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Abstract
Studies on named entity recognition (NER) often require a substantial amount of human-
annotated training data. This makes technical domain-specific NER from industry data
especially challenging as labelled data are scarce. Despite English as the surface language,
technical jargon andwriting conventions used in technical documents render the low-resource
language challengeswhere techniques such as transfer learning hardlywork. Relieving labour
intensive annotations using automatic labelling is thus an important research topic, seeking
ways to obtain labelled data quickly and consistently. In this work, we propose an iterative
deep learning NER framework using distant supervision for automatic labelling of domain-
specific datasets. The framework is applied to mineral exploration reports and produced a
large BIO-annotated dataset with six geological categories. This quality-labelled dataset,
OzROCK, is made publicly available to support future research on technical domain NER.
Experimental results demonstrated the effectiveness of this approach, further confirmed by
domain experts. The generalisation ability is verified by applying the framework to two other
datasets: one for disease names and the other for chemical names. Overall, our approach can
effectively reduce annotation efforts by identifying a much smaller subset, that is challenging
for automatic labelling thus requires attention from human experts.
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1 Introduction

The extraction of named entities from free text has been a core task of information extraction
(IE). Identifying salient information units, specifically a single token or a sequence of tokens,
as entities, and their types is the critical first step of IE. Named entity recognition (NER) [23]
refers to the IE techniques that identify and classify entities with predefined generic semantic
types such as person, location, and organisation. The term domain named entity recognition
(DNER), on the other hand, is used to emphasise domain-specific names, such as medical or
biological in DrugNER [29] and BioNER [38]. In this study, named entities in the geological
domain are of interest.

Recent years have witnessed success of deep learning architectures in advancing the state
of the art of NER. These deep learning solutions require little or no feature engineering,
addressing a common problem traditional NER systems suffered from. However, deep learn-
ingmodels require large amounts of training data reliably annotatedwith labels for the entities
[9]. It has been shown that such NER systems would perform at an unsatisfactory level, if
there is insufficient labelled data [43]. Deep model learning and evaluation depend heavily
on the reliability of the annotations [20].

For general purpose NER, labelled English text data are abundant. Annotated benchmark
datasets and off-the-shelf tools are available. For example, CoNLL-2003 English benchmark
dataset [28] is a collection of documents from Reuters news articles, annotated with four
entity types: persons, organisations, locations and miscellaneous names.1 It contains around
300,000 tokens of 22,137 sentences. OntoNotes5.0 [39] is an annotated corpus comprising
2.9 million words in topics of news, phone conversations, weblogs, broadcast, talk shows
in three languages (English, Chinese and Arabic) with structural information (syntax and
predicate argument structure) and shallow semantics (word sense linked to an ontology and
co-reference).2 Off-the-shelf standard NER tools are able to recognise named entities of a
restricted list of predefined entity types, such as location, person and organisation names,
money, date and time. Widely used tools include NLTK [2], SpaCy [16], Stanford Named
Entity Recogniser [10] and AllenNLP [12,24].

However,when it comes to real-world applications for domain-specific text, e.g. geological
exploration reports, they face the low-resource data problem similar to machine translation
between rare languages. There is no benchmark-annotated dataset relevant to this domain,
and it is not possible to find the right pivot language that allows us to take advantages of
existing high-resource NER tools. In geological domain, mineral and rock names are more
important and far common than person or organisation names.

Our domain-specific dataset is a collection of Western Australian mineral exploration
reports (WAMEX).3 The Department of Mines, Industry Regulation and Safety (DMIRS)
and Geological Survey and Resource Strategy Division (GSRSD) promote mineral explo-
ration investments through publishing geoscientific data to the exploration industry. Based
on statutory requirements, mineral explorers report their exploration activities and submit
collected data to DMIRS. After a period of confidentiality, these reports and data are made
publicly available to avoid repeated work and to reduce risks associated with exploration. For
mineral explorers, past exploration reports are an important resource to understand mineral
deposits and their geological and depositional environment in which they form. This may
include identifying the rocks that host the mineral deposit, their geological age and the key

1 https://www.clips.uantwerpen.be/conll2003/ner/.
2 https://catalog.ldc.upenn.edu/LDC2013T19.
3 http://www.dmp.wa.gov.au/Geological-Survey/Mineral-exploration-Reports-1401.aspx.
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genetic processes that may be revealed in stratigraphic formations. The six primary entity
groups of interest are, namely ROCK (rock types), MINERAL (minerals), TIMESCALE
(geological time scales), STRAT (stratigraphic unit names), LOCATION (locations in West-
ern Australia) and ORE_DEPOSIT (economically important elements or minerals that are
concentrated in rocks as well as mineral deposits). Presently, we are interested in six pri-
mary entity groups, but they can be extended to incorporate other groups such as major
geological structures in the area, which could be used as conduits for mineralising fluids; and
geochemical anomalies that may constrain the source of the mineralisation.

Among the different types of techniques for addressing the low-resource issue in the lit-
erature, distant supervision [30] is the most readily applicable to this study, as compared to
transfer learning [42], rule learning [34] and co-training [3]. This is because of the geologi-
cal terminologies reasonably readily available to us. Thus, in this paper, we propose a deep
learning-based distant supervision technique for automatic bootstrapping of labelled geo-
logical text data. A customised geological dictionary is created for initial data annotation,
following the standard BIO notation [26]. The annotated data are then used for training NER
models for labelling seen and unseen documents. Four architecturally different models are
evaluated, which employ RNNs (BiLSTM) and CNNs for word and character embeddings
with CRF and softmax for label decoding. Based on the experimental results, character-level
and word-level BiLSTM model and also word-level BiLSTM model performed higher than
other two models and generated similar results for our sequence tagging task.

This solution relies heavily on the coverage of the domain vocabulary, which incorporates
as much domain named entities as possible. Experiments were conducted with randomly
initialised, uniformly sampled word embeddings to train models based on end-to-end NER
architectures. The quality of our auto-labelled entities in the geological domain has been
assessed and confirmed by domain experts. The Auto-Labelled Set is evaluated on the Eval-
uation Set, which is manually annotated by the domain experts. To further demonstrate the
effectiveness of our proposed approach for auto-labelling of domain-specific data, further
experiments were conducted using two datasets outside the geology domain: one for disease
names and other for chemical names. Then the results are discussed in terms of the ability to
detect unseen entities in text and the influence of dictionary coverage. In summary, the main
contribution of the paper is twofold:

– A deep learning-based framework for generating high-quality labelled data for domain-
specific and low-resource named entity recognition;

– OzROCK4 - An annotated dataset, which is released to public to support information
extraction for the mineral exploration domain.

The paper is organised as follows. Related work is discussed in Sect. 2. Section 3 explains
the end-to-end deep learning-based distant supervision framework. Then the experimental
results are presented in Sect. 4. The paper concludes in Sect. 5 with an outlook to future
work.

2 Related work

2.1 Auto-labelling approaches

Learning an effective NER model for augmenting the labelled dataset is proposed to reduce
the manual annotation effort in creating the training dataset [11,30]. The main methods for

4 https://github.com/majiga/OzROCK.
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auto-labelling include transfer learning, rule learning, co-training and distant supervision to
address the challenge.

Transfer learning To train a deep learning model with a small amount of labelled data,
transfer learning [25,42] or retraining models that have been trained for different tasks that
have enough training data in the same domain are used by ignoring unlabelled data available
for the domain.

Rule learning Rule-based information extraction [4,41] is important to industry practi-
tioners, because of the need for a massive training dataset for machine learning techniques
and the ability to trace errors. Using a small labelled dataset and a large unlabelled dataset,
Snuba [34] iteratively generates rules to help in assigning of labels to the unlabelled dataset.

Co-training This method takes advantage of both labelled and unlabelled data to train two
independent models on two separate views of the data [3,36]. Two learning algorithms are
trained separately and then predict on unlabelled data to enlarge the training set of the other
model.

Distant supervision Distant supervision makes use of information present in knowledge
bases or domain vocabularies. This approach is chosen in our study because the geologi-
cal terminologies are well defined and consistent. We can integrate and make good use of
well curated, existing databases for various kinds of geological named entities. Shang et al.
[30,37] designed frameworks for noisy labels, generated using a dictionary only. A fuzzy
LSTM+CRF model with modified IOBES [27] labelling scheme is introduced to tackle the
multi-label tokens. AutoNER and AutoBioNER frameworks were proposed with tie or break
labelling scheme for dictionary-based noisy labels. Their models are refined by unknown
category phrases mined from the documents and corpus-aware dictionary tailoring was done
for categorised entities. Deep learning-based auto-labelling is experimented using a domain
dictionary only on the domain-specific biomedical and laptop review datasets. GeoDeepDive
[44] supports data mining and knowledge base creation in the geosciences and biosciences.
It provides a digital library with toolkits that acquire and manage articles. GeoDeepDive pro-
vides a corpus with user-prescribed keywords and user-developed rules to retrieve the data
from matching publications in their digital library. SwellShark [11] is a distant supervised
model in the biomedical domain. No human-annotated dataset is used in SwellShark, but it
employs domain vocabulary, expert involvement in designing effective regular expressions
and special case tuning.

To enrich the vocabulary, word embeddings trained on the same domain [8] or phrase
detection approaches [30] can help extract more entities. Category labelling of unknown
entities can be assisted by external resources [45].

2.2 Geological NER literature

A geological application of NER using CRFs was developed by Sobhana et al. [32]. They
used a geology-related dataset of scientific reports and articles on the geology of the Indian
subcontinent. The data were manually annotated with the tags for names of countries, states,
water bodies, minerals, people and organisations. A number of studies are reported for KG
creation from geological data in Chinese text. Wang et al. [35] extracted generic and geology
terms from geology dictionaries. They created a KG from the terms and their co-occurrences,
and visualised it to give a view of the corpus. CNNs is used to classify the paragraphs and
extract information about copper deposit in the Sichuan Province in China from geoscience
text data [31]. They extracted the keywords based on the four categories: terminology, tech-
nical methods, data processing methods and descriptive words. The frequency statistics are
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conducted on words and paragraphs to extract the key content words. They also created a
KG from the key terms and their co-occurrences. Zhu et al. [45] also proposed a design to
construct a KG towards geological data. Entity extraction was done by Chinese word seg-
mentation, frequency statistics, category labelling using online dictionary (Baike.com) and
keyword extraction. A geological domain dictionary for institutional names, place names and
person names, a modern Chinese dictionary and a customised dictionary are used for type
identification.

3 Proposed approach

As the main purpose of the framework is to reduce the annotation load, firstly, we create
dictionary-labelled data using dictionary matching. Then this dictionary-labelled data are
divided into training, validation and test sets to train four different sequence labelling archi-
tectures. The best performing architecture is selected out of the four models. Then the model
learns from the dictionary-labelled data and predicts the labels to create the model-predicted
data. Next, these two types of labels are combined and the Auto-Labelled Set is constructed
as a training set. This auto-labelled dataset is applied to train the chosen sequence labelling
model. An ensemble approach can be taken here. In other words, instead of choosing the
best model, the output of four models can be compared and aggregated to construct the auto-
labelled dataset. For the practicality of this framework, we opt for selecting one or two best
performing models. Finally, the Evaluation Set, which is manually annotated by experts, is
used for evaluating the proposed framework.

This section introduces the proposed deep learning-based distant supervision approach for
automatic annotation for domain-specific data. Figure 1 provides a system overview for the
auto-labelling process. The system employs the combination of dictionary-based labelling
and deep learning-based sequence labelling to create auto-labelled data. The domain experts
participate in the dictionary construction and result validation. The proposed framework aims
to iteratively enhance the annotation quality, until the annotated dataset is deemed satisfactory
by the human experts.

Fig. 1 A framework for obtaining the auto-labelled dataset
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Table 1 Geological domain dictionary

Category Entity # Max Examples

MINERAL 6499 4 Copper, fire opal, goethite, gold, iceland spar,
magnesite, iron, natural salt, silica

ROCK 2048 8 Conglomerate sandstone, felsic volcanic rock,
migmatite, volcaniclastic sedimentary rock

ORE_DEPOSIT 112 4 Channel iron deposit, direct shipping iron ore iron ore,
nickel ore, silver ore

TIMESCALE 185 2 Archean, Lower Proterozoic, Paleoproterozoic, Triassic,
Upper Cretaceous

STRAT 6335 9 Angas Hills Formation, Bingy Bingy Basalt Member,
Marra Mamba Iron Formation

LOCATION 1121 4 Kalgoorlie terrane, Kimberley craton, Perth, Pilbara,
Pilbara craton, Western Australia

Total 16,300

Entity # is a number of entities for each category in the domain dictionary, andMax is a maximum number of
tokens in entities

3.1 Dictionarymatching

Existing entity types in standard NER tools are insufficient and not fine-grained in extract-
ing the geological entities. As a result, many geological terms are either missed or tagged
incorrectly. For example, a stratigraphic unit name or a mining location is misclassified as
a person or an organisation. Therefore, customised types need to be defined and used for
extracting domain entities of interest.

A geological dictionary of domain vocabulary is created with the help of domain experts
to provide initial labelling for entities through dictionary matching. This domain dictionary
is a list of entity names that each belongs to a specific geological entity type. This dictionary
is used to create a training dataset for our entity recognition and annotation task.

We retrieve vocabularies for minerals, rocks, ores and deposits, geological time scales,
stratigraphic unit names and locations in Western Australia (WA). See Table 1 for the details
of the domain dictionary. The six categories of entities are collected, and the total of 16,300
terms are included in the dictionary. The sources of these terminologies are Explanatory
Notes System database,5 Mindat open database,6 the GeoNames geographical database,7

Australian Stratigraphic Units Database,8 and Wikipedia.9

Entities are first annotated through dictionary lookup. Multiple labels are assigned for
STRAT, ORE_DEPOSIT, MINERAL, ROCK, TIMESCALE and LOCATION columns in
Table 2. Although multiple labels can be associated with a single token, we decided to
allow one label for each token. For example, the token iron can be an entity with a single
token or a part of a phrase (multiple tokens). When iron is a single-token entity, it is tagged
as MINERAL. When iron is in a phrase iron mica, its tag is MINERAL, but in iron gravel,
it is ROCK, in iron ore, it is ORE_DEPOSIT.

5 https://www.dmp.wa.gov.au/Explanatory-Notes-System-ENS-15063.aspx.
6 https://www.mindat.org/.
7 http://www.geonames.org.
8 https://www.ga.gov.au/data-pubs/datastandards/stratigraphic-units.
9 https://en.wikipedia.org.
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Table 2 Labelling with the domain dictionary with resolution rules applied

During the dictionary-based annotation process, which involves a single token and nested
tagging situations, two resolution rules are followed to ensure a single label for each token.
When nested tags are found for a token, the longest phrase is prioritised as an entity type,
over a single token or shorter phrases. When multiple tags are found for the same token, the
last tag is selected.

Table 2 shows, for the final label in Tag column, a single label for each token is assigned.
For example, the nested tagging occurs for banded iron formation as ROCK and iron as
MINERAL.The system favours the longer phrasebanded iron formation over the single-word
entity iron. Also Hamersley Group as STRAT is selected over Hamersley as LOCATION.
Gold deposits is also recognised as a type of ore and deposit, but gold as MINERAL is not
selected, because the longer the phrases, the higher the priority.

Automatic NER models are typically trained using a standard labelling scheme. One of
the most popular schemes, simple yet effective, is the BIO notation [26] and used for many
entity tagging frameworks [15,22]. The BIO notation marks a word: B for a beginning of an
entity, I for inside an entity, and Omeans others. The BIO scheme is adopted to annotate the
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text using our domain dictionary. The dictionary-labelled data are then used as labelled data
for training, validating and testing the neural network-based sequence labelling models for
the next stage.

3.2 Selecting a sequence labelling architecture

This section describes how four different neural network models are trained with our
dictionary-labelled data. The performances of the models are evaluated to select the highest
performing model out of the four models. The ultimate aim is to annotate more text data that
were not in the training set, in order to grow the labelled dataset.

Deep learning-based NERmodels learn tomake predictions by training on example inputs
and their expected labels. The NER task is mostly formulated as a sequence labelling task,
which involves the algorithmic assignment of a categorical label to each word in a sequence
of observed words. In general, a NER task [20] includes three components: distributed
representations for an input, context encoding for capturing the context dependencies and
label decoding for converting predicted scores into target labels. The input is a sequence of
words or characters, and the output is a sequence of labels for the words.

Distributed representations (embeddings) are prepared for the input sequence to represent
each word or each character as low-dimensional real-valued dense vectors. These employ
randomly initialised character-level or word-level embeddings or pretrained word embed-
dings that trained over large collections of text through unsupervised algorithms. Word-level
models [6,17] use the representations that are based on words. A sequence of words is given
to create a word embedding for each word and predict a label for each word. Character or
word embeddings can be learned from an end-to-end neural network-based model [22]. A
sentence is then represented as a sequence of characters. The sequence of characters is given
to create an embedding for each character and predicts labels for the sequence. Character-
level representations are created with convolutional neural networks (CNNs) [22,24] and
recurrent neural networks (RNNs) [1,15,18] such as BiLSTM [14]. Hybrid representations
[5,17,40] incorporate word-level or character-level embeddings with additional information
such as character capitalisation, spelling and/or affix features.

Context encoding can employ CNNs, RNNs, language models or transformer models for
learning from the input representation and capturing contextual dependencies. In this paper,
we chose models that employ a long short-term memory (LSTM), which is a form of RNNs.
LSTM has three gated units: input, output and forget, which is able to control the passing of
information along the sequence in order to improve themodelling of long-range dependencies
[13]. A stacked bidirectional LSTM (BiLSTM)model [14] uses a forward LSTMnetwork for
past states and a backward LSTM network for future states for a given time step to transform
word features into named entity tag scores.

Label decoding component predicts labels for tokens in the input sequence. Sequence
labelling algorithms are often probabilistic and rely on statistical inference to find the best
sequence. Most sequence labelling methods employ a Conditional Random Field (CRF) [19]
or softmax. Models employ CRFs as the tag decoder, on top of BiLSTM [17,24] or on top
of CNNs [1]. A softmax layer can also be used as the tag decoder [6].

Four different sequence labellingmodels are experimented on the dictionary-labelled data,
which were annotated using the domain dictionary as described in Sect. 3.1. The purpose of
using these models is to compare different neural networks and their combinations on the
geological NER task. Word-level (WL) BiLSTM is demonstrated to lead the state of the art
in NER [5,22]. We therefore selected WL BiLSTM as the core architecture and attempted to
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Table 3 Deep learning models

Model Architecture Char Word

CL CNN Character-Level CNN �
CL CNN+WL BiLSTM Character-Level CNN + Word-Level BiLSTM � �
WL BiLSTM Word-Level BiLSTM �
CL+WL BiLSTM Character-Level LSTM + Word-Level BiLSTM � �

CL = character level, WL = word level

Fig. 2 Character-level LSTM and word-level BiLSTM model with Softmax decoder

compare with character-level (CL) CNN alone and combination with character-level models
as shown in Table 3. The models are CL CNN, CL CNN+WL BiLSTM, WL BiLSTM and
CL+WL BiLSTM. Our experiments are by no means exhaustive, one may also notice that
transformer models and models working on word pieces can be considered as well. The best
performing architectures are then chosen based on the NER task performance and employed
for predicting the labels for the data. Figure 2 shows a schematic diagram ofCL+WLBiLSTM
model.

3.3 Auto-labelling

Once the experts are satisfied with the dictionary coverage and the models are selected
based on the F1 performance, the models are trained on the Auto-Labelled Set, which are
created by combining the dictionary-based labels with the model-predicted labels. Joining
the dictionary-based labels with themodel-predicted labels refines our dataset. The following
rules are applied in the label selection:

1. when either one of the dictionary-based label or model-predicted label is available, that
existing label is selected.

2. when nested tags exist, the longest phrase is prioritised.
3. when conflicted tags exist for the same entity, a dictionary-based tag is preferred.

Now the chosenNERmodel is ready to annotatemore data automaticallywith the six entity
types:ROCK(rock types),MINERAL (mineral types), TIMESCALE (geological time scale),
STRAT (stratigraphic unit names), LOCATION (location names in Western Australia) and
ORE_DEPOSIT (elements or minerals that are concentrated in rocks or in mineral deposits).
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Finally, the model is evaluated on the Evaluation Set, which was manually annotated by the
domain experts using Redcoat [33], a Web-based annotation tool for labelling data for entity
typing.

3.4 Domain expert verification

The two types of annotations are created, respectively, by dictionary matching and by model
prediction. Their annotation outputs match most of the time, conflicts can also happen. We
collect the labelled sentences from those that contain conflicts between the two kinds of
annotations. From our experiments, the number of conflicted sentences is around 100 in
10,000 sentences. Domain experts annotate these conflicted sentences manually. The results
of dictionary tags, predicted tags are then compared with the tags from the experts.

As a result of the verification, shown in Table 4, the ores and deposits category was
newly created to include the mineral ore and deposit names that affected the number of
missed entities. (11.61% was missed by dictionary matching, and 10.42% was missed by
the model prediction.) A total of 335 entities were annotated by the domain experts. After
introducing the new category ORE_DEPOSIT, 21 missed entities were labelled and the
percentage of missed entities was reduced to 5% in dictionary-based labels and 3.3% in
model-predicted labels. Updating categories as a result of the verification process serves as
a positive knowledge elicitation tool to prompt the domain experts to rethink through the
dictionary coverage. Manual verification is an important process in fine-tuning the category
labels, but the labelling effort is minimised because only the conflicted subset needs to be
verified. The domain experts may suggest to enrich the dictionary in order to cover the
Missed entities, remove unimportant categories or combine similar categories. Once the
domain dictionary is updated, the auto-labelling process needs to be performed again. Until
the annotated dataset is satisfactory to the domain experts, the auto-labelling is an iterative
process that injects the changes of the domain vocabulary.

3.5 Evaluation

Precision (P), recall (R) and F1 metrics are used for NER evaluation [5,15,22,30]. The main
metric is F1, which is a balanced score between P and R.

P = C

N
, R = C

T
, F1 = 2PR

P + R
, (1)

where C is the number of correctly predicted entities, N the number of predicted entities and
T the number of ground-truth entities.

Table 4 An instance of the verification by the domain experts on the conflicted sentences

Labels Correct % Wrong % Missed %

Dictionary matching 86 2.5 11.5

Deep learning model prediction 85 5 10

Correct % means the percentage value for agreed values by expert.Wrong % is for labels that are different
than the labels by expert. Missed % is for the tokens that are labelled by the expert, but not by dictionary
matching and the model prediction
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Our dictionary-labelled test set is used when comparing the sequence labelling models.
We need the models to be able to identify as many entities as dictionary can label and predict
more. The chosen models are then further evaluated on the manually annotated Evaluation
Set as ground truth.

4 Experiments

Experiments include (1) annotating geological named entities using the domain vocabu-
lary, (2) comparing different deep learning architectures, (3) applying the best performing
architectures for the NER task and (4) evaluating outcomes. As our main results, a geo-
logical annotated dataset is generated and a NER model is trained and ready to annotate
seen and further unseen data in mineral exploration text. To further evaluate the proposed
approach, we conduct experiments on two more low-resource, domain-specific, manually
labelled datasets. NCBI corpus [7] is selected for recognising disease names, and BC5CDR
corpus [21] is selected for recognising chemical names.

4.1 Dataset description

WAMEX dataset contains reports for geological exploration of mineral resources in Western
Australia. The reports were converted from PDF format to text, so spelling mistakes or joined
tokens do exist. There are also sentences in incorrect structure, due to the fact that data were
pulled from tables or figures in the original documents. We selected 34,000 sentences that
contain geological entities out of WAMEX dataset for the experiment. In total, 32,000 sen-
tences are automatically annotated using the geological domain dictionary and the sequence
labellingmodel. The remaining 2000 sentences aremanually annotated by the domain experts
and kept as the Evaluation Set in order to evaluate how well our auto-labelling framework
can perform against the manually curated annotation.

4.2 Annotation using a domain dictionary

The 32,000 sentences are annotated automatically using dictionary lookup using the BIO
annotation scheme. Table 1 contains the domain dictionary details with entity categories
and the size of each category. Dictionary-based labelling results are presented in Table 8
together with other data, which will be explained next. Training, validation and test sets are
created from this dictionary-labelled sentences. These datasets are used to train and validate
the different neural network-based NER architectures. Therefore, we can compare the deep
learning models on automatic labelling.

4.3 Auto-labelling with NERmodels

The dictionary-labelled data are used to train, validate and test the performance of the four
deep learning-based models. Distributed representations of words are created from words
and/or characters in the input sequence and Context encoder and Label decoder predict a
sequence of labels for the input. The four architectures and their F1 scores for each entity
category are presented in Table 5 for performance comparison. The experiment shows that
the larger the training dataset, the better the models are performed, as more data expose the
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models to larger variety of examples. So the F1 on the dataset of 32,000 sentences is higher
than on the dataset of 18,000 sentences. CL+WL BiLSTM model performed the highest with
F1 score of 97.35 on 18k data, but WL BiLSTM model performed the highest with F1 score
of 97.85 on 32k data. The score differences of the models were 0.23 on 32k to 0.37 on 18k
data. Therefore, both models were selected to be evaluated on the Evaluation Set.

The training process was run five times for each model, and then, the highest F1 scores
for each model are selected to show the performance. Also the best scored, trained models
are saved for further annotation of seen and unseen text. Each process used random splits
of training, validation and test sets in order to train the models, by using the below hyper-
parameters. The dimension of word embeddings is 64 and character embeddings is 30. We
experimented with the input embeddings that are randomly initialised for each training with
uniform samples from [−√

3/dim,+√
3/dim], where dim is the dimension of the embed-

dings. For character-level CNNs, the window size of 3 is used with 30 filters. 100 hidden
units are given for both forward and backward LSTMs. The number of epochs is 60, and
batch size is 32. We applied dropout rate of 0.5 both before and after the context encoding
layer.

4.4 Evaluation

4.4.1 Geological NER evaluation

Using the dictionary-annotated dataset of 32,000 sentences as the training data, the chosen
two models identified the entities and predicted their labels on Evaluation Set. Performance
results of the models are shown in Table 6, where WL BiLSTM has F1 score of 78.53 and
CL+WL BiLSTM has F1 of 77.59. The deep learning models performed lower than the
dictionary matching.

To improve the training dataset, the model was applied on the 32,000 sentences. Then the
predicted labels of the model is combined with the dictionary-based labels and constructed
the Auto-Labelled Set as the final training dataset. The proposed framework performed with
F1 score of 82.19 as shown in Table 7 on Evaluation Set. The labelling performance is
improved by 3.66% on WL BiLSTM model. The process of using the expert verification to
improve the domain vocabulary can be repeated till the result is improved to the satisfaction.

A total of 296 more entity mentions were annotated in the Auto-Labelled Set as a result
of combining process. Table 8 shows the statistics of the datasets. The table contains number
of entities for each category in each dataset that are created during this experiment. Auto-
Labelled Set contains 102 unique new entities, which do not exist in the domain vocabulary.
For example, metaliferrous rock was not labelled by dictionary lookup, due to it not being
in the dictionary, but the trained model tagged it as ROCK correctly. Even with its mis-
spelling (metalliferous is correct), the model recognised it by learning that the word rock is
often used in the entities of ROCK type. More misspelled entities were annotated correctly,
including De Gray Group (De Grey Group is correct) as STRAT, grabbroic rock (gabbroic
rock is correct) as ROCK, felspathic siltstone (feldspathic siltstone is correct) as ROCK and
Hamerlsey Group (Hamersley Group is correct) as STRAT. Moreover, many new entities
are discovered, although they do not exist in the dictionary such as ultramafic komatiitic
rocks, metabasaltic rocks, mafic sequence, ultramafic dykes are ROCK types, while eolian
deposit is ORE_DEPOSIT, Bangemall formation andMoogie metamorphic suite are STRAT
types. In addition, the new entities likeMount Burges, Mount Menzies, Mount Gibson, Emu
Lake, Collier Basin, Shaley Basin, Dome Pit, Sovereign mine, King mine, Mount Hill and
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Table 6 Performance on Evaluation Set by dictionary matching, CL+WL BiLSTM model prediction andWL
BiLSTM model prediction

Category Dictionary matching CL+WL BiLSTM WL BiLSTM

P R F1 P R F1 P R F1

ROCK 78.76 81.06 79.89 76.70 79.41 78.03 77.82 78.19 78.01

MINERAL 78.46 91.47 84.47 79.88 91.52 85.30 78.93 91.83 84.89

LOCATION 64.52 81.29 71.94 61.35 67.49 64.28 62.41 68.99 65.53

STRAT 88.65 76.16 81.93 80.34 66.82 72.96 86.12 71.50 78.13

ORE_DEPOSIT 86.75 90.51 88.59 85.32 80.84 83.02 87.95 84.25 86.06

TIMESCALE 94.26 94.71 94.48 95.15 93.33 94.23 93.81 93.81 93.81

Average F1 78.44 84.19 80.96 76.35 79.24 77.59 77.54 79.98 78.53

Table 7 Performance on
Evaluation Set after learning
from Auto-Labelled Set

Category P R F1

ROCK 79.65 82.26 80.94

MINERAL 81.21 93.29 86.83

LOCATION 66.48 82.76 73.73

STRAT 85.01 77.73 81.20

ORE_DEPOSIT 88.49 90.81 89.64

TIMESCALE 95.22 94.76 94.99

Average F1 79.43 85.53 82.19

Table 8 Entity categories and the number of entities for training and evaluation sets: Dictionary is for
dictionary-labelled data, Model is for the NER model prediction

Entity Training set (32,000 sentences) Evaluation Set (2000)

Category Dictionary Model Auto-Labelled Set Expert-Labelled Set

ROCK 24,692 24,749 24,784 1800

MINERAL 20,807 20,774 20,814 1257

LOCATION 19,762 19,760 19,882 950

STRAT 5141 5120 5202 641

ORE_DEPOSIT 3,067 3,066 3083 355

TIMESCALE 2712 2696 2712 208

Total number 76,181 76,165 76,477 5211

Padbury Basin are identified as LOCATION, so did misspelled Port Hedtand (correctly Port
Hedland). The model learned that mount, lake, basin, pit, mine and port are generally found
in location names and labelled them accordingly.

The result shows the trend that the entities of a single token or fewer tokens such as
ORE_DEPOSIT, LOCATION, MINERAL and TIMESCALE are easier to predict for the
model, while STRAT and ROCK types are harder to predict. As shown in the dictionary in
Table 1, the most entity categories contain no more than 4 tokens, while ROCK and STRAT
types can contain up to 8 and 9 tokens, respectively. However, we found out that the entity
length is not the main case of the poor performance here.
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In fact, the main reason of the stratigraphic unit names perform poorly is that they include
many different location and rock names in their often multiple-token names. For example,
Wallaby Conglomerate is STRAT type, but the model labelled Wallaby as LOCATION and
Conglomerate as ROCK. The model is not wrong in case for each token, but we prefer longer
entities as they represent the fine-grained data units. This mix of different entities in a single
entity confuses the model sometimes and the model can label them as separate entities of
different categories, which then affects the model performance for the involved categories.
Therefore, when the different categories do not share the same tokens often, the deep learning
model can learn effectively, perform well and improve the dictionary-based annotation.

OzROCK Dataset As a result of the proposed framework, OzROCK dataset is created for
NER in the mineral exploration domain. It contains 34,000 labelled sentences, which are
divided into Auto-Labelled Set (32,000 auto-labelled sentences) for training and Evaluation
Set (2,000 manually labelled sentences) for evaluation. Note that this data contain errors in
spelling and structure, due to documents were converted from PDF to text format.

Importantly, the learned sequence labellingmodel allowsus to label unseen text. Therefore,
the labelled dataset can be updated with new reports and keeps growing. With a high-quality
domain dictionary, our approach reduces the load of manual annotation of large amounts of
data. The proposed approach can be applied to data sets of any size and the framework may
be applicable for other domain-specific NER systems.

4.4.2 Experiments and discussion on other domains

In order to demonstrate the generalisation ability of our approach, we experimented on two
more datasets from different domains. The National Center for Biotechnology Information
(NCBI) corpus [7] and the BioCreative V Chemical Disease Relation (BC5CDR) corpus
[21] are selected for auto-labelling and recognising unseen entities. NCBI corpus is used for
recognising disease names, while BC5CDR corpus is used for recognising chemical names.

Our auto-labelling framework is applied to both datasets, and their performances are
compared against dictionary matching and WL BiLSTM neural network model. The results
have shown around 5% increase in F1 score for disease names and 8% increase for chemical
names.

NCBI corpus is fully annotated for disease names to serve as a research resource for
biomedical NER. It contains 793 biomedical literature abstracts with 6,892 disease mentions
and 790 unique disease concepts. The corpus is separated for training (593 abstracts), devel-
opment (100 abstracts) and testing (100 abstracts) sets. A vocabulary of disease names is
prepared from the training set only and used for generating the domain dictionary. The created
dictionary contains 1,690 disease names including the abbreviated versions. The develop-
ment set contains 199 unseen entities, and the test set contains 235 unseen entities that do not
exist in the domain dictionary nor in the training set. The neural network model performed
with F1 score of 74.39 for DISEASE entities on the test set as shown in Table 9. The pro-
posed auto-labelling approach improved the NER performance by 5.38% in comparison to
dictionary matching.

In the test set, auto-labelling detected 95 new entities including Waardenburg syndrome,
Stuve–Wiedemann syndrome, hepatic copper accumulation, hereditary non-polyposis col-
orectal cancer, insulin-dependent diabetes mellitus, malformation of the eye, sporadic T-cell
prolymphocytic leukaemia and hereditary ovarian cancer. Common tokens that helped
detecting disease names are deficiency, disease, cancer, leukaemia, syndrome, tumour, dys-
plasia, disorder, carcinoma, malignancy, abnormality, anomaly, malformation and defect.
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Table 9 Performance on NCBI Test Set by dictionary matching, model prediction and auto-labelling

Category Dictionary matching Model prediction Auto-labelling

P R F1 P R F1 P R F1

DISEASE 78.85 61.35 69.01 75.41 72.19 73.76 74.50 74.27 74.39

Table 10 Performance on BC5CDR Test Set by dictionary matching, model prediction and auto-labelling

Category Dictionary matching Model prediction Auto-labelling

P R F1 P R F1 P R F1

CHEMICAL 92.25 57.53 70.87 89.49 70.85 79.09 88.34 71.52 79.05

BC5CDR corpus was first released in the BioCreative V Chemical Disease Relation
task and is annotated for diseases and chemicals for biomedical NER. Our approach is
tested on the chemical entities using this dataset. It has 1,500 articles containing 15,935
CHEMICAL mentions. We used 1000 articles for the model training and a test set of 500
articles to evaluate the proposed auto-labelling framework. The domain dictionary contains
2,203 chemical names that are labelled in the training set. The test set contains 718 unseen
entities that do not exist in the dictionary nor in the training set. The framework performed
with F1 score of 79.05 on the test set as shown in Table 10. Although the auto-labelling and
model prediction are scored close, the recall score is improved by the proposed approach. The
proposed approach improved the labelling performance by 8.18% on dictionary matching.

In the test set, auto-labelling detected 265 new entities including ammonium, quinine, 4-
aminopyridine, remoxipride, pyrrolidine, hydroquinone, fungizone, lorazepam, nitric oxide
NADPH, S-312, ICRF-187, hepatitis B surface antigen, 5-fluorouracil, 5-hydroxyindoleacetic
acid, all-trans-retinoic acid, ATRA, vitamin A, 3-methoxy-4-hydroxyphenethyleneglycol,
mefenamic acid, platinum and D-glucarates. The main context words associated with chem-
ical entities include induced, treatment, administration, association, related, toxicity, occur,
effect and concentration.

Discussion. The experiments show that dictionary matching performs well in terms of the
precision, but the recall is often low. On the other hand, the neural network model is able to
improve the recall. By combining their annotations, the proposed auto-labelling approach is
often able to improve overall performance of NER. The auto-labelling improvement is due
to the common tokens that are used in defining the entities and the surrounding words of
the entities that are learned by the model and then combining the labels from both model
prediction and dictionary matching.

In order to explore the influence of domain dictionary coverage, an experiment is per-
formed with 50%, 60%, 70%, 80%, 90% and 100% of the domain dictionary. Figure 3 shows
the performance comparisons on the NCBI and BC5CDR corpora with different percent-
ages of vocabulary coverage. Domain coverage 50% means 50% of the domain dictionary
is removed and the training dataset does not contain labels for those removed entities. For
example, NCBI contains 1,690 disease entities in the vocabulary as 100% coverage of the
training dataset, but only 845 entities are used for training when 50% coverage is applied.
Figure 3 shows that the importance of dictionary coverage is corpus and domain-specific. For
NCBI, the increase in the dictionary coverage plays a significant role in model performance.
However, for BC5CDR, the neural networkmodel injected a significant boost in performance
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Fig. 3 Performance scores of different coverage of domain vocabulary for a NCBI corpus for disease names
and b BC5CDR corpus for chemical names

(from 29% to 62% even with only 50% of dictionary terms). This warrants future research
in measuring the “learnability” of a domain.

In summary, the proposed auto-labelling approach is able to learn and label seen and
unseen entities based on the domain dictionary. Our approach can help build annotated
datasets efficiently for domain-specific named entities, by utilising vocabulary in existing
established databases in low-resource domains.

5 Conclusion and future work

In this research, we developed a framework and demonstrated its effectiveness of automat-
ically labelling named entities in a low-resource, domain-specific real-world dataset. An
automatic NER approach is proposed by adopting dictionary matching and deep learning-
based sequence labelling, with the potential of integrating domain expert validation. One
major advantage of this work is its convenience in labelling named entities solely using a
domain vocabulary. Therefore, a large amount of labelled data can be created efficiently.

The annotated dataset OzROCK was created and has been made publicly available. We
evaluated the outcomes of the proposed approach on the manually annotated dataset, which
was labelled by the geological domain experts. Identifying domain-specific salient entities
and annotating them automatically have proved to be effective and significantly reduces the
costly and subjective manual annotation work. Our approach effectively identifies the subset
of the data that is challenging to automatically annotate and thus needs expert assistance
for annotation. We further applied our auto-labelling framework on the disease corpus and
chemical corpus, and compared the performance against dictionary matching and WL BiL-
STM neural network model. The results have shown approximately around 5% increase in
F1 score for disease names and 8% increase for chemical names.
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Moreover, a large number of seen and unseen documents can be efficiently labelled using
the deep learning-basedmodels trained over OzROCKdataset. This is a step towards building
a knowledge graph in the mineral exploration domain to allow efficient storage and retrieval
of information.

Currently, a single tag is allowed for each token in the text. Future work may include an
inclusion of multiple labels for each entity.

In conclusion, the deep learning-based NER approach incorporated with a domain dictio-
nary showed significant potential for automatically identifying and labelling domain-specific
entities. Automatic labelling of unstructured domain-specific text is an important step for
knowledge discovery in low-resource domains. This research is a part of our ongoing work
to extract mineralisation knowledge from geological exploration reports and similar docu-
ments.
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