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Abstract
Advances in the information technologies have greatly contributed to the advent of larger
datasets. These datasets often come from distributed sites, but even so, their large size usually
means they cannot be handled in a centralized manner. A possible solution to this problem is
to distribute the data over several processors and combine the different results. We propose a
methodology to distribute feature selection processes based on selecting relevant and discard-
ing irrelevant features. This preprocessing step is essential for current high-dimensional sets,
since it allows the input dimension to be reduced. We pay particular attention to the problem
of data imbalance, which occurs because the original dataset is unbalanced or because the
dataset becomes unbalanced after data partitioning. Most works approach unbalanced sce-
narios by oversampling, while our proposal tests both over- and undersampling strategies.
Experimental results demonstrate that our distributed approach to classification obtains com-
parable accuracy results to a centralized approach, while reducing computational time and
efficiently dealing with data imbalance.
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1 Introduction

Feature selection (FS) is a popular machine learning technique, whereby attributes that allow
a problem to be clearly defined are selected, while irrelevant or redundant attributes are
ignored [1]. Traditionally, an FS algorithm is applied in a centralized manner, i.e., a single
selector is used to solve a given problem. However, in a big data scenario, data are often dis-
tributed, and a distributed learning approach allows multiple subsets of data to be processed
in sequence or concurrently. While there are several ways to distribute an FS task, the two
most commonways are as follows: (i) an identical FS algorithm is run on data stored together
in one very large dataset and distributed into several processors and the results are combined,
or (ii) an identical FS algorithm is run on data stored in different datasets in different locations
and the results are combined. Several works have contributed to the development of different
approaches to distributed FS. In [2], the authors proposed a method for distributing the FS
process by features, i.e., using a vertical distribution. A merging procedure then updates the
feature subset according to the improvements achieved in classification accuracy. In testing
over several microarray datasets, a considerable reduction was obtained in the execution
time, while performance was maintained or even improved with regard to the standard cen-
tralized approach. In [3], different ways of distributing the data (by features and by samples)
were evaluated to determine to what extent it was possible to obtain similar results as those
obtained using the whole dataset. In [4], distance correlation was used to evaluate the depen-
dence between the classes and a given feature subset. A progressively refined feature subset
model that uses a probabilistic representation was obtained through repeated extraction and
evaluation steps. In [5], a different perspective for distribution was adopted that achieved
distributed FS using data complexity instead of classification performance as a measure,
obtaining optimal results while reducing the time required.

However, problems may appear when data are distributed into several processors, includ-
ing a great imbalance between classes or even non-represented classes in some data subsets.
The class imbalance problem occurs when a dataset is dominated by a class or classes
with significantly more instances than the other classes. The learning algorithms would be
biased toward the majority classes, since the rules to correctly predict instances are posi-
tively weighted in favor of the accuracy metric, whereas specific rules that predict examples
from the minority classes are usually ignored. This means that minority class instances are
more often misclassified than majority class instances [6]. To compensate for the imbalance
problem, different general approaches can be followed [7]:

– Weight adjustment This consists of assigning different weights to the instances of the
dataset during the training phase, so as to prioritize less well-represented classes in the
classification [8].

– UndersamplingThis consists of eliminating instances of better represented classes.Avail-
able methods are used to determine the instances that contribute less as candidates for
elimination, such as duplicate instances or instances close to others [9–11].

– Oversampling This consists of generating more instances in the less well-represented
classes, thus balancing the number of instances in all classes. This is the method we use
in this research, as will be detailed below [12–14].

In recent years, several mixed solutions have been used that combine the basic approaches
above [6]. Most of them employ the synthetic minority oversampling technique (SMOTE) to
generate new samples for minority classes, followed by a cleaning step aimed at improving
results. In [15] the authors propose a solution for imbalance consisting of combining the
neighbor cleaning rule (NCL) and SMOTE techniques. NCL is used to remove outliers in
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the majority class while SMOTE is used to increase sample data in minority classes. Some
authors have used combinations of over- and undersamplingmethods, e.g., [16], who describe
the application of an editing technique based on the rough set theory (RST) as a new hybrid
method with SMOTE aimed at improving results. Other combinations, such as the density-
based spatial clustering of applications with noise (DBSCAN) algorithm for undersampling
plus SMOTE for oversampling have performed well [17]. Other authors have combined the
borderline synthetic minority oversampling technique (BSMOTE) with data cleaning tech-
niques such as Tomek links or Wilson’s edited nearest neighbor rule (ENN) [18] to propose
new support vector machine (SVM) classification algorithms for unbalanced datasets. The
proposed BSMOTE-Tomek and BSMOTE-ENN hybrid preprocessing algorithms consist of
first using SMOTE on minority samples in the neighborhood of the borderline and then
removing redundant training samples to improve data utilization efficiency. Ensemble-based
algorithms have also been popular in solving imbalanced learning [19], with some propos-
als adding different ways of adaptively selecting informative instances using cost-sensitive
learning, among others [20].

Although a plethora of methods have separately tackled classification imbalance and FS,
fewer methods have jointly considered FS and imbalance. Yang et al. [21] proposed itera-
tive ensemble FS that combines filters and balanced sampling for multiclass classification
of imbalanced microarray data using a one-versus-all (OVA) approach. Their experiments
with different state-of-the-art filters—specifically,minimumredundancymaximumrelevance
(MRMR) and fast correlation-based filter (FCBF)—and under- and oversampling alterna-
tives show that their proposal behaves better than the filters alone for multiclass microarrays.
Another work [22] shows that in scenarios such as fraud detection, FS methods are consider-
ably affected by unbalanced datasets, so using undersampling strategies in the preprocessing
step can greatly improve the obtained results. Maldonado et al. [23] developed a family
of embedded methods for backward FS using SVMs, adapted to select attributes relevant
to discrimination between classes under imbalanced data conditions. The model, applica-
ble to high-dimensional datasets and tested on several very imbalanced microarray datasets,
achieved better predictions with consistently fewer relevant features.

Scalability is a challenge for both sampling-based and FS techniques and in terms of both
the number of samples and the data dimensionality. One way of tackling this problem is
to distribute the data into several processors or nodes. This is the approach adopted in our
research as described here. Some previous works, including [4,23] have approached FS for
unbalanced high-dimensional datasets, but their approach lacked the ability to tackle datasets
with large numbers of samples.

In this work we present a methodology for distributed FS which simultaneously deals
with the problem of heterogeneous subsets. The method can be applied to the whole dataset,
distributed in order to cope with the high dimensionality, and also when the situation is
distributed in origin. In testing our proposal, we used two alternatives: (i) forcing the partitions
of the dataset to maintain the balance between the classes, and (ii) applying oversampling
techniques when the imbalance is inevitable.

The remainder of the paper is organized as follows: Sect. 2 provides a short description
of the main characteristics of FS methods. Section 3 describes the proposed methodology
to improve performance in the context of distributed FS. Section 4 provides a description of
the datasets, filters and classification methods used in our study. Section 5 shows the results
of applying the methodology to different datasets, distribution scenarios and resampling
approach and also analyzes some research questions in detail. Finally, Sect. 6 includes some
final remarks and proposals for future research.
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2 Background

Feature selection (FS), which is the process of identifying and eliminating as much irrelevant
and redundant information as possible [24], is typically applied as a preprocessing step
before classification, although it has also proven to be useful in other learning tasks such as
regression, clustering and anomaly detection.

While different procedures are used to implement FS, all of them have a subset evaluation
task and a stopping criterion. Focusing on subset evaluation, there exist four main methods,
as shown in Fig. 1:

– Embedded methods With these methods feature subset evaluation is not a separate task
prior to classification, but is part of the classification algorithm itself. The application can
be as simple as adding or removing features in response to prediction errors regarding
new instances [25,26] or as complex as adding routines to combine features into richer
descriptions, as in ID3 [27], C4.5 [28] CART [29]. The advantages of these methods
are that they include interaction with the classification model, are less computationally
intensive than wrappers and detect dependencies between features. As a drawback, FS
depends on the classifier.

– Wrapper methods These use a previous task to evaluate the feature subset obtained in
each step before the induction phase in a classifier. Wrapper methods use a predefined
algorithm to evaluate the quality of a feature subset, e.g., SVM [30], employing the
estimated accuracy of the resulting classifier as a metric. Their main advantages are
that they interact with the classifier and detect features dependencies. However, they are
computationally expensive and incur an overfitting risk (when a model is too closely fit
to a limited set of data) and the selection depends on the classifier.

– Filter methods Like wrapper methods, these perform FS in a prior step to classification.
The main difference is that filters do not use an induction algorithm to evaluate subsets
of features but an independent measure such as mutual information or correlation. Since
they do not use a learning algorithm, they do not inherit any bias; thus, this model
is computationally more efficient than both wrapper and embedded methods. Filters
usually operate in two phases: (i) they rank features based on certain criteria, and (ii)
they select features with the highest rankings to induce the classification model. The
main advantages are their lower cost and their capacity to handle redundant features and
to generalize. A drawback is that they do not interact with the classifier.

– Hybrid methods Hybrid models [31] combine the advantages of filters and wrappers
while trying to eliminate their respective limitations as much as possible. They usually
combine twoormoreFS algorithmsof different conceptual origins in a sequentialmanner.
A typical example consists of first applying a less computationally expensive filter to
remove some features and then using a more computationally expensive wrapper for a
fine-tuning.

2.1 Related work

There are several ways to distribute an FS task [32]. Here we consider data collected together
in one very large dataset and then distributed randomly or homogeneously (the percentages
of each class are maintained in the partitions) in different datasets. An identical FS method
can be run on each partition and the partial results are combined. The authors of this work
have reported previous experiencewithmethodologies to distribute the FS process. In [33,34]
we presented a parallel framework for scaling up FS, by partitioning the data vertically and
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(a) Embedded (b) Wrappers

(c) Filter (d) Hybrid

Fig. 1 Type of FS methods depending on the relation between the evaluation of features and the classification
method

horizontally, that could be used with different filter methods. The basic idea is to split the data
(either by features or by samples) and then apply a filter at each partition, performing several
rounds aimed at obtaining a stable set of features. A merging procedure then combines the
results into a single subset of relevant features. More recently, we have included complexity
measures to assist the merging procedure [5]. As for dealing with unbalanced data, in a pre-
vious work we analyzed the usefulness of data complexity measures to evaluate the behavior
of the SMOTE algorithm before and after applying FS to DNA microarray datasets [35].

The approach presented here is different than our previous works since it deals simulta-
neously with distributed FS and unbalanced data. As mentioned in the Introduction, there
are other works in the literature that combine under and over sampling techniques to solve
the imbalance problem. However, up to our knowledge, this is the first work that applies
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Fig. 2 Example of horizontal division of a dataset into train and test datasets, a number of times called
“repetitions”

oversampling (SMOTE, in our case) also to the majority class, trying to compensate for the
noise introduced by SMOTE in the minority class.

3 Proposedmethod

Before progressing any further, we define some key concepts related to the methodology:

Sample A dataset is defined as a collection of individual data, often called samples,
instances or patterns.
Feature The information about each particular sample is given in the form of features
or attributes.
Repetition The datasets need to be divided into training and test sets, for which we
follow the standard procedure of randomly using 2/3 of samples for training and 1/3 of
samples for testing. To ensure that division is not biased, this process, called repetition,
is repeated a number of times.
Round Once the dataset is divided into training and test sets, we randomly distribute the
training data to different nodes (also called packets). Again, to ensure that distribution is
not biased, the process is repeated several times in what we call a round.
Packet Each training dataset is divided into a predefined number of nodes or packets of
data to which oversampling and FS techniques are applied.

Our proposed methodology for dealing with both FS and data imbalance consists of three
main steps: (i) partitioning of the data, (ii) application of an FS method to each partition,
and (iii) combining the results. For each iteration (i.e., round) of our methodology, the first
step is to randomly partition the training dataset into a number of disjoint packets. Repeating
the process in several rounds r ensures that we have captured enough information for the
combination step. We next apply an oversampling method (if the data are unbalanced) and
proceed with the FS process in such a way that the features selected to be removed receive a
vote. After the predefined number of rounds, features that have received votes above a certain
threshold are removed, and the remaining feature subset is used in the training and test sets.

Note that, before starting, to ensure correct validation it is necessary to obtain training
and test sets for each dataset to be tested. Therefore, we randomly divide each dataset into
training and test sets and run several repetitions of this process (Fig. 2). After division, we
start with the methodology as described below.
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Fig. 3 Train dataset partition in packets (subsets of data)

(a) Centralized (b) Random partition (c) Homogeneous
partition

Fig. 4 Different approaches for partitioning the data

3.1 Step 1: data partitioning

The first step (the core of this work) consists of splitting the data without replacement,
assigning groups of n samples to each subset of data. This division can be done in one
of two ways, horizontally or vertically [2,5]. Horizontal partitioning divides the dataset by
instances while keeping all the features, whereas vertical partitioning divides the dataset by
features while keeping all the instances. Horizontal partitioning is useful when the number of
instances is much larger than the number of features, while vertical partitioning is preferred
when the number of features is larger than the number of samples. The number p of packets
(or subsets of data) depends on the features/instances ratio (ensuring a minimum of three
packets, for our experiments, as we will see in subsequent sections). As mentioned above,
this first step is repeated over several rounds (r , in this work set to five). Figure3 illustrates
the procedure of different rounds in which several packets are formed from the training set.

One of two main approaches may be followed when partitioning the data: random parti-
tioning, in data are distributed randomly in the different nodes, or homogeneous partitioning,
in which the proportions of each class in the original dataset are maintained in each of the
newly generated subsets (see an example in Fig. 4, including the centralized scenario, in
which all the data are together).

After partitioning, there are two situations inwhich newsubsets of datamaybe unbalanced.
The first one is when, for a balanced dataset, partitioning is random, leaving the majority of
the samples belonging to the same class in some of the nodes by chance and thus producing
data imbalance. The second situation is when the dataset is unbalanced before partitioning
and the new subsets of data in each node continue to be unbalanced. In these two cases,
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Fig. 5 SMOTE in minority class

applying the SMOTE oversampling method [12] adds synthetic minority class examples to
the original dataset until the class distribution becomes balanced. The SMOTE algorithm
generates the synthetic minority class examples using original minority class examples in the
following way: it searches for the k nearest neighbors of the minority class sample to be used
as the basis for the new synthetic sample. Next, in the segment that unites the minority class
sample with one or all of its neighbors, a synthetic sample is randomly taken and is added
to the new oversampled dataset. Figure5 shows an example of SMOTE synthetic sample
generation in the minority class.

Note that SMOTE is typically used to generate synthetic samples in minority classes only,
whereas we propose to also generate synthetic samples in the majority class, as a means to
improve the method and its results.

3.2 Step 2: FS application

An FS method is applied to each packet p to reduce the dimensionality of the problem. The
features selected to be removed receive votes, a new round is performed leading to a new
partitioning of the dataset and other iterations of voting are completed, until the predefined
number of rounds is reached (set to five in this work). The set of all rounds can be seen as an
ensemble, and so a combination of the partial results is needed, as detailed in the next step.

3.3 Step 3: results combination

The features that receive votes above a predefined threshold have to be removed. Thus, a
unique set of features is obtained to train a classifier C and to test its performance on a new
set of samples (test dataset). As described in [33,34], choosing the threshold of votes is not
an easy matter, since it depends on each dataset. Following the recommendations in [36],
selecting the number of votes must take into account two criteria: the training classification
error and the percentage of features retained. Both values should be minimized to the extent
possible, in accordance with minimization of the following criterion:

e[v] ← γ × error + (1 − γ ) × featPercentage
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Fig. 6 This is an example in
which we have our data divided
by samples (in three packets), so
we have the same set of features
in each packet (all the original
features, in this case five features)
and feature 1 was marked as not
relevant for packets 1, 2 and 3;
feature 2 was marked as not
relevant for packet 1, feature 3
was marked as not relevant for
packet 2, and features 4 and 5 are
not marked as irrelevant for any
packet. Our intuition says that, in
this case, features 4 and 5 should
be relevant and feature 1 should
be not relevant, and we will have
doubts about features 2 and 3
(this is why threshold of votes is
needed)

where a term γ , introduced to measure the relative importance of both values, is set to
γ = 0.75 as suggested in [36], giving more importance to the classification error. Note that
the maximum number of votes is the number of rounds r when dividing by features and r ∗ p
when dividing by samples, so all the threshold values from 1 to r or 1 to r ∗ p are evaluated.
The features with votes above the obtained threshold are removed from the final subset of
features. See an example in Fig. 6.

After obtaining the final subset of features to be selected from the whole training set,
SMOTE is applied again if the dataset is still unbalanced and a classifier is then applied.

To sum up, a pseudo-code for the proposed methodology is given in Algorithm 1.

Algorithm 1: Pseudo-code for proposed methodology

1 initialize the vector of votes to 0
2 for each repetition rp do
3 split dataset into train dtr (2/3 of samples) and test dte (1/3 of samples) sets
4 for each round r do
5 split dataset dtr randomly or maintaining the class proportions into disjoint subsets of data
6 for each subset (packet) of data p do
7 if data is unbalanced then
8 apply SMOTE in minority class
9 apply SMOTE in majority class

end
10 apply a feature selection algorithm
11 increment one vote for each feature to be removed

end
end

12 remove features which number of votes is above threshold in dtr and dte
13 classify with obtained subset of features trained on dtr and applying SMOTE if data is unbalanced

end
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4 Experimental setup

The goal of the experimental study is twofold. First, we aim to check if our distributed FS
methodology obtains comparable results to those achieved by a centralized methodology.
Second, we want to test if oversampling methods can improve performance results when FS
is applied in a distributed environment and to check the effect of creating some synthetic
samples from the majority class.

Described below are the datasets chosen for testing the distributed approaches, as well as
the filters to perform the FS process. To test the adequacy of our distributed approach, we
use four well-known supervised classifiers, of different conceptual origins. All the classifiers
and filters are executed using the Weka tool,1 using the default values for their parameters.
Experiments are performed on an Intel®Core™i5-3470 CPU@ 3.20GHz with RAM 4GB.
The code and the results of the experiments can be found in GitHub.2

4.1 Datasets

An important issue to correctly validate the proposed methodology is to choose the appropri-
ate benchmark of datasets. Because we present a distributedmethodologywhich can partition
the data both by filters and by samples, we consider it necessary to use datasets with high
numbers of samples (standard datasets) and others with high numbers of features (microar-
ray datasets). The standard datasets are seven datasets as described in Table 1, available
for download from the UCI Machine Learning Repository.3 The microarray datasets, from
cancer classification research [2], are five datasets as described in Table 2. Those particular
datasets were chosen because they represent different sizes, different numbers and differ-
ent distribution of classes, and are also widely used in other research, including in our own
previous work [2,5].

In the standard datasets, partitioning in packets is done horizontally by samples, while in
microarray datasets, partitioning is done vertically by features. In the latter case, homoge-
neous partitioning is not applied because all the packets have the same class distribution (they
have all the samples). In both cases, splitting is made without repetition, so each element is
in only one packet.

To determine the number of packets in each dataset (we set three as the minimum because
we consider that fewer than three packets/nodes is not worthwhile for a distributed method-
ology), we calculate proportions, computed as the number of samples divided by the number
of features for the horizontal split, and the number of features divided by the number of
samples for the vertical split. If the proportion is greater than or equal to three packets, the
process stops; otherwise, the denominator (number of elements in each packet) is increased
by multiplying it successively by a factor from a predetermined array [100, 50, 20, 10, 5,
2, 1, 0.5, 0.25] until the condition of three or more packets is met. The pseudo-code of this
process is given in Algorithm 2, and an example is shown in Fig. 7.

Tables 1 and 2 show, for each dataset, the number of samples, number of features, number
of different classes, percentage for the top (one) majority class, percentage for the bottom
(one) minority class, imbalance ratio (IR) as the majority class percentage divided by the
minority class percentage, and number of packets in the distributed split. We consider that a
dataset is unbalanced when IR > 1.

1 https://www.cs.waikato.ac.nz/ml/weka/.
2 https://github.com/jlmorillo/Heterogeneity_distributed_features.
3 http://archive.ics.uci.edu/ml/index.php.
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Algorithm 2: Pseudo-code for determining the number of packets for each dataset

1 partition=by instances (by default)
2 proportion = nInstances / nFeatures
3 if (proportion > 10000) and (nInstances / 10000) ≥ 3

then
4 ndatapartition = 10000

else
5 if (proportion > 1000) and (nInstances / 1000) ≥ 3

then
6 ndatapartition = 1000

else
7 initial packets of 100 times nFeatures. In each iteration, the vector is traversed and size of

packets decrease until the condition of having at least three packages is reached or until the
vector is finished

8 vector=[100, 50, 20, 10, 5 ,2 ,1, 0.5, 0.25]
9 while vector do

10 if nInstances/(nFeatures∗vector(i)) ≥ 3
then

11 ndatapartition=nFeatures∗vector(i)
12 return

end
end

13 if condition of 3 packets is not reached, partition by features is made
14 partition = by features
15 vector=[100, 50, 20, 10, 5 ,2 ,1, 0.5, 0.25]
16 while vector do
17 if nFeatures/(nInstances∗vector(i)) ≥ 3

then
18 ndatapartition=nInstances∗vector(i)
19 return

end
end

20 if the 3 packet condition is also not reached with the feature partition, it is considered the
number of instances
ndatapartition = nInstances;

end
end

Table 1 Standard datasets characteristics

Dataset Samples Features Classes % maj. class % min. class IR Packets

Connect4 67557 42 3 65.83 9.54 6.90 45

Isolet 7797 617 26 3.85 3.50 1.1 3

Musk2 6598 168 2 84.6 15.4 5.49 5

Nomao 34465 120 2 71.4 28.6 2.49 3

Ozone 2536 72 2 97.12 2.88 33.72 4

Spambase 4601 57 2 60.6 39.4 1.53 5

Weight 4024 152 5 34 2.78 12.23 3
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Table 2 Microarray datasets characteristics

Dataset Samples Features Classes % maj. class % min. class IR Packets

Brain 21 12625 2 67 33 2.03 9

CNS 60 7129 2 75 25 3 3

Colon 62 2000 2 65 35 1.85 4

Gli85 85 22283 2 69 31 2.22 3

Ovarian 253 15154 2 64 36 1.77 4

Fig. 7 Algorithm 2 example for determining the number of packets in a partition by instances. The dataset
contains 2000 instances and 20 features. The process is iterated until the dataset is divided into three or more
packets. In each iteration, the size of packets decreases

4.2 Feature selection filters

From the different categories of FS methods reviewed in Sect. 2, for this work we use
filters because they are less computationally expensive and are independent of the induction
algorithms. We used several popular filter methods: two ranker algorithms (InfoGain and
ReliefF), a subset method based on correlation between features (CFS) and, finally, a subset
method based on consistency (Consistency). We thus have representative filters based on
mutual information, distance, correlation and consistency. All these filters are available in
the popular Weka tool and are widely used by FS researchers.

– InfoGain: Information Gain [37] is one of the best known FSmethods. It is a univariate
ranker, i.e., it evaluates only one feature at a time. It is based on the information gain
equation by Quinlan [28]:

IG(A|B) = H(A) − H(A|B) (1)

where H is the entropy, an uncertainty measure of a random feature associated with
information theory [38]. InfoGain computes the information gain (IG) of each feature
with respect to the class. This method obtains an ordered classification of all features and
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selects the first δ features, where δ is a defined threshold, set in this work, to the number
of features selected by CFS.

– ReliefF: ReliefF [39] is another very commonly used ranker algorithm in FS. ReliefF
derives from Relief [40], which evaluates features by randomly selecting one instance,
searching for the nearest neighbor for the same class and the opposite class (Relief is valid
only in binary classification) and evaluating the feature values with respect to another
closer neighbor’s feature values. The idea is that relevant features have similar values
when they belong to the same class and different values when they belong to different
classes. ReliefF improves Relief by handling multiclass and noisy data. Again we used
as a threshold the number of features selected by CFS.

– CFS: Correlation-based feature selection [24,41] is a FS method that selects the best
feature subset instead of returning a ranking of all the features. The goal is to obtain
the feature subset that is best correlated with the class containing features that are not
correlated among themselves. Irrelevant features are ignored because they have little
correlation with the class. Redundant features are also ignored because they have high
correlation with one or more features in the candidate subset of features. Each feature
is evaluated individually and so CFS cannot identify strong relationships, like those
reflected, for example, in parity problems.

– Consistency: Like CFS, this FS method [42] selects an optimal feature subset, using
consistency interpreted as zero inconsistency. The inconsistency rate compares feature
subsets according to the level of consistency with the class. The consistency measure is
monotonic, is always equal or greater for each iteration, is fast, is capable of removing
redundant and/or irrelevant features and is capable of handling some noise. Different
feature search strategies can be followed (exhaustive, complete, heuristic, probabilistic
or hybrid), depending on the number of relevant/irrelevant/redundant/total features.

4.3 Classifiers

Classification is an important machine learning task. Essentially it involves dividing up
elements so that each one is assigned to one of a number of mutually exhaustive and exclusive
categories known as classes [43]. Of the several classification algorithms in the literature, for
this study we use four classifiers from different families: two linear (Naïve Bayes and SVM
using a linear kernel) and two nonlinear (C4.5 and IB1).

– Naïve Bayes uses the Bayes rule defined by Reverend Thomas Bayes (1702–1761) [43].
Bayesian learning can be seen as the process of finding the most probable hypothesis
given a set of training examples and a priori knowledge about the probability of each
hypothesis. The application of Bayes theorem to classification consists of calculating the
hypothesis with a higher a posteriori probability. It is said to be naïve because it assumes
that the attributes are conditionally independent on each other given the class. Advantages
are its simplicity, efficiency and robustness to noise and irrelevant features. Besides, it
only needs a few instances to estimate the classification parameters. As disadvantages,
this method requires a priori knowledge and is computationally expensive.

– SVM [44] is a type of classifier based on statistical learning techniques. The original
idea of the algorithm is to transform a set of input features X into a set of Y vectors
of a higher dimension (even of infinite dimension) in which the problem can be solved
linearly, i.e., linear models are used by SVM to implement nonlinear class boundaries.
The SVM algorithm performs very well, partly because it allows the construction of
flexible decision boundaries and also due to its good generalization capacity. A weak
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Table 3 Confusion matrix

Actual class
p n

Predicted class p True positive (TP) False positive (FP)

n False negative (FN) True negative (TN)

Total P N

point is its high computational cost, due to the fact that it needs to handle a large number
of coefficients which greatly increase when the input set is large.

– C4.5 was developed by Quinlan [28] as an extension of Iterative Dichotomiser 3 (ID3),
based on decision trees. To construct the best tree, C4.5 iterates using the feature with
the best gain rate, i.e., the relation between the information gain of a feature and class
and the entropy of the feature. Each feature value makes a new branch where instances
are distributed until all the instances have the same class (leaf). To overcome a possible
problem of overfitting with this strategy, C4.5 uses post pruning after constructing the
tree, whereby a confidence factor deletes branches with little accuracy gain. In this study
the factor is set to 0.5. Afterward, if so desired, the tree can be converted to easily
understandable rules.

– IB1 is an algorithm part of the instance-based learning (IBL) family. In IBL the training
examples are stored verbatim while a distance function is used to determine which mem-
ber of the training set is closest to an unknown test instance. Once the nearest training
instance has been located, its class is predicted for the test instance. The only remaining
problem is defining the distance function, which is quite easy, particularly if the attributes
are numeric [45]. IB1 is limited to looking for the case stored closest to the example to be
classified, generally using an Euclidean distance metric. Like Naïve Bayes, it is simple
and works very well, but may be slow because of the need to store all training instances.

4.4 Evaluationmetrics

The metrics used to evaluate the performance of the different models are classification accu-
racy, kappa statistic, packet filter time and classification time.

From the confusion matrix shown in Table 3, classification accuracy is defined as the
percentage of instances that are classified correctly:

Accuracy = TP

TP + FP
(2)

Kappa statistic [46] is an index that compares the agreement between several experts,
considering agreement obtained by chance: values close to 1 indicate total agreement (the
ideal value) and values close to 0 indicate agreement similar to that obtained by chance:

Kappa = ObservedAgreement − RandomAgreement

1 − RandomAgreement
(3)

where

ObservedAgreement = TP + TN

TP + TN + FP + FN
(4)
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and

RandomAgreement = (TN ∗ FP) ∗ (TN + FN) + (FN + TP) ∗ (FP + PN)

Total ∗ Total
(5)

Classification accuracy and the kappa statistic value are obtained from the results of the
classification process (line 13 of Algorithm 1), the filtering time by packet, measured in
seconds, is obtained from the sum of the oversampling time for FS plus the FS method
application time for each partition (lines 6 to 11 of Algorithm 1) and, finally, classification
time, measured in seconds, is the summed time to remove features with votes above the
threshold, applying SMOTE if data are unbalanced (lines 12 and 13 of Algorithm 1). The
reason to include the kappa value is because it assesses the quality of the learning, taking
into account situations in which the dataset is unbalanced and the classifier correctly learns
majority class instances but systematically misclassifies minority class instances. In the case
of accuracy and kappa, the higher the value, the better the results, whereas for filter time by
packet and classification time, low values are preferred.

5 Experimental results and discussion

To evaluate our methodology we compare the results of a centralized scenario with the
distributed (random and homogeneous, see Sect. 3.1) approaches. The results for each sce-
nario are also compared for use of SMOTE in the different approaches. For the standard
datasets, the percentage of SMOTE applied in the minority class is [0, 100, 300, 600 and
Auto (i.e., the option to balance minority and majority classes)] and in the majority class
is [0, 20, 40, 100]. For the microarray datasets with small samples, the percentage in both
classes is [0, 20, 40, 100] plus the Auto option for theminority class. Random undersampling
(RUS)was tested applyingSMOTEon theminority class for percentages of [0, 100, 300, 600]
for standard datasets and [0, 20, 40, 100] for microarray datasets with RUS in the majority
class to balance both classes. Because of the high number of combinations being tested and
the different metrics employed, the results of the experiments are difficult to analyze exhaus-
tively; however, below we analyze results with a view to answer certain research questions.

5.1 Exploring the accuracy of the different approaches

A summary of accuracy results is summarized in Table 4, which shows the number of best
cases in each distribution and the SMOTE approach. Overall, we can see that the centralized
distribution functions better for the microarrays, while the distributed approach is a good
option for standard datasets and especially the homogeneous distribution.

Tables 6, 7 and 8 in Appendix show more specific results in the form of detailed accuracy
results for data distributions in a very unbalanced standard dataset (Musk2—Random), a bal-
anced standard dataset (Isolet—Homogeneous) and a microarray dataset (Brain—Random),
respectively. These tables show the prediction accuracy for the four classifiers and four filters,
comparing different levels of oversampling (both in minority and majority classes) with the
option to apply oversampling in theminority class and random undersampling in themajority
class. In the case of Musk2 (Table 6), there are some cases for which the highest accuracy is
obtained for the combination of filter, classifier and SMOTE percentage when no oversam-
pling is applied; however, the highest accuracy for all combinations (97.36% with random
distribution, Consistency filter and C4.5 classifier) is obtained when SMOTE is applied in
both minority and majority classes. As for Isolet (Table 7), there is no combination of filter
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Table 4 From a total of 112 combinations of four classifiers, four filters and seven standard datasets and 80
combinations of four classifiers, four filters and five microarray datasets, it is shown, for each type of dataset
and for each SMOTE scenario, the number of combinations of dataset, filter and classifier with the best value
in accuracy average and kappa average (in brackets) for a distribution with respect to the other distributions

Datasets SMOTE Centralized Random Homogeneous

Standard Without 27 (37) 35 (53) 56 (69)

Minority 21 (45) 29 (47) 67 (54)

Both 29 (49) 25 (44) 62 (48)

Min.-RUS 24 (30) 34 (44) 54 (66)

Microarray Without 71 (55) 12 (55)

Minority 69 (52) 11 (56)

Both 71 (50) 9 (57)

Min.-RUS 77 (56) 3 (55)

Combinations with the same maximum value across multiple distributions are aggregated into the count for
each distribution, so the sum of combinations can be greater than the total number of combinations. The
highest average values for each type of dataset and SMOTE scenario are in bold font, and the highest value
for each type of dataset regardless of the SMOTE scenario is also underlined

and classifier for which not applying SMOTE performed better than applying SMOTE; in
particular, the highest accuracy for all combinations (96.01%) is obtained for CFS and SVM,
again applying SMOTE in both minority and majority classes. Finally, for the Brain dataset
(Table 8), the highest accuracy (91.43%, with Consistency filter and C4.5 classifier) is also
achieved after applying SMOTE in both minority and majority classes. Moreover, there is
no case in which not using SMOTE was better than using SMOTE, for all combinations of
FS method and classifier.

In the interest of brevity, the rest of the results for datasets are summarized in Tables
9, 10, 11, 12, 13 and 14 in Appendix (for complete results see please GitHub repository4

classification accuracy (Tables 9 and 10), kappa (Tables 11 and 12) and filter time by packet
in seconds (Tables 13 and 14).

Recall that for all measures except filter time by packet higher values are better. For each
dataset and evaluation metric, the best value for each scenario is indicated in bold font and
the best value of all scenarios is indicated by underlining. Remember that, for the microarray
datasets, homogeneous partitioning is not applied because the split in data is by features.

These results are analyzed in more detail below, but in general it can be observed as
follows: (i) for accuracy, the distributed scenarios obtain comparable results to the centralized
scenario (in some cases even improving on them, probably because of the application of a
divide-and-conquer strategy, since, in some cases, the result obtained by the learner is more
accurate if focused on a local region of the data), (ii) for kappa, SMOTE is useful in improving
performance for unbalanced datasets, and (iii) for packet time, the time usedwas significantly
reduced for the distributed scenarios.

To get more insights on the results, the statistical Friedman test [47] is used to check for
significant differences between distributions and between SMOTE scenarios. Used for the
Friedman test are mean results for all combinations of dataset, filter, classifier, distribution
approach and SMOTE percentages. Executed for the level of significance α = 0.05, if

4 https://github.com/jlmorillo/Heterogeneity_distributed_features. In the tables for standard and microarray
datasets in Appendix, the following information is provided: mean and standard deviation (top row), maximum
value (second row) and (in the lowest row) the combination that obtained the maximum value for:
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p < 0.05, the null hypothesis is rejected and at least one of the variables (distribution or
scenario) is statistically significant, whereas if p > 0.05, the variables are not significantly
different. To graphically summarize these statistical accuracy and kappa comparisons for
distributions and scenarios in standard and microarray datasets, we use a critical difference
(CD) diagram [48]. The axis of a CD diagram represents the average rank of best values of
variables in each combination, with the lowest ranks (1 is the best rank) to the right side of
the figure. Groups of variables that are not significantly different are connected by a bold
line, while the CD value is shown above the graph.

Figures 8, 9, 10, 11, 12 13 and 14 show statistical comparisons of accuracy and kappa
for different distributions and SMOTE applications, while Fig. 11 shows a comparison of
different SMOTE scenarios. In addition, Figs. 12 and 13 show detailed CD diagrams with
different combinations of SMOTE percentages in minority and majority classes. Below we
explain the unexpected result obtained by considering only the average value for the accuracy
ranking.

5.2 Exploring the distributed partitioning consequences for classification

Comparing the two (random and homogeneous) distributed approaches with the centralized
scenario, for the standard datasets, in general, the distributed approaches have better accu-
racy averages, as can be seen in Tables 4 and 9 and Figs. 8a, 9a and 14a . The homogeneous
approach seems to achieve higher accuracy and more stable results (better kappa values), as
illustrated in Tables 4 and 11 and Figs. 9b and 14b. As shown in Table 13, the distributed
approaches considerably reduce the time required to filter the best features; however, there
is an additional cost in calculating a votes threshold to remove irrelevant features and this
increases the total classification time comparatively to the centralized approach (Table 5). The
random and homogeneous partitioning approaches are a good solution to reducing computa-
tion time (especially if executed concurrently) without degrading classification performance.
For the microarray datasets in some cases, classification accuracy slightly worsens with
respect to centralized distribution after applying random distribution (Tables 4 and 10 and
Figs. 8c, 9c and 14c), e.g., for Ovarian and Gli 85. This results from the fact that a high accu-
racy value is obtained in the centralized distribution, probably due to overfitting in datasets
with few instances and many features. On the other hand, on applying a vertical split in
random distribution, it is possible that average accuracy is reduced when features are marked
as relevant/irrelevant in one but not in another packet (because of feature interactions). On
the positive side, in random distribution, computational time is considerably reduced with
respect to the centralized approach, since for this distribution, the reduction in filtering time
(Table 13) is much greater than the increase in classification time (Table 5), while the kappa
value is maintained or even increased (Tables 4 and 12 and Figs. 8d, 9d and 14d), thus making
the solution more stable.

5.3 SMOTE use: minority class only versus bothminority andmajority classes

To analyze the advantages of using versus not using SMOTE, we compare the accuracy
results in Tables 9 and 10. In standard datasets, except for Spambase and Weight, the best
average accuracy is obtained without applying SMOTE. Figure 11 shows the ranking of
best-case SMOTE scenarios for the different combinations, while Fig. 11a shows the ranking
for accuracy in standard datasets. Not using SMOTE obtains the best results, although those
results are not significantly different from those for SMOTE applied in both minority and
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(a) Accuracy - Standard datasets (p=0.101)

(b) Kappa - Standard datasets (p=0.049)

(c) Accuracy - Microarray datasets (p=0.025)

(d) Kappa - Microarray datasets (p=0.654)

Fig. 8 Statistical comparison of distributions without applying SMOTE. CD diagram represents the average
ranks of the best values of variables in each combination (1 is the best). The groups of variables that are not
significantly different are connected by a bold line

Table 5 Average time in seconds needed to remove features with votes above the threshold and, if data are
unbalanced, applying SMOTE and proceeding with classification

Scenario Standard datasets Microarray datasets

Centralized Random Homogeneous Centralized Random

Without SMOTE 28.65 38.03 46.03 3.70 7.75

SMOTE minority 69.53 81.04 105.59 4.10 8.71

SMOTE both 164.45 164.73 193.36 4.43 9.34

SMOTE Min.—RUS Maj. 79.21 80.99 81.57 5.10 9.29

majority classes. Decomposing the CD diagram with the different combinations of SMOTE
in minority class and majority class, as shown in Fig. 12, gives more insights about these
results; it is easily seen that distributions using SMOTE in both classes obtain a better ranking
than not using SMOTE in any class. Note that combinationswith high percentages of SMOTE
(e.g., 600) are usually in the last positions of the ranking (left in the figure).

This difference in the ranking when SMOTE is applied in different percentages explains
why the average results of applying SMOTE are poorer than those without SMOTE.

For example, focusing on the results inTable 8, the average value obtainedwithout SMOTE
is 78.57, compared to an averagevalue of 77.35 for the rest of combinations offilter–classifier–
SMOTEminority class–SMOTEmajority class for the Brain dataset and random distribution,
which is apparently a poorer result. However, if we consider the maximum value for each
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(a) Accuracy - Standard datasets (p=0.156)

(b) Kappa - Standard datasets (p=0.276)

(c) Accuracy - Microarray datasets (p=0.025)

(d) Kappa - Microarray datasets (p=0.179)

Fig. 9 Statistical comparison of distributions applying SMOTE in minority class

(a) Accuracy - Standard datasets (p=0.156)

(b) Kappa - Standard datasets (p=0.367)

(c) Accuracy - Microarray datasets (p=0.025)

(d) Kappa - Microarray datasets (p=0.179)

Fig. 10 Statistical comparison of distributions applying SMOTE in both minority and majority classes
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(a) Accuracy - Standard datasets (p=0.000)

(b) Kappa - Standard datasets (p=0.000)

(c) Accuracy - Microarray datasets (p=0.140)

(d) Kappa - Microarray datasets (p=0.000)

Fig. 11 Statistical comparison on different microarray and standard dataset scenarios

option, using SMOTE usually obtains better results than not using SMOTE (even 100 in
some cases). For the microarray datasets, the behavior is similar, as can be seen in Fig. 13.

Comparing the accuracy percentages for SMOTE used in the minority class and SMOTE
used in both the minority andmajority classes (Tables 9 and 10 and Figs. 12 and 13), SMOTE
for both classes usually obtains good results for both types of datasets. For standard datasets,
a percentage of 100 in the minority class generally offers better results, so it is not necessary
to increase this percentage to improve the method, as this may even deteriorate performance.
This percentage in the minority class combined with different percentages of SMOTE in the
majority class yields a good ranking position for all distributions, while a high proportion of
SMOTE in the minority class or the balanced Auto option yield poorer rankings. In contrasts,
for microarray datasets, the Auto option yields a better ranking that is the same as the higher
values for SMOTE, even though the trend is not as clear as for the standard datasets.

The kappa value (Tables 11 and 12 and Fig. 11b, d) is also higher when SMOTE is applied
in both classes, and sometimes even in the minority class only, but is never higher when
SMOTE is not used; this would confirm that the use of this oversampling method produces
more reliable results. This is a significant issue for large unbalanced datasets like Connect-
4 and Ozone, where the use of SMOTE versus non-use of SMOTE practically doubles the
kappa value. In contrast, for balanced datasets like Isolet, kappa values and accuracy averages
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(a) Centralized distribution (p=0.000)

(b) Random distribution (p=0.000)

(c) Homogeneous distribution (p=0.000)

Fig. 12 Comparison of accuracy ranking for SMOTE different percentage scenarios on standard datasets.
Each element in the ranking is labeled as SMOTE percentage in minority class—SMOTE percentage in the
majority class or RUS in case of Random Undersampling in majority class

123



254 J. L. Morillo-Salas et al.

(a) Centralized distribution (p=0.000)

(b) Random distribution (p=0.571)

Fig. 13 Comparison of accuracy rankings for SMOTE different percentage scenarios on microarray datasets.
Each element in the ranking is labeled as SMOTE percentage in minority class—SMOTE percentage in
majority class or RUS in case of random undersampling in majority class

hardly vary, as expected. The use of SMOTE implies that more cases have better kappa values
(Fig. 11b, d); both distributed approaches are statistically similar, with very good p statistic
values.

The filtering time (Tables 13 and 14) is always shorter without using SMOTE, as expected,
due to the time consumed by the extra layer of SMOTE processing and especially in large
datasetswithmany features or samples.As expected, and for the same reason, SMOTEapplied
to both classes results in a higher filtering time than SMOTE applied only in the minority
class; furthermore, depending on the dataset and combination, it can be very computationally
expensive, e.g., for Connect4 and Gli85. Classification time on average (Table 5) shows
similar behavior as filtering time, with time increasing when distribution is applied, due to
the search for a threshold, and when SMOTE is applied, due to the additional time required
to apply SMOTE.

Finally, the best type of distribution for each case does not change whether or not SMOTE
is applied.
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(a) Accuracy - Standard datasets (p=0.000)

(b) Kappa - Standard datasets (p=0.000)

(c) Accuracy - Microarray datasets (p=0.000)

(d) Kappa - Microarray datasets (p=0.702)

Fig. 14 Statistical comparison of distributions applying SMOTE in minority class and random undersampling
in majority class

5.4 Split: horizontal versus vertical

As can be seen in Table 4, with respect to the centralized approach, the distributed approaches
with horizontal split (standard datasets) obtain a higher number of better combinations than
the random distribution approaches with vertical split (microarray datasets). The reason is
that, with a vertical split, redundant features can go in different packages (both would be
selected); also it may happen that two features that are relevant together but not separately (if
they fall into different packages) will not be selected (such as in the classic XOR problem).
One solution is to group the features considering their relevance, ranking the original features
before generating the packets and grouping features sequentially over the ranking, in such
a way that features with a similar ranking will be in the same packet (as tested by us in a
previous work [2]).

Of the two horizontal split approaches, homogeneous partitioning yielded better results
than random partitioning, with more combinations of FS methods obtaining better accuracy
results and with less deviation.
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5.5 Exploring how filtering and classificationmethods behave in different scenarios

Regarding the different FS methods tested, for filtering methods, consistency and CFS gen-
erally obtain the best results for the different distributions and SMOTE approaches, while
only InfoGain shows similar behavior when SMOTE is applied in both classes. For classifi-
cation methods, C4.5 achieves the best average accuracy results, while IB1 is the most stable
(with the best kappa value) for almost all distributions and SMOTE approaches. Finally,
for the packet filter time, for horizontal division (standard datasets) and for vertical division
(microarray datasets), the most computationally expensive methods are ReliefF and CFS,
with both filtering methods having quadratic complexity.

5.6 Exploring the benefits to combining undersampling and oversampling
approaches

Finally, we compare the application of SMOTE in both the majority and minority classes
with the application of SMOTE in the minority class and RUS in the majority class. In this
experiment, the samples in the minority class are first increased by applying SMOTE and
then RUS is applied to the samples of the majority class to balance both classes. Analyzing
Fig. 11 and Tables 9, 10, 11 and 12, the application of oversampling combined with under-
sampling yields poorer accuracy results than the other scenarios. This is due to the fact that
undersampling removes a large number of samples in order to balance the classes and this
causes relevant information to be lost in obtaining the best features, subsequently affecting
the classification. The kappa value behaves differently for standard and microarray datasets.
For standard datasets, it yields the worst result for all scenarios (the same as accuracy),
whereas the opposite happens for the microarray datasets, because the number of samples to
be removed is small and the classes are completely balanced, obtaining more robust results.
This issue requires further study and undoubtedly constitutes an interesting line of future
research.

6 Conclusions and future work

Our methodology for distributed FS tries to solve the problem of the heterogeneity of data
in different partitions. We force partitions to maintain the same class distribution as the
original dataset and apply the SMOTE oversampling technique to both minority and majority
classes. From experimental results for seven standard datasets with a horizontal split and five
microarray datasets with a vertical split, we draw the following conclusions:

– The distributed approach with either random or homogeneous partitioning is competitive
compared with the standard centralized approach and even improves the classification
performance in some cases.

– The packet filter time obtains the lowest value for random distributions running concur-
rently, thereby considerably reducing processing time, especially for large datasets with
many samples or features.

– Although the classification time is greater for the distributed approach due to the search
for a threshold to eliminate irrelevant features, this increase is compensated for by the
reduction in the filtering time, with the outcome that the total time decreases for the
distributed approaches compared to the centralized approach.
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– Homogeneous partitioning usually obtains better kappa values (more stable results) than
random partitioning and than the centralized distribution.

– Applying SMOTE in the minority class (i.e., the way SMOTE is normally used) can
improve the quality of learning in unbalanced datasets, but this depends on the percentage
of synthetic samples generated, since in some cases the contrary effect of a slight decrease
in general accuracy is obtained.

– Applying SMOTE in both minority and majority classes (i.e., an innovative use of
SMOTE) can improve on the standard approach, but, as before, this depends on the
percentage applied. Using SMOTE for the majority class as well as the minority class
results in better classification accuracy values irrespective of dataset type and partition-
ing approach. This new approach obtains higher kappa values, which indicates that the
method has greater robustness.

– The application of SMOTE in the minority class or SMOTE in both classes obtains better
results than the combination of SMOTE in the minority class and RUS in the majority
class in terms of balancing classes, especially for unbalanced standard datasets, where
the elimination of a large amount of relevant samples prevents best features from being
obtained, with the consequent reduction in accuracy.

As future work, we plan to test other methods to deal with heterogeneity, such as further
undersampling techniques and weighting. We also plan to explore how to improve vertical
divisions and the kind of distribution that simultaneously makes subsets of samples and
features, representing a more challenging scenario.

Appendix

See Appendix Tables 6, 7, 8, 9, 10, 11, 12, 13 and 14.
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