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Abstract
The cross-lingual topic analysis aims at extracting latent topics from corpora of different
languages. Early approaches rely on high-cost multilingual resources (e.g., a parallel corpus),
which is hard to come by inmany real cases. Someworks only require a translation dictionary
as a linkage between languages; however, when given an inappropriate dictionary (e.g.,
small coverage of dictionary), the cross-lingual topic model would shrink to a monolingual
topic model and generate less diversified topics. Therefore, it is imperative to investigate a
cross-lingual topicmodel requiring fewer bilingual resources. Recently, some space-mapping
techniques have been proposed to help align multiple word embedding of different languages
into a quality cross-lingual word embedding by referring to a small number of translation
pairs. This work proposes a cross-lingual topic model, called Cb-CLTM, which incorporates
with cross-lingual word embedding. To leverage the power of word semantics and the linkage
between languages from the cross-lingual word embedding, the Cb-CLTM considers each
word as a continuous embedding vector rather than a discrete word type. The experiments
demonstrate that, when cross-lingual word space exhibits strong isomorphism, Cb-CLTM
can generate more coherent topics with higher diversity and induce better representations of
documents across languages for further tasks such as cross-lingual document clustering and
classification. When the cross-lingual word space is less isomorphic, Cb-CLTM generates
less coherent topics yet still prevails in topic diversity and document classification.

Keywords Cross-language · Cross-lingual topic model · Cross-lingual word embedding

1 Introduction

The rapid development of the Internet and the advance in information and communication
technology are engaging people worldwide to form a global village. This development facil-
itates the dissemination of information about events and allows people to listen to opinions
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worldwide. Members of the general public can now comment on significant events in various
discussion forums and social media platforms. For some important global events, readers
from different continents express opinions from different perspectives. For example, since
July 6, 2018, the two largest economies (theUSAandChina) have been engaged in a tradewar
involving themutual placement of tariffs. This event has a significant impact on theworld, and
there is intense interest in this issue and several related topics have been discussed globally,
such as profit cuts of specific industries, moving production out of China, and competition in
the future 5G market. Understanding topics discussed in different countries and markets will
inevitably influence government policies and business strategies. Under the circumstances,
identifying the patterns of common discussion topics across languages can provide consid-
erable insight and is vital for both the public and private sectors. As a result, the demand
for analyzing cross-lingual topics is growing in many research fields, including categorizing
UGC [39], classifying multilingual texts [16], detecting cross-culture differences [44], and
constructing bilingual dictionaries [29].

For yielding cross-lingual topics, cross-lingual topicmodels have been proposed tomodify
the generative process of latent Dirichlet allocation (LDA), one of the most influential topic
models, by incorporating the linking between languages. There are two types of linkages:
document linking and vocabulary linking. A document-linking model [23,26,36,38,50,52]
depends on the availability of a parallel corpus such as the EuroParl Corpus,1 where each
document has complete translated versions, one for each language. The main drawback of
this model is that the parallel corpus is difficult to acquire in practice. Although a comparable
corpus (e.g., Wikipedia articles) can also be used, this might compromise the performance
[36]. In contrast, a vocabulary-linking model [10,21,25,30] only requires a bilingual dictio-
nary as input. Since translation dictionaries are widely available (e.g., MUSE project2), the
vocabulary-linking model seems more practical. However, insufficient coverage and a low
frequency of dictionary entries in the corpus have been shown to reduce the vocabulary-
linking model to a union of monolingual topic models [25]. This situation has prompted
increasing interest in constructing a cross-lingual topic model using fewer resources.

The inferred topic space of a cross-lingual topic model is considered to be language-
agnostic [22]. In other words, even though words are language-specific, we can align those
from different languages based on their themes and generate topics across languages. A
similar concept applies to cross-lingual word space alignment. Several studies have proposed
methods for aligningmultiplemonolingualword spaces into a single cross-lingualword space
using only a small amount of cross-language resources [2,12,56]. Thosemethods assume that
the semantic structure is isomorphic across languages. The comprehensive analogy is that
the word spaces learned from different languages correspond to the same map from different
angles, and so we can align them by learning rotations. Although the resultant aligned spaces
facilitate several cross-lingualNLP tasks such as sentence translation, cross-lingual sentiment
classification [58], and word translation [12,49], few studies have developed topic models
using cross-lingual word embedding. The mechanism for constructing a cross-lingual topic
model with cross-lingual word embedding remains underdeveloped. Also, understanding the
important factors that influence the performance of such a model is vital when applying
the approach to real cases. To address the above research gaps, we make the following
contributions in this paper:

1. We propose a cross-lingual topic model that extends the generative process of LDA using
cross-lingual word spaces.

1 http://www.statmt.org/europarl/.
2 https://github.com/facebookresearch/MUSE.
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2. We propose a simple but effective approach to eliminate language-specific dimensions of
the cross-lingual word space, which results in language-biased topics.

3. We thoroughly evaluate our model using topic coherence, topic diversity, and quality of
topic representation by parallel and non-parallel corpora and find that our model outper-
forms other comparative models in all metrics when using the cross-lingual word space
with strong isomorphism. When the cross-lingual word space is less isomorphic, our
model still prevails in topic diversity and zero-shot cross-lingual document classification.

The rest of the paper is structured as follows: Sect. 2 reviews related work in cross-lingual
LDA and continuous LDA, Sect. 3 illustrates our proposed model, and Sect. 4 describes the
data preparation, metrics, and experimental results. We finally draw conclusions and suggest
areas for future work in Sect. 5.

2 Related works

2.1 Cross-lingual LDA

With the wide adoption of LDA [8,19,31,32,53], several studies have extended LDA to cross-
lingual applications. The approaches used by these models can be categorized into two types:
document linking and vocabulary linking.

Document linking relies on the availability of a parallel corpus such as the Europarl Par-
allel Corpus, for which versions are available in 21 European languages, or a comparable
corpus such asWikipedia, which involves articles in various languages with differing degrees
of detail. The most representative model is the polylingual topic model (PLTM), initially pro-
posed by Mimno et al., and subsequently extensively extended [36,38,52]. In the settings of
the PLTM, the corpus is regarded as a set of document tuples, where each tuple consists of
several comparable documents written in different languages yet addressing the same topics
or issues. Specifically, PLTM assumes that documents in each tuple share the same distri-
bution over topics, and each topic has a specific distribution over words for each language.
Heyman et al. [23] then introduced a Bernoulli distribution to model the probability of topic
occurrence in the target and source languages, which relaxes the assumption of the PLTMand
allows the extraction of language-specific topics. Nevertheless, their evaluations show that
the resultant topic distribution of each document fails to achieve satisfactory performance
in cross-lingual document classification. Observing that a document can often be viewed as
a hierarchy of segments, Tamura and Sumita [50] incorporated the Pitman-Yor process that
allows the topic distribution to be identified at the segment level. Nevertheless, document-
linking models require either a parallel corpus or a comparable corpus, which might not be
available in many cases.

Contrary to document linking, vocabulary-linking models rely on the use of a translation
dictionary. Examples of these models include JointLDA [25] and MuTo [10]. In contrast to
document-linking LDA models, which assume that each topic has a word distribution for
each language, the vocabulary-linking LDA models regard each topic as a distribution over
dictionary entries, where each entry is a tuple of words in different languages. Hu et al.
[24] used the Dirichlet tree distribution to model the probability of the translation dictionary.
Each translation entry then shares the same ancestor in the tree structure and has a similar
drawing probability. To meet the nature of unaligned topics across languages, Yang et al.
[54] introduced the cross-lingual topic transformation into the generative process so that a
pair of topics in different languages that share more translation entries incurs higher weights,
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meaning that they are more similar. Yuan et al. [55] extended the anchor-based topic model
for capturing multilingual contexts. The anchor-based approach derives word distribution of
topics from theword co-occurrencematrix by some anchorwords for each topic. The anchors,
which are responsible for linking spaces of different languages, are then chosen from the
translation dictionary to enlarge the topic diversity as much as possible. Hao and Paul [21]
proposed extending the soft document-linking by estimating word translation overlapping
betweennon-parallel documents.However, the lower coverageof the dictionary entries results
in the less coherent topics [21,22]. Also, limited dictionary size often shrinks vocabulary-
linkingmodels into themonolingual topicmodel [25]. Tomitigate these restrictions, ourwork
considers dictionary entries as anchors in the continuous word spaces of different languages
rather than as possible values in topic distributions. Thanks to cross-lingual word embedding
techniques [15,34], we can obtain a quality cross-lingual word space with a small number of
dictionary entries. Below we discuss the previous studies related to continuous LDA.

2.2 Continuous LDA

Recent developments in word vector space models (e.g., skip-gram, CBOW, and Glove [33,
35]) have succeeded in learning word representations that can capture both word semantics
and their lexical relationships. Each word representation is a low-dimension vector that
serves as the building block in a wide range of natural language processing (NLP) tasks.
The continuous topic model is a variant of LDA that integrates with word representations,
and it considers a topic as a distribution in a continuous vector space with a finite number of
dimensions rather than a distribution on a large number of discrete word tokens, as assumed
in LDA [5,13,37,41]. Nguyen et al. [37] proposed a topic model called latent-feature LDA
(LF-LDA) that includes word embedding in the generative process. When sampling a word
from a document given a particular topic, LF-LDAconsiders the similarity between the center
of the topic and a word based on their representations. GaussianLDA [13] regards each topic
as a multivariate Gaussian distribution in the word space. Given a topic, a word is chosen
according to its multivariate Gaussian distribution. However, previous studies suggest that
von Mises–Fisher (vMF) distribution (parameterized by cosine distances) is often a better
alternative to amultivariateGaussian distribution because the cosine distances can cope better
with the large range of densities in high-dimension directional data [3,57]. For this reason,
SphericalLDA [5,41] applies the vMF distribution for modeling the density of words over a
unit sphere. The resultant model shows better performance than GaussianLDA in measuring
the coherence. All the above continuous topic models only work inmonolingual applications,
and so how to apply it to cross-lingual applications still needs to be addressed.

For comparing word semantics across languages, one approach is to align pre-trained
monolingual word vector spaces into a cross-lingual word space using word-alignment
resources [42], such as bilingual dictionaries. A method called postmatching LDA
(PMLDA) [11] relies on such cross-lingual word space to construct a cross-lingual topic
model. PMLDA first constructs monolingual topic models and subsequently concatenates
these models into a cross-lingual topic model. The underlying combination mechanism is
to view each topic as a vector in cross-lingual word space and group topic vectors using
the DBSCAN algorithm. The transformer-based language model is another approach that
directly learns word representations across languages from large multilingual corpora (e.g.,
Wikipedia and Common Crawl). An example model is Multilingual BERT (M-BERT) that
employs the transformer architecture to learn word representations across 104 languages3

3 https://github.com/google-research/bert/blob/master/multilingual.md.
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[14]. ZeroShotTM [6] composes an inference network and a decoding network for generating
a cross-lingual topicmodel. An English corpus is required for obtaining two necessary inputs:
word representations encoded using M-BERT and bag-of-words. After applying sentence
transformer to obtain paragraph representations using word representations, the inference
network employs the neural architecture of ProdLDA [48] to learn topic representations (i.e.,
document-topic distributions) from paragraph representations. The decoding network is then
responsible for reconstructing bag-of-words to mimic topic-word distributions using topic
representations. Because of the multilinguality of M-BERT, the learned inference network
is capable of determining the topic representations of documents in other non-English doc-
uments. However, the design of decoding network prevents it from generating topic-word
distributions across languages, limiting its interpretability compared to other cross-lingual
topic models discussed in Sect. 2.1.

To sum up, most existing continuous topic models are proposed for the single-lingual
corpus only; there is a need to investigate how to incorporate cross-lingual word embedding
into a cross-lingual topic model.

3 Our approach

3.1 Background

Topicmodeling is an important technique of textmining that aims to extract underlying topics
from large textual data. LDA [9] is by far the most famous and influential model utilized for
this task. LDA analyzes a corpus D, where each document d ∈ D is represented as a bag of
words Nd , and assumes the existence of several latent topics in corpus D that determine the
generation of D. Each topic t ∈ T is modeled by a probability distribution over vocabularies,
denoted φt , and each document d is considered as a probabilistic mixture of topics, denoted
θd . The generative process is shown as follows:

1. Initialize each topic φt ∼ Dir(β)

2. For each document d in D:

(a) θd ∼ Dir(α)

(b) For each word di in Nd :
i Draw a topic assignment zdi ∼ Categorical(θd)
ii Draw a word type wdi ∼ Categorical(φzdi ),

where α and β are hyper-parameters of Dirichlet distribution for controlling the level of
concentration of its generated distributions.

In cross-lingual contexts, the corpus D consists of documents written in a set of different
languages L . We use ld ∈ L to label the language of each document d . Our proposed cross-
lingual topic model aims at extracting the hidden topic patterns across languages from D.
Similar to monolingual LDA, the resultant cross-lingual topics are represented as two types
of distributions: (1) document-topic distributions θd , which record the tendency of the topics
conveyed in each document, and (2) topic-word distributions φt , which collect words with
similar topic contexts across languages in each topic. In the following sections, we first
introduce the preparation of cross-lingual word embedding and then propose a cross-lingual
topic model using the cross-lingual word embedding.
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3.2 Preparing the cross-lingual word embedding

To generate cross-lingual word embedding, we first construct a monolingual word space.
This is achieved by applying text processing techniques to documents of the same language
to extract tokens and part-of-speech tags. After processing, we remove stop words and retain
only nouns and verbs to train the monolingual word vector using the skip-gram algorithm
with negative sampling [33,35]. The idea of that algorithm is to learn word embedding for
predicting neighbor words. We denote words embedded in language l ∈ L as Hl ∈ R

|Vl |×|S|,
where |Vl | and |S| indicate the number of vocabularies in language l and the number of
dimensions of the word space, respectively. We choose the skip-gram algorithm because it
has been widely studied in the field of distributed semantics [4] and has served as the building
block in many NLP tasks.

To align two monolingual spaces into a cross-lingual word space, we apply an orthogonal
transformation method [15,34,46] since it is a well-studied and most commonly adopted
method [42,46]. More specifically, we choose a target language l ′ and map the word space
of the other language l to that of l ′. The orthogonal transformation method uses a bilingual
dictionary {Vl,i , Vl ′,i }Pi=1 to train a transformation matrix � ∈ R

|S|×|S| that allows Hl , the
embedded words of Vl , to fold in Hl ′ , the embedded words of Vl ′ , with least square error,
where l �= l ′ ∈ L , P is the number of dictionary pairs, and {Vl,i , Vl ′,i } represents the i-th
translation word pair in languages l and l ′. We show a training objective of � in Eq. 1, where
Hl,i and Hl ′,i are word vectors of Vl,i and Vl ′,i , respectively. We constrain� to an orthogonal
matrix so that the transformation will be more robust to noisy dictionary entries [46]. We
then solve it by applying the Procrustes solution [12,46]:

argmin
�

P∑

i=1

‖�Hl,i − Hl ′,i‖2 subject to �T� = I (1)

We use Fig. 1 to illustrate the aligning process, where Fig. 1a, b shows the pre-trained
word spaces of source language l and target language l ′, respectively. Given ( ,
internet), ( , research), and ( , election) as dictionary pairs, the � can be determined
so that we can rotate the source word space into target one and construct a cross-lingual word
space Hcs by �Hl ∪ Hl ′ . With Hcs , we can compare the semantic distance between two
words of different languages.

3.3 Center-based cross-lingual topic Model

We propose a method called the center-based cross-lingual topic model (Cb-CLTM), in
which word vectors are regarded as new observational variables in the generative process. To
incorporate cross-lingualword embedding, we replace the topic-word categorical distribution
with topic centers in the form of word embedding. Below we first introduce the generative
process and then illustrate the inference strategy of Cb-CLTM.

3.3.1 Generative process of Cb-CLTM

Figure 2 shows the plate notation of Cb-CLTM. Similar to LDA, our Cb-CLTM assumes that
each document has its topic distribution represented as theDirichlet-multinomial distribution.
The key variant is that we characterize each topic t as amultivariate vectorψt ∈ R

|S| in cross-
lingual word space. In other words, we consider eachψt as a semantic center point of topic t .
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Fig. 1 Illustration of cross-lingual word space and cross-lingual topic model construction

Fig. 2 The plate notation of Cb-CLTM

The absence of a topic-word distribution means that Cb-CLTM approximates the categorical
word distribution φt of each topic by the softmax function:

φt (wdi |ψt ; Hcs
l ) =

exp(ψt · Hcs
l,wdi

)
∑

1≤i≤|Vl | exp(ψt · Hcs
l,i )

(2)
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In contrast to most continuous LDA models, the use of the φ function in our model means
that significantly fewer parameters and calculations are required, which helps to improve
efficiency when training and inferring. For example, when compared to GaussianLDA [13],
Cb-CLTM does not need the covariance matrix for each topic. Similarly, when compared
to SphericalLDA [5,41], Cb-CLTM does not have a concentration parameter of the vMF
distribution, and estimating this parameter for each topic has a high computational cost [47].
Although we simplify the parameters of the model, it has high efficacy for the cross-lingual
topic model, as demonstrated in our experiments.

The softmax function is used to convert a set of numbers into a probability distribution.
Thus, given topic t and language l, the probability of a word wdi is determined using Eq. 2.
In other words, if the cross-lingual word vector of a word is close to the center of a topic ψt ,
it will have higher probability of being selected. Take Fig. 1d for example, three dashed
circles with different colors represent distinct topics. Assuming that we determine the ψt at
the center of the red scientific circle, it should assign more probabilities for words in the red
circle compared to those outside the red circle. From the above specifications, the generative
process of Cb-CLTM can be described as below:

1. For each document d in D:

(a) θd ∼ Dir(α)

(b) ld is observable
(c) For each word di in Nd :

i Draw a topic assignment zdi ∼ Categorical(θd)
ii Draw a word type wdi ∼ φzdi

( . |ψzdi
; Hcs

ld
),

3.3.2 Inferencing parameters of Cb-CLTM

To infer θ and ψ of Cb-CLTM, we apply the Bayesian and frequentist methods simultane-
ously. Since the Gibbs sampling, a type ofMarkov chainMonte Carlo, is asymptotically close
to real posterior distribution in theory, we adopt collapsed Gibbs sampling to approximate
θ by drawing the samples of topic assignments for each document. After integrating out θd
from the conditional distribution of zdi in Cb-CLTM, the sampler of the topic index zdi for
the i th word of document d can be written as below:

p(zdi = t |z¬di ,w) ∝ (Nt
¬di

+ α)
∑T

t=1 N
t
d + αt

· φt (wdi |ψt ; Hcs
ld ), (3)

where Nt
¬di

is the number of words pertaining to topic t in document d except for the current
observed word wdi . In addition, the word probability in topic t , p(wdi |ψt ), is approximated
by φt in Eq. 2. Equation 3 can be simplified to (Nt

¬di
+ α) · φt (wdi |ψt ; Hld ) because given

document d ,
∑T

t=1 N
t
d + αt is a constant for each word. Intuitively, the topic assignment of

word wdi is controlled by two factors: (1) the proportion of topics in document d , and (2) the
closeness betweenwdi andψt in the word space. The complete derivation of sampler in Eq. 3
begins with the equation p(zdi = t |z¬di ,w) ∝ p(zdi = t, wdi |z¬di ,w¬di )

4, and the details
are shown in Appendix A. As a result, after sampling topic assignments of each document
d , we use expectation of the categorical distribution to infer its topic distribution θd .

To derive ψt for each topic, we utilize maximum likelihood estimation and strip the
language index of Hcs because different languages now share the same cross-lingual word

4 p(zdi = t |z¬di ,w) = p(z,w)
p(z¬di

,w)
= p(z,w)

p(z¬di
,w¬di )p(wdi

)
, p(zdi = t, wdi |z¬di ,w¬di ) = p(z,w)

p(z¬di
,w¬di

)
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space after orthogonal projection as described in Sect. 3.2. The size of Hcs corresponds to
the total number of vocabularies across different languages. Thus, the likelihood function of
ψt is

L(ψt ) =
∏

v∈V
(φt (v|ψt ; Hcs))N

t,v
, (4)

where Nt,v is the number of times word v is assigned to topic t . The likelihood function
can then be transformed into a negative log-likelihood function for optimization purposes.
Referring to the form of φt , we represent the negative log-likelihood(NLL) of ψt as

NLL(ψt ) = −
∑

v∈V
Nt,v

(
ψt · Hcs

v − log

(
∑

v∈V
exp(ψt · Hcs

v )

))
+ λ‖ψt‖22 (5)

Note that in Eq. 5, L2 regularization is added to avoid overfitting. The gradient of each topic
vector ψt is

∂NLL(ψt )

∂ψt
= −

∑

v∈V
Nt,v

⎛

⎜⎜⎜⎜⎝
Hcs

v −
∑

v∈V
Hcs

v

exp(ψt · Hcs
v )∑

v∈V exp(ψt · Hcs
v )

︸ ︷︷ ︸
φt (v|ψt ;Hcs )

⎞

⎟⎟⎟⎟⎠
+ 2λψt (6)

By providing gradients, we apply the quasi-Newton L-BFGS5 optimization method to min-
imize NLL(ψt ) and search ψt . Our use of L-BFGS optimization avoids the need to tune
the appropriate learning rate, in contrast to using deepest gradient descent, and it generally
works in both nonlinear and nonsmooth optimization cases.

Connection to expectation–maximization algorithm Our strategy for parameter inference
also shares the same spirit with expectation-maximization (EM) algorithm. The goal of EM is
to optimize the likelihood function p(D, Z |
), where D is corpus, Z is all topic assignments
for all words in the corpus, and
 is a set of parameters. EM iteratively employs two following
steps: (1) E step: fixing 
 to optimize Z using the fact that Z = p(Z |D,
), and (2) M step:
fixing Z to optimize 
. Apparently, we can use Eq. 3 to fulfill the objective of E step,
which assigns topic assignments for all words. Since the topic-document distribution θ has
been integrated out, the topic vector of each topic ψt is the only remaining parameter in 
.
Therefore, we can carry out the M step by optimizing Eq. 5, which updates all topic vectors.
We can guarantee that the inference strategy of Cb-CLTMhas the same convergence property
as EM because of this connection. Both determined topic assignments and topic vectors of
each iteration will better fit the corpus (i.e., observed data likelihood) than those from the
previous iteration.

3.3.3 Language dimension reduction of embedding

We notice that the induced topics of Cb-CLTM would potentially bias towards a specific
language when purely using the pretrained cross-lingual word vectors. The cause of such
language bias is because some dimensions in cross-lingual word space could be language-
specific. Thus, words that are close to a semantic center tend to have similar values in
these language-specific dimensions, resulting in the phenomenon of “clustering by language”
[17]. Table 1 presents the sample topics inferred from UM-Corpus [51] using the original
pretrained cross-lingual word vectors Hcs by Cb-CLTM. The results show that each topic

5 L-BFGS is the abbreviation of Limited–memory Broyden–Fletcher–Goldfarb–Shanno algorithm.
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Table 1 Sample topics from full-dimension Cb-CLTM

Algorithm 1 The pseudocode of Cb-CLTM
1: Initialize all z randomly and record in Nt

d , Nt,v

2: Apply language dimension removal to generate Hcs
l

3: for each iteration in I do
4: for each topic t in T do
5: Update ψt using L-BFGS
6: end for
7: for each document d in D do
8: for each word di in Nd do
9: znewdi

∼ P(zdi = t |z¬di ; α, θ, ψ, Hcs , ld )

10: Update the counts in Nt
d , Nt,v

11: end for
12: end for
13: end for

clusterswordswith similar concepts in the same language rather than across languages.Under
this circumstance, Cb-CLTM hardly aligns similar topics across languages such as topic 1
versus topic 2, topic 3 versus topic 4, and topic 5 versus topic 6. To remedy this problem,
we propose eliminating the dimensions that are language-specific. Specifically, we assign a
label y to each embedding Hcs

l,i according to its language l, and estimate the predictive power
of each dimension in S. A dimension that has high predictive power is considered language-
specific and will be removed. Thus, we obtain a subset S∗ by removing dimensions with
the maximum predictive power. Several algorithms, including logistic regression and tree-
based methods, can be used to identify these language-specific dimensions. After removing
these dimensions, we apply L2 normalization to normalize each row in Hcs

l ∈ R
|Vl |×|S∗|. This

normalized Hcs
l would be used as the input of Cb-CLTM.The number of removed dimensions

is the hyperparameter that controls the trade-off between the semantic completeness of cross-
lingual space and the performance of the cross-lingual topic model. We examined this effect
in our experiments.

The pseudocode of Cb-CLTM is presented in Algorithm 1. We randomly assign a topic
index for each word and record the number of words in document d that are assigned to
topic t in Nt

d , as well as the number of times word v is assigned to topic t in Nt,v . Language
dimensions are removed to generate Hcs

l . In each iteration, we optimize eachψt only once in
order to improve efficiency. Then, every word follows the generative process to be reassigned
its topic index according to the conditional distribution of z. After drawing a new topic index,
we update Nt

d and Nt,v and subsequently derive new θd and ψt .
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4 Experimental results

4.1 Description of datasets

We used two corpora in our experimental evaluation: UM-Corpus [51] and Reuters Corpus
Volume 2 (RCV2) [27]. UM-Corpus is a parallel corpus that contains a large number of
pairs of English and Chinese sentences. We selected the news domain of the corpus as our
dataset, which comprises 450,000 pairs of bilingual sentences involving categories such as
politics, economics, technology, education, agriculture, and society. RCV2 is a nonparallel
and noncomparable corpus that includes numerous news articles in 13 languages. In ourwork,
we chose articles in three languages for our cross-lingual topicmodeling experiments, namely
English, Chinese, and Japanese. Each news article is categorized into one of the following
categories: CCAT (corporate/industrial), ECAT (economics), GCAT (government/social),
and MCAT (markets). This dataset has been widely used to evaluate algorithms related
to cross-lingual document classification [23,43]. English text was processed using spaCy,
while Stanford CoreNLP and Mecab were used for the Chinese texts and Japanese texts,
respectively. After applying tokenization and tagging the parts of speech, we only retained
nouns and verbs for further analysis.

Preparing datasets for the topic model In our experiments, we generated cross-lingual
topic models on four different datasets. The first two were the whole UM-Corpus and 25,000
sampled document pairs fromUM-Corpus (calledUM-Corpus 25K).We createdUM-Corpus
25K for evaluating the performance on a small-scale parallel dataset. The last two were
datasets created from RCV2. Since the class distributions differed significantly between the
English, Chinese, and Japanese corpus, we utilized the MLDoc scripts [43] to sample docu-
ments uniformly across classes in three languages, resulting in two subsets of RCV2, called
MLDoc En-Zh and MLDoc En-Ja. Each subset consists of 10,000, 1,000, and 4,000 news
articles for the training, validating, and testing for text classification task in each language,
respectively. We present the descriptive statistics of all datasets in Table 2.

Preparing for cross-lingual word embedding To obtain the cross-lingual word space Hcs

required for Cb-CLTM, we applied the approach described in Sect. 3.2 to UM-Corpus and
RCV2 and initially set the number of word dimensions S to 100. Since word vector space
tends to be more robust when training it from the large-scale corpus, we determined the word
vector spaces from UM-Corpus and RCV2 rather than UM-Corpus 25K and two MLDoc
subsets. To prepare the anchors across languages,we used theChinese–English and Japanese–
English bilingual dictionary from the FacebookMUSE project [12] that is available at https://
github.com/facebookresearch/MUSE. The coverage ratios of the Chinese-English dictionary
in UM-Corpus and RCV2 were 8.7% and 4.6%, respectively. The Japanese–English dictio-
nary covered 7.2% vocabulary in RCV2. We did not use additional dictionaries to increase
the coverage because this is a common situation in real-world applications, and we wanted
to determine the impact of a low dictionary coverage on our model and other vocabulary-
linkingmodels. After aligning the cross-lingual word spaces, we then used logistic regression
to estimate the language effect of each dimension and find a subset of dimensions S∗ based
on our discussion in Sect. 3.3.3.

4.2 Performancemetrics

Coherence metric The normalized pointwise mutual information (NPMI) score is a well-
recognized metric for evaluating the coherence of topic-word distribution φ in a topic model
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because it strongly correlated with human judgment [28]. As shown in Eq. 7, the NPMI
score quantifies the correlation between two words wi and w j as well as represents an
estimate of word probability Pr(.) and word joint probability Pr(., .) at the document level.
The numerator determines the dependency between the two words, with 0 indicating their
independence, and the denominator, −log(Pr(wi , w j )), is used to normalize the score into
the range [–1, 1], with a higher NPMI score indicating a higher dependence between the two
words:

N PMI (wi , w j ) =
log(

Pr(wi ,w j )

Pr(wi )Pr(w j )
)

−log(Pr(wi , w j ))
(7)

To adjust the NPMI score for measuring the closeness of words in different languages, we
followed the strategy of Hao et al. [20] based on a large number of comparable Wikipedia
documents as a reference corpus. For this purpose, we used a 405K English–Chinese
Wikipedia comparable corpus and a 393KEnglish–Japanese corpus downloaded fromhttps://
linguatools.org/ as the reference documents. We merged each pair of bilingual documents
into a single cross-lingual document for estimating Pr(.) and Pr(., .).

Equation 8 shows how we determine the coherence score when given a cross-lingual
topic t and the C top contributed words from topic-word distribution φl

t . The cross-lingual
NPMI (CNPMI) score of a topic is the average of the NPMI scores for all word pairs of
different languages. For instance, given a topic t , let the top-two contributed topic words
of φ

l=English
t and φl ′=Chinese

t be {disease, treatment} and { , }, respectively. We
then calculate the NPMI score of (disease, ), (disease, ), (treatment, ), and
(treatment, ). The CNPMI score of a topic model is then the average of CNPMI scores
for all topics:

CN PMI (t,C, l, l ′) =
∑

wl
i∈Top(t,l),wl′

j ∈Top(t,l ′) N PMI (wl
i , w

l ′
j )

C2 , (8)

where Top(t, l) is the set of top-C words in language l according to φl
t .

Diversity metricAgood topic model should contain distinguished (i.e., diversified) topics.
Moreover, the inferred topics are informative when the top contributed words of topics are
exclusive to others [7]. Therefore, we leverage the inverse Jaccard index to measure the
divergence between topic-word distributions. The inverse average Jaccard similarity (inverse-
AJS) of a topic model is defined as

inverse-AJS(T ) = 1 −
∑

l∈L
∑

t,t ′∈T
Top(t,l)∩Top(t ′,l)
Top(t,l)∪Top(t ′,l)

|L| × |T | × (|T | − 1)/2
, (9)

where t �= t ′. A higher inverse-AJS indicates that more diverse topics have been generated
by a topic model.

Metric for the quality of cross-lingual document representation We evaluated the quality
of a document-topic distribution inferred by topic models by adopting different metrics for
the two datasets. For the parallel datasets UM-Corpus and UM-Corpus 25K, we calculated
the divergence between the topic distributions (θ ld , θ

l ′
d ) for each parallel sentence d using

the Jensen-Shannon divergence (JSD). For consistency, we reported the inverse-JSD defined
as 1−JSD, where a higher score indicates greater similarity of the topic distributions. For
measuring the nonparallel documents in twoMLDocdatasets,we constructed a news category
classifier that uses document-topic distributions as features to assess the prediction accuracy
in cross-lingual document classification.More specifically, we adopted the zero-shot strategy
that trains a classifier based on document features θ ld from the source language (i.e., English)
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and used it to classify document features θ l
′
d in other language (i.e., Chinese and Japanese).

Applying the zero-shot strategy allows evaluation of how well the topic model recognizes
the topics across languages.

4.3 Parameter settings

Comparative models and Bayes prior settings We benchmarked the performance of
Cb-CLTM with the other four existing cross-lingual topic models, including one document-
linking model, one vocabulary-linking model, one model using the cross-lingual word
embedding, and one anchor-based model. These models are chosen for two reasons: (1)
their characteristics were well studied such as PLTM and JointLDA, and (2) they were pro-
posed recently and had accessible implementations such as MTAnchor and PMLDA. These
models are detailed as below:

1. PLTM by Mimno et al. [36,38,52], which is a representative document-linking model. It
requires a parallel or comparable corpus as inputs and assumes that the documents in the
same pair share the same topic distribution. We used the implementation from https://
github.com/mimno/Mallet.

2. JointLDA by Jagarlamudi and Daumé [25], which is a well-studied vocabulary-linking
model. This model represents each entry of a bilingual dictionary as a word concept in the
topic-word distribution for catching the cross-lingual topics. We reconstructed JointLDA
as described at https://github.com/ponshane/python-topic-model.

3. PMLDA by Chang et al. [11], which also uses cross-lingual word spaces for connecting
topics across languages. It first determines monolingual topics and then constructs cross-
lingual topics using the clustering to link topics with semantic meaning. We used the
program implemented by the authors.

4. MTAnchor by Yuan et al. [55], which is a multilingual extension of the anchor-based
topic model. When given a bilingual dictionary, it first finds the bilingual topic anchors
from dictionary by searching the convex hull on low-dimensional word spaces. Then, the
topic-word distributions are recovered by RecoverL2 algorithm [1]. The implementation
can be found at https://github.com/forest-snow/anchor-topic.

All statistical topic models, namely Cb-CLTM, PLTM, JointLDA, and PMLDA, share
common parameters including Dirichlet prior α of the document-topic distribution, Dirichlet
prior β of the topic-word distribution,6 and the number of Gibbs iterations (I ). To ensure fair
comparisons, we fixed the same settings across models, with α and β set at 50/T and 0.1,
respectively [18], and I set to 1,000 for the convergence of the sampling process.

Effects of language dimension reduction for Cb-CLTM Before comparing the performance
between models, we first investigated the effects of removing the language dimensions for
Cb-CLTM based on coherence measurement, CNPMI. Specifically, for each dataset, we
fixed the number of topics, |T |, to 20 and experimented with the effect of Cb-CLTM. The
size of the embedding dimension is set at 100. Table 3 reports that, in all datasets, when
removing more dimensions, more semantic relationships will disappear, resulting in a lower
and more unsteady CNPMI score. Nevertheless, without removing any dimensions (i.e.,
S∗ = 100), Cb-CLTM only generated language-biased topics as presented in Table 4. That
is, each inferred topic center of Cb-CLTM is biased towards a particular language, which in
turn harms the coherence performance when S∗ = 100. Notice that we selected the top-100
contributed words for each topic t and determined a language-biased topic if more than 70

6 Note that the Cb-CLTM does not have this parameter.
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Table 3 Coherence performances of Cb-CLTM with different S∗ values for four datasets

S∗ = 40 S∗ = 60 S∗ = 80 S∗ = 90 S∗ = 100

UM-Corpus 0.175 (0.093) 0.174 (0.092) 0.171 (0.090) 0.174 (0.087) 0.144 (0.094)

UM-Corpus 25K 0.162 (0.103) 0.160 (0.103) 0.165 (0.097) 0.168 (0.091) 0.153 (0.088)

MLDoc En-Zh 0.087 (0.177) 0.087 (0.172) 0.095 (0.161) 0.100 (0.162) 0.099 (0.154)

MLDoc En-Ja 0.076 (0.155) 0.087 (0.141) 0.085 (0.137) 0.091 (0.129) 0.093 (0.128)

The highest coherence of each dataset is bold. The standard deviation is in the parenthesis

Table 4 Proportion of
non-language-biased topics
generated by Cb-CLTM when
S∗ = 90 and S∗ = 100

S∗ = 90 (%) S∗ = 100 (%)

UM-Corpus 35 0

UM-Corpus 25K 45 0

MLDoc En-Zh 20 5

MLDoc En-Ja 10 0

Dataset: UM−Corpus Dataset: UM−Corpus 25K
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Fig. 3 Coherence performances of Cb-CLTM for different sizes of UM-Corpus

words are from the same language. Table 4 also reveals that Cb-CLTM determined more
non-language-biased topics from UM-Corpus than those from two MLDoc datasets because
both UM-Corpus datasets are parallel corpora.

A cross-lingual topicmodel shall generate coherent topics and avoid from clustering topics
by languages. As a result, we adopted word spaces with S∗ = 90 to Cb-CLTM for further
model comparisons because this setting achieves the almost highest coherence score in four
datasets and avoids simply generating only language-biased topics.
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Fig. 4 Coherence performances in two MLDoc datasets

4.4 Coherence performance

UM-Corpus Figure 3 reports the CNPMI scores of each model for UM-Corpus and UM-
Corpus 25K. Cb-CLTM outperforms the other models in UM-Corpus 25K and performs
competitively with PMLDA in UM-Corpus. Because Cb-CLTM and PMLDA use the same
cross-lingual word space, their performances are close in UM-Corpus. Nevertheless, Cb-
CLTM tended to generate more coherent topics in the smaller dataset, namely UM-Corpus
25K. The good performance of Cb-CLTM demonstrates that the continuous topic models are
useful in generating more coherent topics across languages. Moreover, it is an encouraging
result because Cb-CLTM needs neither a parallel/comparable corpus nor many dictionary
entries for inferring the topic and it benefits from lexical semantics of embedding to generate a
more coherent φ than JointLDA andMTAnchor. The cross-lingual word space could provide
more information, even using a low coverage bilingual dictionary (8.6%) as anchors. A
particularly interesting observation is that the PLTM performs the worst, and we attribute
this to the short text characteristic of UM-Corpus, in which the average sentence comprises
only 8.62 tokens. Besides, the PLTM is the only model that assumes documents in each
pair share the same topic distribution. Hence, short texts could destabilize the allocation of
θ , which in turn decreases the performance of φ due to the Gibbs sampling mechanism.
When increasing the size of the dataset, the CNPMI scores of all models increased, which is
reasonable because a larger number of observed documents helps the sampling process.

MLDoc Figure 4 reports the CNPMI scores of each model for two MLDoc datasets. Note
that the PLTM is not included in the comparison because it is not applicable to a nonparallel
corpus. Also, we excluded PMLDA because it fails to links topics across languages, resulting
into very few cross-lingual topics. For reference, inMLDoc En-Zh (MLDoc En-Ja), PMLDA
generated only 2(1), 0(0), 2(0), 1(3), 1(1) cross-lingual topics at |T | = 10, 20, 30, 40, and
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50, respectively. However, Fig. 4 indicates that Cb-CLTM did not generate the most coherent
topics and even cause the worst performance in the MLDoc En-Zh dataset. The degrada-
tion of Cb-CLTM is caused by the poor quality of cross-lingual word embedding induced
from RCV2. In the RCV2 dataset, we observed the large differences of class distributions
between languages. For example, the class distributions on economics, corporate/industry,
government/social and markets of Chinese corpus are 19.7%, 18.2%, 2.8%, and 59.4%, but
those of English corpus are 6.2%, 39.8%, 29.5%, and 24.5% [43]. The dramatically differ-
ent class distributions between languages make it difficult to fit a language transformation
mapping. This issue has been reported previously as the ”isomorphism” problem between
the word vector spaces of different languages, which has been regarded as a prerequisite for
learning language transformation [12]. Figure 5 shows the 2D projection of three resultant
cross-lingual word spaces trained using UM-Corpus and RCV2, in which different colors
represent different languages. It can be seen from the figure that the English–Chinese word
space of RCV2 contains fewer overlaps between languages; so it cannot effectively provide
language links. This poor alignment explains the significant CNPMI drops of Cb-CLTM
in MLDoc En-Zh. This non-aligned cross-lingual word space results in “clustering by lan-
guages” phenomenon [17], which will harm the generative process and topic assignments of
Cb-CLTM. That is to say, the center of a topic ψt could vary significantly based on the given
language, which impedes generating coherent topics across languages.

To complement the qualitative 2D visualization of the cross-lingual word spaces, we
adopted the modularity metric to measure the quality of our induced cross-lingual word
spaces. Modularity was proposed by Fujinuma et al. [17] for measuring the quality of a
cross-lingual word space. Their empirical experiments found that a bad cross-lingual word
space tends to have high modularity and clusters words by languages, while a good one has
lower modularity and clusters words in a more language-agnostic fashion. In other words,
a good cross-lingual word space shall position words with similar meanings closely regard-
less of their languages. It is also found that the modularity of a cross-lingual word space
is negatively related to the performance in downstream tasks (i.e., the cross-lingual word
space with lower modularity tends to have a better performance in downstream tasks such
as document classification, bilingual lexicon induction, and document retrieval). With this
metric implemented in https://github.com/akkikiki/modularity_metric, the modularities for
the Hcs determined from UM-Corpus, En-Zh documents of RCV2, and En-Ja documents
of RCV2 are 0.116, 0.279, and 0.278, respectively. It implies that smaller modularity of
Hcs in UM-Corpus leads to better CNPMI, while larger modularities in MLDoc En-Zh and
MLDoc En-Ja incur inferior CNPMI. To sum up, both Cb-CLTM and PMLDA rely on the
whole cross-lingual word space to infer the topic patterns across languages, and its perfor-
mance is strongly correlated with the quality of the cross-lingual word space. Given a bad
cross-lingualword space, PMLDAwouldmerely producemonolingual topics, andCb-CLTM
would generate less coherent topics.

4.5 Topic diversity

UM-Corpus Figure 6 compares the topic diversity across the models.While the mean diversi-
ties (i.e., inverse-AJS values) are high for most models, Cb-CLTM has the smallest standard
deviation in two UM-Corpus datasets. Previous studies have shown that high-frequency
words often dominate inferred topics of discrete topic models due to ignoring low-frequency
words in the generative process [7,45], which in turn results in the wider standard deviation
of the PLTM and JointLDA. Also, PMLDA suffers from the same problem because it first
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Fig. 5 2D projections of Hcs trained using UM-Corpus and RCV2. Different colors indicate different
languages. We used principle-components analysis to reduce dimensions. a English–Chinese space from
UM-Corpus, b English–Chinese space trained from RCV2, c English–Japanese space trained from RCV2
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Fig. 6 Diversity performances of comparative models for different sizes of UM-Corpus

constructs amonolingual LDAand linkmonolingual topics across languages.MTAnchor per-
forms the worst in diversity measurement. Even though MTAnchor applies the orthogonal
projection to search the topic anchors iteratively, those topics seem duplicated after recov-
ering the topic-word distributions. Rather than observing discrete word types, Cb-CLTM
observes continuous word embedding that prevents focusing on frequent words.

MLDoc Figure 7 shows that Cb-CLTM still prevails in diversity measurement on the two
MLDoc datasets, and MTAnchor remains the worst. We attribute the failure of generating
diversified topics to the design ofMTAnchor. SinceMTAnchor is initially designed to involve
themanual selection process, it is suboptimal in selecting topic anchors from a set of bilingual
dictionary entries and generating distinct topics. Both Figs. 6 and 7 show that Cb-CLTM
generates the most diversified topics in both the comparable and noncomparable corpus.
Comparing to JointLDA and MTAnchor, Cb-CLTM is not constrained by the given bilingual

123



A word embedding-based approach to cross-lingual topic modeling 1547

Pair: En−Ja Pair: En−Zh
Topics: 10

Topics: 20
Topics: 30

Topics: 40
Topics: 50

Cb−
CLT

M

Jo
int

LD
A

M
TA

nc
ho

r

Cb−
CLT

M

Jo
int

LD
A

M
TA

nc
ho

r

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

In
ve

rs
e−

A
JS

Model Cb−CLTM JointLDA MTAnchor

Fig. 7 Diversity performances of comparative models for two MLDoc datasets

dictionary when learning cross-lingual topics. Instead, the bilingual dictionary is used only
to construct cross-lingual word spaces, which prevents Cb-CLTM from duplicating similar
word allocations across the resultant topics.

4.6 Performance in cross-lingual document representation

UM-Corpus Figure 8 shows the inverse-JSD of each model for two UM-Corpus datasets. Cb-
CLTM stands out at all settings except for |T | = 10, in which Cb-CLTM still has comparable
performance as the PLTM. We observe that when Cb-CLTM and JointLDA categorize the
dataset into more topics, their inverse-JSD increase. This behavior is attributed to their highly
coherent topic-word distribution φ as listed in Fig. 3. It helps the model to result in a better
document-topic distribution θ [37]. Likewise, despite the less diversity shared between topics
induced from MTAnchor, it still has an increased performance when modeling more topics
across languages. Conversely, the inverse-JSD of the PLTM decreases as the number of
topics increases. This behavior is caused by low coherence φ of the PLTM, and it conforms
to the original report of the PLTM that more topics would decrease the closeness between
parallel documents [36]. Furthermore, when increasing the number of topics, PMLDA tends
to produce only monolingual topics, resulting in some dimensions of θ being language-
specific, which dramatically decreases the inverse-JSD of each parallel pair.

MLDoc We follow the zero-shot learning strategy discussed in Sect. 4.2 and provide the
results for MLDoc in Fig. 9. We use the English dataset for training a multiclass regular-
ized logistic regression and tune the hyperparameters using the English validation set. The
intralingual prediction accuracy is obtained by applying the classifier to the English test set,
and the interlingual prediction accuracy is computed by applying the classifier to the Chi-
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Table 5 Sample topic results for UM-Corpus 25K from Cb-CLTM, PMLDA, PLTM, and JointLDA

nese and Japanese test set. The figures show that JointLDA performs well for intralingual
document classification, whereas both Cb-CLTM and MTAnchor are the best two models
for interlingual document classification. The reason for the poor interlingual classification of
JointLDA is the low coverage of the dictionary. For the dictionary entries encompass only
a small proportion of the words in the corpus, those entries cannot effectively bridge across
languages, which could reduce JointLDA into a monolingual LDA [21,25]. This explains
why JointLDA performs well in intralingual classification yet fails in interlingual classifica-
tion. Although Cb-CLTM is not the best model for generating coherent φ for two MLDoc
datasets, it can learn the document-topic distribution that works well in both intralingual and
interlingual document classification using a dictionary with a small coverage.

4.7 Qualitative analysis

Table 5 provides qualitative results of topic-word distribution φ learned from UM-Corpus
25K for the four models for three sample topics: science, elections, and technology. We
exclude MTAnchor from the comparison because it does not generate topics in science,
elections, and technology. Also, we found that MTAnchor duplicated several common words
like “people, going, think, means, know, like, good, want, way, come, lot, world, person,
talk” across topics, resulting in less diversity (see Fig. 6). The results indicate that all of the
models are capable of grouping similar semantic words into a topic, yet Cb-CLTM, PMLDA,
and JointLDA generate good results for topic-word distributions. Although the PLTM also
generates good results for topics 1 and 2, it fails to produce coherent cross-lingual topic
words for the technology topic. Some words are irrelevant to technology such as “ ”,
“ ”, “ ’, “English”, “language” and “episode”. These results also support the
performance result presented in Fig. 3, that PLTM is the least coherent model.

Table 6 presents the qualitative results obtained for MLDoc En-Zh. We select the gov-
ernment topic and markets topic of Cb-CLTM, PMLDA, MTAnchor, and JointLDA for the
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Table 6 Sample topic results for MLDoc En-Zh from Cb-CLTM, PMLDA, MTAnchor and JointLDA, where
NA in PMLDA means that there are missing connections to either the Chinese topics or the English topics

Topic 1: government Topic 2: markets
Cb-CLTM PMLDA Cb-CLTM PMLDA

Government NA Government Rand NA
Country NA Election Lift NA

Tell NA Party Stock NA
Election NA Talk Drop NA

Talk NA Leader Cash NA
Plan NA Country Restriction NA

Minister NA Vote Shortfall NA
President NA State Result NA

Opposition NA Minister Begining NA
News NA Meeting Shrink NA
Rule NA Year Decline NA

Reporter NA Opposition Formation NA
City NA President Msci NA
Right NA Official Month NA
Party NA Rule Curtail NA
Nation NA Parliament Contraction NA
Leader NA Member Surplus NA
Reform NA Week Scarcity NA

Development NA Peace Petroleum NA
Car NA Hold Swap NA

MTAnchor JointLDA MTAnchor JointLDA
Say Election Percent Percent

Government Party Rise Year
State Government Price Rate
Tell Say Index Rise

Country Vote Fall Say
Official Opposition Inflation Month
Year Leader Point Price

Budget Rate Newsroom Growth
Lead Power Interest Quarter

Election President Compare Fall
Plan Parliament Consumer Increase

Minister Rule Forecast Figure
People Poll Week Expect
Time Minister Yield Forecast
Party Year Growth Inflation

Meeting Lead Output Sale
Leader Win Figure Report
Include Shanghai Stock Compare
Group Campaign Measure Period
News State Turnover Show

comparisons. Because the articles in MLDoc are from Reuters news, these topics are related
to economics issues. Except for PMLDA, which only generates Chinese government topics
and only English markets topics, other models generate topics with explainable cross-lingual
connections. This phenomenon indicates that PMLDA fails to generate fully cross-lingual
topics in MLDoc datasets. Besides, we also observed that there are duplicated topics induced
by MTAnchor. Similar to its inferred topics in UM-Corpus, those duplicated topics result in
poor diversity (see Fig. 7).

5 Conclusion and future work

This paper has proposed theCb-CLTM, a cross-lingual topicmodel, that extends themonolin-
gual LDA by utilizing cross-lingual word embedding for inferencing topics across languages.
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We benchmarked Cb-CLTM against four existing cross-lingual topic models, namely PLTM,
JointLDA, PMLDA, andMTAnchor, and measured their performance using topic coherence,
topic diversity, and document classification asmetrics. For the parallel corpora—UM-Corpus
and UM-Corpus 25K, we found that Cb-CLTM outperforms the other models in all metrics
in most settings, indicating that the semantic relations of words represented by cross-lingual
word embedding indeed help construct a better cross-lingual topic model. Cb-CLTM does
not require a parallel/comparable corpus and is only dependent on a few bilingual dictio-
nary entries. For a small number of dictionary entries, Cb-CLTM outperforms JointLDA
and MTAnchor in inducing coherent topics, generating divergent topics, and learning docu-
ment representations across languages. Cb-CLTM also generated more coherent topics than
PMLDA on the UM-Corpus 25K, which shows its robustness on the small-scale dataset.

However, for the nonparallel corpora—MLDoc En-Zh and MLDoc En-Ja, the themes
of articles have very different distributions across languages in original RCV2 corpora,
which causes the induced cross-lingual word spaces less isomorphic in structure between
the language spaces. With non-aligned cross-lingual word spaces as inputs, the coherent per-
formances of Cb-CLTM are lower on two MLDoc datasets, yet Cb-CLTM still prevails in
topic diversity and zero-shot cross-lingual document classification. Hence, the preprocess-
ing steps need further investigation to mitigate this problem. For reference, we attempted
to improve the coherence performance by increasing the quality and number of bilingual
dictionary entries. While Cb-CLTM still cannot stand out from other comparative models,
our strategy did increase the coherence score.

Since it is more challenging to extract common topics across languages from different
language families, we first evaluated the English–Chinese corpora and English–Japanese
corpora in our experiments. It is part of our future work to see whether Cb-CLTMworks well
in languages from the same family, such as Indo-European languages.

Last but not least, Cb-CLTM requires a cross-lingual word vector space as a language
bridge for linking topics across languages. In this study, we adopted the orthogonal transfor-
mation to align two pre-trained monolingual word spaces since it is a well-studied approach
and has a solid theoretical foundation [42,46]. Nonetheless, transformer-based language
model becomes a rising trend and has shown its capability of learning cross-lingual word
representations in recent studies [14,40]. To the best of our knowledge, only few works
(e.g., ZeroShotTM [6]) develop cross-lingual topic model based on such a language model.
Therefore, incorporating the cross-lingual transformer-based language model is a possible
future extension of Cb-CLTM since it could potentially bring more deep relations between
languages that may help generating better cross-lingual topics.
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A Collapsed Gibbs Sampler for Topic Assignment

Notice that we omit α, θ, ψ, Hcs , ld from distribution p(zdi = t |z¬di ,w;α, θ, ψ, Hcs , ld)
and instead use p(zdi = t |z¬di ,w) for brevity, where w contains the words of a document.
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p(zdi = t |z¬di ,w) ∝ p(zdi = t, wdi |z¬di ,w¬di )

=
∫

p(zdi = t, wdi , θd |z¬di ,w¬di )dθd

=
∫

p(zdi = t, θd |z¬di ,w¬di )dθd · p(wdi |z¬di ,w¬di )

∝
∫

p(zdi = t |θd)p(θd |z¬di ,w¬di )dθd
︸ ︷︷ ︸

E(θd,t ) of Dirichlet

·φt (wdi |ψzdi =t ; Hcs
ld )

= (Nt
¬di

+ α)
∑T

t=1 N
t
d + αt

· φt (wdi |ψt ; Hcs
ld )
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