
Knowledge and Information Systems (2021) 63:565–588
https://doi.org/10.1007/s10115-020-01531-7

REGULAR PAPER

Closed formword embedding alignment

Sunipa Dev1 · Safia Hassan1 · Jeff M. Phillips1

Received: 28 January 2020 / Revised: 12 November 2020 / Accepted: 15 November 2020 /
Published online: 9 January 2021
© Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Wedevelop a family of techniques to alignword embeddingswhich are derived fromdifferent
source datasets or created using different mechanisms (e.g., GloVe or word2vec). Our meth-
ods are simple and have a closed form to optimally rotate, translate, and scale to minimize
root mean squared errors or maximize the average cosine similarity between two embeddings
of the same vocabulary into the same dimensional space. Our methods extend approaches
known as absolute orientation, which are popular for aligning objects in three dimensions,
and generalize an approach by Smith et al. (ICLR 2017). We prove new results for optimal
scaling and for maximizing cosine similarity. Then, we demonstrate how to evaluate the
similarity of embeddings from different sources or mechanisms, and that certain properties
like synonyms and analogies are preserved across the embeddings and can be enhanced by
simply aligning and averaging ensembles of embeddings.

Keywords Word embeddings · GloVe · Word2Vec · ELMo

1 Introduction

Embedding complex data objects into a high-dimensional, but easy to work with, feature
space has been a popular paradigm in data mining and machine learning for more than
a decade [32,33,39,42]. This has been especially prevalent recently as a tool to understand
language, with the popularization through word2vec [25,27] and GloVe [29]. These approaches
take as input a large corpus of text, and map each word which appears in the text to a vector
representation in a high-dimensional space (typically d = 300 dimensions).

These word vector representations began as attempts to estimate similarity between words
based on the context of their nearby text, or to predict the likelihood of seeing words in the
context of another. Other more powerful properties were discovered. Consider each word
gets mapped to a vector vword ∈ R

d .

B Sunipa Dev
sunipad@cs.utah.edu

Safia Hassan
safiahassan609@gmail.com

Jeff M. Phillips
jeffp@cs.utah.edu

1 School of Computing, Salt Lake City, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-020-01531-7&domain=pdf
http://orcid.org/0000-0002-6647-9662

566 S. Dev et al.

• Synonym similarity: Two synonyms (e.g., vcar and vautomobile) tend to have small
Euclidean distances and large inner products, and are often nearest neighbors.

• Linear relationships: For instance, the vector subtraction between countries and capitals
(e.g., vSpain−vMadrid, vFrance−vParis, vGermany−vBerlin) is similar. Similar vectors encode
gender (e.g., vman − vwoman), tense (veat − vate), and degree (vbig − vbigger).

• Analogies:The above linear relationships could be transferred fromone setting to another.
For instance the gender vector vman − vwoman (going from a female object to a male
object) can be transferred to another more specific female object, say vqueen. Then, the
result of this vector operation is vqueen + (vman − vwoman) is close to the vector vking
for the word “king.” This provides a mechanism to answer analogy questions such as
“woman:man::queen:?”

• Classification:More classically [32,33,39,42], one can build linear classifiers or regres-
sors to quantify or identify properties like sentiment.

At least in the case of GloVe, these linear substructures are not accidental; the embedding
aims to preserve inner product relationships. Moreover, these properties all enforce the idea
that these embeddings are useful to think of inheriting a Euclidean structure, i.e., it is safe to
represent them in Rd and use Euclidean distance.

However, there is nothing extrinsic about any of these properties. A rotation or scaling
of the entire dataset will not affect synonyms (nearest neighbors), linear substructures (dot
products), analogies, or linear classifiers. A translation will not affect distance, analogies,
or classifiers, but will affect inner products since it effectively changes the origin. These
substructures (i.e., metric balls, vectors, halfspaces) can be transformed in unison with the
embedded data. Indeed Euclidean distance is the only metric on d-dimensional vectors that
is rotation invariant.

The intrinsic nature of these embeddings and their properties adds flexibility that can also
be a hinderance. In particular, we can embed the same dataset intoRd using two approaches,
and these structures cannot be used across datasets. Or two datasets can both be embedded
into Rd by the same embedding mechanism, but again the substructures do not transfer over.
That is, the same notions of similarity or linear substructuresmay live in both embeddings, but
have different meanings with respect to the coordinates and geometry. This makes it difficult
to compare approaches; the typical way is to just measure a series of accuracy scores, for
instance in recovering synonyms [21,27]. However, these single performance scores do not
allow deeper structural comparisons.

Another issue is that it becomes challenging (or at least messier) to build ensemble struc-
tures for embeddings. For instance, some groups have built word vector embeddings for
enormous datasets (e.g., GloVe embedding using 840 billion tokens from Common Crawl, or
the word2vec embedding using 100 billion tokens of Google News), which costs at least tens
of thousands of dollars in cloud processing time. Given several such embeddings, how can
these be combined to build a new single better embedding without revisiting that process-
ing expense? How can a new (say specialized) dataset from a different domain use a larger
high-accuracy embedding?
Our approach and results In this paper, we provide a simple closed-form method to opti-
mally align two embeddings. These methods find optimal rotation (technically an orthogonal
transformation) of one dataset onto another, and can also solve for the optimal scaling and
translation. They are optimal in the sense that they minimize the sum of squared errors under
the natural Euclidean distance between all pairs of common data points, or they canmaximize
the average cosine similarity.

123

Closed-form word embedding alignment 567

The methods we consider are easy to implement, and are based on 3-dimensional shape
alignment techniques common in robotics and computer vision called “absolute orientation.”
We observe that these approaches extend to arbitrary dimensions d; the same solution for the
optimal orthogonal transformation was also recently re-derived by Smith et al. [40].

In this paper, we also show that an approach to choose the optimal scaling of one dataset
onto another [18] does not affect the optimal choice of rotation. Hence, the choice of trans-
lation, rotation, and scaling can all be derived with simple closed-form operations.

We then apply these methods to align various types of word embeddings, providing new
ways to compare, translate, and build ensembles of them. We start by aligning datasets to
themselves with various types of understandable noise; this provides amethod to calibrate the
error scores reported in other settings. We also demonstrate how these aligned embeddings
perform on various synonym and analogy tests, whereas without alignment the performance
is very poor. The results with scaling, translation, and weighting all consistently improve
upon the results for only rotation as advocated by Smith et al. [40].

Moreover, we show that we can boost embeddings, showing improved results when align-
ing various embeddings, and taking simple averages of the embedded words from different
datasets. The results from these boosted embeddings provide the best known results for var-
ious analogy and synonym tests. More extensive use of ensembles should be possible, and
it could be applied to a wider variety of data types where Euclidean feature embeddings are
known, such as for graphs [6,9,13,14,30], images [2,22], and for kernel methods [32,33].

This alignment can also aid translation, wherein an alignment learned from a small set of
words whose translation is known, we can obtain an alignment of a much larger set of words.
We also show how aligning two low-resource languages independently to a well-documented
and accurate intermediate language can aid in translation between the first two languages.

Finally, in the last few years, contextualized embeddings, such as BERT [8] and ELMo
[31], which embed a word differently each time, based on the context it appears in, have
become increasingly pervasively used in language processing tasks such as textual entail-
ment and co-reference resolution. We show that a simple average of the contexts allows our
techniques to efficiently extend to modeling a more complex multi-way alignment among
word representations.

1.1 Word embeddingmechanisms

There are several different mechanisms today to embed words into a high-dimensional vector
space. They can primarily be divided intomechanisms: first, those that produce a single vector
for each word (e.g., GloVe [29]), thus leading to a dictionary-like structure, and the second
(ELMO [31], BERT [8]) producing a function instead of a vector for a word such that given
a context, the vector for the word is generated. This implies that, different word senses
(river bank versus financial institution bank) lead to differently embedded representations
of the same word. Our experiments primarily examine the first kind as vector distances are
interpretable there.

The word embedding mechanisms we use here are:
RAW: has as many dimensions as there are words, each dimension corresponds with the rate
of co-occurrences with a particular word; it is in some sense what other sophisticated models
such as GloVe are trying to understand and approximate at much lower dimensions.
GloVe: uses an unsupervised learning algorithm [29] for obtaining vector representations for
words based on their aggregated global word–word co-occurrence statistics from a corpus.

123

568 S. Dev et al.

word2vec: builds representations of words so the cosine similarity of their embeddings can
be used to predict a word that would fit in a given context and can be used to predict the
context that would be an appropriate fit for a given word.
FastText: scales [19] these methods of deriving word representations to be more usable with
larger datawith less time cost. The also include sub-word information [4] to be able to generate
word embeddings for words unseen during training. We use FastText word representations
for Spanish and French from the library provided (https://fasttext.cc/docs/en/crawl-vectors.
html) for our translation experiments in Sect. 4.2.
More recently, contextual embeddings which produce vectors for word in every distinct
context have become popular, such as ELMO [31] and BERT [8]. These embeddings differ
from the other embeddingsmentioned above in that they do not give a look-up table/dictionary
in the end wherein each word has one exact corresponding vector representation.We describe
an extension of our method of absolute orientation for alignment for these embeddings in
Sect. 2.1.

2 Closed-form point set alignment: classic and new results

In many classic computer vision and shape analysis problems, a common problem is the
alignment of two (often 3-dimensional) shapes. The most clean form of this problem starts
with two points sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, each of size n, where
each ai corresponds with bi (for all i ∈ 1, 2, . . . , n). Generically, we can say each ai , bi ∈ R

d

(without restricting d), but as mentioned the focus of this work was typically restricted to
d = 3 or d = 2. Then, the standard goal was to find a rigid transformation—a translation
t ∈ R

d and rotation R ∈ SO(d)—to minimize the root mean squared error (RMSE). An
equivalent formulation is to solve for the sum of squared errors as

(R∗, t∗) = argmin
t∈Rd ,R∈SO(d)

n∑

i=1

‖ai − (bi R + t)‖2. (1)

For instance, this is one of the two critical steps in the well-known iterative closest point
(ICP) algorithm [3,7].

In the 1980s, several closed-form solutions to this problem were discovered; their solu-
tions were referred to as solving absolute orientation. The most famous paper by Horn [18]
uses unit quaternions. However, this approach seems to have been known earlier [11], and
other techniques using rotation matrices and the SVD [1,15], rotation matrices and an eigen-
decomposition [37,38], and dual number quaternions [41], have also been discovered. In 2
or 3 dimensions, all of these approaches take linear (i.e., O(n)) time, and in practice have
roughly the same run time [10].

In this document, we focus on the singular value decomposition (SVD)-based approach of
Hanson andNorris [15], since it is clear, has an easy analysis, and unlike the quaternion-based
approaches which only work for d = 3, generalizes to any dimension d . A singular value
decomposition (SVD) factorizes a matrix of dimensions m × n to produce two orthonormal
matrices (U and V) and a diagonal matrix (S) to satisfy the linear transformation x = Ax .
The orthonormal matrices capture the rotation or reflection of the space while the diagonal
matrix S captures the singular values which interpret the magnitude of information along
each of the respective dimensions. Hanson and Norris’s approach decouple the rotation from
the translation and solve for each independently. It further uses the orthonormal matrices
produced by SVD to determine the rotation. In particular, this approach first finds the means

123

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html

Closed-form word embedding alignment 569

ā = 1
n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi of each dataset. Then, it creates centered versions of those

datasets Â ← (A, ā) and B̂ ← (B, b̄). Next we need to compute the RMSE-minimizing
rotation (all rotations are then considered around the origin) on centered data sets Â and
B̂. First compute the sum of outer products H = ∑n

i=1 b̂
T
i âi , which is a d × d matrix.

We emphasize âi and b̂i are row vectors, so this is an outer product, not an inner product.
Next take the singular value decomposition of H so [U , S, V T] = svd(H), and the ultimate
rotation is R = UV T . We can create the rotated version of B as B̃ = B̂ R so we rotate each
point as b̃i = b̂i R.

Within this paper, we will use this approach, as outlined in Algorithm 1, to align several
datasets each of which have no explicit intrinsic properties tied to their choice of rotation. We
in general do not use the translation step for two reasons. First, this effectively changes the
origin and hence the inner products. Second, we observe the effect of translation is usually
small, and typically does not improve performance.

Algorithm 1 AO- Rotation(A, B)

Compute the sum of outer products H = ∑n
i=1 b

T
i ai

Decompose [U , S, V T] = svd(H)

Build rotation R = UVT

return B̃ = BR so each b̃i = bi R

Technically, this may allow R to include mirror flips, in addition to rotations. These can
be detected (if the last singular value is negative) and factored out by multiplying by a near-
identity matrix R = U I−V T where I− is identity, except the last term is changed to −1.
We ignore this issue in this paper, and henceforth consider orthogonal matrices R ∈ O(d)

(which includes mirror flips) instead of just rotations R ∈ SO(d). For simpler nomenclature,
we still refer to R as a “rotation.”

We discuss here a few other variants of this algorithm which take into account translation
and scaling between A and B.

Algorithm 2 AbsoluteOrientation(A, B) [15]

Compute ā = 1
n

∑n
i=1 ai and b̄ = 1

n
∑n

i=1 bi
Center Â ← (A, ā) so each âi = ai − ā, and similarly B̂ ← (B, b̄)
Compute the sum of outer products H = ∑n

i=1 b̂
T
i âi

Decompose [U , S, V T] = svd(H)

Build rotation R = UVT

Rotate B̃ = B̂ R so each b̃i = b̂i R
Translate B∗ ← (B̃,−ā) so each b∗

i = b̃i + ā
return B∗

Note that the rotation R and translation t = −b̄ + ā derived within this Algorithm 2 are
not exactly the optimal (R∗, t∗) desired in formulation (1). This is because the order these
are applied, and the point that the dataset is rotated around is different. In formulation (1),
the rotation is about the origin, but the dataset is not centered there, as it is in Algorithm 2.
Translations To compare with the use of also optimizing for the choice of translations in
the transformation, we formally describe this procedure here. In particular, we can decouple
rotations and translations, so to clarify the discrepancy between Algorithm 2 and Eq. (1),

123

570 S. Dev et al.

we use a modified version of the above procedure. In particular, we first center all datasets,
Â ← A and B̂ ← B, and henceforth can know that they are already aligned by the optimal
translation. Then, once they are both centered, we can then call AO- Rotation(Â, B̂). This
is written explicitly and self-contained in Algorithm 3.

Algorithm 3 AO- Centered(A, B)

Compute ā = 1
n

∑n
i=1 ai and b̄ = 1

n
∑n

i=1 bi
Center Â ← (A, ā) so each âi = ai − ā, and similarly B̂ ← (B, b̄)
Compute the sum of outer products H = ∑n

i=1 b̂
T
i âi

Decompose [U , S, V T] = svd(H)

Build rotation R = UVT

Rotate B̃ = B̂ R so each b̃i = b̂i R
return Â, B̃

Scaling In some settings, it makes sense to align datasets by scaling one of them to fit better
with the other, formulated as (R∗, t∗, s∗) = argmins∈R,R∈SO(d)

∑n
i=1 ‖ai − s(bi − t)R‖2.

In addition to the choices of translation and rotation, the optimal choice of scaling can also
be decoupled.

Horn et al. [18] introduced twomechanisms for solving for a scaling thatminimizesRMSE.
Assuming the optimal rotation R∗ has already been applied to obtain B̂, then a closed-form
solution for scaling is s∗ = ∑n

i=1〈âi , b̂i 〉/‖B̂‖2F . The sketch for absolute orientation with
scaling, is in Algorithm 4.

Algorithm 4 AO+Scaling(A, B)

B̃ ← AO- Rotation(A, B)

Compute scaling s = ∑n
i=1〈ai , b̃i 〉/‖B̃‖2F

return B̆ as B̆ ← s B̃ so for each b̆i = sb̃i .

The steps of rotation, scaling, and translation fit together to give us Algorithm 5.

Algorithm 5 AO- Centered+Scaling(A, B)

Compute ā = 1
n

∑n
i=1 ai and b̄ = 1

n
∑n

i=1 bi
Center Â ← (A, ā) so each âi = ai − ā, and similarly B̂ ← (B, b̄)
Compute the sum of outer products H = ∑n

i=1 b̂
T
i âi

Decompose [U , S, V T] = svd(H)

Build rotation R = UVT

Rotate B̃ = B̂ R so each b̃i = b̂i R
Compute scaling s = ∑n

i=1〈ai , bi 〉/‖B‖2F
Scale B̆ as B̆ ← s B̃ so for each b̆i = sb̃i .
return Ã, B̆

Horn et al. [18] presented an alternative closed-form choice of scaling s which minimizes
RMSE, but under a slightly different situation. In this alternate formulation, Amust be scaled
by 1/s and B by s, so the new scaling is somewhere in the (geometric) middle of that for A

123

Closed-form word embedding alignment 571

and B. We found this formulation less intuitive, since the RMSE is dependent on the scale
of the data, and in this setting the new scale is aligned with neither of the datasets. However,
Horn et al. [18] only showed that the choice of optimal scaling is invariant from the rotation
in the second (less intuitive) variant. We present a proof that this rotation invariance also
holds for the first variant. The proof uses the structure of the SVD-based solution for optimal
rotation, with which Horn et al. may not have been familiar.

Lemma 1 Consider two points sets A and B inRd . After the rotation and scaling in Algorithm
4, no further rotation about the origin of B̆ can reduce the RMSE.

Proof We analyze the SVD-based approach we use to solve for the new optimal rotation.
Since we can change the order of multiplication operations of sbi R, i.e., scale then rotate,
we can consider first applying s∗ to B, and then re-solving for the optimal rotation. Define
B̌ = s∗B, so each b̌i = s∗bi . Now to complete the proof, we show that the optimal rotation
Ř derived from A and B̌ is the same as was derived from A and B.

Computing theouter product sum Ȟ = ∑n
i=1 b̌

T
i ai = ∑n

i=1(s
∗bi)T ai = s∗ ∑n

i=1 b
T
i ai =

s∗H , is just the old outer product sum H scaled by s∗. Then, its SVD is svd(Ȟ) →
[Ǔ , Š, V̌ T] = [U , s∗S, V T], since all of the scaling is factored into the S matrix. Then,
since the two orthogonal matrices Ǔ = U and V̌ = V are unchanged, we have that the
resulting rotation Ř = Ǔ V̌ T = UV T = R is also unchanged. 	

Preserving inner productsWhile Euclidean distance is a naturalmeasure to preserve under a
set of transformations, manyword vector embeddings are evaluated or accessed by Euclidean
inner product operations. It is natural to ask if our transformations also maximize the sum of
inner products of the aligned vectors. Or does it maximize the sum of cosine similarity: the
sum of inner products of normalized vectors. Indeed we observe that AO- Rotation(A, B)

results in a rotation R̃ = argmaxR∈SO(d)

∑n
i=1〈ai , bi R〉.

Lemma 2 AO- Rotation(A, B) rotates B to B̃ to maximize
∑n

i=1〈ai , b̃i 〉. If ai ∈ A and
bi ∈ B are normalized ‖ai‖ = ‖bi‖ = 1, then the rotation maximizes the sum of cosine

similarities
∑n

i=1

〈
ai‖ai‖ ,

b̃i
‖b̃i‖

〉
.

Proof From Hanson and Norris [15] we know AO- Rotation(B) finds a rotation R∗ so

R∗ = argmin
R∈SO(d)

n∑

i=1

‖ai − (bi R)‖2.

Expanding this equation, we find

R∗ = argmin
R∈SO(d)

(
n∑

i=1

‖ai‖2 −
n∑

i=1

2〈ai , bi R〉 +
n∑

i=1

‖bi R‖2
)

.

Now, the length of a vector does not change upon rotation(R), thus, ‖bi R‖2 = ‖bi‖2. So,
since ‖ai‖2 and ‖bi‖2 are both lengths of vectors and thus, properties of the dataset, they do
not depend on the choice of R and as desired

R∗ = argmaxR∈SO(d)

n∑

i=1

〈ai , bi R〉.

123

572 S. Dev et al.

If all ai , bi are normalized, then R does not change the norm ‖b̃i‖ = ‖bi R‖ = ‖bi‖ = 1.

So for b̃i = bi R, each 〈ai , b̃i 〉 = 〈 ai‖ai‖ ,
b̃i

‖b̃i‖ 〉 and hence, as desired,

R∗ = argmaxR∈SO(d)

n∑

i=1

〈
ai

‖ai‖ ,
bi R

‖bi R‖
〉
.

	

Several evaluations of word vector embeddings use cosine similarity, so it suggests first

normalizing all vectors ai ∈ A and bi ∈ B before performing AO- Rotation(A, B). How-
ever, we found this does not empirically work as well. The rational is that vectors with larger
norm tend to have less noise and are supported by more data. So the unnormalized alignment
effectively weights the importance of aligning the inner products of these vectors more in the
sum, and this leads to a more stable method. Hence, in general, we do not recommend this
normalization preprocessing.

2.1 Extension to contextualized embeddings

In recent years, contextualized embeddings such as ELMo [31] and BERT [8] have become
increasingly popular, because of their ability to express the polysemity of words. A word in
these frameworks is not expressed as a single vector, but rather, based on its differentmeanings
or different contexts it has been used in. That is, each instance of a word is represented by
a different vector in the embedding space. Our method to align individual vectors does not
directly apply in this scenario.

We propose a simple extension to handle this scenario. Given a wordwi with two separate
contextual embeddings, let these embedding vectors be two sets Ai = {ai,1, ai,2, . . . amA,i }
and Bi = {bi,1, bi,2, . . . , bmB,i } of sizes mA,i and mB,i , respectively. Then, our method,
instead of aligning a single pair of vectors for each word, it aligns all vector pairs for each
word. For instance, for finding the optimal rotation, this involves an alignment for n words,
each i th word wi , then the outer product matrix is defined

H =
n∑

i=1

1

mA,imB,i

mA,i∑

j=1

mB,i∑

j ′=1

aTi, j bi, j ′ ,

where each set of all-pairs is weighted equally for each i (this is accomplished by dividing
by the number of such pairs mA,imB,i .)

This all-pairs alignment can be computationally expensive as the number of instances of
each word mA,i and mB,i increase; even if we only use 10 instances of each word, in each
embedding, this increases the number of alignments by a factor 100. However, we observe,
in each step the set Ai and Bi can be replaced by their averages

āi = 1

mAi

mA,i∑

j=1

ai, j and b̄i = 1

mBi

mB,i∑

j=1

bi, j .

Then, the overall means b̄, ā, outer product H , and scaling s are the same using all instances
or the mean instance.

Lemma 3 The alignments found using all-pair alignment when each word has multiple
instances in each embedding is equivalent to that computed by aligning the averages of
each set of instances.

123

Closed-form word embedding alignment 573

Proof We need to analyze the 4 quantities computed as part of any transformation: the two
averages, the outer product, and the scale. In short, these are all linear vector operations (sum,
outer product, inner product), so a vector average can be factored out.

For each average

ā = 1

n

n∑

i=1

1

mA,i

mA,i∑

j=1

ai, j = 1

n

n∑

i=1

āi ,

and similarly for b̄, the calculations are equivalent.
For the outer product

H =
n∑

i=1

1

mA,imB,i

mA,i∑

j=1

mB,i∑

j ′=1

aTi, j bi, j ′

=
n∑

i=1

⎛

⎝ 1

mA,i

mA,i∑

j=1

ai, j

⎞

⎠
T ⎛

⎝ 1

mB,i

mB,i∑

j ′=1

bi, j ′

⎞

⎠

=
n∑

i=1

āTi b̄i .

And finally for the scale

s =
n∑

i=1

1

mA,imB,i

mA,i∑

j=1

mB,i∑

j ′=1

〈ai, j , bi, j ′ 〉/‖B‖2F

=
n∑

i=1

〈
1

mA,i

mA,i∑

j=1

ai, j ,
1

mB,i

mB,i∑

j ′=1

bi, j ′

〉
/‖B‖2F

=
n∑

i=1

〈āi , b̄i 〉/‖B‖2F ,

where

‖B‖2F =
n∑

i=1

∥∥∥∥∥∥
1

mB,i

mB,i∑

j=1

bi, j

∥∥∥∥∥∥

2

=
n∑

i=1

‖b̄i‖2.

Note that the normalization term ‖B‖2F is defined on the average sum of instances for the
all-pairs version, since this is a quadratic operation, and otherwise does not factor out. 	

2.2 Related approaches

As mentioned, Smith et al. [40] use Algorithm 1 to align word2vec word embeddings on
English and Italian corpuses, and show that this simple approach is effective in translation.
Ourwork canbe seen as buildingon this, in thatwe showhow to interpret the intrinsic accuracy
of such an alignment, how to align word vector corpuses created by different mechanisms,
andwhen to usewhich variant of the closed-form solutions. Additionally, we confirm some of
their language translation results and show that it extends towhen the embeddingmechanisms

123

574 S. Dev et al.

Fig. 1 RMSE Error after noise and AO- Rotation alignment: Left: adding Gaussian noise to 10%, 50% or
all points. Middle: adding structured and unstructured noise before embedding. Right: incrementally added
data

for the different language corpuses are not the same (e.g., one by word2vec and one by GloVe),
as demonstrated in Sect. 4.2.

There are several other methods in the literature which attempt to jointly compute embed-
dings of datasets so that they are aligned, for instance in jointly embedding corpuses in
multiple languages [16,26]. The goal of the approaches we study is to circumvent these more
complex joint alignments. A couple of very recent papers propose methods to align embed-
dings after their construction, but focus on affine transformations, as opposed to the more
restrictive but distance preserving rotations of our method. Bollegala et al. [5] use gradient
descent, for parameter γ , to directly optimize

argmin
M∈Rd×d

n∑

i=1

‖ai − bi M‖2 + γ ‖M‖2F .

Another approach, by Sahin et al. [36], uses Low Rank Alignment (LRA), an extension
of aligning manifolds from LLE [24]. This approach has a 2-step but closed-form solution to
find an affine transformation applied to both embeddings simultaneously. Neither approach
directly optimizes for the optimal transformation, and requires regularization parameters;
this implies if embeddings start far apart, they remain further apart than if they start closer.
Both find affine transformations M over Rd×d , not a rotation over the non-convex O(d) as
does our approach. This changes the Euclidean distance found in the original embedding to
a Mahalanobis distance that will change the order of nearest neighbors under Euclidian and
cosine distance. Finally, the LRA approach requires an eigendecomposition of an 2n × 2n
matrix, where as ours only requires this of a d × d matrix, so LRA is far less scalable.

3 Evaluating accuracy of variants

Weevaluate the effectiveness of ourmethods on a variety of scenarios, typically using theRoot

MeanSquareError:RMSE(A, B) =
√

1
|A|

∑|A|
i=1 ‖ai − bi‖2.Wefix the embeddingdimension

of each A (the target) and B (the source) at 300, and assume |A| = |B| = n = 100,000 or
in some cases n′ = |A| = |B| = 10,000.

We consider embeddings with GloVe [5] (our default), or word2vec [25,27] with Gensim
[34], or occasionally RAW which is just the L1 normalized word count vectors embedded
with SVD [20]. We obtain all these three embeddings for our experiments using our default
dataset is the 4.57 billion token English Wikipedia dump, which we found to be made up
of 243K vocabulary words (distinct tokens). For word2vec, the Gensim [34] library provides
code for obtaining embeddings of a desired dimensionality, and for GloVe, the code [5] is
provided by the authors themselves. To obtain RAW embeddings, we run a simple bag of

123

Closed-form word embedding alignment 575

words model which enumerates for each word, howmany times it appeared with other words
in the vocabulary in a sentence, to give us a vector representation for the word. The RAWword
vectors, thus have the same dimension as that of the vocabulary itself. This when normalized
captures the pointwise mutual information and is called the Pointwise Mutual Information
(PMI) Matrix. After embedding using each of these three mechanisms, we select the top
100K most frequent words and their corresponding embeddings for our experiments.

We compare against existing GloVe embeddings ofWikipedia + Gigaword (G(WG), 6 billion
tokens, 400K vocab), CommonCrawl (G(CC42), 42 billion tokens, 1.9M vocab), and Common
Crawl (G(CC840), 840 billion tokens, 2.2M vocab), and the existing word2vec embedding of
Google News (W(GN), 100 billion tokens, 3 million vocab). All of these embeddings are
available online (https://nlp.stanford.edu/projects/glove/, https://code.google.com/archive/
p/word2vec/) and were downloaded.

When aligning GloVe embeddings to other GloVe embeddings we use AO- Rotation.
When aligning embeddings from different sources we use AO+Scaling.
Default data settings In each embedding, we always consider a consistent vocabulary of
n = 100,000 words. To decide on this set, we found the n most frequent words used in the
default Wikipedia dataset and that were embedded by GloVe. In one case, we compare against
smaller datasets and then only work with a small vocabulary of size n′ = 10,000 found the
same way.

For each embedding, we represent each word as a vector of dimension d = 300. Note that
RAW originally uses an n-dimensional vector. We reduce this to d-dimensions by taking its
SVD, as advocated byLevy et al. [20]. They demonstrate howword2vec implicitly captures the
information as the Shifted Pointwise Mutual Information Matrix (SPMI) in low dimensions.
They further demonstrate that computing the SVD of the SPMImatrixmaintains the structure
captured by the full dimensional matrix.

3.1 Calibrating RMSE

In order to make sense of the meaning of an RMSE score, we calibrate it to the effect of some
easier to understand distortions. To start, wemake a copy of A (the default G(W) embedding—
we use this notation to signify a GloVe embedding G(·) or the default Wikipedia corpus W))
and apply an arbitrary rotation, translation, and scaling of it to obtain a new embedding
B. Invoking Â, B̂ ← AO- Centered+Scaling(A, B), we expect that RMSE(Â, B̂) = 0;
we observe RMSE values on the order of 10−14, indeed almost 0 withstanding numerical
rounding.
Gaussian noise Next we add Gaussian noise directly to the embedding. That is we define
an embedding B so that each bi = ai + gi where gi ∼ Nd(0, σ I), where Nd(μ,�) is
a d-dimensional Gaussian distribution, and σ is a standard deviation parameter. Then, we
measure RMSE(Â, B̂) from Â, B̂ ← AO- Rotation(A, B). Figure 1 (left) shows the effects
for various σ values, and also when only added to 10% and 50% of the points. We observe
the noise is linear, and achieves an RMSE of 2 to 5 with σ ∈ [0.1, 0.3].
Noise before embedding. Next, we append noisy, unstructured text into the Wikipedia
dataset with 1 billion tokens. We specifically do this by generating random sequences
of m tokens, drawn uniformly from the n = 10K most frequent words; we use m =
{0.01, 0.1, 0.5, 1, 2.5} billion. We then extract embeddings for the same vocabulary of
n = 100K words as before, from both datasets, and useAO- Rotation to linearly transform
the noisy one to the one without noise. As observed in Fig. 1 (middle), this only changes

123

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

576 S. Dev et al.

Table 1 RMSE after alignment
for embeddings

→ G(W) G(WG) G(CC42) G(CC840)

G(W) – 4.56 5.167 6.148

G(WG) 4.56 – 5.986 6.876

G(CC42) 5.167 5.986 – 5.507

G(CC840) 6.148 6.876 5.507 –

→ RAW GloVe word2vec

RAW – 4.12 14.73

GloVe 0.045 – 12.93

word2vec 0.043 3.68 –

Scale to GloVe 25 1 0.25

Scale from GloVe 0.011 1 3

Top: Created from different datasets. Bottom: Created by different
embeddings; usesAO+Scalingmapping rows onto columns and chang-
ing scale

from about 0.7 to 1.6 RMSE. The embeddings seem rather resilient to this sort of noise, even
when we add more tokens than the original data.

We perform a similar experiment of adding structured text; we repeat a sequence made
of s = {100, 1000, 10,000} tokens of medium frequency so the total added is again m =
{10M, 100M, 500M, 1B, 2.5B}. Again in Fig. 1 (middle), perhaps surprisingly, this only
increases the noise slightly, when compared to the unstructured setting. This can be explained
since only a small percentage of the vocabulary is affected by this noise, and by comparing
to the Gaussian noise, when only added to 10% of the data, it has about a third of the RMSE
as when added to all data.
Incremental data As a model sees more data, it is able to make better predictions and
calibrate itself more accurately. This comes at a higher cost of computation and time. If after
a certain point, adding data does not really affect the model, it may be a good trade-off to
use a smaller dataset to make an embedding almost equivalent to the one the larger dataset
would produce.

We evaluate this relationship using the RMSE values when a GloVe embedding from a
smaller dataset B is incrementally aligned to larger datasets A using AO- Rotation. We
do this by starting off with a dataset of the first 1 million tokens of Wikipedia (1M). We
then add data sequentially to it, to create datasets of sizes of 100M, 1B, 2.5B, or 4.57B
tokens. For each dataset, we create GloVe embeddings. Then, we align each dataset using
AO- Rotation(A, B) where A (the target) is always the larger of the two datasets, and B
(the source) is rotated and is the smaller of the two.

Figure 1 (right) shows the result using a vocabulary of n = 100K and n′ = 10K. The
small n′ is also used since for smaller datasets, many of the top 100K words are not seen.
We observe that even this change in dataset size, decreasing from 4.57B tokens to 2.5B still
results in substantial RMSE. However aligning with fewer but better represented words starts
to show better results, supporting use of weighted variants.

3.2 Changing datasets and embeddings

Now with a sense of how to calibrate the meaning of RMSE, we can investigate the effect of
changing the dataset entirely or changing the embedding mechanism.

123

Closed-form word embedding alignment 577

Ta
bl
e
2

Sp
ea
rm

an
co
ef
fic
ie
nt

sc
or
es

fo
r
sy
no

ny
m

an
d
an
al
og

y
te
st
s
be
tw

ee
n
th
e
al
ig
ne
d
w
or
d2

ve
c
to

G
lo
Ve

em
be
dd

in
gs

an
d
be
tw

ee
n
G
lo
Ve

em
be
dd

in
gs

of
W
ik
ip
ed
ia

an
d

C
C
42

da
ta
se
t

Te
st
se
ts

G
lo
Ve

w
or
d2

ve
c

w
or
d2

ve
c
to

G
lo
Ve

U
nt
ra
ns
fo
rm

ed
r

r
+

s
r

+
t

r
+

s
+

t
N
or
m
al
iz
ed

w
(r

)
w

(r
+

s
+

t)

R
G

0.
61

4
0.
69

6
0.
04

1
0.
58

4
0.
58

4
0.
57

0
0.
59

4
0.
55

3
0.
59

2
0.
59

7

W
Si
m

0.
62

3
0.
65

9
0.
06

4
0.
62

4
0.
62

4
0.
61

1
0.
65

2
0.
60

4
0.
65

7
0.
66

4

M
C

0.
66

9
0.
81

8
0.
01

3
0.
86

8
0.
86

8
0.
84

3
0.
87

3
0.
74

3
0.
87

8
0.
88

2

Si
m
le
x

0.
29

6
0.
34

2
0.
01

2
0.
27

8
0.
27

8
0.
26

9
0.
31

4
0.
26

1
0.
31

4
0.
31

6

SY
N

0.
58

7
0.
58

2
0.
00

0
0.
50

1
0.
52

5
0.
51

7
0.
52

8
0.
49

3
0.
53

5
0.
53

9

SE
M

0.
69

1
0.
72

2
0.
00

01
0.
62

4
0.
65

6
0.
63

3
0.
69

7
0.
60

4
0.
70

2
0.
71

2

Te
st
se
ts

G
(W

)
G
(C
C
42

)
G
(W

)t
o
G
(C
C
42

)
U
nt
ra
ns
fo
rm

ed
r

r
+

s
r

+
t

r
+

s
+

t
N
or
m
al
iz
ed

w
(r

)
w

(r
+

s
+

t)

R
G

0.
61

4
0.
81

7
0.
36

3
0.
81

8
0.
81

8
0.
81

1
0.
82

1
0.
81

5
0.
81

8
0.
82

5

W
Si
m

0.
62

3
0.
63

0.
01

7
0.
61

8
0.
61

8
0.
61

5
0.
61

8
0.
60

1
0.
61

6
0.
63

7

M
C

0.
66

9
0.
78

6
0.
25

9
0.
76

6
0.
76

6
0.
73

2
0.
76

8
0.
70

5
0.
77

1
0.
77

4

Si
m
le
x

0.
29

6
0.
37

2
0.
03

5
0.
34

3
0.
34

3
0.
33

9
0.
34

6
0.
29

6
0.
34

6
0.
34

6

SY
N

0.
58

7
0.
62

5
0.
00

0.
56

6
0.
57

6
0.
57

2
0.
57

6
0.
50

2
0.
57

6
0.
57

6

SE
M

0.
69

1
0.
74

1
0.
00

0.
67

6
0.
68

4
0.
67

6
0.
68

8
0.
56

5
0.
69

0
0.
69

5

r,
s,
an
d
t
st
an
d
fo
r
th
e
fu
nc
tio

ns
of

op
tim

al
ro
ta
tio

n,
sc
al
in
g,
an
d
tr
an
sl
at
io
n,
re
sp
ec
tiv

el
y,
an
d

w
()
is
th
e
w
ei
gh
te
d
ve
rs
io
n
of

th
at
fu
nc
tio

n.
W
he
n
co
m
pu
tin

g
th
es
e
sc
or
es

ac
ro
ss

tw
o
em

be
dd
in
gs
,t
he

be
st
va
lu
es

ar
e
pr
in
te
d
in

bo
ld

123

578 S. Dev et al.

Dependence of datasets Table 1 (top) shows the RMSE when the 4 GloVe embeddings are
aligned with AO- Rotation, either as a target or source. The alignment of G(W) and G(WG)

has less error than either to G(CC42) and G(CC840), likely because they have substantial overlap
in the source data (both draw from Wikipedia). In all cases, the error is roughly on the scale
of adding Gaussian noise with σ ∈ [0.25, 0.35] to the embeddings, or reducing the dataset to
10M to 100M tokens. This ismuchmore alignment error than in other experiments, indicating
that the change in the source dataset (and likely its size) has a much larger effect than the
embedding mechanism.
Dependence on embeddingmechanismWenowfix the dataset (the default 4.57BWikipedia
dataset W), and observe the effect of changing the embedding mechanism: using GloVe,
word2vec, and RAW. We now use AO+Scaling instead of AO- Rotation, since the different
mechanisms tend to align vectors at drastically different scales.

Table 1 (bottom) shows theRMSE error of the alignments; the columns show the target (A)
and the rows show the source dataset (B). This difference in target and source is significant
because the scale inherent in these alignments change, and with it, so does the RMSE. Also
as shown, the scale parameter s∗ from GloVe to word2vec in AO+Scaling is approximately
3 (and non-symmetrically about 0.25 in the other direction from word2vec to GloVe). This
means for the same alignment, we expect the RMSE to be between 3 to 4 (≈ 1/0.25) times
larger as well.

However, with each column,with the same target scale, we can compare alignment RMSE.
We observe the differences are not too large, all roughly equivalent to Gaussian noise with
σ = 0.25 or using only 1B to 2.5B tokens in the dataset. Interestingly, this is less error
that changing the source dataset; consider the GloVe column for a fair comparison. This
corroborates that the embeddings find some common structure, capturing the same linear
structures, analogies, and similarities. And changing the datasets is a more significant effect.

3.3 Similarity and analogies after alignment

The GloVe and word2vec embeddings both perform well under different benchmark similarity
and analogy tests. These results will be unaffected by rotations or scaling. Here we evaluate
how these tests transfer under alignment. Using the default Wikipedia dataset, we use several
variants of AbsoluteOrientation to align GloVe and word2vec embeddings. Then, given a
synonym pair (i, j) we check whether b j ∈ B (after alignment) is in the neighborhood of ai .

More specifically, we use 4 common similarity test sets, which we measure with cosine
similarity [21]: Rubenstein–Goodenough (RG, 65 word pairs) [35], Miller–Charles (MC,
30 word pairs) [28], WordSimilarity-353 (WSim, 353 word pairs) [12], and SimLex-999
(Simlex, 999 word pairs) [17]. We use the Spearman correlation coefficient (in [−1, 1],
larger is better) to aggregate scores on these tests; it compares the ranking of cosine similarity
of ai to the paired aligned word b j , to the rankings from a human-generated similarity score.

Table 2 shows the scores on just the GloVe and word2vec embeddings, and then across
these aligned datasets. To understand how the variants of AbsoluteOrientation compare,
we compute the scores after each of the various optimal transformation types are applied:
rotation, then scaling, then translation, and finally we consider if we normalize all vectors
before alignment to maximize cosine similarities. Before transformation (“untransformed”)
the across-dataset comparison is very poor, close to 0; that is, extrinsically there is very
little information carried over. However, alignment with just AO- Rotation achieves scores
nearly as good as, and sometimes better than on the original datasets. word2vec scores higher
than GloVe, and the across-dataset scores are typically between these two scores. Adding
scaling with AO+Scaling has no effect on the scores on the similarity test because they

123

Closed-form word embedding alignment 579

Table 3 Synonym and Analogy
scores from rotations (applied to
all words) learned on 100K, top
10K words, and top 10K words
normalized

AO+R AO+R AO- Normalized

100K 10K 10K

RG 0.584 0.576 0.588

WSIM 0.624 0.612 0.643

MC 0.868 0.817 0.851

SIMLEX 0.278 0.292 0.308

SYN 0.501 0.505 0.511

SEM 0.624 0.616 0.616

are measured with cosine similarity. However, also applying the optimal translation does
increase the scores even though it optimizes Euclidean distance and not cosine distance.
Perhaps surprisingly, applying rotation along with translation and scaling improves more
than just applying rotation and translation. This method applies scaling after the dataset is
centered, so this then alters the inner products, and in a useful way.

We perform the same experiments on 2 Google analogy datasets [27]: SEM has
8869 analogies and SYN has 10675 analogies. These are of the form “A:B::C:D” (e.g.,
“man:woman::king:queen”), and we evaluate across datasets by measuring if vector vD is
among the nearest neighbors in dataset A of vector vC+(vB−vA) in dataset B. The results are
similar to the synonym tests, whereAO- Rotation alignment across-datasets performs sim-
ilar to within either embedding, and scaling and rotation provided small further improvement.
In this case, performing rotation and scaling improves upon just rotation. This is because the
analogies are accessing something more complicated about the embedding, and so adjusting
the scale more aligns the Euclidean distance and hence the vector structure needed to succeed
in analogies.

The right part of the table shows the effect of various weightings. Normalization makes
the similarity and analogy scores worse, but weighting by the norms consistently increases
the scores. Moreover, also scaling and rotating (e.g., as w(r+s+t)) improves the scores further.

We also align G(W) toG(CC42), to observe the effect of only changing the dataset. TheG(CC42)
dataset performs better itself; it uses more data. The small similarity tests (RG,MC) show some
extrinsic information is captured without any alignment, but otherwise across-embedding
scores have a similar pattern to across-dataset scores.

Next, in Table 3, we further investigate the effect of various weightings (or normalizing)
before alignment. In these tests, we show the effect on AO- Rotation with three types of
weighting. As before we simply apply AO- Rotation on all 100K words. But we also find
the optimal R on only the most frequent 10K words using AO- Rotation, and then again
using AO- Normalized on just these 10K words. The rotation and evaluation are still on
all 100K words needed for the tests. Surprisingly AO- Normalized(10K) performs better
than AO- Rotation(10K), and comparably to AO- Rotation(100K). This indicates that
similarity optimization is useful when the words all have sufficient data to embed them
properly.

3.4 Comparison to baselines

Next, we perform similarity tests to compare against alignment implementations of methods
by Sahin et al. [36] (LRA) and Bollegela et al. [5] (Affine Transformations). We reimple-

123

580 S. Dev et al.

Table 4 Modified similarity tests
(on only top 10K words) after
alignment by Affine
Transformation (AffTrans), LRA,
and AO- Rotation of Wikipedia
and CC42 GloVe embeddings

LRA AffTrans AO+R AO+R

Test sets 10K 10K 10K 100K

RG 0.701 0.301 0.728 0.818

WSim 0.616 0.269 0.612 0.618

MC 0.719 0.412 0.722 0.766

Simlex 0.327 0.126 0.340 0.343

Table 5 RMSE variation with word frequency in (a) GloVeWiki to GloVe Common Crawl and (b) word2vec
to GloVe evaluated for Wiki dataset

Word Frequency in Wiki Norm in (GloVe) Wiki Wiki to CC (42B) word2vec to GloVe

talk 187513532 9.681 8.608 12.462

november 2340726 7.847 5.26 8.614

man 1035008 8.648 4.25 5.161

statistical 83531 5.891 4.63 5.097

bubbles 11200 5.455 4.66 3.768

skateboard 3804 5.670 5.714 3.891

emoji 1761 6.090 6.781 2.402

haymaker 705 4.108 5.951 1.573

Table 6 Similarity and analogy tests before and after alignment and combining embeddings derived from
different techniques and datasets by AO+Centered+Weighted

Test sets G(W) W(W) [G(W)�W(W)] W(GN) [G(W)�W(GN)] G(CC840) [G(CC840)�W(GN)]

RG 0.614 0.696 0.716 0.760 0.836 0.768 0.810

WSim 0.623 0.659 0.695 0.678 0.708 0.722 0.740

MC 0.669 0.818 0.869 0.800 0.811 0.798 0.847

Simlex 0.296 0.342 0.368 0.367 0.394 0.408 0.446

SYN 0.587 0.582 0.592 0.595 0.607 0.618 0.609

SEM 0.691 0.722 0.759 0.713 0.733 0.729 0.733

Best scores in bold

mented their algorithms, but did not spend significant time to optimize the parameters; recall
our method requires no hyperparameters. We only used the top n′ = 10K words for these
transformations because these other methods were much more time and memory intensive.
We only computed similarities among pairs in the top 10K words for fairness (about two-
thirds of theword pairs evaluated, so the scores do notmatch other tables), and did not perform
analogy tests since fewer than one-third of analogies fully showed up in the top 10K. Table
4 shows results for aligning the G(W) and G(CC42) embeddings with these approaches. Our
AbsoluteOrientation-based approach does significantly better than Bollegela et al.’s [5]
Affine Transformations and generally better than Sahin et al.’s [36] LRA. Our advantage over
LRA increases when aligning all n = 100K words; by comparison, LRA ran out of memory
since it requires an n × n dense matrix decomposition.

123

Closed-form word embedding alignment 581

3.5 Dependence of RMSE variation with word frequency

Table 5 shows some sampled words of various frequencies in the Wikipedia dataset. A word
that is more frequently seen in a corpus is generally seen with a larger proportion of other
words and contexts, and thus as observed in the table, has a vector representation that has
larger norm than a word which has low frequency. This results in the contribution of high
frequency words in the rotation matrix H , computed for minimizing the RMSE, to also
be larger. This larger frequency, and larger norm, also manifests itself in the error after
alignment, as shown in the last two columns of Table 5, both between data sets and between
embedding mechanisms. The relation in the amount of RMSE between words appears even
more correlated when between embeddingmechanisms (in this case word2vec and GloVe). The
low-frequency words likely exhibit some baseline noise in the case with different datasets
(Wiki and CC(42B)), which obscures this relationship for low-frequency words.

3.6 Discussion on the right variant

Most of the gain using AbsoluteOrientation is achieved by just finding the optimal
rotation RwithAO- Rotation. However, consistent improvement can be foundbyweighting
the large points more using AO+Weighted and by applying translation or scaling, and
slightly more by applying both.

When different datasets are aligned using the same mechanism (e.g., both with GloVe

or both with word2vec), then it is debatable whether scaling and translation is necessary,
since scaling does not affect cosine similarity, and translation changes intrinsic inner product
properties. However, using a weighting to put more weight on longer (and implied more
robustly embedded) words does not alter any intrinsic properties, and only seems to create
better alignments.

When datasets are embedded with different mechanisms (e.g., one with word2vec and one
with GloVe) then they are not scaled properly with respect to each other. In this case, it is
important to find the optimal scaling to put them in a consistent interpretable scale, and to
ensure analogy relations are optimized. So we strongly recommend using scaling in this
setting.

4 Embedding alignment : applications

We highlight a few applications which may be served by this alignment, and comparison
mechanisms that we design and demonstrate their effectiveness.

4.1 Boosting via ensembles

A direct application of combining different embeddings can be to increase its robustness. We
show that ensembles of pre-computed word embeddings found via different mechanisms and
on different datasets can boost the performance on the similarity and analogy tests beyond
that of any single mechanism or dataset. The boosting strategy we use here is just simple
averaging of the corresponding words after the embeddings have been aligned.

Table 6 shows the performance of these combined embedding in three experiments. The
first set shows the default Wikipedia dataset under GloVe (G(W)), under word2vec (W(W)), and
combined ([G(W)�W(W)]). The second set showsword2vec embedding ofGoogleNews (W(GN)),

123

582 S. Dev et al.

Table 7 The 5 closest neighbors of a word before and after alignment by AO- Rotation (between English–
Spanish)

Word Neighbors before alignment Neighbors after alignment

woman her, young, man, girl, mother her, girl, mujer, mother, man

week month, day, year, monday, time days, semana, year, day, month

casa apartamento, casas, palacio, residencia, habitaci casas, home, homes, habitaci, apartamento

caballo caballos, caballer, jinete, jinetes, equitaci horse, horses, caballos, jinete

sol sombra, luna, solar, amanecer, ciello sun, moon, luna, solar, sombra

Target word (translation) in bold

Table 8 The 5 closest neighbors of a word before and after alignment by AbsoluteOrientation(between
English–French)

Word Neighbors before alignment Neighbors after alignment

woman her, young, man, girl, mother her, young, man, femme, la

week month, day, year, monday, time month, day, year, semaine, start

heureux amoureux, plaisir, rire, gens, vivre happy, plaisir, loving, amoureux, rire

cheval chein, petit, bateau, pied, jeu horse, dog, chien, red, petit

daughter father, mother, son, her, husband mother, fille, husband, mere, her

Target word (translation) in bold

and combined ([G(W)�W(GN)]) with G(W). The third set shows GloVe embedding of Common-
Crawl (840B) (G(CC840)) and then combined with W(GN) as [G(CC840)�W(GN)]. Combining
two embeddings using AO+Centered+Weighted consistently boosts the performance on
similarity and analogy tests. Very similar boosting results occur independent of the precise
alignment mechanism (e.g., usingAO- Centered+Scaling). The best score on each exper-
iment is in bold, and in 5 out of 6 cases, it is from a combined embedding. Moreover, except
for this one case, the combined embedding always performs better on all tests that both of
the individual embeddings, and in this one case, G(CC804)�W(GN) still outperforms W(GN) on
SEM analogies. For instance, remarkably, G(W)�W(W) which only uses the default 4.57B
token Wikipedia dataset, performs better or nearly as well as W(GN)which uses 100B tokens.
Moreover, in some cases the improvement is significant; on the large similarities test Simlex,
the [G(CC840)�W(GN)] score is 0.443 or 0.446 with weights, whereas the best score without
boosting is only 0.408 using G(CC840).

4.2 Aligning embeddings across languages and embeddings

Word embeddings have been used to place word vectors from multiple languages in the
same space [16,26]. These either do not perform that well in monolingual semantic tasks as
noted in Luong, Pham and Manning [23] or use learned affine transformations [26], which
distort distances and do not have closed-form solutions. Smith et al. [40] use the equivalent
of AO- Rotation to translate between word embeddings from different languages that have
been extracted using the same method. We extend that here to verify that no matter the
embedding mechanism, we can translate using a variant of AbsoluteOrientation. We
use the ability to choose the right variant of absolute orientation as per Sect. 3.6 to orient
different embeddings onto each other coherently.We use the default English GloVe embedding

123

Closed-form word embedding alignment 583

from Wikipedia and the FastText https://github.com/facebookresearch/fastText embedding
for Spanish. FastText is yet another unsupervised learning paradigm for obtaining vector
representations for words which uses a lot of concepts from word2vec, skipgram models, and
bag of words. As presented, these two have been derived using different methods and are
thus oriented differently in 300-dimensional space. We extract the embeddings for the most
frequent 5000 words from the default English Wikipedia dataset (that have translations in
Spanish) and their translations in Spanish and align them usingAO+Centered+Weighted.
We test before and after alignment, for each of these 10,000 words, if their translation is
among their nearest 1, 5, and 10 neighbors. Before alignment, the fraction of words with
its translation among its closest 1, 5, and 10 nearest neighbors is 0.00, 0.160, and 0.160,
respectively, while after alignment it is 0.372, 0.623, and 0.726, respectively. Some examples
of translations are in Table 7.

We perform a cross-validation experiment to see how this alignment applies to new words
not explicitly aligned. On learning the rotation matrix above, we apply it to a set of 1000
new “test” Spanish words (the translations of the next 1000 most frequent English words)
and bring it into the same space as that of English words as before. We test these 2000 new
words in the embedded and aligned space of 12,000 words (now 6000 from each language).
Before alignment, the fraction of times their translations are among the closest 1, 5, and 10
neighbors are 0.00, 0.00, and 0.00, respectively. After alignment it is 0.311, 0.689, and 0.747,
respectively (comparable to results and setup in Mikolov et al. [26], using jointly learned
affine transformations).

We perform a similar experiment between English and French, and see similar results. We
first obtain 300-dimensional embeddings for English Wikipedia dump using GloVe, and for
French words from the FastText embeddings. Then, we extract the embeddings for the most
frequent 10,000 words from the default Wikipedia dataset (that have translations in French)
and their translations in French and align them using AO+Centered+Weighted. We test
before and after alignment, for each of these 10,000 words, if their translation is among their
nearest 1, 5, and 10 neighbors. Before alignment, the fraction of words with its translation
among its closest 1, 5 and 10 nearest neighbors is 0.00, 0.054, and 0.054, respectively, while
after alignment it is 0.478, 0.755, and 0.810, respectively. Table 8 lists some examples before
and after translation.

We again perform a cross-validation experiment to see how this alignment applies to new
words not explicitly aligned. On learning the rotation matrix above, we apply it to a set of
1000 new “test” French words (the translations of the next 1000 most frequent English words
in the default dataset) and bring it into the same space as that of English words as before. We
test in this space of 22,000 words now, if their translations are among the closest 1, 5 and
10 nearest neighbors of the 2000 new words (1000 French and their translations in English).
Before alignment, the fraction of times their translations are among the closest 1, 5 and 10
neighbors are 0.00, 0.00, and 0.00, respectively. After alignment it is 0.307, 0.513, and 0.698,
respectively.

4.3 Aligningmultiple languages onto same space

As demonstrated in Sect. 4.2, pairwise alignment of words from different languages needs
relatively few points to find the alignment to achieve good accuracy in translation between the
two languages for a much larger set of words. This allows us to have a low cost operation to
map words of one language to their corresponding translated words in the another language.
This additionally leads us to a follow-up application. For many language pairs (say languages

123

https://github.com/facebookresearch/fastText

584 S. Dev et al.

Table 9 Translating Spanish to French by aligning directly as compared to aligning both to English

Top n accuracy Unaligned Pairwise aligned Indirectly aligned

n = 1 0.0 0.312 0.277

n = 5 0.0 0.635 0.601

n = 10 0.0 0.723 0.707

L1 and L2),wemight not have a knowndictionary of correspondingword-pairs. In such cases,
finding an alignment for enabling translation can be impeded. However, for each of these
languages L1 and L2, if corresponding words to a third language L3 is known, aligning both
L1 and L2 onto L3 also brings L1 and L2 into the same space. Thus, translation of words from
L1 and L2 is enabled without having a set of corresponding seed words in them by which
to define the alignment. Aligning multiple languages onto the same space can thus, aid in
multi-way translation. Further, for low-resource languages or pairs of languages for whom,
only a very small set of translations, i.e., few corresponding points are known, aligning each
of these languages to amore common languagewithwhich a larger correspondence is known,
can help translation.

To demonstrate this, we pick languages L1 and L2 to be Spanish and French, respectively.
We also pick the common language L3 to be English, to whose word embedding space we
align L1 and L2 to. In Table 9, in the first column, we have Spanish to French translations
before alignment. As expected, the top 1, 5 and 10 neighboring word accuracies (as evaluated
in Sect. 4.2) are poor (in fact 0 accuracy). In the second column, we have accuracies after
aligning them onto each other using a pool of 2000 words for which we know translations,
i.e., their one-to-one correspondences. Next, in the third column, we align both Spanish and
French onto English, using the same set of 2000 words and then compare the accuracies for
translations from Spanish to French. We find that the top 1, 5, and 10 accuracies are compa-
rable between columns 2 and 3. Thus Spanish–French translation was enabled by knowing
Spanish–English and French–English associations. This multi-way translation enabled by a
third language’s association leads us tomany possibilities of aligning low-resource languages
to each other easily.

5 Discussion

We have provided simple, closed-form method to align word embeddings. Code can be
found on github (https://github.com/sunipa/Abs-Orientation). It allows for transformations
for any subset of translation, rotation, and scaling. These operations all preserve the intrinsic
Euclidean structure which has been shown to give rise to linear structures which allows
for learning tasks like analogies, synonyms, and classification. All of these operations also
preserve the Euclidean distances, so it does not affect the tasks which are measured using
this distance; note the scaling also scales this distance, but does not change its order. Our
experiments indicate that the rotation is essential for a good alignment, and the scaling is
needed to compare embeddings generated by different mechanisms (e.g., GloVe and word2vec)
and while helpful, not necessarily when the dataset is changed. Also, the translation provides
minor but consistent improvement.

We also show how to explicitly optimize cosine similarity by first normalizing all words—
however, this does not perform as well as instead optimizing Euclidean distance. Rather we

123

https://github.com/sunipa/Abs-Orientation

Closed-form word embedding alignment 585

propose to weight words in the alignment by their norms, and this further improves the
alignment because it emphasizes the words which have more stable embeddings.

This alignment enables new ways that word embeddings can be compared. This has
the potential to shed light on the differences and similarity between them. For instance, as
observed in other ways, common linear substructures are present in both GloVe and word2vec,
and these structures can be aligned and recovered, further indicating that it is a well-supported
feature inherent to the underlying language (and dataset). We also show that changing the
embedding mechanism has less of an effect than changing the dataset, as long as that dataset
is meaningful. Unstructured noise added to the input dataset appears not to have much effect,
but changing from the 4.57B token Wikipedia dataset to the 840B token Common Crawl
dataset has a large effect.

Additionally, we show that by aligning various embeddings, their characteristics as mea-
sured by standard analogy and synonym tests can be transferred from one embedding to
another. We also demonstrate that cross-language alignment can aid in word translation even
when coming from completely different embedding mechanisms, even in a cross-validation
setting. This cross-embedding mechanism alignment opens the door for many other types of
alignment word embeddings with embeddings generated from graphs, images, or any other
dataset which has some useful word labels.

Finally, we showed that we can “boost” embeddings without revisiting the (sometimes
quite enormous) raw data. This is surprisingly effective in improving scores on similarity
and analogy test, results in the best known scores from embeddings on these tests. For
instance, on the Simlex analogy test we improve upon the best known scores by almost
10% in the Spearman correlation coefficient. There are many other potential applications of
these techniques for aligning high-dimensional data embeddings.We propose some scenarios
where they may be used in the following section.

5.1 Other applications

Here, we enumerate a few applications—we do not experiment on many of these due to
the extreme computational cost of performing an analysis of the effect (i.e., the baseline
approaches of not using our techniques can be prohibitively expensive, or too qualitative to
effectively evaluate).

(1) Common Crawl is one of the largest textual data sources available. Moreover, it con-
sistently gets updated to include the ever increasing data on the internet. Each of these
datasets has over 800B tokens, and extracting embeddings from these can be com-
putationally expensive. However, extracting embeddings from the additional data not
included in the previous update of Common Crawl should be significantly less expen-
sive. Aligning an embedding from just the new data, and performing a weighted average
with the older larger one may work as well or better than the embedding made from
scratch.

(2) A similar weighted average alignment can help with specialized data. Consider data
from scientific journals only, or of domain-specific biomedical terms. Embeddings from
just these datasets would be very specialized and each word would have a specific word
sense based on the domain. Aligning these to a gigantic corpus can enrich the specialized
domain-related regions on the larger embedding.

(3) Tags and phrases in English can be single words or a string of words. Orienting an
embedding of tags/phrases along say Common Crawl using an intersection of the single
words in the two datasets can help place multi-worded tags or phrases around words

123

586 S. Dev et al.

related to them. This can help derive meaning from random or unknown phrases. Images
also often are annotated with a set of tag words. So orienting a set of tags can help orient
images meaningfully among words.

(4) These methods can also be applied to even more heterogeneous embeddings than dis-
cussed above. We can orient heterogeneous embeddings derived from a variety of
methods, e.g., for graphs including node2vec [14] orDeepWalk [30], and others [6,9,13],
images [2,22], and for kernel methods [32,33]. For instance, RDF data can contain short-
hand query phrases like “president children spouse” which answers the question “who
are the spouses and children of presidents?” By orienting each word along word embed-
dings fromCommonCrawl, thismay help answer similar questions evenmore abstractly.
Heterogeneous networks have amixture of node types. If there is an intersection of some
nodes (and node types) between any two embeddings (heterogeneous or homogeneous),
we can orient them meaningfully.

(5) Customer data collected at a company over different years and subsidiaries can be
embedded using different features (such as income bracket, credit score, and location
depending on the company). Using common customers over the year, diverse sources
and new users can be added meaningfully to the embedding and inferred about, without
embedding all of the data points from scratch. Moreover, embedding the same users
from different years and aligning them can also help deduce the change in their features
over time.

Acknowledgements Thanks to NSF CCF-1350888, ACI-1443046, CNS-1514520, CNS-1564287, IIS-
1816149, and NVidia Corporation.

References

1. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d points sets. IEEE Trans Pattern
Anal Mach Intell 9(5):698–700

2. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: ECCV
3. Besl PJ, McKay ND (1992) Amethod for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell

14(2):239–256
4. Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword information
5. Bollegala D, Hayashi K, Kawarabayashi KI (2017) Learning linear transformations between counting-

based and prediction-based word embeddings. PLoS ONE 12:e0184544
6. Cai H, Zheng VW, Chang KC (2017) A comprehensive survey of graph embedding: problems, techniques

and applications. Technical report, arXiv:1709.07604
7. Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput

10:145–155
8. Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers

for language understanding. Proc NAACL-HLT 2019:4171–4186
9. Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous

networks. In: KDD
10. Eggert DW, Lorusso A, Fisher RB (1997) Estimating 3-d rigid body transformations: a comparison of

four major algorithms. Mach Vis Appl 9:272–290
11. Faugeras OD, Hebert M (1983) A 3-d recognition and positioning algorithm using geometric matching

between primitive surfaces. Proc Int Jt Conf Artif Intell 8:996–1002
12. Finkelstein L, Gabrilovich E, Matias Y, Rivlin E, Solan Z, Wolfman G et al (2002) Placing search in

context: the concept revisited. ACM Trans Inf Syst 20:116–131
13. Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. Tech-

nical report, arXiV:1705.02801
14. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: KDD
15. Hanson RJ, Norris MJ (1981) Analysis of measurements based on the singular value decomposition.

SIAM J Sci Stat Comput 27(3):363–373

123

http://arxiv.org/abs/1709.07604
http://arxiv.org/abs/1705.02801

Closed-form word embedding alignment 587

16. HermannKM, BlunsomP (2013)Multilingual distributed representations without word alignment. ArXiv
e-prints

17. Hill F, Reichart R, Korhonen A (2015) Simlex-999: evaluating semantic models with (genuine) similarity
estimation. Comput Linguist 41:665–695

18. Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A
4:629–642

19. Joulin A, Grave E, Bojanowski P, Mikolov T (2016) Bag of tricks for efficient text classification
20. Omer L, Yoav G (2013) Neural word embedding as implicit matrix factorization. In: NIPS
21. Omer L, Yoav G (2014) Linguistic regularities of sparse and explicit word representations. In: CoNLL
22. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110
23. Luong MT, Pham H, Manning CD (2015) Bilingual word representations with monolingual quality in

mind. In: NAACL-HLT, pp 151–159
24. Mahadevan S, Boucher T, Carey CJ, Dyar MD (2014) Aligning mixed manifolds. In: AAAI
25. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector

space. Technical report, arXiv:1301.3781
26. Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation.

ArXiv e-prints
27. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and

phrases and their compositionality. In: NIPS, pp 3111–3119
28. Miller G, Charles W (1998) Contextual correlates of semantic similarity. Lang Cogn Process 6:1–28
29. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: EMNLP
30. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: KDD
31. PetersME, NeumannM, IyyerM, GardnerM, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized

word representations. In: Proceedings of NAACL
32. Rahimi A, Recht B (2007) Random features for large-scale kernel machines. In: NIPS
33. Rahimi A, Recht B (2008) Weighted sums of random kitchen sinks: replacing minimization with ran-

domization in learning. In: NIPS
34. Radim Ř, Petr S (2010) software framework for topic modelling with large corpora. In: Proceedings of

the LREC 2010 workshop on new challenges for NLP frameworks, Valletta, Malta, May 2010, pp 45–50.
ELRA. http://is.muni.cz/publication/884893/en

35. Rubenstein H, Goodenough JB (1965) Contextual correlates of synonymy. Commun ACM 8:627–633
36. Sahin CS, Caceres RS, Oselio B, CampbellWM (2017) Consistent alignment of word embeddingmodels.

ArXiv e-prints
37. Schönemann PH (1966) A generalized solution to the orthogonal procrustes problem. Psychometrika

31(1):1–10
38. Schwartz JT, Sharir M (1987) Identification of partially obscured objects in two and three dimensions by

matching noisy characteristic curves. Int J Robot Res 6(2):29–44 (Summer 1987)
39. Shi Q, Petterson J, Dror G, Langford J, Smola A, Vishwanathan SVN (2009) Hash kernels for structured

data. JMLR 10:2615–2637
40. Smith SL, Turban DH, Hamblin S, Hammerla NY (2017) Offline bilingual word vectors, orthogonal

transformations and the inverted softmax. In: ICLR
41. WalkerMW, Shao L, Volz RA (1991) Estimating 3-D location parameters using dual number quaternions.

CVGIP: Image Underst 54(3):358–367
42. Weinberger K, Dasgupta A, Langford J, Smola A, Attenberg J (2009) Feature hashing for large scale

multitask learning. In: ICML

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1301.3781
http://is.muni.cz/publication/884893/en

588 S. Dev et al.

Sunipa Dev is a Computing Innovation Fellow at UCLA. She com-
pleted her Ph.D. at the School of Computing at the University of Utah.
Her research focuses on understanding the structure of language rep-
resentations and leveraging that to isolate and decouple associations
and concept subspaces within. Her thesis developed debiasing algo-
rithms, metrics, and probes, which build a more holistic understanding
of the impact that invalid and biased associations can have on real
world tasks.

Safia Hassan completed her undergraduate degree at the University
of Utah in Applied Mathematics and Computer Science. Her under-
graduate thesis focused on exploring vector spaces of predictive word
embeddings through an absolute orientation technique of their respec-
tive coordinates in high dimensions. She continued to pursue her grad-
uate degree in Computer Science and now is working as a Software
Engineer.

Jeff M. Phillips is an Associate Professor at the School of Comput-
ing and Director of the Utah Center for Data Science, at the Univer-
sity of Utah. He has been funded by an NSF GRF, CI Fellowship,
and CAREER Award, and he works in machine learning, data min-
ing, algorithms and geometry, and databases. He has also written an
undergraduate textbook (mathfordata.github.io) focusing on the math-
ematical and geometric aspects of data analysis.

123

	Closed form word embedding alignment
	Abstract
	1 Introduction
	1.1 Word embedding mechanisms

	2 Closed-form point set alignment: classic and new results
	2.1 Extension to contextualized embeddings
	2.2 Related approaches

	3 Evaluating accuracy of variants
	3.1 Calibrating RMSE
	3.2 Changing datasets and embeddings
	3.3 Similarity and analogies after alignment
	3.4 Comparison to baselines
	3.5 Dependence of RMSE variation with word frequency
	3.6 Discussion on the right variant

	4 Embedding alignment : applications
	4.1 Boosting via ensembles
	4.2 Aligning embeddings across languages and embeddings
	4.3 Aligning multiple languages onto same space

	5 Discussion
	5.1 Other applications

	Acknowledgements
	References

