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Abstract

Histograms are widely used in selectivity estimation for one-dimensional data. Using the
one-dimensional histograms to estimate the selectivity of the multidimensional queries will
result in a high estimation error, unless the assumption of attribute independence is true.
Constructing a multidimensional histogram also brings great challenges. The storage of a
multidimensional histogram exponentially increases with the number of dimensions. In this
paper, we propose a density-model-based multidimensional histogram. It uses a lightweight
density model to predict the densities of a large number of regions instead of storing too
many buckets. The experimental results indicate that our method can provide highly accurate
selectivity estimations while occupying little space. In addition, the superiority of our method
is more evident in high-dimensional data.

Keywords Selectivity estimation - Multidimensional histogram - Query processing

1 Introduction

Selectivity estimation is an important task in query optimization. The accuracy of selectivity
estimation influences the efficiency of a query plan. Many synopses-based selectivity estima-
tion approaches, such as sampling [24,34], histogram methods [33,36], wavelet methods [22]
and kernel density estimation methods [11,13], have been proposed. Among these methods,
histogram is the most popular method to solve this problem due to its compactness, efficiency
and the variousness of applications [15].

Histograms partition the data points into buckets, and store the number of data points in
each bucket along with the range of each bucket. The study of histogram starts from the one-
dimensional histograms [15]. The one-dimensional query selectivity can be easily estimated
based on the one-dimensional histograms. Constructing the one-dimensional histograms such
as the equi-width histogram [20], equi-depth histogram [28], V-optimal histogram [16] and
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some variations [9,36] are well studied in previous researches, therefore, we will not discuss
much about this problem here.

Multidimensional selectivity estimation is a problem very different from the one-
dimensional version. Of course, we can also estimate the multidimensional selectivity
estimation based on the one-dimensional histograms according to the assumption of attribute
independence. However, this assumption is always violated in real-life data, especially in big
data. As the number of dimensions increases, there may exist embedded associations among
different attributes.

Constructing a multidimensional histogram is a good way to summarize the multidimen-
sional data. However, constructing a multidimensional histogram brings more challenges
than constructing a one-dimensional histogram. Usually, it is not easy to extend the meth-
ods of constructing a one-dimensional histogram to accommodate to the multidimensional
data. First, high dimensions result in a high degree of freedom for bucketing. The bucket-
ing schemes for multidimensional data are not only about choosing the bucket boundaries,
but also related to the order of dimensions to deal with and the number of buckets in each
dimension. Second, the storage of a multidimensional histogram is costly, since the space
cost of a histogram exponentially increases with the number of dimensions. For example,
if we equi-width bucket each dimension into ten parts, a 3D histogram will be composed
of one thousand buckets. Furthermore, the information in each bucket also increases with
the number of dimensions. In addition, there is a lot of space containing no data points in
real-life multidimensional data, suggesting that using grid buckets such as the equi-width
and equi-depth histograms will result in a great waste of storage. Third, the accuracy of esti-
mating a multidimensional selectivity based on a histogram with limited number of buckets
is not satisfactory [6]. The data points in the multidimensional space are more likely to be
non-uniformly distributed, so it is difficult to separate the data points into uniform-density
buckets. Consequently, the selectivity estimation based on the uniform-density assumption
is not reliable.

The accuracy of selectivity estimation based on existing histograms is not satisfactory. In
general, there are two ways to increase the accuracy of a histogram. The first one is to find
an appropriate bucketing scheme which raises the uniformity of the data inside each bucket.
But it is difficult to find such an optimal bucketing scheme for the multidimensional data.
Even constructing a 2D V-optimal histogram is NP-hard [26]. The second one is to increase
the number of buckets. As the number of buckets increases, the number of data points in
each bucket reduces. Consequently, the estimation error brought by the uniform-density
assumption reduces. The second way is more practical, but it is on the cost of increasing the
histogram size at the same time.

We attempt to construct a compact and accurate histogram for multidimensional selectivity
estimation. However, it is difficult to achieve these advantages at the same time. Usually, a
histogram with more buckets and more information in each bucket leads to a more accurate
estimation. Nevertheless, we do not want to raise the accuracy at the price of increasing the
space cost. We consider to form a synopsis embedding the density information of a large
number of buckets without occupying much space. Using machine learning models to replace
some buckets seems to be a good way to reduce the space cost, due to their ability to model
a lot of information while occupying little space.

The simplest idea of using machine learning models to handle the selectivity estimation is
to train a regression model mapping each query in the workload to its selectivity. But tuning
a good model for a high-dimensional data requires a large number of pre-computed queries.
And executing those queries on the big data is a huge cost. In addition, if a new query does
not follow the distribution of the pre-computed queries, the prediction of the new query based
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on the model is not reliable. In order to avoid collecting the costly pre-computed queries, we
would like to learn a model from the data instead of the queries.

We propose a method called the density-model-based multidimensional histogram
(DMMH) to meet these needs. We train a density model to predict the densities of some
buckets instead of storing too many buckets. It saves a lot of space without reducing the
accuracy. DMMH also stores some back-up buckets that cannot be predicted by the density
model. DMMH estimates the selectivity of a query by summing up the densities of the regions
predicted by the density model and the densities of the back-up buckets in the query range.

The idea of our DMMH starts from learning a model mapping each equi-width bucket to
its density, since equi-width bucketing is the simplest and efficient bucketing scheme which
can be accomplished with one pass of data. Besides, the equi-width buckets are easy to be
encoded, because the shape of all the buckets is the same. Furthermore, a density model is
able to restore the information of the equi-width buckets, since the bucket boundaries can
be computed without accessing the data as long as the data domain is known. There is still
a problem of a multidimensional equi-width histogram, that a large number of buckets are
empty. Fitting the density model to those empty buckets is a huge waste, suggesting that,
it requires a larger model or longer training time to tune the model well. In addition, the
prediction error of the empty buckets will bring much error to the selectivity estimation
result. In order to avoid increasing the difficulty of training the model, we only train the
density model for a subset of the equi-width buckets. We find the dense regions where most
of the data concentrates by clustering. We then train a density model predicting the density
of each bucket in the dense regions. Finally, we store some back-up buckets not in the dense
regions. In this way, we make use of both the machine learning model and some equi-width
buckets to form a compact synopsis.

We make the following contributions in this paper.

— We proposed a density-model-based multidimensional histogram (DMMH). We use a
data-driven machine learning model to replace a large number of equi-width buckets.

— We compare our DMMH with the sampling-based estimator and some typical multi-
dimensional histograms including the equi-width histograms, equi-depth histograms,
GenHist and STHoles. The experimental results demonstrate that our method outper-
forms these synopses. Our DMMH is more accurate while occupying less space. The
superior of our method is more evident for high-dimensional queries.

The remaining parts of this paper are organized as follows. In Sect. 2, we survey the related
works for this paper. In Sect. 3, we introduce the construction of DMMH and the selectivity
estimation based on DMMH. In Sect. 4, some extensions are introduced. Section 5 shows
the performance of our method. Finally, we conclude this study in Sect. 6.

2 Related work

Histograms are the most widely used synopses in selectivity estimation. They are good statis-
tics to summarize data. In [29], the authors introduced several classes of histograms offering
high accuracy for various estimation problems. Some widely used one-dimensional his-
tograms including equi-width histograms, equi-depth histograms and V-optimal histograms
are introduced in a survey of synopses [6].

Constructing a multidimensional histogram brings more challenges. As we discussed
in the introduction, most of the one-dimensional histograms are not easy to accommodate
to the multidimensional data except the equi-width histogram. However, the accuracy of
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a multidimensional equi-width histogram is unacceptable, unless the data distribution is
uniform [6]. Most of the existing multidimensional histograms attempt to separate the data
into buckets with close-to-uniform density, since the density of a region inside a bucket
is estimated according to the uniform-density assumption. The multidimensional equi-depth
histogram [25] arbitrarily chooses one dimension and separates the data along this dimension
into equi-depth buckets. Then, each bucket is continuously split according to the remaining
dimensions in the same way. Each dimension is split into B'/¢ buckets, where B is the
number of buckets, and d is the number of dimensions. MHIST [30] starts with one bucket,
and greedily chooses one dimension and one bucket to partition at one time. In each step,
it uses the one-dimensional bucketing scheme, such as MaxDiff and V-optimal, to find the
bucket in most need of partitioning. Min-Skew [2] supports selectivity estimation for spatial
queries. It uses a greedy approach to partition the existing region into two in each step, while
trying to minimize the spatial-skew of the grouping.

GenHist [10] allows overlapping buckets. It iteratively (1) partitions the data into equi-
width buckets, (2) finds the dense buckets whose densities are higher than the average of
their adjacent buckets, (3) stores each dense bucket and sets its density as the number of
the elements exceeding the average density of its neighboring buckets and (4) removes the
tuples in the dense buckets exceeding the average density of their adjacent buckets from
the data. The construction process keeps storing the dense region and removing some data
in the dense regions from the dataset, which makes the remaining data more uniformly
distributed. Since the selectivity is estimated according to the uniform-density assumption,
more uniformly distributed data leads to more accurate estimation results. But it requires
several passes of data while the equi-width and equi-depth histograms require only one-
pass of data. Consequently, the construction time of a GenHist is higher than the equi-depth
histograms. In addition, since the GenHist allows overlapping buckets, it has to scan all the
buckets in order to answer a query. Thus, its estimation efficiency is lower than the equi-width
histograms.

Besides the static histograms built from the data, there are some self-tuning histograms
using query results to dynamically build the histogram. The self-tuning histogram is first
proposed in reference [1]. It uses query feedback to refine buckets. STHoles [4] allows
buckets to have ‘holes’ rather than the overlapping of buckets. Different from other bucketing
schemes, the number of tuples in each bucket in this histogram is computed according to
the query feedback. It outperforms other data-driven histograms in most cases. But it does
not work well for high-dimensional data, since its ability to capture the pattern based on the
workload is diminished for multidimensional data. Because of its construction mechanism,
a self-tuning histogram is sensitive to the queries order, suggesting that, changing the order
of the learning queries has a significant impact on the histogram precision [18]. That is, a
bad structure in the beginning will result in the local optima with high estimation errors. In
addition, the STHoles traces the differences between the execution and estimated feedback
at individual bucket level of the histogram, which increases the accuracy and also raises the
overhead of execution time [5,17].

Nowadays, the machine learning methods are adopted to database. Some works use
machine learning methods to solve the problem of selectivity estimation [7,12,27,35]. Most of
the existing learning-based methods are query-driven methods [7,19,27], which learn models
from the true selectivity of each query in the workload. The benefits are the high estimation
efficiency and its ability to handle multidimensional range queries. However, collecting the
training set is often expensive when the workload is unavailable or not sufficient, since the
queries are required to be executed on big data. QuickSel [27] is a query-driven selectivity
learning framework, which builds an internal model of the underlying data. It is reported to
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be more efficient than the query-driven histograms. Reference [19] builds a multiset convo-
lution network (MSCN) on the sampling-based estimation to solve cardinality estimation.
Some data-driven methods are proposed in recent years, most of them attempt to capture the
joint probability distribution from a sample of data. They do not require the query workload,
but their performance largely depends on the sample. Some recent works [12,35] proposed
unsupervised learning methods which learn the joint probability distribution based on the
autoregressive density estimator MADE. DeepDB [14] proposed a class of deep probabilistic
models based on the relational sum product networks (RSPNs).

Usually, there is a trade-off between the accuracy and the space cost. The accuracy
increases with the number of buckets and the information stored in each bucket. If we want
to increase the accuracy without raising the space cost, we need more compact histograms.

3 DMMH: density-model-based multidimensional histogram

The structure of DMMH and some definitions will be introduced in Sect. 3.1. The construction
of DMMH will be shown in Sect. 3.2. At last, we will introduce the selectivity estimation
based on DMMH in Sect. 3.3.

3.1 Definitions and framework

As we introduced before, the density-model-based multidimensional histogram (DMMH) is
composed of a density model, some dense regions and some buckets out of the dense regions.
Each bucket in DMMH is in the form of a hyper-rectangle with multidimensional boundaries,
and the count of data points in that bucket.

We first give some definitions before introducing the construction of DMMH.

We define a d-dim bucket and its density as follows.

Definition 1 d-dim bucket: a d-dimensional rectangle whose boundary is [l1, ri, I,
r2, ..., 14, rq]. The l; and r; mean the left and right boundaries of the ith dimension. We call
the distance between /; and r; the length of the bucket in the ith dimension.

Definition 2 The density of a bucket: the number of data points inside the bucket.

The boundary and the density are the total information of a bucket in a multidimensional
histogram. In order to avoid the huge cost of storing too many buckets, we would like to use
a regression model to replace some buckets. The main tasks before getting the training data
include choosing the bucketing scheme and encoding each bucket. We first consider the most
common d-dim bucket, the regression model need to map its 2d-dimensional boundary to
its one-dimensional density. Thus, we need to compute the densities of a large number of
buckets chosen randomly from the data domain to tune an accurate model. It is the same with
the workload-based methods, if the densities of these buckets are known. However, if the
workload is not available in advance, computing the densities on big data is costly. Modeling
a histogram including the non-overlapping buckets in different shapes is not feasible. We
take the equi-depth histogram for an example. An equi-depth histogram separates the data
into buckets with the same density. Thus, the boundaries of the buckets cannot be computed
without accessing the data, since the boundaries are related to the data. We cannot use a
regression model to restore the information of the buckets in an equi-depth histogram. In
addition, there is no need to predict the densities of the equi-depth buckets, since their
densities are the same.
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We finally choose the simplest equi-width histogram, because the information of an equi-
width bucket can be ideally restored by a regression model. The boundaries of the equi-width
buckets can be computed directly as long as the data domain is available and the number of
buckets in each dimension is known. And the densities of the buckets can be predicted by the
regression model. Thus, we do not need to store the histogram along with the density model
any more. In addition, the density model can be simplified by reducing the dimensions of the
boundary information. Since the equi-width buckets are in the same shape, we can use the
d left boundaries [/, [2, . . ., lz] of a bucket to represent the bucket. We call the set of these
left boundaries the start point of the bucket, and define it as follows.

Definition 3 The start point of a d-dim bucket: the set of the left boundary in each dimension
i, by ooy gl

Thus, the density model can be trained by mapping the start point of each equi-width
bucket to its density. The densities of the buckets can be computed with one pass of data.

After introducing the definitions about our new histogram DMMH, we will introduce the
framework of our DMMH. The framework of our DMMH is shown in Fig. 1. The red dotted
line fences the construction of the DMMH. We cluster a sample of the data to find the dense
regions. We partition the data with an equi-width bucketing scheme. We count the densities of
a subset of the equi-width buckets in the dense regions, and train a density model by mapping
the start point of each bucket to its density. The other non-empty buckets out of the dense
regions are stored in the DMMH. Thus, the DMMH is finally composed of a density model
and a small number of multidimensional buckets. The blue dotted line fences the selectivity
estimation based on the DMMH. The estimation is computed by summing up the density
of each bucket in the query range. The details of constructing a DMMH and the selectivity
estimation based on a DMMH will be introduced in Sects. 3.2 and 3.3, respectively.

3.2 The construction of a DMMH
We divide the construction of DMMH into three steps.

In the first step, we find the dense regions where most of the data concentrates. We get a
sample from the data, and we cluster the sample with the Mini-Batch-Kmeans [32] method.
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The Mini-Batch-Kmeans reduces the computation cost by orders of magnitude compared
to the classic batch clustering algorithm, and the clustering result is comparable with other
clustering methods. We calculate the boundary of each cluster, and regard each one as a
dense region. Since a large number of regions are empty in the multidimensional data, tuning
a density model fitting all the regions will increase both the model size and training difficulty.
In addition, the prediction error of a large number of empty buckets will bring much estimation
error. Therefore, training a model for the dense regions is a good choice to form a lightweight
synopsis. In general, the dense regions do not cover all the data, since they are captured by the
sample. The data outside the dense regions will be stored in some multidimensional buckets.

In the second step, we partition the data with an equi-width bucketing scheme, and the
buckets in the dense regions will be used to train the density model. We adopt the equi-width
bucketing scheme, because it is simple, efficient and can be well restored by a regression
model. Given the data domain and the number of buckets in each dimension, the density of
each bucket can be computed with only one pass of data. We train a density model mapping
the start point of each bucket in the dense regions to its density. In the implementation, we
use the index of the start point to represent the bucket.

In the third step, we store the non-empty buckets outside the dense regions. The density
of these buckets can be computed along with the equi-width bucketing in the second step.
Thus, the densities of any regions in the data domain can be estimated by either the density
model or these back-up buckets. Including these non-empty buckets in the DMMH is cost-
effective, since these buckets are only used to store the rare data outside the dense regions.
That is, storing these buckets will not cost too much space. However, without these non-
empty buckets for the outliers outside the dense regions, the dense regions will be extremely
enlarged and contain much more empty regions resulting in a high prediction error.

Algorithm 1 DMMH-Construction

: Input: DATA D, Clusters |C|, EW-Buckets B, dimension d

: Output: model f, back-up buckets UnirB, DenseRegions [R1, R2, ..., R|C]|]
: Get the Sample S < D

: Clustering S in to |C| clusters with Mini-Batch-Kmeans

: for each cluster C; do

DenseRegions R; = Boundary(C;)

: Training Data Position =[], Density =[]
: Back-up Buckets UnitB =[ |

: Partition D into B¢ equi-width buckets.

10: Left =1[l1,1p,...,14]

11: Unit = [AGh, 22l raZla

. B
12: for each equi-width bucket b; inside DenseRegions do
13:  StartIndex =[]
14:  for dimension j in d do
15: StartIndex+ = %ﬁ;{tm
16: Position+ = StartIndex
17:  Density+ = density(b;)
18: for each non-empty bucket b; outside DenseRegions do
19: UnitB+ = b;
20: Train density model f : Position — Density
21: Return: f, UnitB, [R], Ra, ..., R|c|]

The pseudo-code in Algorithm 1 introduces the construction of DMMH. The |C| means
the number of clusters, B means the number of buckets in each dimension of the initial equi-

@ Springer



978 M. Zhang, H. Wang

width histogram. The first step starts from choosing a random sample from the data (Line 3).
It then clusters the sample with the Mini-Batch-Kmeans method (Line 4). The boundary of
each cluster fences a dense region (Line 5-6). The next step is to prepare the training set for
the model. We would like to train a density model mapping the position of each equi-width
bucket to its density. The algorithm initializes the training sets as empty sets (Line 7). As
we mentioned before, we also need some back-up buckets outside the dense regions (Line
8). The data are then partitioned into B¢ equi-width buckets (Line 9). We only care about
the buckets inside the dense regions and the non-empty buckets outside the dense regions.
We use the index of the start point of each equi-width bucket to denote the position of each
bucket. The Left is the set of the left boundary of the dataset in each dimension (Line 10),
and the Unit is the set of the unit length in each dimension (Line 11). The Left and the
Unit are prepared to compute those indices. The algorithm computes the position and the
density of each equi-width bucket b; in the dense regions (Line 12—17). The boundary of b;
is a 2d-dimensional value [l{, r, >, 12, ..., lq, rq], and we use b;[2 - j] to denote the left
boundary of bucket b; in dimension j (Line 15). We will use an example to show how to
get the index of a bucket later. The non-empty equi-width buckets outside the dense regions
are stored in the DMMH (Line 18-19). The density model is finally trained by mapping the
Position to the Density (Line 20).

In this way, an equi-width histogram is transformed into a regression model f, some back-
up buckets and some dense regions. We use the following example to show some details in
the construction of DMMH.

Example 1 Figure 2 shows the process of constructing a DMMH for the 2D data. This figure
simply illustrates the process of equi-width bucketing, data clustering, training the model
and getting the back-up buckets. The red rectangles are the boundaries of three clusters, they
fence the dense regions of the data. Each bucket in the grid is an equi-width bucket. The
buckets inside the dense regions are used to train the density model. The non-empty buckets
outside the dense regions (shown as the blue dotted rectangles) are also maintained in the
DMMH.

In the implementation of this algorithm, the training set for the density model can be
captured with one pass of data. We use the following example to show the location of a given
data point and the index of a bucket.

Example 2 Figure 3 shows a 2D equi-width histogram of a dataset whose boundary is
[1.2,2.0, 0.1, 0.3]. The start point of the dataset is Left = (1.2, 0.1), and the unit of each
dimension is Unit = [0.4, 0.1]. The index of a bucket is the index of its start point. Suppose
we want to find the index of the bucket where a data point d(1.70, 0.25) locates, the index
can be computed as follows.

ey

StartIndex = (V[O] — Left[O]J V[l] - Leﬂ[l]J) =.1).

Unit[0] Unit[1]

As shown in the example above, the location of each data point can be found in O(1).
Thus, the density of each bucket can be computed with one pass of data, no matter it is in the
dense regions or not. Since we do not care about the empty buckets out of the dense regions,
we use a HashMap to store the non-empty buckets outside the dense regions. Once a data
point locates in a bucket outside the dense regions, we insert the bucket into the HashMap or
increase its density in the HashMap. Thus, both the training set and the back-up buckets can
be obtained in linear time.
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Using a density model instead of storing the buckets in the dense regions largely reduces
the size of the synopsis. But we do not completely abandon the equi-width buckets, we
also stored some back-up buckets outside the dense regions. The existence of some back-up
buckets in the DMMH benefits both the model training process and the estimation accuracy.
On the one hand, it is good for us to keep a lightweight model. If we enlarge the cluster
boundaries to cover the back-up buckets, a large number of empty buckets will be involved
into the dense regions. Thus, it may require a larger model fitting all these buckets. On
the other hand, it avoids introducing the prediction error of too many empty buckets to the
estimation. Since we compute the estimate by summing up the densities of all the equi-width
buckets in the query range, the prediction errors of too many empty buckets influence the
estimation accuracy.

Thus, the DMMH makes a combination of the equi-width buckets and a density model to
form a highly accurate synopsis while occupying little space.

3.3 Selectivity estimation based on a DMMH

In this section, we introduce the selectivity estimation based on the DMMH. The algorithm
estimates the selectivity of a query by summing up the densities of the equi-width buckets
in the query range. The buckets inside the dense regions will be predicted by the density
model, and true densities of the non-empty buckets outside the dense regions are stored in
the back-up buckets.
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Fig.4 Selectivity estimation based on DMMH

Algorithm 2 describes the selectivity estimation based on the DMMH. The input includes
the density model f, the back-up buckets Unit B, the dense regions [Ry, Ry, ..., R|c|] and
a query Q. The estimation is initialized as zero (Line 3). Each bucket overlapping the query
range contributes to the query result. We separate the query estimation into two steps. In the
first step, the algorithm computes the density of the intersection between the query Q and
the dense regions (Line 4-6). Since there exist some buckets partially overlap the query, we
allocate a portion of its density to the query result according to the ratio of the intersection
to the bucket range (Line 5). The density of each bucket in the dense regions is predicted by
the density model according to the index of its start point (Line 6). In the second step, the
algorithm computed the density of the intersection between the query Q and the non-empty
buckets outside the dense regions (Line 7-9). The only difference of this step from the first
step is that we can get the true densities of the non-empty buckets, since they are stored in
the DMMH.

Algorithm 2 DMMH-SelectivityEstimation

1: Input: f, Unit B, DenseRegions[R{, Ry, ..., R|c|], Query O
2: Output: SelectivityEstimation Est

3: Est =0
4: for each bucket B; overlaps the intersection of Q and DenseRegions do
5: . _ ONB;

: ratio = =p—

6:  Est+ = ratlio - f(StartIndex(B;))

7: for each bucket B; overlaps the intersection of Q and UnitB do
8:  ratio= 7Q2_B"
1

9:  Est+ =ratio - density(B;)
10: Return: Est

We use the following example to show the process of selectivity estimation based on our
DMMH.

Example 3 Figure 4 shows the query to be estimated and the DMMH of a 2D dataset. The
DMMH is composed of the dense region fenced by the red rectangle, and the non-empty
buckets outside the dense region (shown as the blue dotted rectangles). The query Q to be
estimated is shown as the green rectangle. As shown in the figure, the query overlaps both
the buckets B, and By in the dense region and the non-empty buckets B; and B3 outside
the dense region. According to Algorithm 2, the densities of the non-empty buckets outside
the dense regions are stored in DMMH. The density of the buckets in the dense regions are
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predicted by the density model f, the density model can predict the density of a bucket
according to its StartIndex, which is introduced in Example 2. The selectivity of the query
is estimated by summing the density of the intersection between the query and each bucket
as shown in the figure. Each intersection is estimated according to the ratio of the overlap
to the entire bucket based on the ‘uniformly distributed’ assumption. For example, the ratio
of the overlap between the query and By to the range of By is 0.5, thus, the density of the
intersection is estimated by 0.5 x density(B4). Since By is in the dense region, its density
is not stored in DMMH, but needs to be estimated by the density model f according to its
StartIndex.

The space cost of the DMMH Space(DMMH) = Space(model) + O(2-d - B + B)
includes two parts, i.e., the cost of the density model and the cost of the back-up buckets.
Different kinds of models have different cost models, and the total space cost of the back-up
buckets is O(2 - d - B + B), where B is the number of buckets and d is the number of
dimensions. Each bucket requires 2 - d values for boundaries and one value for density.

The time cost of estimating the selectivity estimation based on our DMMH is
Time(DMMH) = Bgense - Time(Predict) + B - O(1), where Bgense is the number of
equi-width buckets in the dense regions overlap the query, Time(Predict) is the time cost
of predicting the density of an equi-width bucket based on the density model, and B means
the number of the back-up buckets. The selectivity estimation time includes (1) predicting
the densities of the equi-width buckets in the intersection of the dense regions and the query
and (2) searching the densities of the buckets outside the density region from the non-empty
back-up buckets.

Even though the estimate is calculated by accumulation, the estimation process is efficient.
First, the dense regions limit the buckets used to compute the estimation. Second, the densities
of the buckets inside the dense regions could be predicted in parallel by the density model.
Third, accessing the back-up buckets in a HashMap is efficient. Thus, both the densities of
the buckets inside and outside the dense regions can be computed efficiently.

4 Extensions

Our DMMH models the densities of a large number of equi-width buckets. The estimation
accuracy largely depends on the denseness of the initial equi-width histogram and the predic-
tion accuracy of the density model. More buckets in the training set lead to a more accurate
model, but it also results in increasing the difficulty of both collecting the training set and
tuning the model. In this section, we propose some methods to reduce the training set and
increase the accuracy when the model is not well tuned.

4.1 Cut down the training set

In our DMMH, we use the equi-width buckets inside the dense regions to train the model.
However, since our dense regions are in the form of multidimensional rectangles, they are
still possible to include many empty buckets. We would like to exclude some of the empty
buckets not adjacent to non-empty buckets from the training set.

We use an example to illustrate this strategy. Suppose the girds in Fig. 5 are the buckets
inside a cluster boundary of a 2D dataset. The regions labeled by the red filled circles are
non-empty regions, the others are empty regions. The training set includes three kinds of
regions, the non-empty ones (labeled by the red circles), the empty ones (labeled by the blue
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Fig.5 Cut down the training set
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filled circles) adjacent to the non-empty ones and some other empty regions randomly chosen
from the remaining regions (labeled by the blue hollow circle). In this example, the last kind
of regions are randomly chosen with a probability of p = 1/3. Even though this method
only reduces a small number of records in the training set in this example, it will result in a
significant reduction of the training set when dealing with a large high-dimensional data.

4.2 Add a filter to DMMH

The estimation accuracy based on the DMMH largely depends on the accuracy of the density
model. Usually, a model in a small size is sufficient to provide satisfactory predictions for a
large number of buckets. But we also consider the situation that the model is not well tuned
to accurately predict the densities of all the buckets. We add a filter to the DMMH to store
the densities of the buckets whose predictions are far from their true densities.

After training the model, we test the prediction error of the buckets in the dense regions.
The buckets with high prediction errors will be inserted into the filter. The estimation process
should also be modified. The intersection of a query and a bucket in the filter should be
computed based on its true density stored in the filter instead of the prediction.

Adding a filter to the DMMH costs a little more construction time, but it will increase the
accuracy of the DMMH.

5 Experiments

In Sect. 5.1, we introduce the settings including the datasets, the accuracy metric and the
implementation of the density model. In Sect. 5.2, we compare the performance of our
methods with some previous methods. In Sect. 5.3, we make a conclusion of the experimental
results.

5.1 Experimental settings

DataSets: We use three real datasets and two synthetic datasets to evaluate the performance.
The synthetic datasets include GAUSS2D and GAUSS3D datasets. Both of these two datasets
contain 10M tuples. The GAUSS2D and GAUSS3D are the combinations of four and ten
different Gaussian distributions with different random means and standard deviations, respec-
tively. The real datasets include the ROAD2D, ROAD3D and POWER7D datasets. The
ROAD3D dataset! was constructed by adding elevation information to a 2D road network
in North Jutland, Denmark. The dataset contains 434,874 tuples. The POWER7D dataset is

1 http://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark).
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Fig.6 The distribution of the datasets in the first two dimensions

a subset of a 9-dimensional dataset ‘Individual household electric power consumption Data
Set.’2 This dataset contains 2,075,259 tuples and 9 attributes. The first two attributes of the
9D dataset are ‘date’ and ‘time,” and we use the remaining seven numerical attributes to form
the POWERT7D dataset for our experiments.

Figure 6 shows the distribution of 10,000 samples from each dataset in the first two

dimensions. The ROAD2D is the same with the first two dimensions of ROAD3D. Fig-
ure 6b shows the distribution of the first two numerical attributes ‘global_active_power’
and ‘global_reactive_power’ of the POWER7D dataset, and these two attributes mean ‘the
household global minute-averaged active power” and ‘the household global minute-averaged
reactive power,’ respectively. Most of the minute-averaged power concentrate in a small
region, therefore, the distribution shown in Fig. 6b is skew.
Metric: We use the Q-Error [23] to measure the accuracy of the selectivity estimation result
due to its symmetry. It is widely used in selectivity estimation researches [7,12,24], and it
relates to the query plan quality. In the following equation, § is a selectivity estimate, and s
is the true selectivity.

Q-Error = max { , é} . 2)

We choose queries with nonzero selectivity in the experiment and set the minimum estimation
to be one, thus, none of the estimation and the true selectivity can be zero.

L | Y

Query: The queries for the ROAD2D, ROAD3D, GAUSS2D and GAUSS3D were generated
by randomly choosing the query boundaries from the data domain. We chose the queries with
nonzero selectivity in the following experiments.

The queries for the POWER7D were generated in a different way. Since the data distri-
bution is highly skew in high-dimensional data, the randomly chosen queries rarely have
nonzero results. In order to avoid most of the generated query results to be zero, we limited
the range to generate the query boundaries in each dimension for the POWER7D dataset.
The left boundary of the query range in each dimension was randomly chosen from the first
quarter of the entire value range of the corresponding attribute. Similarly, each right boundary
was randomly chosen from the last quarter of the corresponding attribute range.

The Implementation of the Density Model: All the experiments were conducted in Python
3.5. We used the RandomForestRegressor in the scikit-learn package to model the relation
between each bucket and its density. A random forest is a meta-estimator that fits a number of
decision tree classifiers on various subsamples of the dataset and uses averaging to improve
the predictive accuracy and control over-fitting [3]. We simply adopted the RandomForestRe-
gressor since it is widely used and its parameters are easy to tune. We varied its parameters
n_estimators and max_depth to form different density models.

2 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption.
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Fig.7 The impact of synopses size on the accuracy

5.2 Experimental result

In this section, we compare the performance of our method with the sampling-based esti-
mation (Sampling) and some typical multidimensional histograms including the equi-width
histogram (EW), equi-depth histogram (ED), GenHist and STHoles. The sampling-based
estimator is the baseline method for big data analysis. The EW and ED histograms are the
most widely used histograms, GenHist is the most typical histogram allowing overlapping
buckets, and STHoles is the state-of-the-art query-driven histogram. Some recent query-
driven machine learning models for selectivity estimation, such as reference [7], are not
included in the experiments. Because the query-driven models require a large number of
pre-computed queries for training, and collecting the training data is expensive for big data.

In Sect. 5.2.1, we test the influence factors of the accuracy, including the synopsis size, the
query selectivity, the denseness of the initial equi-width bucket and the number of clusters. In
Sect. 5.2.2, we test both the construction efficiency and the estimation efficiency of different
synopses. We test the impact of adding a filter to the DMMH in Sect. 5.2.3, and we report
the performance of the strategy that cutting down the training set in Sect. 5.2.4.

5.2.1 Accuracy

EXP1: The impact of synopsis size on the accuracy.

Figure 7 shows the accuracy of these six synopses on the five datasets. We report the
average of the Q-Error of 100 queries for each dataset. The lower the Q-Error, the higher the
accuracy of selectivity estimation. We varied the parameters n_estimators from 10 to 100,
and max_depth from 5 to 8 in the RandomForestRegressor to form density models with
different sizes. The synopsis size of the EW, ED, GenHist and STHoles is determined by the
number of buckets in these histograms. The synopsis size of the sampling-based estimator is
the size of the sample.

We test the accuracy of these synopses in different sizes. It is clear that the accuracy
increases with the synopsis size, since more samples or more buckets lead to more accurate
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estimation. Our DMMH outperforms the other methods on accuracy with the same space
cost in most of the cases. We can also learn from the figure that the number of dimensions
influences the accuracy of these synopses. The superior of our DMMH is more evident in
handling the multidimensional data.

The EW, ED, GenHist and DMMH perform better than Sampling and STHoles for the 2D
and 3D datasets in most cases. Sampling-based estimation is not reliable when the sample size
is not sufficient. The histograms are more accurate for the low-dimensional data since they
can provide some summarized statistical information. But the sampling-based estimation is
more reliable for high-dimensional data when the sample size is large and enough. As shown
in Fig. 7c, the sampling-based estimation is finally comparable to the DMMH when enough
samples are provided. The reason is that the samples represent the distribution of the entire
dataset, while the buckets only store the density of each bucket without the distribution inside
the bucket. The accuracy of the STHoles largely depends on the workload, whose value is
diminished for high-dimensional data. If the given query does not intersect with the workload,
the STHoles has no help for the query. Most of the other synopses do not perform well for
POWERT7D dataset, because limited number of buckets cannot provide enough information
for the high-dimensional selectivity estimation. However, the accuracy of our DMMH does
not suffer much from the high dimensions, since we use a small model predicting the densities
of a large number of buckets. Therefore, our DMMH performs better than the other synopses
while occupying the same space.

All the synopses perform well for the ROAD2D dataset except the sampling-based method,
because the distribution of the ROAD2D is more uniform compared with the other datasets
as shown in Fig. 6. For the ROAD3D, GAUSS3D and POWER7D datasets with more skew
distributions, the superior of our DMMH is more evident.

EXP2: The impact of selectivity on the accuracy.

Figure 8 shows the impact of the query selectivity on the accuracy of different synopses
including the EW, ED, GenHist and our DMMH. The synopsis sizes for the 2D, 3D and
7D datasets are 27KB, 21KB and 787KB. The selectivities of the queries for the 7D dataset
are very small due to our generation method introduced in Sect. 5.1. The sampling-based
estimation and the STHoles are not involved in this experiment, since these synopses in a
small size do not perform well.

We can learn from the figure that the accuracies of all the synopses increase with the
selectivity. As the number of dimensions increases, the Q-Error of the EW, ED and GenHist
have growth in different levels, but our DMMH does not grow as much. The difference
of these synopses is more evident for 7D and 3D dataset compared with that for the 2D
dataset. Our DMMH learns the information of a dense equi-width histogram with only a
small model. Thus, it performs well for the low-selectivity queries. The error of a histogram-
based estimation is caused by the assumption of uniformity. A query with a high selectivity
is more likely to cover more complete buckets, thus, the region where the query partially
intersects with a bucket occupies only a small part of the result. The performances of these
synopses have little difference for the 2D dataset, but our DMMH is superior in the 7D
selectivity estimation.

EXP3: The impact of bucketing denseness on the accuracy of DMMH.

Our DMMH uses an equi-width bucketing scheme to prepare the training data for the
density model. The denseness of the initial equi-width bucketing scheme also influences the
accuracy of the DMMH. In this experiment, we test the accuracy of DMMH with differ-
ent bucketing densenesses. The experiment is conducted on the ROAD2D, ROAD3D and
POWERT7D datasets. The size of the DMMH for each dataset is 33KB. We varied the number
of buckets in each dimension to form different bucketing densenesses. The result is shown in
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Fig.9 The impact of bucketing on accuracy

Fig. 9. We can learn from the figure that, the accuracy increases with the number of buckets
in each dimension. The curve tends to be stable as the number of buckets increases to a large
number in Fig. 9c. The reason is that the number of buckets in the dense regions increases
with the number of buckets in the original equi-width histogram. Thus, the size of the train-
ing set increases accordingly. But such a small model is not possible to fit too many buckets
well, its prediction error may increase with the number of buckets. Therefore, the rate of the
Q-Error reduction slows down as the number of buckets increases to a large number.
EXP4: The impact of clusters on the accuracy of DMMH.

We cluster a sample of data to find the dense regions for the DMMH. In this experiment,
we test the impact of the number of clusters on the DMMH accuracy. The experiment was
conducted on the ROAD2D, ROAD3D and POWERT7D datasets. The number of buckets in
each dimension of the initial equi-width histograms for these three datasets is 100, 50 and
20. Figure 10 reports the average Q-Error of 100 queries for each dataset. It shows that the
Q-Error decreases with the number of clusters. As the number of clusters increases, the size
of each cluster decreases. Since we use a hyper-rectangle to form the boundary of a cluster,
a smaller cluster is more possible to include less empty equi-width buckets. Our DMMH
estimates the densities of the initial equi-width buckets in the dense regions based on the
density model predictions, therefore, the less empty buckets in the dense regions, the less
prediction errors for these buckets.

5.2.2 Efficiency

EXP1: The estimation efficiency.

We compare the efficiency of the different synopses, the result is shown in Fig. 11. We
test the estimation time of 100 queries with these synopses, and report the average estimation
time. The experiment is conducted on the GAUSS2D and GAUSS3D datasets. We can learn
from the figure that the efficiency of our DMMH is comparable with other synopses. The
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Fig. 11 Estimation efficiency

sampling-based estimation time is linear with the sample size. The EW is the most efficient
synopsis in the figure, because it can directly find each bucket intersecting with a query
according to the index. The ED and GenHist need to check the intersection between each
bucket and the query, thus they spend more time than the EW. The STHoles spends even
more time due to its tree structure. It is costly to deal with the intersection between a query
and a bucket with a child. The efficiency of our DMMH is only a little worse than the
sampling-based estimation.

EXP2: The construction efficiency.

In this experiment, we test the impact of the data size on the construction efficiency of
different synopses. The STHoles is not involved in this experiment since it is a query-driven
method. We compare the construction time of different synopses in the same size. Figure 12
reports the results. We can learn from this figure that the construction time increases with
the data size. The GenHist spends most construction time, since it requires accessing the
data several times, while the other methods only access the data one time. The EW spends
more construction time than the ED due to the construction of the indices, which benefits the
estimation efficiency. Our DMMH spends a little more time compared with the EW, due to
the model training and clustering. Computing the bucket densities of the initial dense equi-
width histogram does not cost much, since an equi-width histogram can be computed in one
pass of data. A little longer construction time is acceptable, since the synopsis construction
is done off-line, and the training and clustering do benefit the accuracy without reducing
much estimation efficiency. As the researchers keep making efforts to provide new ML and
clustering accelerators [8,21,31], the construction time of our DMMH will be further reduced
in the future.
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5.2.3 DMMH with a filter

In this experiment, we test the impact of adding a filter to a DMMH. We test the influence
of the filter size on the accuracy of DMMH with density models in different sizes. This
experiment is conducted on the real ROAD2D dataset and the synthetic GAUSS2D dataset.
The number of buckets in each dimension of the initial equi-width histogram is 100. We
use the average Q-Error of 100 queries to represent the accuracy of a DMMH. The result is
shown in Fig. 13. The filter size in this figure means the number of buckets in the filter. We
can learn from the figure that the Q-Error decreases with the filter size. The impact of the
filter on the DMMH with a 9KB model is more evident than that on a DMMH with an 18KB
model, because a larger model is more accurate and leaves little room for improvement.

5.2.4 Cut down the training set

In this experiment, we test the influence of cutting down the training set on the performance
of DMMH as we mentioned in Sect. 4.1. We conduct a DMMH in the size of 8KB for the
GAUSS2D dataset. We limit the synopsis in a small size to evidently show the change of the
error. The sampling probability p of inserting the empty buckets into the training set varied
from O to 1. Figure 14a, b shows the impact of p on the accuracy and the size of the training
set, respectively. The trend of the Q-Error gradually slows down as p increases, while the
size of the training set is in linear with p. Thus, the strategy can appropriately reduce the size
of the training set without reducing much accuracy.
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5.3 Experimental summary

— Our DMMH can provide a more accurate selectivity estimation compared with some
typical synopses including the sampling-based estimator, equi-width histogram, equi-
depth histogram, GenHist and STHoles while occupying the same space.

— The efficiency of our DMMH is comparable to the other synopses.

— The accuracy superiority of our DMMH is more evident for the multidimensional query
with a low selectivity.

6 Conclusions

In this work, we propose a density-model-based multidimensional histogram (DMMH) for
selectivity estimation. This method makes use of machine learning to construct a density
model for multidimensional data. It reduces the space cost without reducing the estimation
accuracy. The experimental results demonstrate that our DMMH can provide more accurate
selectivity estimation results with less space cost. In addition, our method is superior in
handling multidimensional data. Our DMMH is a data-driven synopsis, and we will consider
using it in conjunction with the query-driven methods in the future.
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