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Abstract
Bio-event extraction is an extensive research area in the field of biomedical text mining, this
focuses on elaborating relationships between biomolecules and can provide various aspects
of their nature. Bio-event extraction plays a vital role in biomedical literature mining appli-
cations such as biological network construction, pathway curation, and drug repurposing.
Extracting biological events automatically is a difficult task because of the uncertainty and
assortment of natural language processing such as negations and speculations, which pro-
vides further room for the development of feasible methodologies. This paper presents a
hybrid approach that integrates an ensemble-learning framework by combining a Multiscale
Laplacian Graph kernel and a feature-based linear kernel, using a pattern-matching engine
to identify biomedical events with arguments. This graph-based kernel not only captures the
topological relationships between the individual event nodes but also identifies the associ-
ations among the subgraphs for complex events. In addition, the lexico-syntactic patterns
were used to automatically discover the semantic role of each word in the sentence. For per-
formance evaluation, we used the gold standard corpora, namely BioNLP-ST (2009, 2011,
and 2013) and GENIA-MK. Experimental results show that our approach achieved better
performance than other state-of-the-art systems.
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1 Introduction

Advances in both biological and computational methods act as the catalyst for a large num-
ber of publications, especially in the biomedical domain [1]. Life science research outputs
are widely disseminated as scientific articles, which can act as a source for knowledge dis-
covery [2]. Recently biomedical text mining applications are developed using this literature
with a focus on biological and clinical domain areas such as screening of clinical trials,
pharmacogenetics, reaction detection and repurposing of drugs [3].

Initial efforts on text mining in the biomedical domain had a major focus on fundamen-
tal tasks like categorizing bio-entities (genes, proteins, diseases, and drugs) and extracting
binary relationships (protein–protein interaction, gene–disease associations and disease–dis-
ease associations) between the entities [4]. Extracting relations from biomedical literature
is a significant task in the area of semantic mining of text [5]. Some of the recent relation
extraction strategies applied to various biomedical problems such as protein–protein inter-
actions (PPIs) [6], gene–disease associations [7], chemical-induced disease (CID) [8] and
chemical–disease relation (CDR) [9]. Biomedical relation classification task focusing on PPI
and drug–drug interaction [10] shows the importance and applications of relation extraction
from the literature.

Following the success of the relation extraction task, the next focus is on to extract related
biomolecular events from the text. In general, bio-event is the textual event specialized for the
biomedical domain and dynamic bio-relation involving one or more participants, and these
participants can be bio-entities or bio-events and are usually each assigned a semantic role like
the theme and cause [11, 12]. Bio-event extraction can help us to understand certain biological
processes such as pathway reconstruction [13], semantic search [14], association mining for
knowledge discovery, and bioprocess extraction [15]. Automatically, extracting events from
the biomedical text is a challenging task because of the uncertainty and assortment of NLP
processing such as negations and speculations, which occur in the biological text and can
lead to misunderstanding and incorrect interpretation [11, 12].

The bio-event extraction process consists of two common steps, trigger detection and
argument detection. Identifying trigger words comprises the detection of event triggers and
their types, as quantified by the selected ontology [11]. Argument detection, known as edge
detection or event theme construction is the process of detecting arguments for the events.
The arguments can be named entities (genes, proteins, diseases) or events represented by
trigger words [11, 12, 16]. Consider the following example below.

Example: PMCID: 1310901

Original Sentence: Down-regulation of interferon regulatory factor 4 gene expression in
leukemic cells.

Tagged Sentence: <trigger>Down-regulation </trigger> of <theme>interferon regulatory
factor 4 </theme><trigger>gene expression </trigger> in leukemic cells.

Here the trigger words ‘downregulation’ and ‘expression’ denote the two events - reg-
ulation and gene expression, and the gene ‘interferon regulatory factor 4’ is the theme
representing the argument in the sentence.

There has been a wider acceptance of the notion that biomolecular events can play a
crucial role in molecular mechanisms of diseases and can be linked with interactions in
pathways and networks [12, 16]. Due to this and other various reasons, notable shared task
community challenges BioNLP-ST (Biomedical Natural Language Processing Shared Task)
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in 2009 [16], 2011 [17], 2013 [18] and 2016 [19] were organized specifically in focus on
biomolecular event extraction from the literature. The core problem in these tasks was the
extraction of biomolecular events from standard datasets, which is based on the GENIA
corpus [20]. The GENIA corpus enriched with domain-specific meta-knowledge and it was
named as GENIA-MK (Meta-knowledge) corpus [21]. The GENIA-MK corpus contains
human curated annotations of 9,372 sentences from 1000 abstracts in which 36,858 typed,
complex and nested eventswere represented [21]. Recently Zerva et al. [22] proposed a hybrid
approach combining a random forest with generic rule patterns, which uses dependency
between trigger words and cues of the uncertainty events and achieved an F-Score of 88% in
the GENIA-MK corpus.

1.1 Background

Different text-mining approaches have been developed utilizing techniques such as rule-based
[23], dictionary based [24], machine learning [25], and hybrid approaches [26]. In particular,
the Support Vector Machines algorithms with rule-based or dictionary-based approaches are
widely used in extracting biomolecular events [27]. In spite of several existing approaches,
the challenge is still open and leaves space for improvement. For example, pattern matching
and dictionary-based approaches achieved moderate results in complex event extraction pro-
cesses such as regulation, negative regulation, and positive regulation [11]. Machine learning
based studies [25] employed different strategies such as kernel-based learning [28, 29], deep
learning based [30–32], graph-based learning [33–41] and hybrid approaches [26] to extract
the biomedical events efficiently.

Recently, the enriched graph-based features played an important role to extract the events
from the text and created the best systems for the classification of biological events [42].
The advantage of using graph-based approaches for event extraction includes the use of
structural properties of the sentence such as semantic and syntactic features, path features,
and similarity features. This was briefly explained in the review [42]. Earlier, various graph-
based approaches like subgraph mining [43–45], random walk [46], shortest paths [47],
subgraph matching [39–41, 48] and hybrid methods [49] were introduced to extract the
biomedical events from the literature.

Subgraph mining is the process of extracting the important concepts from the graph
[43–45]. Random walk explains the path consists of random steps between one node (bio-
entity) to another node (bio-event) in the graph [46]. The shortest path is the shortest optimized
path between two nodes (entity and event) [47]. The graph matching techniques are utilized
to find whether one text could be inferred from another by using the dependency parsing
of the two texts [39]. Subgraph matching techniques are utilized to extract the maximum
common subgraph between two graphs [39–41]. On the other side, kernel-based approaches
integrated with graphs produced efficient results in relation extraction tasks [50, 51]. A graph
kernel was generated using dependency parsing techniques in which each graph contains the
dependency structure and the linear order of the words [52]. In this study, we employed a
special graph kernel named Multiscale Laplacian Graph (MLG) kernel [53] integrated with
the linear feature-based kernel to extract the biological events from the text. The MLG-
Kernel was used to compare the structure of the graph at multiple different scales. The
motivation behind employing MLG is that it not only captures the topological relationships
between the individual event nodes but also identifies the topological relationships between
the subgraphs [53]. The following section briefly describes state-of-the-art approaches for
the task of biomedical event extraction.
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1.2 Related work

Bjorne et al. [33] used n-gram features and shortest path syntactic dependencies between
event arguments and rule-based graph pruning to extract the events and attained the F-score
51.95% in the BioNLP-ST-2009 task dataset. The disadvantage of this approach is the lowest
trigger detection performance on the test set. In 2013, BioNLP-ST, Bjorne and Salakoski [34]
presented an automated event extraction system named TEES 2.1. It is a machine learning
based tool for extracting text bound graphs from natural language articles, they represent both
binary relations and events with a unified graph format where named entities and triggers
are nodes and relations and event arguments are edges and reported an F-score of 50.74%.
The lack of using learning rules caused defects in the argument detection phase; for example,
consider an event with multiple optional arguments, such as Cell differentiation from the
CG task with 0–1 AtLoc argument and 0–1 Theme arguments. While it can be possible that
such an event can exist without any arguments at all, it is often the case that at least one of
the optional arguments must be present. Hakala et al. [35] used graph represented features
including paths connecting nested events and the occurrence of a pair of entities such as gene,
protein in general subgraphs mined from external PubMed and PMC abstracts reported the
best F-score of 50.97% in BioNLP-ST-2013. The main limitation of this system is that it
increases only precision not recall.

In BioNLP-ST-2011 Riedel et al. [36], extracted event arguments by scoring candidate
subgraphs to rank event pairs and achieved the F-score of 57.46%. In this system, they
employed stacking and the UMass model (trained model which consists of trigger labels,
events arguments and protein pairs) to extract the events. Stacking led to better performance
in this system but a combination of stacking with the UMass model caused slight variation
in the performance on the test sets. McClosky [54] converted annotated event structure in the
training data to an event dependency graph that takes entities (event arguments) as vertices
and edges and attained the F-score of 50% in BioNLP-ST-2011. Riedel and McCallum [55]
implemented stacking procedure and combined their approach withMcClosky [54] extracted
event arguments by scoring candidate subgraphs to rank event arguments and achieved the
F-score of 56.05% in the BioNLP-ST-2011 dataset; the limitation of this approach is that it
is harder to extract full text events.

Liu et al. [39, 40] implemented Exact Subgraph Matching and Approximate Subgraph
Matching (ESM/ASM) approaches to extract the events from the literature efficiently. In
their method, they applied ESM/ASM from sentence graphs to event graphs, employed a
distance metric to every vertex of the subgraphs, and attained the F-score of 51.12% in the
BioNLP-ST-2011 dataset. The lack of post-processing rules and inconsistencies in the gold
annotation caused more false positives and false negatives in this system. Liu et al. [41]
further improved their ESM/ASM based approach with the distributional similarity model
(DSM), optimized graph features, and attained the F-score of 55.09% in BioNLP-ST- 2013.
The limitation of this approach is low recall due to ‘Site’ entity recognition.

Apart from the above graph-based approaches, recently different classification approaches
were also deployed to extract the biomedical events efficiently [30, 56–58]. Some of the
notable works are discussed here. Munkhdalai et al. [56] proposed a new semi-supervised
learning method which was named self-training in significance space (STSS) to solve the
imbalanced data problem and attained the F-score of 54.30% inBioNLP-ST-2011.The system
performance is lower in terms of F-measure because of the computational requirements.
Wang et al. [30] presented a multiple distributed representation method which combines
dependent context formed by word embedding with task-based features from biomedical text
and fed it to deep learning models and achieved the F-scores 59.94%, 55.20%, and 50.12%
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in BioNLP-ST-2009, 2011, 2013 datasets, respectively; this method still needs manually
designed features, which limits the power of generalization. Li et al. [57] used an optimization
method named dual decomposition method along with dependency parse based rich features,
unsupervised word features and extracted the events with F-scores 56.09% and 53.19% in
BioNLP-ST- 2009, 2013. Recently, Wang et al. [58] implemented a Bidirectional Long Short
Term Memory (Bidirectional-LSTM) approach for event extraction on Multi-Level Event
Extraction (MLEE) corpus. Furthermore, for generalizing their approach they used BioNLP-
ST-2009, 2011, 2013 corpora and achieved the F-scores more than 60% in the development
set.

There is an increasing importance for biomolecular event applications and the current
trends in biomedical relation extraction tasks, which uses ensemble learning methods and
graph-based approaches [33, 42]. The motivations of our work integrate a Multiscale Lapla-
cian Graph (MLG) kernel with a feature kernel as an ensemble model for the event extraction
task. The challenge of the current study was the extraction of complex events using subgraph
mining thereby gaining a deeper understanding of the biomolecular events. Kondor and Pan
[53] first introducedMLG, and it was used to compare the structure in graphs simultaneously
at multiple different scales. The objective of employing MLG in our event extraction is that
it not only captures the topological relationships between the individual event nodes but also
identifies the associations among the subgraphs for complex events.

The rest of the paper is organized as follows; Sect. 2 details the proposed materials and
methods with a complete overview of the MLG model used in this study. Section 3 depicts
the results and discussion followed by conclusions and future perspectives in Sect. 4.

2 Methods

The event extraction system presented in this study has three subtasks, namely (i) text pre-
processing, (ii) event identification and (iii) argument detection. In text pre-processing, we
applied general steps such as text preparation and cleaning, recognition of gene and pro-
tein mentions, dependency parsing of event sentences. In the event identification phase, we
used two kernels, namely, a baseline feature-based kernel which uses token-based features,
sentence-based features, parsing features, domain-specific features and theMultiscale Lapla-
cian Graph (MLG) kernel, which uses the multilevel topological relationships between the
event nodes as features. Both the feature-based kernel and the MLG kernel were combined
using ensemble SVM for event identification. Finally, in the argument detection phase, we
used lexico-syntactic patterns to detect arguments of the events. The overall schematic archi-
tecture of our event extraction pipeline has been depicted in Fig. 1 and each subtask is
described detail in the following subsections.

In ourmethodology,we considered the ninemost crucial events fromBioNLP-ST [16–18],
which are commonly used in existing studies. The nine types of events are merged into three
main classes. The first five (Gene Expression, Transcription, Protein catabolism, Phospho-
rylation, Localization) had only one argument (theme: protein) and these events are called
simple events. The second class of binding events involved more than one argument (two
themes: proteins). Finally, the regulated events (Regulation, Positive regulation, Negative
regulation) had two arguments: a theme and cause (event or protein).
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Fig. 1 Overall schematic architecture of the proposed event extraction system

2.1 Text pre-processing

2.1.1 Text preparation and cleaning

With a specific end goal to set up the corpus for extracting the events from it, the following
preprocessing steps were carried out. They consisted of tokenization, sentence segmentation,
POS tagging, lemmatization, and chunking.OpenNLP [59]was utilized for sentence splitting,
tokenization, POS tagging, and chunking. Lemmatization was done by BioLemmatizer [60].

2.1.2 Dependency parsing

Toprovide information about grammatical relationships concerning twowords extracted from
a graph representation of the dependency relations in a sentence, we applied dependency
parsing. The advantage of using dependency parsing is to find the grammatical relation-
ships between two words and to find out the syntactic representation of a given sentence. A
dependency relation is formalized as a direct grammatical relationship including two words
(headword and dependent word) and a sentence is represented as a graph of dependency rela-
tions [61]. Dependency related features played an important role to extract the biomedical
events. Here, we used two dependency parsers: the StanfordDependency Parser (SDP) [62] is
used to compute the universal dependencies and theGENIADependency Parser (GDep) [63],
for the generation of the dependency graph of the sentence. Figure 2 depicts the dependency
parse for a simple sentence. Here we can see that binary relations between common nouns
such as transcription, gene, activity with adjectives and prepositions like binding, in and c-
jun were identified. The given sentence explains Leukotriene B4 stimulates the transcription
of genes c-fos and c-jun and activity AP-1 binding in human monocytes. The dependency
parser identified transcription, gene, Leukotriene, activity as NN (noun, singular), AP-1 as
CD (cardinal number), and monocytes as NNS (noun, plural). The dependency parser also
identified the grammatical relations within the sentence using amod (adjectival modifier),
dobj (direct object), pobj (object of preposition), conj (conjuction), and prep (preposition).
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Fig. 2 Dependency parsing for a simple sentence

2.1.3 Named entity recognition (NER)

The next step in our approach is the recognition of gene/protein mentions in the event sen-
tences. To extract the events with high accuracy, named entities play an important role, since
they came in the theme-cause role. NER is the process of detecting entities such as genes,
proteins, diseases, species, RNA, cell, cell line from the text [64, 65]. BCC-NER [66], our
in-house hybrid named entity tagger, was used to detect the gene and protein names auto-
matically.

2.2 Event identification

Next, for event identification, we used an ensemble machine learning based classification
approach with two kernels, namely feature-based kernel and MLG kernel. The feature-based
kernel uses token-based features, sentence-based features, parsing features, and domain-
specific features. The Multiscale Laplacian Graph Kernel (MLG) [53] uses the multilevel
topological relationships between the event nodes as features. Both the feature-based kernel
and the MLG kernel were combined using ensemble SVM [67] for event identification.

2.2.1 Feature-based kernel

In the baseline feature-based linear kernel,we used a total of 15 features broadly classified into
four feature categories, namely token-based, sentence-based, parsing and domain-specific
features which were employed successfully in a previous bio-event extraction task [68–70].
All 15 features are category wise grouped and illustrated in Table 1. The detailed feature
representations for generating feature-based kernel model are clearly explained in Supple-
mentary file S3.

2.2.2 Multiscale Laplacian Graph (MLG) kernel

Recently graph-based approaches for relation extraction are getting increased attention
for their ability to capture both syntactic and semantic structures, thereby enabling deep
understanding of the complex sentences such as bio-events and achieving state-of-the-art per-
formances [41]. To improve the performance of the bio-event extraction task we employed
the MLG kernel [53] along with the baseline feature-based kernel in our approach. The
MLG kernel [53] is briefly introduced below and it is constructed based on two graph ker-
nels, namely (i) Laplacian Graph kernel (LG), (ii) Feature space Laplacian Graph Kernel
(FLG). The implementation of the MLG kernel is available at https://github.com/horacepan/
MLGkernel.

Laplacian Graph (LG) Kernel: Consider graph G as the weighted undirected graph with
vertex set V � {v1, v2 . . . vn} and the edge set E . The graph Laplacian [75] is a positive semi-
definitematrix and it can be represented using adjacencymatrix A andweighted degreematrix
D. The Laplacian matrix of the graph can be expressed using the notation L � D − A.
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The LG kernel of two graphs (G1, G2) can be defined by the following equation.

kLG(G1, G2) �

∣
∣
∣
∣

(
1
2 S−1

1 + 1
2 S−1

2

)−1
∣
∣
∣
∣

1/2

|S1|1/4|S2|1/4
(1)

where S1� L−1
1 + λ I, S2� L−1

2 + λ I.
The L−1

1 , L−1
2 are the inverse of the graph Laplacian and I is the identity matrix with

parameter λ, these are used to obtain the similarity between the graphs G1, G2.
Feature Space Laplacian Graph kernel (FLG): FLG kernel was used to compare the

structure of the subgraphs in a single scale. FLG unites the information attached to the
vertices with the graph Laplacian. The advantage of employing the FLG kernel is to trans-
form the vertex space variables a1, a2 . . . an into feature space variables b1, b2 . . . .bn , where
bi � ∑

j ti, j (a j ) and each ti, j only depend on j during local and reordering the invariant pos-
sessions of vertex vj and the resulting kernel should be permutation invariant. Vertex space
variables are the input variables that can be used to transform graph vertex as the feature
vertex. Consider G1, G2 as the two graphs with regularized Laplacians L1 and L2, and we
define the parameter λ ≥0 and (Φ1,…,Φm) is a collection of m local vertex features and they
define the feature mapping matrices in the FLG. The FLG kernel is defined as follows.

kFLG(G1, G2) �

∣
∣
∣
∣

(
1
2 S−1

1 + 1
2 S−1

2

)−1
∣
∣
∣
∣

1/2

|S1|1/4|S2|1/4
(2)

where S1� U1L−1
1 U T

1 + λ I, S2� U2L−1
2 U T

2 + λ I
Here U1 and U2 are the feature mapping matrix, L1 and L2 are the Laplacian matrix and

I is the identity matrix with parameter λ and transpose U T
1 ,U

T
2 . The major limitation of the

FLG kernel is that it cannot consider graph structure at multiple different scales which paved
the way for the MLG kernel. The FLG kernel acts as the key component in the MLG kernel
and it is applied recursively for the construction of MLG.

Multiscale Laplacian Graph (MLG) Kernel: The MLG kernel for a graph (G) can be
computed as follows:

(i) The graph (G) is divided into a large number of smaller subgraphs, and the FLG kernel
is computed between any two subgraphs for the similarity calculation in single scale.

(ii) A new kernel (FLG) is calculated between the vertices by placing the extracted sub-
graphs to a random vertex of the graph G.

(iii) Finally, a new FLG kernel is computed between the large subgraphs of the graph (G)
based on step ii and this process is repeated L (multiple scales) times.

The MLG kernel thus constructed as follows:
Consider G as the graph with vertex set V , and compute the kernel k as a positive semi-

definite kernel on the vertex set V . For each vertex (v) in the vertex set V (v ∈ V ) we have a
nested sequence of L neighborhoods.

v ∈ N1(v) ⊆ N2(v) ⊆ · · · ⊆ NL(v) ⊆ V (3)

Consider Gl (v) as the corresponding subgraph for each Nl (v). From the above equation,
the Multiscale Laplacian subgraph (MLS) kernel can be defined by calculating multiple FLG
kernels for vertex set V as (k1…kL: V × V → R ).

k1
(

v, v′) � kk
FLG

(

G1(v), G2
(

v′)) (4)
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Fig. 3 Universal dependencies and adjacency matrix for the example sentence (a) universal dependencies, (b)
adjacency matrix

k1 is the FLG kernel (kk
FLG) generated from the base kernel k. Here, the base kernel k is used

to boost the FLG to multi-scale kernel.

kl
(

v, v′) � kkl−1
FLG

(

Gl(v), Gl
(

v′)) (5)

where l � 2, 3…L, and kl is generated from kl−1 kernel.
Let G be a set of graphs as a chance to be an accumulation of graphs with the end goal

that all their vertices are members of an abstract vertex space V supplied with a symmetric
positive semi-definite kernel k : V × V → R. Assume that the MLS kernels k1,…,kL are
characterized in Eqs. 4 and 5 both for pairs of subgraphs inside the same graph and crosswise
over pairs of different graphs. Now the MLG kernel can be structured as follows

k(G1, G2) � kLGFLG(G1, G2) (6)

In this study to implement the MLG kernel, we generated Universal Dependencies (UD)
along with the adjacency matrix of the bio-event sentences.

Universal dependencies: We applied Stanford parser for generating UD of the sentences
[62]. The grammatical relations of UD are described in a hierarchy, rooted in themost generic
relation dependent. In this study, we applied UD in all event sentences to extract the typed
relation across the sentence, especially with trigger words and entities.

Adjacency matrix: The generated UD of biomedical event sentences was used to create
an adjacency matrix, to represent the association between words. An example UD generated
and corresponding adjacency matrix for a sample sentence (PMCID: 1310901) is shown in
Fig. 3a, b, respectively.

Subgraph mining
In theMLG kernel, the subgraph mining process was essential to scale the event sentences

at multiple levels. The aim of this graph kernel is to find the local structures that are critical
at specific position of the graph and find global property that roughly summarizes the graph.
In order to do so, MLG kernel is defined as a graph kernel that can consider structure at
multiple scales, by comparing graphs by subgraphs recursively. The underlying procedure
is that, two graphs are compared by subgraphs, in the next iteration two subgraphs are
compared by smaller subgraphs and so on. The MLG kernel uses node features to capture
the global structure and induced feature vectors by similarity scores for comparing structures
at multiple scales. Recursive approach compares the same subgraph pairs multiple times by
calculating the similarity scores on smaller neighborhood. In this study, we created the graph
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Fig. 4 An example of an ensemble classification pipeline of the two kernels

using Universal Dependencies (UD) along with adjacency matrix. The subgraph mining was
carried out using the following procedure. (i) First, assign the node degree to the entire graph-
structured event sentence. (ii) Construct the subgraph from the large graph. (iii) Design a
larger subgraph for the event sentence. (iv) Assign the low-rank approximation approach to
entire subgraphs and each larger subgraphs.

2.2.3 Ensemble classification

In the biomedical domain, ensemble classification plays a vital role in improving overall per-
formance for tasks such as article classification [76, 77] and relation extraction [6, 78]. SVM
with an ensemble learning approach productively learns multiple training models through
lowest time complexity. In the EnsembleSVM [67], bootstrapping strategy was employed
to repeatedly learn the training models and aggregates the multiple training instances into
the single predicted model. In this study, we employed EnsembleSVM [67] to generate the
ensemble models for feature-based linear kernel andMLG kernel and merge them to a single
classification model to efficiently categorize the events. Using EnsembleSVM we created
models on bootstrap subsamples and trained ensembles of SVM models for feature based
and MLG kernel, respectively. Figure 4 depicts a detailed explanation of the ensemble clas-
sification pipeline of our approach.

Ensemble classification of our approach described in Eq. 7:

Ek � Fk + Gk (7)

Here,Ek ,Fk and Gk were the kernel models in our classification problem. Using the
“validation set”, we tuned various parameters using the grid search method in our model
generation. In the features section, char n-gramwas set to 3 and prefix/suffix feature assigned
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as two-character. In the MLG kernel model, parameters were optimally generated and finally
set as the radius to 3, levels to 4, eta to 0.1, gamma to 0.01 and threads to 32. The tree value
parameter grow was set to 1 to grow by leaf radius. This is for allowing the subgraphs to
double in size at each level. We kept all these parameters to their default values during the
model development.

2.3 Argument detection

After the identification of events and triggers, the next step is to extract arguments, which
describe the events. To extract arguments for the events from the text efficiently and accurately,
we used the lexico-syntactic pattern-based approach with semantic role labeling [79] which
is briefly introduced below.

2.3.1 Lexico-syntactic pattern and semantic role-based rules engine

Lexico-syntactic patterns [80] are generalized linguistic structures for extracting related
concepts and relationships between concepts from the text. Here the trigger words and propo-
sitions (synonym, subject, and verb) were the concepts and relationships to detect the event
arguments. Lexico-syntactic patterns were used to structure the ontology of the words. Moti-
vated by the work of Hung et al. [79], we employed lexico-syntactic patterns to identify
{THEME, CAUSE} of the events. In the current study to identify arguments from the events,
a combination of lexico- syntactic patterns and semantic matching were performed through
three steps, namely contextual patterns, semantic role labeling, and event-specific argument
structure, respectively. The list of bio event cues and trigger word list were used to match the
arguments using pattern matching and role labeling. In the event-specific argument structure
phase, post-processing rules were incorporated such as emphasizing event certainty and co-
reference mentions. A detailed description of our lexico-syntactic pattern-based rule engine
is depicted in Fig. 5. A brief explanation about each step incorporated in the rule engine with
an example is discussed below.

Contextual patterns
Contextual patterns (CP) utilize domain specific information such as a trigger word list and
tagged entities to annotate possible event arguments. The contextual patterns were employed
with the following two components: subclass and complex. Subclass was utilized to detect
and annotate the trigger word list and tagged entities using the pattern keyword (VP list,
VP, NP) from the dependency parsed sentences. These patterns were also used to detect the
prepositions (to, belong, with, without, etc.) between the trigger words and proteins. Tagged
entities are represented in the sentence as ‘protein 1’ and ‘protein 2’ etc. For example: interact
with Protein 1 and Protein 2. Complex Patterns were employed to identify the verb keywords
which indicate multiple arguments of the same events. For example, protein1 interacts with
protein 2 which catalyzes protein 3 and causes protein 4 downregulation. The above sentence
contains multiple events which is represented by the cue words ‘catalyzes’, ‘interacts with’,
‘cause’. A full example of contextual pattern identification is shown below. For example:
(PMID:9973520)

Rule 1:
Scenario: Identifying the subject and verb in a given sentence.
Original sentence: Cross-linking of CD44 on rheumatoid synovial cells up-regulates

VCAM-1
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Fig. 5 Lexico-syntactic and semantic role based rule engine for argument detection phase

After applying CP: NP → Cross-linking VP → up-regulates etc.,
Contextual patterns identify and annotate the possible trigger words and entities by utilizing
the trigger word list in the sentence, which will be processed further by applying semantic
role labeling techniques described below.

Semantic role labeling
Semantic role labeling (SRL) is a process in natural language processing to determine the
relationship between the verb and syntactic structure of a sentence [79]. In our approach,
semantic role labeling was used to search and determine the association between protein
entities and trigger words in a sentence. It involves the detection of the semantic arguments
associated with the predicate or verb of a sentence and their classification into their specific
roles. Here we have taken the sentence (A), Verb (VP), modal verb or preposition (M),
participants in the sentence (P) and S as the subject of the sentence. From the above steps,
we derived a semantic role labeling approach for our event arguments construction process.

For example, in the following sentence (PMID:9973520) “Cross-linking of CD44 on
rheumatoid synovial cells up-regulates VCAM-1” the trigger word was “up-regulates”, the
arguments were CD44, VCAM-1 and rheumatoid synovial cells and they participated in the
event positive regulation. This was identified by applying a set of rules; the procedure of the
same has been given in Table 2 in detail.

Event-specific argument structure
After extracting event arguments using SRL based patterns, we incorporated two post-
processing rules as event-specific argument structures to raise the performance of our event
argument detection approach. Event-specific argument structure was used to differentiate
simple and complex events that specify the arguments directly or indirectly in the tagged
sentences.
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Table 2 Rules used for detecting the arguments of the events

Rule Original sentence (A) After Conversion
($$ denotes the starting and
ending of sentence)

Rule 2: Nearest participant (P)
to the verb (VP) and Subject
(S) with the proximity search

(The participant nearest to the
subject(S) of that verb(VP),
are considered to be arguments
of the event for which that
particular verb(VP) is a trigger
word

Cross-linking of CD44 on
rheumatoid synovial cells
up-regulates VCAM-1

$$ (S- Cross-linking, M - of, P -
CD44, M-on, NP- rheumatoid
synovial cells,
VP-up-regulates, P –
VCAM)$$

Here the P- CD44 was nearest to
the S-Cross-linking, and
P-VCAM-1 was nearest to the
VP - up-regulates

Rule 3: Determine the
participant (P) semantic role

(The semantic role is the
underlying relationship that a
participant has with main verb
in a clause)

Cross-linking of CD44 on
rheumatoid synovial cells
up-regulates VCAM-1

$$ (S- Cross-linking, M - of, P -
CD44, M-on, NP- rheumatoid
synovial cells,
VP-up-regulates, P –
VCAM)$$

Here the P- CD44 relates in the
event “positive regulation” by
the use of VP-up-regulates

Rule 4: Find out the relatedness
of the participants (P) in the
sentence

(The arguments and phrases
such as NPs and VPs are used
to retrieve the true positive
arguments)

Cross-linking of CD44 on
rheumatoid synovial cells
up-regulates VCAM-1

$$ (S- Cross-linking, M - of, P -
CD44, M-on, NP- rheumatoid
synovial cells,
VP-up-regulates, P – VCAM)
$$

Here the participants CD44,
VCAM-1 participated in the
event “positive regulation” by
the use of NP- rheumatoid
synovial cells,
VP-up-regulates

(i) Searching for a connective pronoun such as “it” in the sentence which indicates the entity
names (Protein) in the below example.

Examples of the generated rules: (Here D0, D1-Dependencies, ARG1, ARG2-Arguments
of the particular word in the sentence)

it_D0_Arg1_Arg2
both_D0_ D1_Arg1_Arg2
that_ D0_D1_Arg2_Arg1

Example: PMID: 10209041

Expression of GrpL is restricted to hematopoietic tissues and <Keyword> it </Keyword>
is distinguished from Grb2 by having a proline-rich region.

In the above example the pronoun ‘it’ denotes the protein GrpL, and it participated in the
event ‘Expression’.

(ii) Searching for specific keywords such as ‘certainly’, ‘highly’, ‘confirm’, which were
co-mentioned with trigger words ‘activation’ or ‘up-regulation’ so that event-specific
meaningful sentence can be identified rather than a generalized one. This is also used
to identify specific trigger words, which describe the event accurately from multiple
trigger words in the same sentence.
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Table 3 Corpus statistics (Abs—Abstract, Full—Full text articles)

Corpus Statistics

BioNLP-ST Training Development Test

BioNLP-2009 [16] Abs-800 Abs-150 Abs-260

BioNLP-2011 [17] Abs-800, Full-5 Abs-150, Full-5 Abs-260, Full-4

BioNLP-2013 [18] Full-10 Full-10 Full-14

GENIA-MK [21] 1000 Abs

Examples of the generated rules:
highly _D0_Arg1, probably_D0_D1_Arg1, certainly _D0_D1_Arg2, confirm _D0_Arg1

etc.,
<Keyword>confirm</Keyword><D0>that</D0><ARG1>binding</ARG1><D1>of

</D1>endogenous <ARG2>NFkappaB</ARG2> and <ARG3>AP1<ARG3>.

Example: PMID: PM9190901

We <Keyword>confirm</Keyword> that binding of endogenous NFkappaB and AP1 is
induced following PMA/ionomycin treatment of T cells.

In the above example, the keyword ‘confirm’ described the certainty of the event ‘binding’.
The analysis of training data was used to makeup the lexico-syntactic pattern-based rule

engine to detect the participating themes in the events. We developed a pattern matching
module using Java Regex [22–24] coupled with the above process to detect the arguments in
the event classes.

3 Results and discussion

3.1 Dataset

For the first time, BioNLP-ST-2009 [16] introduced three tasks based on the GENIA corpus
[20] for the detection of core events, recognition of event arguments and negation/speculation
detection. In BioNLP-ST-2011 [17], the tasks were expanded with resources to capture
more text and event types. In BioNLP-ST-2011, the GENIA Event extraction (GE) task
has been kept and augmented with three focused event tasks, namely (i) epigenetic and post-
translational modification (EPI), (ii) bacteria biotope (BB) and bacteria interaction (BI) and
(iii) infectious diseases (ID) [17]. Application domains were further expanded in BioNLP-
ST-2013 [18] while keeping the GE and BB; the additional tasks were cancer genetics (CG),
gene regulation ontology (GRO), and pathway curation (PC).

To assess the performance of our approach, we employed four different corpora which
includes three corpora from BioNLP-shared task (BioNLP-09 [16], BioNLP-11 [17],
BioNLP-13 [18]), and one another standard corpus, namely GENIA-MK (Meta-knowledge)
[21] which is currently available and widely used for event extraction tasks. All the four
corpora were used to train and test the models of our approach. The corpus statistics of all
three BioNLP-ST corpora and the GENIA-MK corpus are represented in Table 3.
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3.2 Evaluationmetrics

Evaluation of our event extraction systemwas performedbased on standard evaluationmetrics
precision (P), recall (R), and F-Score (F). The shared task online evaluation server was used
to perform the evaluation of the BioNLP-ST (2009, 2011, 2013). The results reported in our
systemare basedonApproximate spanmatching andApproximate stringmatching evaluation
measures. For the GENIA-MK corpus evaluation, we used 10-fold cross validation. In the
10-fold cross validation the GENIA-MK corpus was divided into 10 subsets. Every run, 90%
of the data was used as the training set, and the remaining 10% was used as the test set.

3.3 Evaluation results

We trained and tested our approach onBioNLP-ST 2009, 2011, 2013 andGENIA-MKcorpus
with the Feature-based linear kernel, MLG kernel, and Ensemble kernel. Following training
and testing, approaches were carried out to assess the performance of our approach.

In Table 4, first, we implemented the ensemble feature-based approach on the BioNLP-
ST-2009 corpus. By analyzing Table 4 feature-based approach results in high precision and
low recall. Next, we deployed the ensemble MLG kernel-based approach to the corpus, and
it results in high precision and high recall and moderately increases the F-score. Finally, we
combined both ensemble kernels, which takes the benefits of both feature-based and MLG
kernel-based output models and attained the comparative F-score. Likewise, we applied the
above methods in BioNLP-ST-2011 and BioNLP-ST-2013 corpus.

In Table 5, we implemented the same approach on the GENIA-MK corpus. Experimental
results show that our approach attained the best results compare to the BioNLP-ST corpora.
Figure 6 depicts the Receiver Operating Characteristic (ROC) curve of the three kernels for
all four corpora.

To classify the events individually, every event type needs a variety of features to reflect
the diverse context and linguistic characteristics. For example, compared to the events such
as gene expression, transcription, localization, the regulation events need more token-based,
concept based and syntactic information. By the implementation of a feature-based approach
in our study, we properly modeled the higher complexity associated with their phrasal and
linguistic contexts and consequently prepared our model to identify the individual events.
Next, the feature-based approach was coupled with MLG kernel that takes advantage of both
feature-based andgraph-kernel based approaches andgenerated state-of-the-art performances
in the extraction of individual classes of events. Table 6 shows results for individual classes
of events in the four corpora by employing our ensemble approach.

Next, we compare our approach with other state-of-the-art approaches developed on the
BioNLP-ST2009, 2011, 2013andGENIA-MKcorpora.Comparisons show that our proposed
approach performs better than other state-of-the-art approaches. Tables 7 and 8 show the
comparisons.

3.4 Discussion

In our methodology, we implemented a Feature-based linear kernel, MLG kernel, and lexico-
syntactic pattern-based approaches to extract biomedical events with unique steps. Some
interesting findings encountered fromour approach are discussed below.The baseline feature-
based linear kernel captured grammatical, syntactical, morphological, orthographical, and
sentence level global information successfully. Morphological and orthographical features
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Table 5 Results on GENIA-MK Corpus

Approach P (%) R (%) F (%)

Ensemble feature-based linear kernel 58.12 54.25 56.12

Ensemble MLG kernel 60.13 58.35 59.22

Ensemble feature-based linear kernel + Ensemble MLG kernel 64.12 59.25 61.58

Fig. 6 ROC plotting results for four corpora a BioNLP-ST- 2009, b BioNLP-ST-2011, c BioNLP-ST-2013,
d GENIA-MK

were used to describe the structure of the word in a given sentence. Parsing features were
employed to discover the grammatical and syntactical expressions of the event sentences.
Packing these above features and methodologies in the feature-based linear kernel gave the
perfect baseline to extract the events from the biomedical literature.

The MLG kernel was used to compare the structure of the graph at multiple different
scales. Mining subgraphs is an important phase in the MLG kernel because each generated
subgraph will be compared by its constituent sub-subgraphs. MLG kernel first accepts a
universal dependency structure, in which a direct dependency relationship path between the
trigger words and named entities. MLG kernel combines baseline graph Laplacian kernel
with feature representations originating from nested neighborhoods. Finally, MLG kernel
considers both overall and local graph structures to learn similarities at multiple different
levels. By considering all this we believe that by employing MLG kernel, our system was
not only able to capture the topological relationships between the individual event nodes but
also identifies the topological relationships between the subgraphs.

Example: PMCID 1310901
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Table 8 Comparative analysis on the GENIA-MK Corpus in terms of F-score

System Approach F (%)

Miwa et al. [84] SVM + Meta-knowledge information 58.20

Our approach Ensemble feature-based Linear kernel + Ensemble MLG Kernel 61.58

Sentence: Downregulation of interferon regulatory factor 4 gene expression in leukemic
cells

In the above example, words in the sentences were converted to universal dependencies
and then to the adjacencymatrix. TheMLG kernel first assigns the node degrees based onUD
and adjacency matrix to the graph generated for the sentence. In our case, in this example,
words like expression and factor were assigned with high node degree.

In general, the graph structure is captured at multiple scales in MLG. This is achieved by
increasing the depth of the neighborhood vertices in the graph. In addition, MLG focuses
on capturing the neighborhood similarity among the vertices and uses this similarity score
to induce the feature vectors. The current study exploits the above technique in which the
biomolecular event sentence is searched at multiple scales for finding the relations between
events and the target proteins using the graph generated from the corresponding adjacency
matrix of the sentence. An interesting connection to be noted is that the cue words like gene
and expression, regulation and factor, leukemia and cells were connected in the graph. In the
following steps, a subgraphmining from the sentence graph followed by the building of larger
subgraphs was performed. As a result of this step, words like interferon, regulatory, factor,
gene, expression are added into a single subgraph. So, we strongly believe that our subgraph
mining based MLG kernel played an important role in capturing the key information about
the biomedical event sentences.

The association among the subgraphs for complex event extraction using MLG kernel is
represented in Fig. 7 for a sample sentence fromPMID1335418. From the sentence, theMLG
kernel first detects the small subgraphs in level one as entity names and event trigger words
(For example, cAMP and accumulation). In level two, the kernel identifies the relationship
between the trigger word and the corresponding proteins by accumulatingmultiple subgraphs
(activation, cells, jkat, protein, kinase, cells). Finally, in level three the larger subgraphs were
mined, thereby identifying the complex event. The repeated subgraph mining process was
done until the low-rank approximation was observed to improve the classification accuracy.

Example: PMID: 1335418

We have earlier found that in Jurkat cells activation of protein kinase C (PKC) enhances
the cyclic adenosine monophosphate (cAMP) accumulation induced by adenosine receptor
stimulation or activation of Gs.

Next, in argument detection, we employed lexico-syntactic based semantic role labeling
and contextual pattern-based rules to extract the event arguments efficiently. Lexico-syntactic
patterns were used to detect domain-specific ontology-based concepts and relationships
effectively. In the event extraction task, lexico-syntactic patterns with semantic role label-
ing process require significantly less time to compare normal lexico-syntactic patterns. The
examples were illustrated in detail in the methods Sect. 2.3.1. A few interesting advantages
of using lexico-syntactic patterns to event argument detection are illustrated in the following
examples.
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Fig. 7 Extraction of complex events by identification of association among subgraphs in MLG kernel. (The
rectangle shape green represents trigger words and blue represents proteins. The dotted circles in various
colors violet (Level 1), red (Level 2), blue (Level 3) represents each level of subgraph mining) (color figure
online)

Example 1: PMID: 10330189

In response to activation of the Wnt signaling pathway, beta-catenin accumulates in
the nucleus, where <Keyword> it </Keyword> cooperates with LEF/TCF (for lymphoid
enhancer factor and T-cell factor) transcription factors to activate gene expression.

In the above example 1 the pronoun “it” denotes the protein beta-catenin, and it partici-
pated in the events “gene expression” and “transcription”.

Example 2: PMID: 10087185

Induction of NFkappaB is a <Keyword>highly</Keyword> regulated process requiring
Phosphorylation.

In the above example 2, the keyword “highly” denoted the certainty of the event “Phos-
phorylation”.

The event-specific argument structure based syntactic rules were applied after contex-
tual patterns and semantic role labeling to detect arguments. The event-specific argument
structures-based rules acted as post-processing and improved the performance of the argu-
ment detection phase.

Even though our system performs well, it exhibits some limitations. The major source
of errors that occurred in the argument detection phase is concerned with events containing
multiple arguments. If the event containsmore than three arguments, those typeswere difficult
to extract. For example (PMID: 1313226), in the sentence “Leukotriene B4 stimulates c-fos
and c-jun gene transcription and AP-1 binding activity in human monocytes”. The event
regulation contains more arguments and simultaneously it consisted of other events also as
an argument.

4 Conclusions and future enhancements

In this paper, we deployed a hybrid system by combining methodologies such as the ensem-
ble feature, graph-based kernels along with lexico-syntactic patterns to extract biomedical
events from the literature. Our Multiscale Laplacian Graph (MLG) kernel-based approach
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can detect the topological relationships between events nodes in multiple scales and identi-
fies the associations among the subgraphs for complex events. To the best of our knowledge,
we are the first ones to introduce the MLG kernel for event extraction task. Since features
play a crucial role in supervised machine learning, especially in event extraction a wide
variety of features represented broadly as token-based, sentence based, parsing and domain-
specific features to generate a feature-based kernel. Finally, we combined both ensemble
kernels to generate a robust event classifier. In addition, in the argument detection phase we
employed lexico-syntactic based semantic role labeling and contextual pattern-based rule
engine to extract the event arguments. We incorporated contextual patterns, semantic role
labeling, and event-specific argument structure to detect the domain-specific ontology-based
concepts and relationships effectively. In the future, we plan to employ the automatic feature
extraction approaches, advanced universal dependencies and different coefficient pair for
kernel ensembling to extract the events from the literature, and we will apply this system in
various biological relation extraction approaches such as Chemical Induced Disease (CID),
Disease-Drug Interactions (DDIs) and Protein–Protein Interactions (PPIs).
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