by contrasting
positive and negative examples. As the prerequisite for ensuring the quality of learned repre-
sentations, if the pretext task can fully inherit the rich information in graphs, we can obtain
better representations to support subsequent mining tasks without additional guidance.

Intuitively, nodes are dependent on their regional neighborhoods and different nodes have
different context subgraphs. This assumption is even more reasonable in large-scale graphs.
At the same time, the complete structure of large-scale graphs is still hard to handle by
existing node representation learning methods. Therefore, we consider the strong correlation
between central nodes and their context subgraphs to design a self-supervision pretext task.
The architecture of Subg- Con is fully summarized in Fig. 2.

Our approach for learning the encoder relies on, for a specific central node, contrasting
its real context subgraph with a fake one. Specifically, for the node representation, hi , that
captures the regional information in the context subgraph, we regard the context subgraph
representation si as positive sample. On the other hand, for a set of subgraph representations,
we employ a function, P , to corrupt them to generate negative samples, denoted as

{̃s1, s̃2..., s̃M } ∼ P({s1, s2, ..., sm}),
where m is the size of the representation set. The corruption strategy determines the differ-
entiation of nodes with different contexts, which is crucial for some downstream tasks, such
as node classification.

As to the objective, related works use a noise-contrastive type objective with a standard
binary cross-entropy loss between positive examples and negative examples [31]. However,
as these context subgraphs are extracted from the same original graph and overlap with each
other, we suppose that it can be harmful for representation learning if positive and negative
examples to be distinguished absolutely. Therefore, we use the margin triplet loss [27] for
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Fig. 2 Architecture of Subg- Con. A series of context subgraphs are sampled from the original graph and
fed into the encoder to obtain the representations of central nodes and subgraphs after pooling. For a specific
node, the representation of its context subgraph is regarded as a positive sample. And we corrupt the subgraph
representation to produce a negative sample. The contrastive loss in the latent space will force the encoder to
recognize positive and negative samples so that different nodes can be well discriminated based on regional
structure information

Algorithm 1 Optimization Algorithm.
Input: A graph G with input feature X and adjacency matrix A; Subgraph sampler S; Encoder E ; Readout

function R; Corruption function P .
1: Precompute importance score matrix S according to Eq. 1.
2: while not converge do
3: Sample context subgraphs {(X1,A1), (X2,A2), ..., (Xm ,AM )} where Hi = S(Xi ,Ai ) and M is the

number of the subgraphs.
4: for all each subgraph (Xi ,Ai ) do
5: Encode the subgraph to obtain latent representation matrixes Hi = E(Xi ,Ai ).
6: Obtain the central node representation hi = C(Hi ).
7: Summarize the subgraph representation through the readout function si = R(Hi ).
8: end for
9: Corrupt the subgraph representations to generate negative examples for the corresponding node repre-

sentations {̃s1, s̃2, ..., s̃M } = P(s1, s2, ..., sM ).
10: Update parameters of E andR by applying gradient descent to maximize Eq.2 and Eq.3.
11: end while

model optimization so that positive and negative samples can be well discriminated to some
extent and high-quality representations can be obtained. The loss is denoted as

L = 1

M

M∑

i=1

E(X,A)(−max(σ (hi si ) − σ(hĩ si ) + ε, 0)), (2)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function and ε is margin value.
In addition, as introduced in the previous section, we attempt to enhance the subgraph rep-

resentations bymaximizingmutual information. The generated positive and negative samples
are also used to optimize the mutual information of the subgraph and the representations.
Specifically, the objective function is defined as

L′ = 1

M

M∑

i=1

E(X,A)(I (si ;Gi ) − I (̃si ;Gi )) (3)
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We summarize the steps of the procedure of our approach in Algorithm 1. It is noted that, to
distinguish the variant of Subg- Con with enhanced subgraph representation learning, we
denote it as Subg- Con+.

In the training phase, we set the number of the subgraphs asM , the subgraph size as K , the
number of features as F , and the number of nonzeros in the adjacency matrix of subgraphs
as ‖A‖0. Based on these, for the proposed method, its time complexity is O (M‖A‖0F) and
its space complexity is O (MK F).

2.6 Parallelizability

Compared with existing methods that input the complete graph data, it is parallelizable to
operate on context subgraphs. On the one hand, subgraph extraction is easy to parallelize.
Several random workers (in different threads, processes, or machines) can simultaneously
explore different parts of the same graph for context subgraphs extraction. On the other hand,
without the need for global computation that needs the whole graph structure, it becomes
possible to encoder multiple subgraphs synchronously to obtain the representations of central
nodes and subgraphs. Benefit from the parallelizability, our model can be scaled efficiently
on larger-size graphs.

3 Experiment

In this section, we conduct extensive experiments to verify both the effectiveness and the
efficiency of Subg- Con on a variety of tasks on multiple real-world datasets from different
domains, such as node classification and link prediction. In each case, Subg- Con is used
to learn node representations in a fully unsupervised manner. We compare our approach
with prior unsupervised and supervised strong baselines. Besides, we analyze the design of
our architecture, including the encoder architecture and the objective function. We also do
experiments about the efficiency including training time and memory usage. Reducing the
number of training subgraphs and parallelization are studied to further improve efficiency.
Lastly, parameter sensitivity analysis helps to choose suitable parameters for our approach.

3.1 Datasets

To assess the effectiveness of the representation learned by ourwork, we conduct experiments
on multiple real-world datasets from different domains. We choose three popular small-scale
datasets widely used in related works [17] (Cora, Citeseer, and Pubmed) and three large-scale
datasets to verify the scalability of our approach (PPI, Flickr, and Reddit) [17,36]. It includes
three citation networks, two social networks, and a protein network. Further information on
the datasets is found in Table 1.

We set up the experiments on the following benchmark classification tasks: (1) classi-
fying research papers into topics on the Cora, Citeseer, and Pubmed citation networks; (2)
classifying protein roles within protein–protein interaction (PPI) networks, requiring gen-
eralization to unseen networks; (3) categorizing types of images based on the descriptions
and common properties of Flickr online; (4) predicting the community structure of a social
network modeled with Reddit posts.
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Table 1 Dataset statistics

Dataset Type Nodes Edges Degree Features Classes

Small scale Cora Citation 2708 5429 4.0 1433 7

Citeseer Citation 3327 4732 2.8 3703 6

Pubmed Citation 19,717 44,338 4.5 500 3

Large scale PPI Protein 56,944 818,716 28.8 50 121

Flickr Social 89,250 899,756 20.2 500 7

Reddit Social 232,965 11,606,919 99.6 602 41

3.2 Experimental settings

Encoder design For six different datasets, we study the impact of different graph neural
networks (described below) and employ distinct encoders appropriate to that setting.

For Cora, Citeseer, Pubmed, and PPI, we adopt a one-layer Graph Convolutional Network
(GCN) with skip connections [37] as our encoder, with the following propagation rule:

E(X,A) = σ(D̂− 1
2 ÂD̂− 1

2XW + ÂWskip),

where Â = A+IN is the adjacencymatrix with inserted self-loops and D̂ is its corresponding
degree matrix. For the nonlinearity σ , we apply the parametric ReLU (PReLU) function
[11]. W is a learnable linear transformation applied to every node and Wskip is a learnable
projection matrix for skip connections.

For Reddit and Flickr, we adopt a two-layer GCNmodel as our encoder, with the following
propagation rule:

GCN (X,A) = σ(D̂− 1
2 ÂD̂− 1

2XW),

E(X,A) = GCN (GCN (X,A),A),

where the latent representations produced by the first layer of GCN are fed as the input of
the second layer.

Corruption functions The corruption function generates negative samples for our self-
supervised task to make nodes with different contexts well distinguished, which is important
for the node classification task. For convenience of computation, given a set of context
subgraph representations, our corruption function shuffles them randomly. The subgraph
representation of other central nodes is regarded as the negative sample so that nodes are
closely related to their context subgraphs and weakly associated with other subgraphs. For
learning node representations toward other kinds of tasks, the design of appropriate corruption
strategies remains an area of open research. In the experiment, we also tried other several
corruption functions, such as randomly sampling subgraphs, inversing the original subgraphs,
and randomly modifying the initial node features and edges of the subgraphs.

Readout functions For all six experimental datasets, we employ the identical readout
function with a simple averaging of all the nodes’ features:

R(H) = σ(
1

N ′
N ′
∑

i=1

hi ),

where σ is the logistic sigmoid nonlinearity.We assume that this simple readout is efficient for
subgraphs of small sizeswhenwe have found it to perform the best across all our experiments.
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Table 2 Performance comparison with different methods on node classification

Algorithm Available data Cora Citeseer Pubmed

Raw features X 56.6 ± 0.4 57.8 ± 0.2 69.1 ± 0.2

DeepWalk A 67.2 43.2 65.3

Unsup-GraphSAGE X, A 75.2 ± 1.5 59.4 ± 0.9 70.1 ± 1.4

DGI X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6

GMI X, A 83.0 ± 0.3 73.0 ± 0.3 79.9 ± 0.2

GCN X, A, Y 81.4 ± 0.6 70.3 ± 0.7 76.8 ± 0.6

GAT X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

FastGCN X, A, Y 78.0 ± 2.1 63.5 ± 1.8 74.4 ± 0.8

GraphSAGE X, A, Y 79.2 ± 1.5 71.2 ± 0.5 73.1 ± 1.4

Subg- Con X, A 83.5 ± 0.5 73.2 ± 0.2 81.0 ± 0.1

Subg- Con+ X, A 83.8 ± 0.5 73.5 ± 0.4 81.3 ± 0.1

Algorithm Available data PPI Flickr Reddit

Raw features X 42.5 ± 0.3 20.3 ± 0.2 58.5 ± 0.1

DeepWalk A 52.9 27.9 32.4

Unsup-GraphSAGE X, A 46.5 ± 0.7 36.5 ± 1.0 90.8 ± 1.1

DGI X, A 63.8 ± 0.2 42.9 ± 0.1 94.0 ± 0.1

GMI X, A 65.0 ± 0.0 44.5 ± 0.2 95.0 ± 0.0

GCN X, A, Y 51.5 ± 0.6 48.7 ± 0.3 93.3 ± 0.1

GAT X, A, Y 97.3 ± 0.2 OOM OOM

FastGCN X, A, Y 63.7 ± 0.6 48.1 ± 0.5 89.5 ± 1.2

GraphSAGE X, A, Y 51.3 ± 3.2 50.1 ± 1.3 92.1 ± 1.1

Subg- Con X, A 66.9 ± 0.2 48.8 ± 0.1 95.2 ± 0.0

Subg- Con+ X, A 67.7 ± 0.5 49.0 ± 0.3 95.3 ± 0.1

The second column illustrates the data used by each algorithm in the training phase, whereX,A, andY denotes
features, adjacency matrix, and labels, respectively
OOM Out of memory

Objective functions We compare the margin loss [27] against other commonly used con-
trastive loss functions, such as logistic loss [22], and bayesian personalized ranking (BPR)
loss [26]. Table 3 shows these three objective function. Their impacts will be discussed later.

Sampling strategies In addition to the two subgraph sampling strategies mentioned in the
method section, namely the global-basedmethod and the local-basedmethod, the experimen-
tal part also considers two naive strategies. One is to randomly sample a connected block from
the neighborhood as a context subgraph for the central node. The scale of such subgraphs is
the same with the previous two methods. The other is to contain all the 1-hop neighbors of
the central node, that is, the 1-hop ego networks. We will explore the most suitable subgraph
sampling strategy for different datasets.

Implementation details We implemented the baselines and Subg- Con using PyTorch
[15] and the geometric deep learning extension library [6]. The experiments are conducted
on 8 NVIDIA TITAN Xp GPUs. Subg- Con is used to learn node representations in a
fully unsupervised manner, followed by evaluating the node-level classification with these
representations. This is performed by directly using these representations to train and test a
simple linear (logistic regression) classifier. In preprocessing, we perform row normalization
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Table 3 Studied objective
functions

Name Objective function

Margin loss −max(σ (hs) − σ(h̃s) + ε, 0)

Logistic loss log σ(hs) + log σ(−h̃s)

BPR loss log σ(hs − h̃s)

on Cora, Citeseer, PubMed following [17] and apply the processing strategy in [9] on Reddit,
PPI, and Flickr. Especially, for PPI, suggested by [31],we standardize the learned embeddings
before feeding them into the logistic regression classifier. During training, we use Adam
optimizer [16] with an initial learning rate of 0.001 (specially, 10−5 on Citeseer and Reddit).
The subgraph size is no more than 20 (specially, the subgraph size is 10 on Citeseer due to
better performance). The dimension of node representations is 1024. The margin value ε for
the loss function is 0.75.

Baselines We choose two state-of-art self-supervised methods, DGI [31] and GMI [23],
which both learn graph embeddings by leveraging mutual information maximization. Two
traditional unsupervised methods, DeepWalk [24] and unsupervised variants of GraphSAGE
(abbreviated as Unsup-GraphSAGE) [9] are also compared with our model. Specially, we
provide results for training the logistic regression on raw input features. Besides, we report
experiment results on three supervised graph neural networks,GCN [17],GAT [30], FastGCN
[3] and supervisedGraphSAGE [9]. Notably, we reuse themetrics already reported in original
papers or choose optimal hyper-parameters carefully after reproducing the code for different
baselines in this paper to ensure the fairness of comparison experiments.

It is noted that, to verify the effectiveness of enhanced subgraph representation learning,
we refer to the models with/without this part as Subg- Con+ and Subg- Con, respectively.

Evaluation metrics For the node classification task, we provide the learned embeddings
across the training set to the logistic regression classifier and give the results on the test nodes
[23]. Followed [31],we adopt themean classification accuracy to evaluate the performance for
three benchmark datasets (Cora, Citeseer, and Pubmed), while the micro-averaged F1 score
averaged is used for the other three larger datasets (PPI, Flickr, and Reddit). All datasets
follow “fixed-partition ” splits.

For the link prediction task, some edges are hidden in the input graph and the goal is to
predict the existence of these edges based on the computed embeddings. We adopted AUC
as the evaluation metrics, which is equal to the probability that a randomly chosen edge is
ranked higher than a randomly chosen negative edge. The higher AUC score a approach
reaches, the better performance it achieves. We report the AUC score averaged after 10 runs.
All the existing links in the graph datasets are used as the positive link set. We sample a
subset of unknown links among nodes in the original graph randomly as the negative link
set, which is of the same size of the positive social link set. We randomly sample 50% of the
positive and negative edges as train set, 5% as validation set, and 45% as test set.

3.3 Node classification

The results of our comparative evaluation experiments are summarized in Table 2. The results
demonstrate our strong performance can be achieved across all six datasets. Our method
successfully outperforms all the competing self-supervised approaches, thus verifying the
potential of methods based on graph regional structure information in the node classification
domain. Due to the enhanced subgraph representations, the performance of Subg- Con+
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achieves further improvement. We also observe that all self-supervised methods are more
competitive than traditional unsupervised baselines that rely on proximity-based objectives.
It indicates our data augmentation strategy for self-supervised learning can make a greater
contribution to models to capture high-level information in complex graphs even if these
supervision signals are not frankly related to the node classification task. Besides, we partic-
ularly note that the DGI approach is competitive with the results reported for three supervised
graph neural networks, even exceeding its performance on the Cora, Citeseer, Pubmed, and
Reddit datasets. However, on PPI the gap is still large-we believe because our encoder is
heavily dependent on node original features while available features on PPI are extremely
sparse (over 40% of the nodes having all-zero features).

3.4 Link prediction

The results of our evaluation experiments on link prediction are summarized in Table 4. Aswe
can see, both of ourmethods,Subg- Con andSubg- Con+, outperformother strongbaselines
inmost of the datasets. InCora,Citeseer, andPubmed, ourmethod achieves ameanAUCscore
gain of nearly 2%. In Flickr, the gain is moderately lower, but still more than 1%, on average.
However, in PPI and Reddit, GMI performs slightly better than our method with a gain of less
than 0.5%. We explain that for dense graphs, proximity similarity is enough for predicting
the potential connection between two nodes. Therefore, GMI that emphasizes learning the
local structure can also take an advantage. Moreover, in most cases, the performance of our
proposed methods lies in between the best and worst performing semi-supervised method.
By comparing Subg- Con and Subg- Con+, we can find that the latter can show obvious
advantages on the six datasets owing to enhanced sub-graph representations.

3.5 Design of architectures

In this section, we will explore the design of each part of the framework, including , the
subgraph encoder, the corruption function, the objective function, and the subgraph sampling
strategy. For the convenience, all the experimental results reported in this section are on the
node classification task .

3.5.1 Design of encoder

For better architecture and performance, we conducted experiments about the design of
our encoder. We choose four different graph neural networks as the encoder to learn node
representation, including graph convolutional network (GCN), graph convolutional network
with skip connection (GCN + Skip), graph attention network (GAT) [30], graph isomorphism
network (GIN) [34]. The experimental results are listed in Table 5.

As can be observed, GCN with skip connection can achieve the best performance on
Citeseer, Pubmed, and PPI. AlthoughGAT can be competitive onCora, becauseGAT requires
more training time and memory, we choose GCNwith skip connection as our encoder finally.
It is noted that, even if GCN is not the best choice on these three datasets, but compared in
Table 2, our method with GCN as encoder still outperforms supervised GCN. For the other
two larger datasets, Flickr and Reddit, 2-layer GCN is the best option. We assume higher-
level information captured in the large-scale graphs can make contributions to improve the
quality of the learned representations. To sum up, compared with the complete graphs with
large scales and complex structures, subgraphs can be well encoded with simple graph neural

123



250 Y. Jiao et al.

Table 4 Performance comparison with different methods on link prediction

Algorithm Available data Cora Citeseer Pubmed

Raw features X 79.4 ± 0.01 75.5 ± 0.01 81.2 ± 0.02

DeepWalk A 83.1 ± 0.01 80.5 ± 0.02 84.4 ± 0.00

Unsup-GraphSAGE X, A 88.2 ± 0.9 94.1 ± 1.0 92.1 ± 1.4

DGI X, A 89.8 ± 0.8 95.5 ± 1.0 91.2 ± 0.6

GMI X, A 87.2 ± 1.0 93.5 ± 0.5 91.9 ± 0.7

GCN X, A, Y 88.1 ± 0.8 95.3 ± 0.9 96.8 ± 0.6

GAT X, A, Y 90.0 ± 0.4 97.6 ± 0.7 98.5 ± 0.2

FastGCN X, A, Y 88.0 ± 1.5 94.5 ± 1.2 95.4 ± 0.8

GraphSAGE X, A, Y 89.2 ± 1.3 95.2 ± 0.6 96.1 ± 0.4

Subg- Con X, A 91.5 ± 0.6 97.1 ± 0.5 93.9 ± 0.2

Subg- Con+ X, A 92.1 ± 0.4 97.2 ± 0.6 94.2 ± 0.4

Algorithm Available data PPI Flickr Reddit

Raw features X 67.4 ± 0.1 74.3 ± 0.02 89.5 ± 0.01

DeepWalk A 78.4 ± 0.01 79.3 ± 0.01 93.9 ± 0.01

Unsup-GraphSAGE X, A 82.5 ± 0.7 81.6 ± 1.0 96.0 ± 1.0

DGI X, A 84.8 ± 0.2 82.9 ± 0.5 95.8 ± 0.1

GMI X, A 86.0 ± 0.5 83.5 ± 0.0 96.0 ± 0.3

GCN X, A, Y 89.0± 1.0 84.2 ± 0.9 96.3 ± 0.1

GAT X, A, Y 92.8 ± 0.7 OOM OOM

FastGCN X, A, Y 88.1± 1.0 85.0 ± 0.4 94.5 ± 0.2

GraphSAGE X, A, Y 89.3 ± 0.5 85.6 ± 0.7 95.1 ± 0.3

Subg- Con X, A 85.8 ± 1.0 84.8 ± 1.0 95.4 ± 0.1

Subg- Con+ X, A 86.4 ± 1.0 85.3 ± 0.8 96.0 ± 0.3

Table 5 Comparison with
different graph neural network
encoders

Dataset GCN GCN+Skip GAT GIN

Cora 82.1 83.5 83.5 83.0

Citeseer 72.4 73.2 73.0 73.0

Pubmed 79.2 81.1 80.0 80.4

PPI 66.2 66.9 66.8 66.0

Flickr 48.8 48.2 48.7 48.3

Reddit 95.2 94.5 94.9 93.9

networks. More expressive GNNs, such as GAT and GIN, are less suitable to handle these
subgraphs.

3.5.2 Effectiveness of objective function

We compare different objective functions and list the experiment results in Table 6. To make
the comparisons fair, we tune the hyperparameters for all loss functions and report their best
results. Table 6 shows that margin loss can achieve the best performance compared with
other losses. We believe, as context subgraphs extracted from the same original graph can be
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Table 6 Comparison with
models trained with different
objective functions

Cora Citeseer Pubmed PPI Flickr Reddit

Margin 83.5 73.2 81.0 66.9 48.8 95.2

Logistic 82.4 72.2 79.8 66.8 48.5 95.0

BPR 81.7 72.0 79.9 66.8 48.6 94.8

Table 7 Model performance via
different corruption function

Function Cora Citeseer Pubmed

Random 67.0 ± 0.8 52.7 ± 0.7 69.6 ± 1.0

Inverse 73.0 ± 0.5 63.8 ± 0.6 75.5 ± 0.5

Modify 83.8 ± 0.5 72.7 ± 0.4 81.5 ± 0.5

Shuffle 83.5 ± 0.5 73.5 ± 0.2 81.0 ± 0.1

Function PPI Flickr Reddit

Random 43.9 ± 0.9 37.8 ± 0.4 73.6 ± 0.8

Inverse 53.6 ± 0.6 42.2 ± 0.4 83.8 ± 0.3

Modify 65.7 ± 0.6 49.0 ± 0.3 94.6 ± 0.1

Shuffle 67.7 ± 0.2 48.8 ± 0.1 95.3 ± 0.1

somewhat similar, it is not suitable to apply the loss functions that distinguish positive and
negative examples absolutely.

3.5.3 Choose of corruption function

In Table 7, we can see the experimental results of different corruption functions. Since the
corruption function determines the generation of positive and negative samples, it has a great
impact on the experimental results. On some datasets, different corruption functions will
cause a huge fluctuation of the evaluation scores for node classification. On the six datasets,
the results of the two corruption functions, Modify and Shuffle, are relatively good. We
believe that the best strategy is to make slight modifications and distinguish the existing
subgraphs from others.

3.5.4 Choose of sampling strategies

We study the most suitable subgraph sampling strategies for different datasets. The experi-
mental results are shown in Table 8. Compared with random sampling strategy, the methods
which select important nodes according to the graph structure can achieve better results,
because these subgraphs can provide better regional information. In addition, for large-scale
graph datasets, the PPR-basedmethod can outperformothers.We assume the reason is the dif-
ficulty of extracting important nodes only by the local structure in the large graphs. Therefore,
using global structures can contribute to node representation learning. In addition, although
in most cases, the egonet strategy can also achieve good results, such a sampling method will
increase the storage space requirements for dense graphs.
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Table 8 Model performance via
different subgraph sampling
strategies

Strategy Cora Citeseer Pubmed

Random 78.5 ± 1.5 65.8 ± 1.5 79.3 ± 1.3

Egonet 80.3 ± 0.5 69.5 ± 0.5 81.0 ± 0.3

Local-based 83.5 ± 0.5 73.2 ± 0.2 80.9 ± 0.3

Global-based 83.3 ± 0.3 72.5 ± 0.7 81.0 ± 0.6

Strategy PPI Flickr Reddit

Random 63.4 ± 1.4 44.9 ± 1.0 89.5 ± 1.1

Egonet 66.4 ± 0.3 47.5 ± 0.3 92.0 ± 0.2

Local-based 66.0 ± 0.4 47.3 ± 0.4 95.0 ± 0.1

Global-based 66.9 ± 0.2 48.8 ± 0.1 95.2 ± 0.0

(a) (b)

Fig. 3 Effectiveness of training the encoder with different numbers of sampled subgraphs

Fig. 4 Composition of context subgraphs for different datasets. The pie chart indicates the proportion of
neighbors of different distances from central nodes in the context subgraphs
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Table 9 Efficiency of
Subg- Con on three small-scale
datasets

Dataset Algorithm Training Time Memory

Cora DGI 27s 3597MB

GMI 104s 3927MB

Subg- Con 14s 1586MB

Citeseer DGI 48s 4867MB

GMI 410s 7605MB

Subg- Con 12s 1163MB

Pubmed DGI 104s 10911MB

GMI 1012s 12115MB

Subg- Con 26s 975MB

We train the encoder with 500 context subgraphs

Table 10 Efficiency of
Subg- Con on three large-scale
datasets

Dataset Algorithm Training Time Memory

PPI DGI 44s 10171MB

GMI 561s 12101MB

Subg- Con 3s 1349MB

Flickr DGI 518s 5028MB

GMI 1247s 9768MB

Subg- Con 12s 1903MB

Reddit DGI 4071s 8517MB

GMI 9847s 12098MB

Subg- Con 25s 3805MB

We train the encoder with 50 context subgraphs

3.6 Efficiency

3.6.1 Train with a few subgraphs

As context subgraphs have simple and similar structures, we assume that maybe extracting
all subgraphs is unnecessary for training the encoder well. Therefore, we conducted some
experiments about training the encoder with a few subgraphs sampled from the graph. The
effectiveness of the number of sampled subgraphs on the six datasets is shown in Fig. 3. We
observed that, for Cora, Citeseer, and Pubmed, about 500 subgraphs can provide sufficient
information for the encoder while the other three datasets, PPI, Flickr, and Reddit, only
require as few as 50 subgraphs. We believe the sparsity of the graph leads to the difference.
The degree of nodes in Cora, Citeseer, and Pubmed is small; therefore, subgraphs extracted
from these datasets can be of much different shape. On the contrary, PPI, Flickr, and Reddit
are relatively denser and the context subgraphs likely composed of direct neighbors. Thus, the
encoder can capture the structure easily. To verify our surmise, we observe the composition
of subgraphs in different datasets as shown in Fig. 4. The observation guides us to train the
encoder with a few subgraphs to accelerate the convergence of the loss function, which takes
much less training time and computation memory.
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(a) (b)

Fig. 5 Effects of parallelizing

3.6.2 Training time andmemory cost

In Tables 9 and 10, we summarize the performance on the state-of-the-arts self-supervised
methods over their training time and memory usage relative to that of our method on all the
six datasets. The training time refers to the time for training the encoder (exclude validation).
The memory refers to total memory costs of model parameters and all hidden representations
of a batch. The two self-supervised baselines apply GCN as their encoders on Cora, Citeseer,
and Pubmed, which cannot be trained on large-scale graphs due to excessivememory require-
ments. For other larger graphs, they choose GraphSAGE, a fast sampling-based graph neural
network, for node representation learning. We use an early stopping strategy on the observed
results on the validation set, with a patience of 20 epochs (specially, 150 epochs for Pubmed).
According to the findings in the previous subsection, 500 subgraphs randomly sampled are
used to train the encoder for three small-scale datasets in Table 9 while 50 subgraphs are
used for three larger datasets in Table 10. We can clearly found ours methods can be trained
much faster with much less computation memory than these baselines on all the datasets. In
particular, our advantage of efficiency can be more prominent on large-scale graphs, espe-
cially on Reddit. We believe that compared to the whole graph structure, subgraphs of much
small size can speedup encoder training. Besides, training with a few subgraphs can further
reduce training time and memory usage.

3.6.3 Parallel computation

For complex realistic application scenarios, in the case when training with a small number
of subgraphs doesn’t work, Subg- Con can be run efficiently in parallel. We set the number
of subgraphs as 20,000 and set training epoch as 400, and run experiments using multiple
GPUs on three large-scale datasets, PPI, Flickr, and Reddit. Figure 5 presents the effects of
parallelizing. It shows the speed of processing these three data sets can be accelerated by
increasing the number of GPUs (Fig. 5a). It also shows that there is no loss of predictive
performance relative to the running our model serially (Fig. 5b). It has been demonstrated
that this technique is highly scalable.
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Fig. 6 Subgraph size analysis

3.7 Subgraph size analysis

Now we examine the influence of the size of context subgraphs in our framework on the six
datasets. We adjust the subgraph size from 2 to 20 (including the central node) and evaluated
the results as shown in Fig. 6. We observe that our model can achieve better performance
with context subgraphs of a larger size in general. We believe that is because more regional
structure information makes a contribution to high-quality latent representations. Due to the
limited computation memory, we set the subgraph size as 20. However, there is an exception.
As the size of subgraphs increases, the performance on Citeseer becomes better first, reaches
the peak when the size is 10, and then goes down. We consider, due to the sparsity of
Citeseer, the subgraphs composed of 10 nodes have sufficient context information. Larger
subgraphs with complex structures will bring about more noise and deteriorate the process
of representations learning. Thus, we set the subgraph size as 10 for Citeseer. It is noted that
using very small subgraphs causes different impacts on different datasets. Specifically, when
we train the encoder with subgraphs containing only two nodes (a central node and a closest
related neighbor), the performance degrades on all the datasets. Especially, the decrease in
F1 score on Reddit is up to 20 points. It indicates that Reddit is large in scale and complex in
structure; therefore, a few neighbors are insufficient to be a proxy of relatively informative
context. We should take it into consideration for model design.

4 Related work

4.1 Graph neural networks

Graph neural networks use the graph structure as well as node features to learn node represen-
tation vectors. Existing graph neural networks follow a neighborhood aggregation strategy,
which we iteratively update the representation of a node by aggregating representations of
its neighboring nodes and combining with its representations [34]. Existing graph neural
networks have led to advances in multiple successful applications across different domains
[1,17,30,34]. However, they usually take a complete graph as input. Thus, they can hardly
be applied to large-scale graph data. What’s more, the inter-connected graph structure also
prevents parallel graph representation learning, which is especially critical for large-sized
graph data. To handle these issues, sampling-based methods are proposed to train GNNs
based on mini-batch of nodes, which only aggregate the representations of a subset of ran-
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domly sampled nodes in the mini-batch [3,9]. Although this kind of approaches reduces the
computation cost in each aggregation operation, the total cost can still be large. Besides,
these graph neural networks mainly focus on supervised learning and require the supervision
of label information. It is intractable for them to handle unlabeled graphs, which are widely
available in practically.

4.2 Unsupervised node representation learning

There is abundant literature in traditional unsupervised representation learning of nodes
within graphs. Existing methods optimize models with random walk-based objectives
[8,24,29] or reconstructing graph structures [9,18]. The underlying intuition is to train an
encoder network so that nodes that are close in the input graph are also close in the repre-
sentation space. Although these methods claim to capture node proximity, they still suffer
from some limitations. Most prominently, they over-emphasizing proximity similarity, mak-
ing it difficult to capture the inherent graph structural information. Besides, as these encoders
already enforce an inductive bias that neighboring nodes have similar representations, it is
unclear whether such objectives actually provide any useful signal for training an encoder.
Thus, existing methods fail to solve real-world tasks as strongly as supervised methods do.

4.3 Self-supervised learning

Self-supervised learning has recently emerged as a promising approach to overcome the
dilemma of lacking available supervision. Its key idea is defining an annotation free pretext
task and generating surrogate training samples automatically to train an encoder for represen-
tation learning. A wide variety of pretext tasks have been proposed for visual representation
learning [2,4,7]. However, there are a few works of literature about self-supervised meth-
ods for graph representation learning so far. Deep graph infomax [31] aims to train a node
encoder that maximizes mutual information between node representations and the pooled
global graph representation. Graphical mutual information [23] proposes to maximize the
mutual information between the hidden representation of each node and the original features
of its 1-hop neighbors. These works tend to be biased in fitting either the overall or very local
(1-hop neighbor) graph structures in defining the mutual information based loss terms, which
would harm the quality of learned representations. Besides, these self-supervised works also
need to take the complete graph as the input, which restricts their scalability on large-sized
graphs.

5 Conclusion

In this paper, we propose a novel scalable self-supervised graph representation via sub-
graph contrast, Subg- Con. It utilizes the strong correlation between central nodes and their
regional subgraphs for model optimization. Based on sampled subgraph instances, Subg-
Con has prominent performance advantages in weaker supervision requirements, model
learning scalability, and parallelization.

Through an empirical assessment onmultiple benchmark datasets, we demonstrate that the
effectiveness and efficiency of Subg- Con compared with both supervised and unsupervised
strong baselines. In particular, it shows that the encoder can be trained well on the current
popular graph datasets with a little regional information. It indicates that existing methods
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may still lack the ability to capture higher-order information, or our existing graph dataset
only requires low-order information to get good performance. We hope that our work can
inspire more research on graph structure to explore the above problems.
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