
Vol.:(0123456789)

Knowledge and Information Systems (2020) 62:4569–4597
https://doi.org/10.1007/s10115-020-01496-7

1 3

REGULAR PAPER

A fuzzy‑AHP‑based approach to select software architecture
based on quality attributes (FASSA)

Shahrouz Moaven1  · Jafar Habibi1

Received: 8 October 2017 / Accepted: 14 July 2020 / Published online: 13 August 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The software system design phase has recently received increasing attention due to con-
tinuous growth in both the size and complexity of software systems. As a key concept of
this phase, software architecture plays an important role in the software extension cycle
to the extent that the success of a software project is often determined by the degree of its
design efficiency. In addition, software architecture evaluation is a fundamental step toward
its subsequent validation. This paper is an attempt to propose an innovative method, based
on fuzzy logic, to evaluate software architecture that addresses the inherent problems of
existing methods found in the literature. The method can be used for complete design or
even reconstruction of the architecture. Given the multi-faceted nature of the problem of
evaluation and selection of an optimal architecture, we have employed a multi-objective
decision technique, namely fuzzy hierarchical analysis process, which solves the problems
associated with uncertainties and inaccuracies by incorporating fuzzy logic.

Keywords  Architectural styles · Software architecture · Multi-objective decision method ·
Fuzzy logic · The fuzzy hierarchical analysis process

1  Introduction

Software architecture provides abstract and top-level models of a system as the software pro-
duction line. It also plays a fundamental role in overcoming problems arising from the com-
plexity and size of software projects. As technology, growth definitely increases the size and
complexity of the software, the role of the architecture becomes more important in this pro-
cess [17]. The most challenging problems in designing software architecture are related to the
cost and time spent in the design and analysis. In addition, the architect’s experience is also
an important consideration in this regard. The use of design methods and architectural styles
were introduced as a means to help software developers overcome these problems by reducing

 *	 Shahrouz Moaven
	 moaven@ce.sharif.edu

	 Jafar Habibi
	 jhabibi@sharif.edu

1	 Department of Software Engineering, Faculty of Computer Engineering, Sharif University
of Technology, Tehran, Iran

http://orcid.org/0000-0002-3654-6983
http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-020-01496-7&domain=pdf

4570	 S. Moaven, J. Habibi

1 3

risk, cost and providing guidelines for less experienced architects. Although using architec-
tural styles in designing the software system guarantees that some quality features of the exist-
ing style and architectural style may not satisfy the architectural requirements of some com-
plex systems. To circumvent this issue, a combination of two or more different styles, referred
to as heterogeneous style, can be used [35].

Since architecture is the first element in the software production cycle associated with the
analysis of the quality attribute, providing a suitable architecture has a significant impact on
meeting these kinds of requirements and the ultimate success of the system. On the other hand,
the distribution and development of software systems, as well as the complexity of the full
range of dependent requirements, make designing an efficient software architecture important,
so much that the success or failure of software projects are largely determined by the design of
efficient software architecture. Hence, the evaluation and verification of software architecture
resulting from software architecture evaluation are basic requirements [5].

Due to the high costs of changes, the software architecture evaluation starts simultaneously
with the design process and continues until its end. Predicting system quality, meeting its qual-
ity attributes and identifying potential risks in the design, are the goals of software architec-
ture evaluation. Numerous methods have been proposed for software architecture evaluation,
which differ in terms of the business objectives, desired quality attributes, techniques, activi-
ties and the relationship between stakeholders [10]. For example, from a measurement-theory
point of view, having quantitative methods can add amounts of computational overhead and
evaluation inaccuracies. Most of these inaccuracies are due to using a logic different from that
used by the domain expert, which may cause many structural and semantic problems. There-
fore, methods based on fuzzy logic could be used as an appropriate solution to improve the
performance and precision of architecture evaluation. Moreover, in order to prevent making
decisions based on incomplete criteria, taking advantage of information such as working plat-
forms, application types, available quantitative records and many other effective parameters
as complementary criteria can improve the decision-making process. The fact that software
producers must consider many often overlapping and conflicting aspects and criteria turn the
architecture selection process into complicated and multi-criteria enterprises. However, this
complexity and vagueness arise much more in heterogeneous architectural styles, making the
problem of their selection and evaluation more complicated.

In this study, we seek to propose an innovated method to evaluate different architectural
styles based on their specific quality properties. To do so, we use a flexible multi-criteria
decision-making approach, namely the hierarchical analysis process, as well as fuzzy logic
in order to remove the vagueness and increase the precision in the comparison and evaluation
of candidate architectural styles. The most important advantages of this method are accurate
evaluation and the ability to extend the evaluation to aid in choosing among complicated het-
erogeneous architectural styles in a rational way. First, we introduce the required quality attrib-
utes and then we describe fuzzy logic. Next, the fuzzy hierarchical analysis process technique
is described and after that, the proposed method is explained in detail. Finally, we present our
conclusions in the last section.

2 � Related work

In this section, we first discuss architecture evaluation and its various types, and then we
shall deal with related works in the field of multi-criteria problems for architecture style
selection.

4571A fuzzy-AHP-based approach to select software architecture…

1 3

There are different methods and structures to evaluate architectures, each adaptable to
particular purposes. Current evaluation methods could be classified into two categories:
quantitative and qualitative. To use special software architecture, research typically pro-
vides us with some guidelines by which qualitative attributes could be inferred [23]. Quan-
titative description is a means to compare the level of satisfying different quality attributes
in different domain spaces. In other words, quantitative evaluations represent the signifi-
cance level of described benefits and capabilities. The qualitative evaluation of architec-
ture styles is, in fact, the combination of each architectural style with their inherent special
quality attributes [23, 44]. A combination of the mentioned methods can be used. In the
following, qualitative and quantitative methods are discussed in more detail.

In qualitative evaluation, questioning techniques are the most common methods used
to evaluate architecture with every quality. Measuring techniques can be used to answer
special questions and address special software qualities (e.g., performance or scalability);
they are not as extensive as questioning techniques. There exist three types of questioning
techniques, namely scenarios, questionnaires and checklists. There are some differences
among these in terms of their applicability, but all have the same goal, namely to enhance
our understanding of the degree of consistency between architecture and required qual-
ity attributes. In the scenario technique, quality attributes (e.g., maintainability, security,
performance and reliability) become meaningful in the context. Scenarios are descriptive
tools used to evaluate quality attributes in a context. In the questionnaire technique, a list of
general and relatively open questions is provided which are applicable to all architectures
[1]. Some questions are about architecture creation and documentation and some of them
focus on descriptive details of architecture. In the checklist technique, a set of very detailed
questions are used which have been obtained from several experiences about some similar
domains. These questions focus on special quality attributes of a system. A checklist is
helpful to keep a balanced focus on all areas of the system [29].

In quantitative evaluation, measuring techniques lead to quantitative results. These tech-
niques answer the questions of the measurement team concerning the quality attributes of
architecture instead of providing us with ways to design questions. These techniques are
more complete and mature than questioning techniques. Metrics are quantitative interpre-
tations based on particular observable measurements on the architecture, such as fan-in/
fan-out of components [42]. In measuring techniques, the evaluation process should focus
not only on the results of the metric but also on the assumptions underlying the use of the
technique [1]. Constructing a prototype or performing a simulation of a system may help to
establish and clarify architecture, but it is often costly. In other words, they are often a part
of the development process.

Several other methods are used to evaluate software architecture. Scenario-based meth-
ods like SAAM (Scenario-based Architecture Analysis Method) [21, 38] were introduced
in 1993 to provide a better understanding of the architecture and to prove that architec-
ture deals with functional, in addition to qualitative requirements [1, 25]. This method was
developed to ensure the compatibility of the architectural assumptions with the system’s
desirable attributes, understand risks associated with the architecture and potential con-
flicts among different quality attributes. Other methods like ATAM (Architecture Trade-
off Analysis Method) [22, 38] deal with qualitative attributes and the balance between the
attributes. Such methods evaluate the architecture to show to what extent specific quality
objectives are met. They also focus on the contrast between qualitative attributes and their
effects on each other. ATAM is based on SAAM.

There are other cost-based methods such as CBAM (Cost-Benefit Analysis Method)
[38, 37], CBAM, which contrary to the other two methods, has created a bridge between

4572	 S. Moaven, J. Habibi

1 3

software development and economic issues. In this method, cost (especially budget) is
considered as a qualitative attribute. With this strategy, the interaction between economic
issues and other qualitative architectural concepts is measured. ALMA (Architecture-Level
Analysis Method) [6, 25] uses maintenance cost estimation and risk assessment to ana-
lyze the variability of the system. FAAM (Family-Architecture Analysis Method) [47]
is a method to measure the interoperability and expandability of a family of information
systems.

Another category of methods focuses on formal methods. Formal methods include
different types of architectural language descriptions, which are symbolic languages for
expressing and describing the architecture of software systems [31]. In recent years, many
studies have been conducted on formal architectural languages descriptions and the result
is the creation of different architectural languages like Aesop [15], C2SADL [30], Darwin
[27], MetaH [7], Rapide [26], UniCon [43] and ACME [16].

Now, we shall review the work related to multi-criteria problems for architecture
style selection. (Tan et al. 2010) discusses the Choquet integral, which is a fuzzy opera-
tor enabling the selection of suitable architectural styles. The integral is a general tool
in multi-criteria decision-making processes. Moaven et al. [33, 34] introduce a Deci-
sion Support System (DSS) which makes use of a fuzzy concept to represent concepts
of quality attributes more precisely and efficiently. The system takes advantage of
fuzzy inference support decisions of software architects. Moaven et al. [35] introduces
a framework and a technique to provide an environment for evaluating heterogeneous
architecture styles of a software system. The framework exploits the quantity attributes
obtained during their use in order to increase the evaluation validity. Babu et al. [4]
explain the ANP approach which is used to represent the various criteria and concepts
of quality attributes more precisely and efficiently. One of the goals of this approach is
to optimize software architecture design. Galster et al. [14] have introduced SYSAS as
a method for systematic and traceable selection of architectural styles. This method is
based on the characteristics of basic architectural elements relevant to the developer,
and also those of the target system that are visible to the end-user. Moaven et al. [33, 34] ‏
explain that it is possible to use fuzzy inference to support the decisions made by soft-
ware architects. The main objective of the study is to get the most out of the properties
of styles. An integrated approach of SPL with architecture style selection and compo-
nent-based design is presented in Zaki et al. [50]. This approach seeks to select the best
architectural style using the fuzzy analytic hierarchy process. Dwivedi and Rath [13]
present a library of styles to select an appropriate style for software systems. This study
uses formal modeling language alloy for reusing and extensible modeling of a complex
and highly distributed components. Tahmasebipour and Babamir [45] have evaluated the
interaction between architectural tactics and architectural styles. By taking advantage of
a new ranking scheme for the architectural styles, the best architectural style may be
obtained for every individual quality attribute or their combinations. An intuition-based
fuzzy Choquet integral is proposed in Tan and Chen [46] for multiple-criteria decision
making. In fact, this integral takes account of interactions among the decision-making
criteria. A method for the selection of the best software architecture styles, called SSAS,
was suggested in Babu et al. [3] for improved selection methodology, reflecting inter-
dependencies among the evaluation criteria using the analytic network process within
a zero–one goal programming model. A meta-model called ADUAK is introduced in
Dhaya and Zayaraz [12] for fuzzy-based quantitative architectural evaluation. The main
objective of this study is to improve the efficiency of the architectural design process
through architectural knowledge management (AKM) support. Saaty [39] explains that

4573A fuzzy-AHP-based approach to select software architecture…

1 3

many decision problems cannot be structured hierarchically because they involve inter-
action and dependence of higher-level elements on a lower-level element. The AHP and
ANP are used to solve the problem of independence on alternatives or criteria and the
problem of dependence among alternatives or criteria, respectively [18].

In the context of reviewing the evaluation methods, Abrahão and Insfran [2] are
among the most insightful studies. In this work, the quality-driven architecture deriva-
tion and improvement (QUADAI) method is compared against the well-known archi-
tecture tradeoff analysis method (ATAM), showing that QUADAI obtains better results
than ATAM in terms of effectiveness, perceived usefulness and intention to use.

Some research is done in Mahdavi-Hezavehi et al. [28] to demonstrate which archi-
tecture handles qualitative attributes to help the researchers know how to score and
weight these attributes in self-adaptable systems. Some other studies have been con-
ducted in the context of qualitative attributes of software product lines that may be
generalizable in the architecture area [36]. This paper presents a systematic literature
review with the objective of identifying and interpreting all studies from 1996 to 2010
that present quality attributes and measures for SPL. These attributes and measures
have been classified using a set of criteria that includes the life cycle phase in which
the measures are applied, the corresponding quality characteristics and their support
for specific SPL characteristics. Moaven et al. [32] and Dasanayake et al. [11] provide
other approaches that are useful for decision making about choosing architecture and its
styles. In addition, Moaven et al. [33, 34] focuses on the decision-making procedure and
using knowledge that could be useful in this selection.

In all mentioned methods, there are important challenges that remain open, like the
overlapping of quality attributes or the contradiction between them. This is especially
relevant when there is a need for selecting a suitable architectural style for the recon-
struction of a legacy system. In selecting styles, due to multi-criteria selection and
uncertainty (which depends on the experts and the system architecture), special atten-
tion must be paid for integrating system architecture experience and involving mecha-
nisms able to learn. Using numerical concepts and binary thinking cannot reflect the
real attributes of a style. Problems like these cannot be solved completely and always
there are mechanisms for improving accuracy and effectiveness of choosing a suitable
style. In this paper, we propose a method for covering the existing challenges.

3 � Quality attributes

Quality attributes are a part of the requirements of application programs which express
the concerns of users and other stakeholders to access the functional requirements of
the systems [17]. Several efforts have been made to provide models (software quality
models) for the description and classification of quality attributes. The ISO/IEC quality
model is one of these software quality models which has had more coverage and cov-
ers more aspects of software quality. This model was presented in 1991 by the Interna-
tional Organization for Standardization (ISO) to meet the need of the software industry
to develop a standardized software evaluation. It was modified again in 2001 [20]. In
the ISO/IEC model, as shown in Fig. 1, software quality is described based on six main
quality attributes, each of which have several sub-quality attributes. These attributes are
as follows:

4574	 S. Moaven, J. Habibi

1 3

Functionality: The ability of the software product to provide functional requirements in
a specific situation is called capability. Sub-features of this feature are suitability, accu-
racy, interoperability and security.
Reliability: The ability of the software product to remain at a certain level of perfor-
mance when used in certain circumstances is called reliability and its sub-features are
maturity, fault tolerance and recoverability.
Usability: This feature describes how much a software product can be learned, attractive
and practical in specific usage conditions. Understandability, learnability and operabil-
ity are sub-features of this characteristic.
Efficiency: Efficiency demonstrates the capability of the software product to provide
appropriate performance, related to the amount of resources used in certain circum-
stances [20]. In other words, efficiency is the required system response time for a certain
number of events in a given time interval. It shows how well the interactions between
system components are conducted. It seeks to reduce time waste and response time in
the system. The sub-features of efficiency are resource utilization and time behavior.

Functionality

Reliability

Usability

Efficiency

Maintainability

Suitability

Accuracy

Interoperability

Standards

Security

Fault-tolerance

Maturity

Recoverability

Understandability
Learnability
Operability

Time behavior

Resource utilization

Analyzability

Changeability
Stability

Testability

Portability

Adaptability

Install-ability
Co-Existence

Replace-ability

Fig. 1   ISO/IEC quality model

4575A fuzzy-AHP-based approach to select software architecture…

1 3

Maintainability: The ability of the software product to apply changes and modifications.
These changes are analysis capability, variability, stability and testability.
Portability: This attribute expresses the ability to run the system under various comput-
ing environments, which include hardware, software and organizational environments. In
order to evaluate portability adaption, installation and co-existence, sub-features should be
examined.

4 � Fuzzy logic

Fuzzy sets and fuzzy logic are powerful mathematical-based tools for modeling uncertain sys-
tems which also facilitate hypothetical reasoning in decision making where there is partial and
inaccurate information. The main characteristic of a fuzzy set is its ability to represent vague
information [49]. Given that triangular fuzzy numbers demonstrated in Fig. 2 lead to a simple
process and simple computations in displaying data in a fuzzy environment, employing these
numbers is suitable in most applications. The function of a triangular fuzzy number with the
M = (l, m, u) triple is defined with respect to membership function �A(x) as follows:

Consider two triangular numbers M1 = (l1,m1, u1) and M2 = (l2,m2, u2) which are plot-
ted. Different operations are defined on triangular fuzzy numbers; the most important of them
are as follows:

(1)𝜇A(x) =

⎧
⎪⎪⎨⎪⎪⎩

0 x < l;
x−l

m−l
l ≤ x ≤ m;

m−x

u−m
m ≤ x ≤ u;

0 x > u;

(2)M1 +M2 =
(
l1 + l2,m1 + m2, u1 + u2

)

(3)M1 ∗ M2 =
(
l1 ∗ l2,m1 ∗ m2, u1 ∗ u2

)

0

M1 M2

D

1

V(M1>M2)

Fig. 2   Triangular numbers M1 and M2

4576	 S. Moaven, J. Habibi

1 3

5 � The fuzzy analytic hierarchy process (FAHP)

The analytic hierarchy process (AHP) is a multi-criteria decision-making method which
selects the best option from all candidates [41] based on several criteria, which may be
different or even in conflict with each other. In this method, after decomposing the prob-
lem by hand and constructing the hierarchical tree, completing a pairwise comparison
between the available criteria in the same level, a certain number is assigned to each
option to rank the options and allow the selection of the best one [40]. Based on AHP,
the essential steps to solve complex and multi-criteria problems are:

1.	 Defining decision-making criteria in the form of a hierarchical structure so that the goal
is placed in the topmost level, criteria and sub-criteria are in the middle levels, and the
candidate solutions and options are in the lowest level.

2.	 Defining computing criteria, sub-criteria and replacements weights based on the relative
importance of each member from its higher level.

3.	 Ranking the options.

In spite of AHP efficiency in the management of quantitative and qualitative criteria,
the lack of specific standards for measuring and representing the numerical values of
the qualitative criteria and ambiguity and uncertainty in relative comparisons leads to
uncertainty in the ranking of options [9]. As a solution to this problem, a combination
of analytic hierarchy process and fuzzy logic was first introduced in Van Laarhoven and
Pedrycz [24] in order to adapt better the process to reality, to consider uncertainty and
inaccuracy issues into account, and finally to increase precision in ranking options [24].
In this method, triangular fuzzy numbers and logarithmic least-squares were used to
compute proportional weight. In addition, an extension to this method is FAHP, which
was proposed by Chang et al. [9] to reduce computational overhead compared to the
method. The development stages of FAHP based on the extended analysis method are as
follows [8]:

1.	 Creation of the Fuzzy Pairwise Comparison Matrix. In this stage, a pairwise comparison
matrix is determined based on triangular fuzzy numbers, and by decision-makers. In
this case, if mij is the real value obtained from the comparison of two criteria i and j,
the upper and lower bounds of the triangular fuzzy number, based on the fuzzification
degree (δ), are determined by (mij − �,mij,mij + �) . So, the element mij of the matrix can
be specified by the triangular fuzzy number, which the subscripts i and j refer to the row
and column, respectively. Table 1 in Sect. 6 is based on this pairwise comparison. From
Eq. 5 to 7, let G = {g1, g2,… , gn} be a set of criteria, where n is the number of criteria.

2.	 Calculation of the Fuzzy Composite Extension Si (the value of fuzzy synthetic extent
with respect to the ith object). In fact for estimating of the weight values for each crite-
rion and for each alternative with reference to a given criteria, Si is calculated for each
row of the pairwise comparison matrix according to the following equations:

(4)M−1
1

=

(
1

u1
,
1

m1

,
1

l1

)
.M−1

2
=

(
1

u2
,
1

m2

,
1

l2

)

4577A fuzzy-AHP-based approach to select software architecture…

1 3

	  Related parameters in these equations (l,m, u) are positive numbers and demonstrated
in Fig. 2. Besides G is the goal set.

3.	 Calculation of the Priority Degree (Feasibility) of Si over Sk. The degree of possibil-
ity for convex fuzzy number M to be greater than the number of k fuzzy numbers Mi
( i = 1, 2,… , k ) is given by the use of the operations max and min. Here the degree of
importance of each Si is calculated with respect to each other. In general, if M1 and M2
are triangular fuzzy numbers, in order to find the degree of importance of M1 over M2
or compare M1 and M2, where (M1 ≥ M2) or (M2 ≥ M1) , the values of V are needed and
are calculated by the following equation:

	  As it is clear, the degree of importance of a certain triangular fuzzy number compared
to the other triangular fuzzy numbers is calculated by:

(5)Si =

m∑
j=1

Mj
gi
.

[
n∑
i=1

m∑
j=1

Mj
gi

]−1

(6)
m∑
j=1

Mj
gi
=

[
m∑
j=1

lij,

m∑
j=1

mij,

m∑
j=1

uij

]

(7)
n∑
i=1

m∑
j=1

Mj
gi
=

[
n∑
i=1

lij,

n∑
i=1

mij,

n∑
i=1

uij

]

(8)V
�
M2 ≥ M1

�
=

⎧
⎪⎨⎪⎩

1 if m2 ≥ m1;

0 if l1 ≥ u2;
l1−u2

(m2−u2)−(m1−l1)
, otherwise

Table 1   Allocated fuzzy values to any conversational values

Description Linguistic values Fuzzy numbers

The two compared elements have equal importance Just equal (1, 1, 1)
One of the elements preferred to the other by a narrow

margin
Weakly more important (1, 3/2, 2)

One of the elements strongly preferred to the other Strongly more important (3/2, 2, 5/2)
The preference of one element to another is practically

demonstrated
Very strongly more important (2, 5/2, 3)

The preference of one element is at the highest certainty
level

Absolutely more important (5/2, 3, 7/2)

If one of the above fuzzy numbers will be assigned to
a comparison i to j, the reciprocal of that number is
assigned to comparison j to i

Reciprocal value

4578	 S. Moaven, J. Habibi

1 3

4.	 Calculation weights of the criteria. The criteria’s weight in the pairwise comparison
matrix is calculated using the following equation:

	  Therefore, the criteria weight vector is:

5.	 Weight Normalization. Results of the previous step are normalized as follows:

6 � Proposed method

In Moaven et al. [33, 34], architecture styles selection was introduced as a multiple-criteria
problem and resolved it using a fuzzy integral. In this paper, the method that proposed
helps software architects and developers to evaluate candidate architectures or architectural
styles based on the system goals and stakeholder viewpoints and select the most useful
architectural style with respect to their particular and required goals. To this aim, first, the
required hierarchical structure is defined based on ISO/IEC software quality model; next,
the fuzzy variables are used to explain the hypothetical reasoning about the relative impor-
tance of different criteria and options. Finally, candidate architectural styles are ranked by
employing the FAHP method in order to select the best option. These steps are at length
described and analyzed in the remainder of this section. Furthermore, the process of attrib-
utes weighting and method evaluation are discussed in the following.

6.1 � Identifying criteria and sub‑criteria

In order to choose an architectural style, we encounter different quality attributes that are
viewed as decision-making criteria. Software hierarchical quality models, such as ISO/
IEC, can be used to classify the structure of the quality attributes (criteria) and sub-criteria
of the architectural style’s selection problem. The hierarchical structure of this problem
would then contain 6 criteria and 21 sub-criteria based on the ISO/IEC software quality
model.

(9)

V
(
M ≥ M1,M2,… ,M

k

)

= V
(
M ≥ M1),V

(
M ≥ M2

)
,… ,V(M ≥ M

k

)

= minV(M ≥ M
i
), i = 1, 2,… , k

(10)W �
(
xi
)
= Min

{
V
(
Si ≥ Sk

)}
, k = 1, 2,… , n and k ≠ i

(11)W �(x) = [W �
(
x1
)
,W �

(
x2
)
,… ,W �

(
xn
)
]T

(12)Wi =
W �

1∑
W �

i

4579A fuzzy-AHP-based approach to select software architecture…

1 3

6.2 � Constructing the hierarchical structure

Here, the architectural style selection problem is decomposed and described in a simple
format according to the human mind. Also, based on a hierarchical structure, we see that
the problem, comprising four levels:

•	 Goal: evaluating architectural style.
•	 Criterion: software quality attributes.
•	 Sub-criterion: secondary quality attributes corresponding to each quality attribute.
•	 Options: architectural styles.

To create a hierarchical structure, the decision-making goal, which is an evaluation of
architectural style, is placed in the root of the tree. In the next level, the required qual-
ity attributes are appended to the tree as the branches of the root and the impact of each
attribute in fulfilling the goal is considered as the weight of the edge. At the third level, the
secondary attributes affecting each quality attribute are considered as the children of each
attribute, with the impact of each attribute constituting the weight of the edge connecting
them. Figure 3 illustrates the hierarchical structure for architectural style evaluation based
on the ISO/IEC quality model.

Goal:
Choose Style

FunctionalityReliabilityUsabilityEfficiencyMaintainabilityPortability

Suitability

A
ccuracy

Interoperability

Standards

Security

Fault-tolerance

M
aturity

Recoverability

U
nderstandability
Learnability
O

perability

Tim
e behavior

Resource utilization

A
nalyzability

Changeability
Stability

Testability

A
daptability

Install-ability
Co-Existence

Replace-ability

Broker C2 Object Oriented Layered Blackboard Repository Pipe-and-Filter

Fig. 3   Hierarchical structure for architectural style evaluation

4580	 S. Moaven, J. Habibi

1 3

6.3 � Creating fuzzy decision‑making matrices

After constructing the hierarchical structure for the problem, a pairwise comparison for
the criteria, sub-criteria and options is carried out, and finally, the fuzzy decision-making
matrices are developed. The collection of viewpoints of decision-makers and experts are
required to define the pairwise comparisons among the members at any level of this hierar-
chical structure. Employing questionnaires is one of the ways of gathering information. In
the process of selecting the most appropriate architectural style, a number of questionnaires
should be prepared to be used by decision-makers and experts. These questionnaires com-
pare the criteria, sub-criteria and options for each two of them and according to the existing
upper-level members pairwisely and also explain their relative importance with respect to
one another using items (such as the same importance, a bit more important, more impor-
tant, very important and the most important). After this step, the conversational results of
these comparisons are replaced with fuzzy numbers based on the prevalent pattern. For
example, as shown in Table 1, in this method, the conversational values are replaced with
triangular fuzzy values.

After collecting experts’ viewpoints, the decision fuzzy matrices are created. Each
member of the fuzzy decision-making matrix is indicated by a triple vector defining the
comparison triangular fuzzy number between i and j. We suppose that is a pairwise com-
parison between i and j from the viewpoint of decision-maker k, denoted by Dijk, as shown
in Fig. 2. Then, the triangular fuzzy numbers for any pairwise comparisons are defined
based on Eqs. (13) to (15) as follows.

These equations are used for solving equations such as (6) and (7).

6.4 � Identifying criteria weight

The relative importance of each quality attribute depends on the conditions of the system
and the type of the system architecture to be designed or evaluated. In other words, criteria
weights are different for each system and depend on the problem domain and the impor-
tance of the quality attributes in the system. For example, portability may be the criterion
with the highest degree of importance in one system, whereas it has the lowest degree of
importance in another. Therefore, to explain the relative importance and make a pairwise
comparison among the criteria, the evaluation process must be focused on a particular area,
and the system or the proportional weights of different criteria must also be considered as
parameters.

In this study, to evaluate the proposed method, a special domain is supposed for the
problem at hand. Thus, the decision-making team fills out the questionnaires based on the

(13)lij = min
k

(Dijk)

(14)uij = max
k

(
Dijk

)

(15)mij =
k

√√√√ k∏
k=1

Dijk

4581A fuzzy-AHP-based approach to select software architecture…

1 3

selected domain and uses this method to select the most appropriate style among candidate
architectural styles. Suppose that we need to choose the most appropriate architectural style
for a system with the following characteristics. The instance of this domain is the embed-
ded system as a broker gateway between the banking system and different type of customer
systems. Because of the platform, banking security is not the issue of our case study in this
paper and it handled in another layer of general systems. The important things of this espe-
cial system are as below:

•	 The system must have high performance.
•	 System flexibility is the second priority in terms of importance ranking.
•	 Availability and fault tolerance are important factors in the system.
•	 The data transfer paths must be determined.
•	 The cost of planning, designing and other activities are also important.

Based on these assumptions, the fuzzy decision-making matrix used for pairwise compari-
son among the criteria is defined according to Table 2.

The relative weights of criteria are calculated according to Table 2 and the FAHP method
as follows:

The degree of importance of the values was calculated in the previous step is defined with
respect to other values.

Sc1 = (8.50, 11, 13.50)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.17, 0.27, 0.14)

Sc2 = (5.90, 7.50, 9.17)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.12, 0.18, 0.28)

Sc3 = (6.83, 8.40, 10)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.13, 0.2, 0.3)

Sc4 = (4.40, 5.33, 6.67)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.09, 0.13, 0.2)

Sc5 = (4.30, 5.17, 6.33)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.08, 0.13, 0.19)

Sc6 = (3.23, 3.90, 5.17)⊗ (1∕50.83, 1∕41.30, 1∕33.17) = (0.06, 0.09, 0.16)

V(Sc1 ≥ Sc2) = 1, V(Sc1 ≥ Sc3) = 1, V(Sc1 ≥ Sc4) = 1,

V(Sc1 ≥ Sc5) = 1, V(Sc1 ≥ Sc6) = 1, V(Sc2 ≥ Sc1) = 0.56,

V(Sc2 ≥ Sc3) = 0.87, V(Sc2 ≥ Sc4) = 1, V(Sc2 ≥ Sc5) = 1,

V(Sc2 ≥ Sc6) = 1, V(Sc3 ≥ Sc1) = 0.68, V(Sc3 ≥ Sc2) = 1,

V(Sc3 ≥ Sc4) = 1, V(Sc3 ≥ Sc5) = 1, V(Sc3 ≥ Sc6) = 1,

V(Sc4 ≥ Sc1) = 0.2, V(Sc4 ≥ Sc2) = 0.62, V(Sc4 ≥ Sc3) = 0.47,

V(Sc4 ≥ Sc5) = 1, V(Sc4 ≥ Sc6) = 1, V(Sc5 ≥ Sc1) = 0.14,

V(Sc5 ≥ Sc2) = 0.57, V(Sc5 ≥ Sc3) = 0.42, V(Sc5 ≥ Sc4) = 1,

V(Sc5 ≥ Sc6) = 1, V(Sc6 ≥ Sc1) = 0.04, V(Sc6 ≥ Sc2) = 0.31,

V(Sc6 ≥ Sc3) = 0.16, V(Sc6 ≥ Sc4) = 0.67, V(Sc6 ≥ Sc5) = 0.70

4582	 S. Moaven, J. Habibi

1 3

Ta
bl

e 
2  

F
uz

zy
 d

ec
is

io
n-

m
ak

in
g

m
at

rix
 fo

r c
om

pa
rin

g
pa

ir
cr

ite
ria

C
1

C
2

C
3

C
4

C
5

C
6

C
1:

 fu
nc

tio
na

lit
y

1.
00

1.
00

1.
00

1.
50

2.
00

2.
50

2.
00

2.
5

3.
00

1.
00

1.
50

2.
00

1.
50

2.
00

2.
50

1.
50

2.
00

2.
50

C
2:

 re
lia

bi
lit

y
0.

40
0.

50
0.

67
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

50
2.

00
2.

50
1.

00
1.

50
2.

00
1.

00
1.

50
2.

00
C

3:
 u

sa
bi

lit
y

0.
33

0.
40

0.
50

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
50

2.
00

1.
50

2.
00

2.
50

2.
00

2.
50

3.
00

C
4:

 e
ffi

ci
en

cy
0.

50
0.

67
1.

00
0.

40
0.

50
0.

67
0.

50
0.

67
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

50
2.

00
C

5:
 m

ai
nt

ai
na

bi
lit

y
0.

40
0.

50
0.

67
0.

50
0.

67
1.

00
0.

40
0.

50
0.

67
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

50
2.

00
C

6:
 p

or
ta

bi
lit

y
0.

40
0.

50
0.

67
0.

50
0.

67
1.

00
0.

33
0.

40
0.

50
0.

50
0.

67
1.

00
0.

50
0.

67
1.

00
1.

00
1.

00
1.

00

4583A fuzzy-AHP-based approach to select software architecture…

1 3

Based on the values obtained in the previous step, the following criteria weight vector is
defined:

W �
(
C1

)
= Min{1, 1, 1, 1, 1} = 1

W �
(
C2

)
= Min{0.56, 0.87, 1, 1, 1} = 0.56

W �
(
C3

)
= Min{0.68, 11, 1, 1} = 0.68

W �
(
C4

)
= Min{0.2, 0.62, 0.47, 1, 1} = 0.2

W �
(
C5

)
= Min{0.14, 0.57, 0.42, 1, 1} = 0.14

W �
(
C6

)
= Min{0.04, 0.31, 0.16, 0.67, 0.7} = 0.04

Goal:
Choose Style

FunctionalityReliabilityUsabilityEfficiencyMaintainabilityPortability

0.38

0.21
0.26 0.08 0.05

0.02

Fig. 4   Structure tree and weigh of primary criteria in architectural styles evaluation

Choose Style

Functionality

R
eliability

U
sability

Efficiency

M
aintainability

Portability

Suitability

A
ccuracy

Interoperability

Standards

Security

Fault-tolerance

M
aturity

Recoverability

U
nderstandability

Learnability

O
perability

Tim
e behavior

Resource utilization

A
nalyzability

Changeability

Stability

Testability

A
daptability

Install-ability

Co-Existence

Replace-ability

0.53 0.03 0.28 0.16 0.02 0.78 0.16 0.03 0.68 0.32 0.56 0.09 0.35 0.56 0.09 0.35 0.02 0.41 0.24 0.05 0.28

0.38
0.21

0.26 0.08 0.05
0.02

Fig. 5   Tree structural and proportional weight of sub-criteria in architectural styles evaluation problem

4584	 S. Moaven, J. Habibi

1 3

Finally, the criteria weights are normalized as follows to create the structure tree of archi-
tectural style evaluation in Fig. 4.

6.5 � Calculating sub‑criteria and style weight or proportional priority

In this step, by conducting a pairwise comparison between the sub-criteria of each qual-
ity property and performing computations similar to what we observed in the previous
step the weight of all the sub-criteria are calculated according to their corresponding
criterion as shown in Fig. 5. After calculating the proportional weight of each sub-cri-
terion, the proportional weight of any architectural style can be calculated based on any
sub-criterion just as in the previous method.

6.6 � Style scoring

In the final step, the architectural styles are scored based on both final weights of sub-criteria
and relative weights of architectural styles. In more detail, the weight of any criteria must be
multiplied by the relative weight of its parent (the weight of the main criterion related to the
sub-criterion). Figure 5 illustrates the final weights of the criteria and sub-criteria. Finally, the
weight or score of any architectural style is calculated using the following equation, which is
an aggregation of the relative weights of all the styles in this example multiplied by the final
weight of the corresponding sub-criterion:

where n is the number of sub-criteria, Zjk is the relative weight of style Sk compared to the
sub-criterion Pj, and Yj is the final weight of sub-criterion Pj. According to Table 7, Zjk is
calculated. The knowledge and experience of an expert in the questionnaires determine the
behaviors of architectural styles in comparison with pairwise comparison method in every
quality attribute and the computations will be done accordingly.

W � = (1, 0.56, 0.68, 0.2, 0.14, 0.04)

W = (0.38, 0.21, 0.26, 0.08, 0.05, 0.02).

(16)OP
(
Qi

)
= Yi

(17)OP
(
Pj

)
=

m∑
i

Xij × OP
(
Qi

)
=

m∑
i

Xij × Yi

(18)OP
(
Sk
)
=

n∑
j

Zjk × OP
(
Pj

)
=

n∑
j

Zjk × Yj

Table 3   Privileging architectural styles

Style Client–server C2 Object oriented Layer Blackboard Storage Pipe and filter

Rank 0.175 0.145 0.123 0.147 0.115 0.112 0.182

4585A fuzzy-AHP-based approach to select software architecture…

1 3

Table 3 shows the calculated score of all styles in this example. Therefore, based on this
ranking, the most appropriate architectural styles in this special problem are Pipe and Filter,
Client–Server, Layered, C2, Object Oriented, Blackboard and Storage styles, respectively.

Table 3 is calculated by the 18th formula which is shown below:

As in the previous step, the Yj is calculated for each quality attribute in the problem, Fig. 6
in this subsection helps clarify this step, which is taken from Fig. 3.

The value of other architectural styles is calculated in Table 3.

6.7 � Weight and scoring

In the proposed method, we need to rank and compare styles and qualitative attributes
and their sub-attributes. There are two general methods that could be used for this pur-
pose: by using background and expert knowledge. The latter method utilizes question-
naires and methods to facilitate these issues and help to perform the work more accu-
rate. We have used questionnaire forms and saved the results in a hierarchical format
[32], which will be used as an example of this work.

In the following, Sect. 6.7.1 as mentioned before, we present a few examples of the
forms (not all of them) which the required comparisons are derived from them. In fact,
we provide some questionnaires (like the papers below) for all the quality attributes, its
characteristics and for the comparison of both architectural styles.

OP
(
C
2

)
= 0.162 × OP(Portability) + 0.1893 × OP(Usability)

+ 0.162 × OP(Reliability) + 0.1982 × OP(Efficiency)

+ 0.0173 × OP(Maintainability) + 0.271 × OP(Functionality)

Goal

FunctionalityReliabilityUsabilityEfficiencyMaintainabilityPortability

Suitability

A
ccuracy

Interoperability

Standards

Security

Fault-tolerance

M
aturity

Recoverability

U
nderstandability
Learnability
O

perability

Tim
e behavior

Resource utilization

A
nalyzability

Changeability
Stability

Testability

A
daptability

Install-ability
Co-Existence

Replace-ability

Architecture Style: C2 ... Other Style

0.38
0.21 0.26 0.08 0.05

0.02

0.162 0.0173 0.1982 0.1893 0.162 0.2709

Fig. 6   The instance of tree structural and proportional weight

4586	 S. Moaven, J. Habibi

1 3

Ta
bl

e 
4  

C
or

re
ct

ne
ss

 a
nd

 it
s s

ub
-a

ttr
ib

ut
es

Re
la

tiv
e

im
po

rta
nc

e
of

 su
b-

cr
ite

ria
A

cc
or

di
ng

to

 c
or

re
ct

-
ne

ss
A

bs
ol

ut
e

Ve
ry

 st
ro

ng
Fa

irl
y

str
on

g
W

ea
k

Eq
ua

l
W

ea
k

Fa
irl

y
str

on
g

Ve
ry

 st
ro

ng
A

bs
ol

ut
e

C
om

pl
et

en
es

s
Tr

ac
ea

bi
lit

y
1

C
on

si
ste

nc
y

Tr
ac

ea
bi

lit
y

2
C

on
si

ste
nc

y
C

om
pl

et
en

es
s

3

4587A fuzzy-AHP-based approach to select software architecture…

1 3

Ta
bl

e 
5  

U
sa

bi
lit

y
an

d
its

 su
b-

at
tri

bu
te

s

Re
la

tiv
e

im
po

rta
nc

e
of

 su
b-

cr
ite

ria
 to

 e
ac

h
ot

he
r

A
cc

or
d-

in
g

to

U
sa

bi
lit

y
A

bs
ol

ut
e

Ve
ry

 st
ro

ng
Fa

irl
y

str
on

g
W

ea
k

Eq
ua

l
W

ea
k

Fa
irl

y
str

on
g

Ve
ry

 st
ro

ng
A

bs
ol

ut
e

Tr
ai

ni
ng

O
pe

ra
bi

lit
y

1
A

ttr
ac

tiv
en

es
s

O
pe

ra
bi

lit
y

2
A

ttr
ac

tiv
en

es
s

Tr
ai

ni
ng

3

4588	 S. Moaven, J. Habibi

1 3

Ta
bl

e 
6  

F
le

xi
bi

lit
y

an
d

its
 su

b-
at

tri
bu

te
s

Re
la

tiv
e

im
po

rta
nc

e
of

 su
b-

cr
ite

ria
A

cc
or

di
ng

to

 fl
ex

-
ib

ili
ty

A
bs

ol
ut

e
Ve

ry
 st

ro
ng

Fa
irl

y
str

on
g

W
ea

k
W

ea
k

Eq
ua

l
W

ea
k

Fa
irl

y
str

on
g

Ve
ry

 st
ro

ng
A

bs
ol

ut
e

Ex
pa

nd
ab

ili
ty

Se
lf

co
nt

ai
ne

dn
es

s
1

G
en

er
al

ity
Se

lf
co

nt
ai

ne
dn

es
s

2
G

en
er

al
ity

Ex
pa

nd
ab

ili
ty

3

4589A fuzzy-AHP-based approach to select software architecture…

1 3

Ta
bl

e 
7  

T
he

 q
ue

sti
on

na
ire

s f
or

 ta
ki

ng
 e

xp
er

t’s
 o

pi
ni

on
s

Im
po

rta
nc

e
of

 st
yl

es
 w

ith
 re

sp
ec

t t
o

ea
ch

 o
th

er
A

cc
or

di
ng

 to
 th

e
su

b-
cr

ite
ria

A
bs

ol
ut

e
Ve

ry
 st

ro
ng

Ve
ry

 st
ro

ng
Fa

irl
y

str
on

g
W

ea
k

Eq
ua

l
W

ea
k

Fa
irl

y
str

on
g

Ve
ry

 st
ro

ng
A

bs
ol

ut
e

Su
b-

cr
ite

ria
 o

f
Se

cu
rit

y,
 fl

ex
ib

ili
ty

,
pe

rfo
rm

an
ce

 a
nd

 …

(o
nl

y
on

e
sa

m
pl

e
co

m
pa

ris
on

 q
ue

sti
on

fo

r e
ac

h
su

b-
cr

ite
ria

 is

sh
ow

n)

C
2

B
ro

ke
r

1
O

bj
ec

t O
rie

nt
ed

B
ro

ke
r

2
La

ye
re

d
B

ro
ke

r
3

B
la

ck
bo

ar
d

B
ro

ke
r

4
Re

po
si

to
ry

B
ro

ke
r

5
Pi

pe
 &

 F
ilt

er
B

ro
ke

r
6

O
bj

ec
t O

rie
nt

ed
C

2
7

La
ye

re
d

C
2

8
B

la
ck

bo
ar

d
C

2
9

Re
po

si
to

ry
C

2
10

Pi
pe

 &
 F

ilt
er

C
2

11
La

ye
re

d
O

bj
ec

t O
rie

nt
ed

12
B

la
ck

bo
ar

d
O

bj
ec

t O
rie

nt
ed

13
Re

po
si

to
ry

O
bj

ec
t O

rie
nt

ed
14

Pi
pe

 &
 F

ilt
er

O
bj

ec
t O

rie
nt

ed
15

B
la

ck
bo

ar
d

La
ye

re
d

16
Re

po
si

to
ry

La
ye

re
d

17
Pi

pe
 &

 F
ilt

er
La

ye
re

d
18

Re
po

si
to

ry
B

la
ck

bo
ar

d
19

Pi
pe

 &
 F

ilt
er

B
la

ck
bo

ar
d

20

4590	 S. Moaven, J. Habibi

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d) Im
po

rta
nc

e
of

 st
yl

es
 w

ith
 re

sp
ec

t t
o

ea
ch

 o
th

er
A

cc
or

di
ng

 to
 th

e
su

b-
cr

ite
ria

A
bs

ol
ut

e
Ve

ry
 st

ro
ng

Ve
ry

 st
ro

ng
Fa

irl
y

str
on

g
W

ea
k

Eq
ua

l
W

ea
k

Fa
irl

y
str

on
g

Ve
ry

 st
ro

ng
A

bs
ol

ut
e

Su
b-

cr
ite

ria
 o

f
Se

cu
rit

y,
 fl

ex
ib

ili
ty

,
pe

rfo
rm

an
ce

 a
nd

 …

(o
nl

y
on

e
sa

m
pl

e
co

m
pa

ris
on

 q
ue

sti
on

fo

r e
ac

h
su

b-
cr

ite
ria

 is

sh
ow

n)

Pi
pe

 &
 F

ilt
er

Re
po

si
to

ry
21

4591A fuzzy-AHP-based approach to select software architecture…

1 3

6.7.1 � Example of quality attribute sub‑criteria questionnaires

The proposed method could be used in different models with respect to various quality
attributes which leads us to give several samples (examples).

In Tables 4, 5, and 6, qualitative attributes like correctness, usability and flexibility
are evaluated at the level of sub-attributes.

6.7.2 � Example of questionnaires’ style comparisons

In this subsection, a sample of common questionnaires of styles has been presented.
In fact, in Table 7, the questionnaires have provided an implicit comparison between
architectural styles based on architects’ opinions and those of the system experts and
in Table 8, the three categories of 30 experts (answered the questionnaires) are shown.

The results obtained by this method can help us find the required coefficients in vari-
ous formulas and approaches. In addition, they can be used to extract reliable results for
evaluating our output with regard to a specific problem. For example, for Broker, C2,
Object Oriented, Layered, Blackboard, Repository and Pipe & Filter styles, qualitative
attributes like Correctness, Usability and Flexibility in the scope of information systems
(backup and restore) the following results (Table 9) were obtained after averaging the
comments provided by 30 experts.

For using FAHP/AHP methods and also weighting each quality attribute related to
the architectural styles, the different existing references could be helpful [1, 2, 4, 7, 9, 12,
19, 29, 44, 50]. The proposed methods divide the problem into small part for compar-
ing and weighting but the user should be familiar with the architectural styles and their
specification.

Table 8   The questionnaires for taking expert’s opinions

Number of people Work experience (years) Field of work Academic level

5 5 Design & Analyze BS
18 12 System Analyzer & architect MS
7 20 Chief Architect PhD

Table 9   Coefficients of each
qualitative attribute

Correctness Usability Flexibility

Broker 0.12 0.1089 0.1204
C2 0.1813 0.1166 0.0967
Object Oriented 0.1469 0.0979 0.1698
Layered 0.168 0.1562 0.0547
Blackboard 0.0709 0.1738 0.186
Repository 0.0709 0.1683 0.186
Pipe & Filter 0.2537 0.1639 0.184

4592	 S. Moaven, J. Habibi

1 3

7 � Evaluation

Regarding the evaluation of the proposed methods in the previous step, we chose a real
case (as a case study) and in this regard, the proposed method was described which its
results can be considered as a reference to evaluate the proposed methods. Also, based on
the existing methods in this context (mentioned in the related work), we examine the analy-
sis of the proposed method.

Actually, to evaluate our method, we have examined several studies. As our method is
based on an expert’s opinion and questionnaires, and our goal is to analyze their influences.

Table 10   Evaluation of the KPI’s

KPI Evaluation

Reusability Both Conceptual reusability and structural are used in this approach, in a similar prob-
lem as conceptually this method has a suitable function and also the approach clearly
provides reusability based on the hierarchical structure on its evaluation

Scalability According to the quantitative method developed and used in the logical formulas, the
proposed approach provides the possibility for evaluating many structures in a sequen-
tial or parallel manner

Understandability This approach not only uses definitive methods and solves problems on a step-by-step
basis, but also creates a white box that provides the ability of completion and high
understanding in the procedure of architectural patterns evaluation

Usability All activities can be used by any person who is familiar with this domain and using
quantitative methods and their simplification such as using AHP and pairwise com-
parison for scoring provides for high usability

Completeness The proposed approach is a comprehensive solution capable of covering all types of
architecture, even heterogeneous and nested ones

Cost No need for any implementation to learn new something. The cost of using this method
in comparison with other quantitative and qualitative methods is significantly lower

Accuracy Based on using readily reversible methods like cases, which are in relation to the AHP
method, the correctness of the obtained outputs is guaranteed and included experts’
opinions and existing cases in the literatures

Accountability The proposed approach based on modularity, step-by-step process, separation capability
and checking inputs and outputs has provided high accountability

Table 11   Comparison of the
proposed method with other
methods

KPI Sce-
nario-
based

Cost-based Formal
method

Measuring
method (simu-
lation)

Reusability – I I I
Scalability I I I R
Understandability – I I –
Usability I I I I
Completeness – I I –
Cost I I I I
Accuracy I I R R
Accountability I I R –

4593A fuzzy-AHP-based approach to select software architecture…

1 3

In fact, our method is evaluated in different ways such as evaluation by experts, the Fuzzy-
based AHP method and analytical evaluation based on previous studies.

7.1 � Advantages of the proposed method

We discuss the advantages of the proposed method based on KPI in Table 10 and it is
compared with the other methods from the literature. This comparison is based on eight
quality attributes: Reusability, Scalability, Understandability, Usability, Completeness,
Cost, Accuracy, Accountability. Tables 10 and 11 evaluate the proposed method from the
perspective of each quality attribute, as presented in Hämäläinen [19], Wohlin et al. [48].

According to the related work section, we select four categories from architectural
evaluation methods, which we review and compare with the proposed method. Table 11
presents the results of this comparison. “R” indicates that this method reduces the qual-
ity attribute and has a lower performance compared to other methods. “-” means the
better method cannot be identified. “I” means that the proposed method improves the
quality attribute.

As seen in Table 11, we survey the different viewpoint of the architectural evaluation
method. In some of them there may be certain and customized cases which are diffi-
cult to compare against our method. In the comparison shown in Table 11, our method
exhibits higher reusability compared to the other methods except for scenario-based
methods; this is due to the fact that such methods, the scenario designer can plan it to
be reusable, and this decision solely rests with the architect. As shown in the evaluation
description table, for Scalability, our method provides sequential evaluation because of
the quantitative capabilities and measurement methods based on a simulation that is eas-
ier to scale than our method because of already-existing simulation platforms and tools.
The proposed method provides greater insight into the evaluation process and is better
than both cost-based and formal methods. However, we definitively cannot compare our
method to the scenario-based and measuring ones. According to Table 11, there is no
need to know about simulators and formal hard methods or even determine the cost
for different components. Therefore, our method is better than others. Understandability
and usability in general, in this viewpoint, and by breaking the problem into small parts,
the major advantages of our method is simplicity and understandability in which we do
not use any tools, special language or specific knowledge, making it more useful than
other procedures. Concerning completeness, since our approach fully depends on the
designer and developer of the evaluation method, we cannot offer a definitive judgement
about it when compared to scenario-based and measuring methods. However, in relation
to the formal and Cost-based methods, we can take advantage of a wide range of issues.
The cost associated with the proposed method for achieving acceptable results is lower
than that of all the other. In fact, it does not include even the cost associated with the
definition of specific scenarios and the expert merely makes a pairwise comparison. In
terms of accuracy, it is clear that ours has lower accuracy than formal and measuring
methods. Nevertheless, in regards to the use of hierarchical structure in the evaluation,
in its category and compared to the other methods, the defects are identified and cor-
rected at each step. As a result, this is the best method in its category. Accountability
is one of the important features of it because it provides capabilities such as modular-
ity, step-by-step process and input and output separation and checking. In spite of this,
it is clear that our method has a lower performance than formal methods. As for the

4594	 S. Moaven, J. Habibi

1 3

measurement-based methods, since we do not consider readability and understandabil-
ity here, no judgment can be made.

7.2 � Threats of the proposed method

In general, any perspective in the context of software architecture evaluation comes with
a certain set of pros and cons which should be considered. Our proposed approach, for
weighting in the various domains has some risks such as increasing costs or decreasing
accuracy (because of the involvement of human factor). In such situations, we should uti-
lize some complementary methods to prevent these risks or reduce the probability of their
occurrence and negative impacts.

The existing evaluation approaches related to the AHP questionnaires can be beneficial
in preventing the inconsistencies in the answers. However, the lack of sufficient knowledge
about weighting and the values of each quality attribute or architecture style can be consid-
ered as a potential risk. As we mentioned in the future works (refer to 8. Conclusion), in
order to reduce the risks we can make use of a knowledge management system. It is worth
mentioning that extracting and recording knowledge from architects would require more
attention in order to prohibit misleading people and subjective judgments.

8 � Conclusion

Selecting an appropriate software architecture is one of the key steps in any software devel-
opment process, and satisfying quality requirements is one of the major challenges in this
area. In addition, the relationships among these quality attributes must be studied when
selecting the appropriate architecture from among a set of architectural styles or from
among general candidate architectures. Hence, adding more information that must be ana-
lyzed and evaluated in the style selection process transforms the style selection issue into a
multi-criteria problem. Prioritization uncertainty and the absence of quality metric evalu-
ation standards are other problems in this context. To deal with these problems, a multi-
criteria decision-making method based on fuzzy logic can be a useful solution for evaluat-
ing architectures and selecting the most suitable candidate. Therefore, this study proposes
a fuzzy hierarchical analysis process (FHAP) in order to evaluate and compare candidate
architectures. This process is a multi-criteria decision-making technique that resolves the
aforementioned problems arising from the uncertainty of information using the fuzzy set
theory. The proposed method ranks all options as well as providing a verifiable mathemati-
cal justification for this ranking.

Further work is needed to facilitate and improve the task of analyzing and evaluating
software architectures, such as the design of Machine Learning mechanisms based on soft-
ware reengineering activities. The proposed method could make this approach feasible by
being integrated into decision support systems and prioritizing solutions based on informa-
tion extracted and learned from previous cases. Therefore, by automating learning from
domain information (i.e., a knowledge repository) instead of expert weighting and ques-
tionnaires, the method could generate better practical results to architects. In fact, the inte-
gration of the proposed method into the development tools and its use on the operational
activities are also suitable future works.

4595A fuzzy-AHP-based approach to select software architecture…

1 3

References

	 1.	 Abowd G, Bass L, Clements P, Kazman R, Northrop L (1997) Recommended best industrial practice
for software architecture evaluation (No. CMU/SEI-96-TR-025). Carnegie-Mellon University, Pitts-
burgh PA, Software Engineering Institute

	 2.	 Abrahão S, Insfran E (2017) Evaluating Software Architecture Evaluation Methods: An Internal Rep-
lication. In: Proceedings of the 21st international conference on evaluation and assessment in software
engineering. ACM, pp 144–153

	 3.	 Babu KD, Govindaraju P, Reddy AR (2011) ANP-GP approach for selection of software architecture
styles. Int J Softw Eng 1(5):91–104

	 4.	 Babu K, Rajulu PG, Reddy AR, Kumari AN (2010) Selection of architecture styles using analytic net-
work process for the optimization of software architecture. arXiv preprint arXiv​:1005.4271

	 5.	 Bass L, Clements P, Kazman R (2003) Software architecture in practice. Addison-Wesley Professional,
New York

	 6.	 Bengtsson P (2002) Architecture-level modifiability analysis. Doctoral dissertation, Free University of
Amsterdam

	 7.	 Binns P, Englehart M, Jackson M, Vestal S (1996) Domain-specific software architectures for guid-
ance, navigation and control. Int J Softw Eng Knowl Eng 6(02):201–227

	 8.	 Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res
95(3):649–655

	 9.	 Chang CW, Wu CR, Lin HL (2009) Applying fuzzy hierarchy multiple attributes to construct an expert
decision making process. Expert Syst Appl 36(4):7363–7368

	10.	 Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, Little R (2002) Documenting software archi-
tectures: views and beyond. Pearson Education, London

	11.	 Dasanayake, S., Markkula, J., Aaramaa, S., & Oivo, M. (2015, September). Software architecture deci-
sion-making practices and challenges: an industrial case study. In: 2015 24th Australasian software
engineering conference (ASWEC). IEEE, pp. 88–97

	12.	 Dhaya C, Zayaraz G (2012) Fuzzy based quantitative evaluation of architectures using architectural
knowledge. Int J Adv Sci Technol 49:137–154

	13.	 Dwivedi AK, Rath SK (2014) Selecting and formalizing an architectural style. In: 2014 seventh inter-
national conference on contemporary computing (IC3). IEEE, pp 364–369

	14.	 Galster M, Eberlein A, Moussavi M (2010) Systematic selection of software architecture styles. IET
Softw 4(5):349–360

	15.	 Garlan D, Allen R, Ockerbloom J (1994) Exploiting style in architectural design environments. ACM
SIGSOFT Softw Eng Notes 19(5):175–188

	16.	 Garlan D, Monroe R, Wile D (2010) ACME: an architecture description interchange language. In:
CASCON first decade high impact papers. IBM Corp., pp 159–173

	17.	 Gorton I (2006) Essential software architecture. Springer, Berlin
	18.	 Harker PT, Vargas LG (1987) The theory of ratio scale estimation: Saaty’s analytic hierarchy process.

Manag Sci 33(11):1383–1403
	19.	 Hämäläinen N (2008) Evaluation and measurement in enterprise and software architecture manage-

ment. Jyväskylä studies in computing 88
	20.	 ISO/IEC, ISO/IEC CD 25010.3 (2009) Systems, software engineering - Software product Quality

Requirements and Evaluation (SQuaRE) Software product quality, and system quality in use models,
ISO

	21.	 Kazman R, Bass L, Abowd G, Webb M (1994) SAAM: a method for analyzing the properties of soft-
ware architectures. In: 16th international conference on software engineering, 1994. Proceedings.
ICSE-16. IEEE, pp 81–90

	22.	 Kazman R, Klein M, Clements P (2002) ATAM: method for architecture evaluation: ATAM—archi-
tecture trade-off analysis method report

	23.	 Klein MH, Kazman R, Bass L, Carriere J, Barbacci M, Lipson H (1999) Attribute-based architecture
styles. In: Software architecture. Springer Berlin, pp 225–243

	24.	 Van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst
11(1–3):229–241

	25.	 Lassing N (2002) Architecture-level modifiability analysis. Doctoral dissertation, Free University of
Amsterdam

	26.	 Luckham DC, Kenney JJ, Augustin LM, Vera J, Bryan D, Mann W (1995) Specification and analysis
of system architecture using Rapide. IEEE Trans Softw Eng 21(4):336–354

	27.	 Magee J, Dulay N, Eisenbach S, Kramer J (1995) Specifying distributed software architectures. In:
Software engineering—ESEC’95, pp 137–153

http://arxiv.org/abs/1005.4271

4596	 S. Moaven, J. Habibi

1 3

	28.	 Mahdavi-Hezavehi S, Durelli VH, Weyns D, Avgeriou P (2017) A systematic literature review on
methods that handle multiple quality attributes in architecture-based self-adaptive systems. Inf Softw
Technol 90:1–26

	29.	 Maranzano J (1993) Best current practices: software architecture validation. AT&T Report
	30.	 Medvidovic N, Oreizy P, Robbins JE, Taylor RN (1996) Using object-oriented typing to support archi-

tectural design in the C2 style. ACM SIGSOFT Softw Eng Notes 21(6):24–32
	31.	 Medvidovic N, Taylor RN (2000) A classification and comparison framework for software architecture

description languages. IEEE Trans Softw Eng 26(1):70–93
	32.	 Moaven S, Habibi J, Alidoosti R, Mosaed AP (2015) Towards a knowledge based approach to style

driven architecture design. Procedia Comput Sci 62:236–244
	33.	 Moaven S, Habibi J, Ahmadi H, Kamandi A (2008) A decision support system for software architec-

ture-style selection. In: Sixth international conference on software engineering research, management
and applications, 2008. SERA’08. IEEE, pp 213–220

	34.	 Moaven S, Habibi J, Ahmadi H, Kamandi A (2008) A fuzzy model for solving architecture styles
selection multi-criteria problem. In: Second UKSIM European symposium on computer modeling and
simulation, 2008. EMS’08. IEEE, pp 388–393

	35.	 Moaven S, Kamandi A, Habibi J, Ahmadi H (2009) Toward a framework for evaluating heterogeneous
architecture styles. In: First Asian conference on intelligent information and database systems, 2009.
ACIIDS 2009. IEEE, pp 155–160

	36.	 Montagud S, Abrahão S, Insfran E (2012) A systematic review of quality attributes and measures for
software product lines. Softw Quality J 20(3–4):425–486

	37.	 Nord RL, Barbacci MR, Clements P, Kazman R, Klein M (2003) Integrating the Architecture Trade-
off Analysis Method (ATAM) with the cost benefit analysis method (CBAM). Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst

	38.	 Paul C, Kazman R, Klein M (2002) Evaluating software architectures: methods and case studies.
AddisonÇęWesley, Boston, MA

	39.	 Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol
15(3):234–281

	40.	 Saaty TL (1990) How to make a decision: the analytic hierarchy process. Euro J Oper Res 48(1):9–26
	41.	 Saaty TL (1980) The analytic hierarchy process, paperback edition. RWS Publications, Pittsburgh

(First appeared)
	42.	 Schmidt D, Stal M, Rohnert H, Buschmann F (1996) Pattern-oriented software architecture, volume 1:

a system of patterns
	43.	 Shaw M, DeLine R, Klein DV, Ross TL, Young DM, Zelesnik G (1995) Abstractions for software

architecture and tools to support them. IEEE Trans Softw Eng 21(4):314–335
	44.	 Svahnberg M (2003) Supporting software architecture evolution Doctoral dissertation, Blekinge Insti-

tute of Technology
	45.	 Tahmasebipour S, Babamir SM (2014) Ranking of common architectural styles based on availability,

security and performance quality attributes. J Comput Secur 1(2):83–93
	46.	 Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision mak-

ing. Expert Syst Appl 37(1):149–157
	47.	 Thomas J (2002) Architecture assessment of information-system families. Doctoral dissertation, Eind-

hoven University of Technology
	48.	 Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. In:

Empirical methods and studies in software engineering. Springer, Berlin, pp 7–23
	49.	 Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
	50.	 Zaki MZ, Jawawi DN, Hamdan NM, Halim SA, Mamat R, Mahat FS, Omar NA (2013) Multi-criteria

architecture style selection for precision farming software product lines using fuzzy AHP. Int J Adv
Soft Comput Appl 5(3):85

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

4597A fuzzy-AHP-based approach to select software architecture…

1 3

Shahrouz Moaven  is a Ph.D. candidate at Sharif University of Tech-
nology. He received his BS degree in Computer Engineering in 2005
and MS degree in Software Engineering at Sharif University of Tech-
nology, Tehran, Iran in 2008. His research interests include software
architecture, software engineering, decision support system and busi-
ness intelligent. He can be contacted at Performance Evaluation Soft-
ware Engineering Lab, No. 601, Computer Engineering Department,
Sharif University of Technology.

Jafar Habibi  received Ph.D. degree in computer science from Univer-
sity of Manchester in 1998. He is currently an associate professor and
chairman of Computer Engineering Department at the Sharif Univer-
sity of Technology, where he has been a faculty member since 1989.
His research interests include software engineering, software architec-
ture and design, performance evaluation, system analysis and design,
information systems and simulation. He can be contacted at No. 626,
Department of Computer Engineering, Sharif University of
Technology.

	A fuzzy-AHP-based approach to select software architecture based on quality attributes (FASSA)
	Abstract
	1 Introduction
	2 Related work
	3 Quality attributes
	4 Fuzzy logic
	5 The fuzzy analytic hierarchy process (FAHP)
	6 Proposed method
	6.1 Identifying criteria and sub-criteria
	6.2 Constructing the hierarchical structure
	6.3 Creating fuzzy decision-making matrices
	6.4 Identifying criteria weight
	6.5 Calculating sub-criteria and style weight or proportional priority
	6.6 Style scoring
	6.7 Weight and scoring
	6.7.1 Example of quality attribute sub-criteria questionnaires
	6.7.2 Example of questionnaires’ style comparisons

	7 Evaluation
	7.1 Advantages of the proposed method
	7.2 Threats of the proposed method

	8 Conclusion
	References

