Knowledge and Information Systems (2020) 62:3881-3910
https://doi.org/10.1007/510115-020-01476-x

REGULAR PAPER

®

Check for
updates

Modeling, learning, and simulating human activities of daily
living with behavior trees

Yannick Francillette' @ - Bruno Bouchard'® - Kévin Bouchard'@® -
Sébastien Gaboury'

Received: 25 June 2019 / Accepted: 25 April 2020 / Published online: 1 June 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract

Autonomy is a key factor in the quality of life of a person. With the aging of the population,
an increasing number of people suffers from a reduced level of autonomy. That compromises
their capacity of performing their daily activities and causes safety issues. The new concept
of ambient assisted living (AAL), and more specifically its application in smart homes for
supporting elderly people, constitutes a great avenue of the solution. However, to be able
to automatically assist a user carrying out is activities, researchers and engineers face three
main challenges in the development of smart homes: (i) how to represent the activity models,
(i1) how to automatically construct theses models based on historical data and (iii) how
to be able to simulate the user behavior for tests and calibration purpose. Most of recent
works addressing these challenges exploit simple models of activity with no semantic, or
use logically complex ones or else use probabilistically rigid representations. In this paper,
we propose a global approach to address the three challenges. We introduce a new way of
modeling human activities in smart homes based on behavior trees which are used in the video
game industry. We then present an algorithmic way to automatically learn these models with
sensors logs. We use a simulator that we have developed to validate our approach.

Keywords Behavior tree - Machine learning - Visualization - Human activity modeling

BJ Yannick Francillette
yannick.francillette @uqac.ca

Bruno Bouchard
bruno.bouchard @uqac.ca

Kévin Bouchard
kevin.bouchard @uqac.ca

Sébastien Gaboury
sebastien.gaboury @uqac.ca

LIARA, Université du Québec a Chicoutimi, Saguenay, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-020-01476-x&domain=pdf
http://orcid.org/0000-0002-4315-1955
http://orcid.org/0000-0002-8408-3258
http://orcid.org/0000-0002-5227-6602
http://orcid.org/0000-0001-7749-3470

3882 Y. Francillette et al.

1 Introduction

The aging of the populations all around the world has an impact that increase the number of
people with physical or mental disabilities [59]. Consequently, many of these elderly people
suffer from some kind of loss of autonomy. The notion of autonomy can be characterized
as the ability of an individual to perform his activity of daily living (ADL). A decreased
autonomy is characterized by having difficulties in carrying out common ADLs such as
preparing a meal, washing, and dressing [38]. More precisely, when functional abilities are
affected, it may prevent the efficient performance of certain important tasks. Therefore, the
loss of autonomy can be described as an imbalance between the activities that someone
should or would like to carry out and their functional capacities to perform them adequately.
At a certain level, there is even a need for constant assistance to the person to ensure its safety
and comfort.

The main issue related to this reality is that we have limited capacity and capability, as
a society, to support all these persons in need. Of course, we could just build much more
specialized care centers for the such people to live in, designed to accommodate their needs,
but at what cost? From an economical point of view, it would be terribly expensive. On the
human side, the segregation in a care center is demonstrated to be damaging for the autonomy,
the dignity, and the well-being of a person [11]. Indeed, most people prefer to stay at home
because they feel more comfortable and more autonomous. This choice involves many risks
that must be controlled. To address these risks, the physical and human environment should
be specifically designed to compensate for the physical and/or cognitive impairments and
the loss of autonomy [31]. Moreover, it is crucial for the environment to be well adapted
for its specific resident’ characteristics (biological or psychological needs, values, goals,
abilities, personality, etc.). In psychology, that key concept is called Person-Environment Fit.
The basic tenets of that approach are: (a) The person and the environment together predict
human behavior better than each of them does separately; (b) outcomes are most optimal
when personal attributes (e.g., needs, values) and environmental attributes (e.g., supplies,
values) are compatible, irrespective of whether these attributes are rated as low, medium, or
high; and (c) the direction of misfit between the person and the environment does not matter
[60].

1.1 The need of assistive technology

Around the globe, many researchers think that technology could play a fundamental role
in finding solutions for these important social issues [9]. This is why a growing worldwide
community of scientists [1,9,11,21] now works on the development of new technologies based
on the emerging concept of ambient intelligence (Aml) [52]. The term ambient intelligence
refers to an approach that consists of placing devices in a place (such as sensors and effectors)
and associating artificial intelligence (AI) with them in order to have a system that is capable
of making decisions automatically to assist the occupants in is immediate environment. Smart
homes [15], which are an application of AmlI to the home domain, constitute an avenue of
solution for maintaining people with disabilities at home [31]. The principle of smart homes
is to retrieve data on the state of the environment from the various sensors deployed in
everyday objects in order to infer, using Al techniques, the ongoing activities. Thereafter, the
smart home system determines if the situation required and intervention (e.g., giving hints,
reminders, etc.) and proposes, in real time, an assistive solution (cueing, hints, or reminders)
using the actuators available in the room.

@ Springer

Modeling, learning, and simulating human activities of daily... 3883

1.2 Challenges in developing assistive technology

A key challenge of any Al assistive system in a smart home is how to efficiently represent, in
terms of knowledge engineering, the activity models [46]. Since the Al system is constantly
performing inferences on these models based on the observation of the sensors’ activation,
the way activities are modeled, manipulated, and recognized is one of the core elements. The
impact of a poor representation can be, for instance, an inaccurate or too slow recognition of
the activities, preventing the system from making good decisions. A rigid representation can
also make difficult to simulate the performance of activities based on the model. In the past,
a lot of human activities’ models has often been handcrafted by knowledge engineers, using
logical representations [13,37], hidden Markov model [29,33], or Bayesian Networks [19,50].
More recently, machine learning techniques, such as clustering [63], have been widely used
in order to avoid handcrafting the models and learn them automatically. The problem is that
most of these approaches are generic, and the models are not easily adaptable. It is why we
need to develop better models of residents behaviors so that the technology can be more in
line with the person-fit theory [60] and better serve the needs of its’ users.

1.3 Toward a solution to model human activities

In this paper, we address, as a whole, three challenges related to modeling human activities
considering the need to adapt the model to user. To do that, our contribution consists in
spreading new light on three questions: (i) How can we model the activity of daily living
of user in a simple and flexible way; (ii) how can we automatically learn/construct these
models based on a low-level actions recognition layer; (iii) how can we use these learned
models to simulate the specific behavior of a targeted user. In our previous work, we briefly
introduced the concept of representing activity of daily living using behavior trees [12],
which are widely used in the video game industry [42]. This approach can be used to model a
resident’s behavior when performing an activity of daily living (ADL). In this paper, we push
the concept a lot further using a customizable virtual smart home environment [27], where
you can put virtual sensors and simulate the behavior of a resident in a smart environment. We
then propose a global solution to the three questions asked using behavior trees. We introduce
a series a new formal operator allowing to automatically generate (learns) the behavior trees,
which are in fact activity models, from low-level recognized actions from sensors’ activation.
Finally, we introduce a new way of simulating user’s behavior using these two formal tools in
combination with our virtual smart home simulator. All these tools make together a complete
contribution in the form of new software solution freely available online in open source and
called the LIARA Smart Homes BT Global. Kit.!

This paper is organized as follows. Section 2 presents the related works. Section 3 presents
our behaviour tree model for modelling activities. Section 4 presents our approach for auto-
matic behaviour tree generation (learning behaviour trees from sensors logs). Section 5
presents our validation method and our experiments. Finally, Sects. 6 and 7 present our
discussion on our proposal as well as the conclusion of the paper.

! https://github.com/Iannyck/shima.

@ Springer

https://github.com/Iannyck/shima

3884 Y. Francillette et al.

2 Related work

The literature on how to model activity [18,20,55,65], how to learn these models [4,23,32,
44,61,62], and how to test and simulate ADLs [2,3,14,27,34,35,41,56,57], is quite vast. As
we said, scientists have proposed many different ways of modeling an activity and activities
library. The way they choose to represent activities, as previous works clearly shown, directly
affects the capacity of an intelligent agent to infer information from the library, to learn, to
simulate human activities, to reason on how to give assistance in the performance of an
activity, etc. Therefore, how we model the activities library is one of the key components of
all smart home systems. Depending on how we choose to represent activities [18,20,55,65],
we then have different ways of learning activities models [4,23,32,44,61,62], and to simulate
them [27]. In fact, it is like a pipeline.

2.1 Modeling the activity of daily living

The first challenge that we cited is how to model a human activity in terms of a usable formal
or data structure? The literature on how to models a human activity can be categorized in three
families of approaches: (i) sensors-based models, (ii) logical representations, (iii) stochastic
models. The first family of activities modeling approaches concerns formal representations
directly based on sensors [20]. From a pragmatic point of view, itis easy, simple, and efficient
to model the activities based directly on the observed inputs, which are sensors streams of data.
In this kind of approach [39], an activity model is represented directly by a sequence of sensors
events (e.g., activation of sensors). Indeed, that representation may slightly vary from different
systems, depending on needs. For instance, some teams introduce the possibility to define
a partial order between sensors, instead of a rigid sequence [39]. However, the fundamental
modeling principles remain the same. The main limitation of that kind of approach is that there
is no real abstraction in the model of activities. If we change environment and put different
sensors, the activities’ library becomes obsolete. It is also very difficult to reason at the high-
level (understanding intentions, errors, etc.) with such a low-level representation. Finally,
these models of activities can only be used in a simulation process in the same environment
with the exact same set of sensors. The second family of activities modeling approaches is
based on a logical formalism [13,17,37,64]. A logical approach to model activities consists of
representing basic actions, activities, and relations between them with logical axioms. With
that kind of model, the activity recognition process, for instance, can be structured by a set
of inference rules defined with the same formalism. Different logical theory can be used. For
instance, first-order logic has been used by Kautz [37], Camilleri [17] and several others [55]
to represent a collection of activities (action and activity types) in many activity recognition
systems. Some teams also proposed to represent the activities library using situation theory
[6], which is a particular case of possible world’s theory Wobcke [64], or with description
logic (DL) [5]. The main problem with logical representations is that they are very complex,
despite their rich expressivity. Reasoning with that kind of representation often constitutes
a computational challenge [55]. The last family of activities modeling approaches includes
representation based on probabilistic graphical model [19,29,33,45,50,54]. Most researchers
in the field of ambient assisted living [9] exploit Bayesian networks [19,50] and hidden
Markov models (HMMs) [29,33], conditional random fields (CRF) [45], or fuzzy finite state
machines (FuFSM) [28]. Stochastic models are very rigid and difficult to modify. For instance,
once modeled, it is complicated to add an activity, because of the important supplementary
amount of data required to relearn the probability distribution of the model to avoid the

@ Springer

Modeling, learning, and simulating human activities of daily... 3885

imbalance class problem. This constitutes a clear limitation in a context where one wishes
to learn new behavior. In addition, the learned probabilities are very user specific.

2.2 Learning automatically the activities models

In parallel with the challenge of modeling activities, the issue of automatically learning and
building the activities models has also been investigated in many different ways [23]. As we
pointed out, the approach we choose to represent ADLs has a big impact on how we can
learn automatically or semiautomatically an activity model. With a sensors-based low-level
modeling of activities, the log of data from the various sensors is often processed using support
vector machine (SVM) [32] to learn activities and classify them using, for instance, temporal
frames [24]. Other scientists make use of deep neural network (DNN), which is a particular
form of traditional artificial neural networks, more capable of learning from large data [61].
Many teams also exploited the well-known C4.5 algorithm and tried to build decision trees
representing activities with sensors activation [53]. At the end, learning sensors-based activity
models using machine-learning techniques are relatively simple. The problem with that kind
of learning solution derives from the modeling approach itself, the limitation of it remains
the same, the learned models contain no real abstraction of the behavior of the user, and if
we change the sensors, the environment, or if the behavior of the user is variable over the
time, the models will become obsolete. On the other hand, if one uses stochastic models to
represent activities, learning and building these models automatically is not as simple. In the
field of human activity recognition (HAR), the most commonly used representation models
is HMM. However, most of teams using HMM for activity recognition simply handcraft
their models [43]. They usually only focus on a small set of targeted activities to recognize,
which are analyzed and modeled directly by an expert. Only the probability of transition
between states and observations is automatically learned thereafter. However, HMMs activity
models have been built automatically using feature selection techniques, which heuristics
and a genetic algorithm (GA) [22]. The well-known team of Professor Diane J. Cook also
proposed a constraint-based (CB) Bayesian structure learning algorithms, to automatically
build activity’s models in the form of a Bayesian network [44]. Nevertheless, while HMM
and Bayesian networks are widely used for modeling activities in the context of smart homes,
they are usually handcrafted and rarely automatically learned [43]. Learning these kinds of
models from logs of data is complex, and the quality of resulted models is debatable. In
some recent works, researchers have tried to learn human activity’ models using fuzzy finite
state machine (FFSM) in an intelligent environment [28]. The proposed approach, called
neuro-fuzzy finite state machine (N-FFSM), is able to learn the parameters of a rule-based
fuzzy system, which processes the numerical input/output data gathered from the sensors
and/or human experts’ knowledge. However, the representation of activities with finite state
machines results in arelatively rigid model that is based on environmental states rather than the
actions, intentions and subtleties of the observed user’s behavior. Finally, regarding learning
techniques for automatically constructing logical representation, several attempts have been
made using, for instance matrix factorization [62] or C4.5 decision trees [4]. The problem
of theses approaches is how to manage the observations containing a great deal of noise or
errors. Logical representation models are best effective in a deterministic environment. In
the context of AAL, the generalization of learned logical rules might easily lead to inferring
inconsistent behaviors [13].

@ Springer

3886 Y. Francillette et al.

2.3 Simulating users’ behavior in a smart environment

In the literature, we can find several works that focus on how to generate datasets or simulate
behaviors in smart homes [2,3,14,34,41,56,57]. For instance, our team proposed in 2012 an
open-source smart home simulator [14]. It provided an interface to design the smart home
and to write scripts. In the scripts, the user has to define the sequence of steps involved in
the performance of an activity. The user can set parameters such as the completion time of
a step and the objects that are involved. The simulator was made in Java and runs into a 3D
environment designed with SketchUp. This first simulation tool from our team was rigid and
not easily customizable. PerSim 3D is another simulation tools proposed in [34]. It uses a
model-based virtual approach for the modeling sensors’ behavior. It also provides users with
several categories of sensors. It also allows the user to design the architecture of the smart
home. However, the scripting power is also limited. UbikSim is a simulator of the intelligent
environment proposed in [10,56]. It uses multi-agent based simulation (MABS) to perform
the occupants’ behaviors. More precisely, it uses the Java library multi-agent simulator of
neighborhoods (MASON) [40] for the simulation of occupants. Consequently, UbikSim
supports simulations involving several occupants. It uses Sweet Home 3D [51] (a computer-
aided design software for designing interiors) to support the design of the environments.
UbiKSim provides users with two binary sensors, door sensors, and pressure sensors. It
works in a 3D world and provides a real-time rendering. However, UbikSim does not work
with representations such as BT. The intelligent environment simulation (IE Sim) [41,57]
is used to generate simulated datasets that capture normal and abnormal activities of daily
living (ADLSs) of inhabitants. This tool provides users with a 2D graphical top view of the
floor plan to design a smart home. It proposes different types of sensors such as temperature
sensors and pressure sensors. Simulation is also performed in a 2D world. Ariani et al. [3]
proposed a smart home simulation tool that uses ambient sensors. The solution provides users
with an editor that allows the design a floor plan for a smart home by drawing shapes on
a 2D canvas. Once this step is over, we can add ambient sensors to the virtual home. The
solution can simulate binary motion detectors and binary pressure sensors. In [47], Park et al.
proposed a 3D simulator to generate inhabitants’ datasets for classification problems. Their
simulator is built with Unity3D [58], which is a professional multiplatform game engine
used in the videogame industry. They have analyzed and collected data to generate a user
activity-reasoning model in a virtual living space. We can also notice OpenSHS, which is
an hybrid open-source cross-platform 3D simulator, thanks to the use of Blender [2] and
Python. During simulations, users control an avatar. However, the solution proposes a fast-
forward mechanism to allow users to mimic, but not perform a whole activity in real time.
This mechanism uses a replication algorithm to extend and expand the dataset. It simply
copies and repeats the existing state of all sensors and devices during the specified period.
These simulation solutions are mostly based mainly on raw sensor data and do not support
a representation of high-level activities such as the proposed approach with behavior trees.
Moreover, most of them are not very customizable. In 2017, we introduced a new 3D open-
source smart home simulator [27]. This simulator uses the Unity game engine and allows
you to build in 3D your environment (house, apartment, office, etc.) and add a set of sensors.
It can simulate RFID antennas, power consumption, ultrasonic sensors as well as binary
sensors such as contact sensors, pressure plates, or motion detectors. To simulate human
activity, the simulator allows direct control of an avatar using the keyboard and mouse or it
proposes to model interaction scenarios from behaviour trees. The result of the simulation is
a database with raw data such as signal strengths and distances. Ho et al. propose the SESim
3D simulator which also uses Unity engine and aims to simulate realistic datasets to help

@ Springer

Modeling, learning, and simulating human activities of daily... 3887

research in the field of recognition of activities of daily life [35]. As for our simulator [27],
it defines different data generation models for each type of sensor. The sensors are activated
by the actions of the avatars which are defined by scripts.

3 Behavior tree model for modeling ADL

Our approach to human activity modeling is based on principles defined in Humphreys and
Fordes’s [36] hierarchical organization model of human activities. In this model, an activity
(or routine) can be split into a sequence of actions that can themselves be broken down again
into a sequence of atomic actions (here the atomic term means that the actions cannot be
broken down into a relevant smaller unit). We chose to model human activities in a hierarchical
way and adapted our behavior trees. Behavior trees are a formalism that is regularly used in
the field of planning, and in video game development to define and implement the behavior
of non-player entities [42]. “ConcurTaskTrees” can also be seen as an adaptation of behavior
trees to the field of user interface design [48,49]. Indeed, we find the concept of control nodes
and leaves represent tasks instead of “atomic” behaviors. In our context, we use behavior
trees to model the behavior of the occupant in an intelligent environment and to reproduce
this behavior in a simulator [8,12,27].

A behavior tree is a tree oriented 7 (V, £) with |V| nodes and |£| edges. The fact that the
tree is oriented means that the edges have a node considered as the parent (the node at the
start of the edge) and a child node (the node at the finish of the edge). The nodes can be of
one of two types:

— Parent nodes are flow (or composite) control nodes; they control their children’s execution
order;
— Leaves are execution nodes.

The execution and updating of a behavior tree is based on discrete updates called “Tick.” In
each “tick,” the tree is traversed in depth from the root. During this update, each traversed
node calculates its state, and if the node is a composite, it defines which of its threads will
be traversed. For many composites, the path is done (considering that the nodes are aligned
horizontally) from left (the first node) to right (the last). However, some compositions we
will see define another order of path. If the node is a leaf, the tick triggers the execution of an
action or condition. In all cases, the node state calculation returns one of three values: Success,
Failure, Running. The calculation of a condition node returns only one of the following two
values : Success or Failure. Success and Failure states are end states. This means that when
one of these two states is reached, the node can no longer change state. The Running state
is an intermediate state where the conditions of success or failure are not reached. The state
Failure means that from the current conditions it will be impossible to achieve the conditions
of success. The state Success means that the action has been completed or that the condition
to be verified is true.

We just saw the global operation of a BT. New, let us shift our focus on the different types
of composite nodes. Table 1 summarizes the conditions that must be met for a node to be
found in each state. The list of composite is as follows:

— Selector: The principle of this composite is to “try” children’s behaviors sequentially until
the behavior is successful or all behaviors fail. Thus, it ticks sequentially his children
until it has a child who finishes in the state of Success. If all its children finish in the state
of Failure, it finishes in Failure.

@ Springer

3888 Y. Francillette et al.

Table 1 Composite node types of a BT

Node type Symbol Succeeds if Fails if Runs if
Root [4) Tree S Tree F Tree R
Selector ? 1ChS NChF 1ChR
Random sequence ~? 1ChS NChF 1ChR
Sequence — NChS 1ChF 1ChR
Random sequence ~ NChS 1ChF 1ChR
Parallel = >AChS >BChF Otherwise

C [
Decorator Varies Varies Varies

The following notation is adopted: Ch = Children, S = Success, F = Failure, R = Running, N = number
of children, A, B € N and A are node parameters

— Random Selector: The principle is the same as the selector except that here the nodes are
tried randomly, and not sequentially, it randomly ticks one of its children. If the selected
node ends in Success, this composite ends in Success. If all its children end in Failure, it
ends in Failure.

— Sequence: The principle is to do all behaviors successfully. Thus, this composite tick all
its children sequentially, if all its children end in Success it ends in Success. As soon as
one of its children finishes in Failure, it finishes in Failure.

— Random Sequence: The principle is the same as the composite sequence except that the
activation is done randomly. So, this composite ticks all its children randomly, if all its
children end in Success it ends in Success. As soon as one of its children finishes in
Failure, it finishes in Failure.

— Continuation: The principle is to perform the behaviors sequentially until reaching a
predetermined number A (A € N) of behaviors that end in Success or a predetermined
number B (B € N) that end in Failure. Thus, it ticks sequentially his children until
reaching the number A of Success to pass to the state of Failure, or reaching the number
B of Failures to pass to the state of Failure.

— Decorator: The principle of a decorator is to pass into a state of end by transforming the
state of its only child. The decorators are as follows:

— Inverter: Its end state is the opposite state of its child (Success is transformed into
Failure and inversely)

— Repeat: It repeats the tick of his son until he reaches an A number of Success.

— Error: It has a probability not to tick its child and go to the state Success.

Behavior trees allow us to model ADLs by constructing complex behaviors from a set of
atomic elements that are actions and conditions. In our context, an action will correspond
to an action that the occupant can perform on his environment, for example take an object,
activate a device, open a cupboard, pour something, etc. A condition is a check on the
condition of an entity or object that the occupant can perform, such as “check if an appliance
is turned on.” Thus, our behavior trees are built from a set S containing the subsets of actions
A = {a1,a3,az,...,a;} and conditions C = {cy, ¢3,¢2, ..., c;}. It should be noted that
these actions and conditions are configurable, so, for example, the “take” action receives as
parameters: the target object and the time required to perform the action. These parameters

@ Springer

Modeling, learning, and simulating human activities of daily... 3889

Fig.1 BT that manages the scenario of preparing a coffee or otherwise a tea

make it possible to reduce the size of the A and C sets. Indeed, it is not necessary to define
an action “take” for each object.

Now we will present the modeling of a scenario to illustrate our approach. We will model
the scenario where the occupant has to make a coffee. To create this scenario, we need the
following action set (here, we note the target objects of the actions between the symbols
“< >"): Take <object>; put <object]> on <object2>; put <object]> into <object2>;
turn on <device>. From our set, the construction of this scenario is done using the com-
posite “sequence” and assigning it as threads (in the respective order of activation): (1) Take
<coffee>; (2) put <coffee> into <coffee-machine>; (3) take <cup>; (4) put <cup> into
<coffee-machine>; (5) turn on <coffee-machine>. This model gives the following behavior:
(1) the occupant takes coffee; (2) he puts the coffee in the coffee machine; (3) he takes his
cup; (4) he places his cup in the coffee machine; (5) he starts the machine. However, if any of
these actions cannot be done, the composite will fail in the state indicating that the activity
has not been completed.

The flexibility of the behavior trees allows us to quickly and simply model more complex
behaviors. Thus, the behavior which makes it possible to make coffee can be made more
complex by allowing for example to make tea if one of the actions allowing to make coffee
cannot be accomplished. For this, we will use the composite “selector.” Thus, we obtain the
behavior tree presented in Fig. 1. With this model, the occupant will try to make a coffee then
in case of failure (for example no more coffee), he will try to make a tea.

Our approach also allows us to introduce errors in the implementation of ADLs. For that,
we introduced the decorator “Error” having for parameter A anumber between 1 and 100. This
value indicates the probability that the node switches to the state Success without activating
its child. This operator allows us to create errors of omission that can be committed by people

@ Springer

3890 Y. Francillette et al.

L=

50

N [

—
h |

Fig.2 BT that manages the scenario of doing the laundry and having a certain probability (here 50%) to omit

certain steps throughout the completion of this ADL

with cognitive impairments. Thus, we can take a behavior tree to model the behavior of a
healthy person and modify it to introduce possibilities of error thanks to this operator.

We will illustrate this decorator with the ADL: “doing the laundry.” To model this scenario,
we can use the tree shown in Fig. 2. With this behavior tree, the occupant does the laundry in
the following order: (1) Put the clothes and detergent in the machine; (2) start the machine.
The sub-activity “Put clothes and detergent in the machine” is divided into two sequences that
can be performed in any order (clothes or detergent first), that is why we use the composite
“random selector.” As we added three “Error” composites in this tree, during the simulation
the occupant can omit to: (a) Take the laundry and put it in the machine; (b) take the detergent
and put it in the machine; (c) start the machine. We have defined a 50% chance of omission
for each activity. Thus, he can possibly make no mistakes or omit everything.

4 Learning BT from datasets

The behavior trees we introduced in the previous section allow us to achieve our first objective,
which is to have a simple and flexible approach to modeling ADLs. Behavior trees are easily
interpretable for a human and a computer. In addition, it is easy to modify them to create new
scenarios. In this section, we are interested in achieving our second objective, which is to
have a method for automatically learning these trees from a dataset. Our main contribution
in this paper is to propose a method that allows to automatically build a behavior tree that

@ Springer

Modeling, learning, and simulating human activities of daily... 3891

Learning Approach

Action] BT
Raw Data Actions Lo
A~

h
Sensors BT

Fig.3 The main components of our approach

represents the different ways a human user performs activities of daily life in order to use
this tree to simulate new scenarios.

To achieve this learning, our approach meets a constraint resulting from the principle of
how intelligent environments work. The sensors in these environments produce raw data that
is used by an activity recognition system to recognize patterns. However, the behavior trees
we use do not work on raw sensor data. They use a set of atomic actions and conditions.
Thus, the first step in our approach is to transform sensor data into action logs to learn. Once
this log of atomic actions is obtained, we can use a learning method derived from the suffix
tree generation algorithm to generate the behavior trees [30]. The steps of this approach are
summarized in Fig. 3.

4.1 Generation of atomic action logs

The transformation of raw sensor data is the first step in our learning process. These data
come from different types of sensors and create heterogeneous datasets (numerical, Boolean,
string, etc.). Table 2 gives an example of a dataset, and our objective is to transform datasets
of this type into a log that looks like the one given in Table 3.

Table 3 contains the atomic action sequence that was done to perform an ADL. These
actions are part of the set of atomic actions we use to build trees. To generate this log, we
need to recognize our set of atomic actions. To do this, we will select for each atomic action a
recognition technique to apply to the dataset. The choice of technology depends on the types
of sensors available. For example, we can analyze the evolution of power consumption to
recognize the activation and deactivation of a particular electrical device [7]. By using RFID
antennas and trilateration [16,25,26], we can estimate the position of objects and track their
movements in order to recognize their use by an occupant, etc.

The use of this action log gives us a level of abstraction from working directly with the raw
data. This level of abstraction is very interesting, because it allows us to be independent of
the architecture of the environment. Indeed, the models resulting from the learning of these
action logs are more flexible than the direct exploitation of raw data, because the latter are
closely linked to the sensors. Therefore, if the sensors change some data may not be available.

4.2 Learning BT from atomic action logs

At the end of the action log generation step, we have the action sequence done to perform
an ADL. This sequence represents one habit of the user in relation to the realization of the
ADL. However, a person may have several ways of proceeding to carry out the same ADL.
For example, to prepare a coffee, the person will not do the actions in the same order and

@ Springer

3892

Y. Francillette et al.

Table 2 Sample of the raw sensor data

Timestamp Sensorld Type Value
05:56:45:625 Living room PIRMotion True
05:56:48:341 Living room PIRMotion True
05:56:54:818 Living room PIRMotion True
05:58:21:866 Bathroom sink BinaryFlowMeter True
05:58:36:848 Bathroom sink BinaryFlowMeter False
06:00:09:836 Kitchen shelf top left ContactSensor False
06:00:15:855 Living room PIRMotion True
06:00:17:18 Living room PIRMotion True
06:00:31:252 Kitchen shelf top left ContactSensor True
06:00:47:218 Kitchen shelf top middle ContactSensor False
06:00:48:919 Living room PIRMotion True
06:09:34:810 RFIDO RFID Sensor —24.471
06:09:35:003 RFID1 RFID Sensor —41.184
06:09:35:262 RFID2 RFID Sensor —52.847
Table 3 Expected action log Timestamp Action

06:08:09:836 Take cup

06:08:27:836 Put cup in coffee machine

06:08:41:252 Take coffee

06:09:03:295 Put coffee into coffee machine

06:09:18:299 Start coffee machine

06:10:08:471 Take cup

sometimes he will add sugar to his coffee. However, because we want to learn the general
behavior of a person for the realization of an ADL, we need to have all his habits when
performing the ADL. To do this, it is necessary to generate several datasets to have at least
one dataset and a sequence after generating the log by habit. Once all these sequence logs
have been obtained, we can combine them into a single log that represents all the habits of a
person for the realization of an ADL. Table 4 gives an overview of this log.

Our objective is to generate from this log a behavior tree that represents all the different
ways for a person to perform an ADL. We can notice that the structure we want to obtain
has common characteristics with the suffix trees; it must reflect the internal characteristics
of sequences (actions in our case and letters for an application of the suffix trees). Thus, our
learning approach is based on algorithms for creating suffix trees.

The principle is as follows: We proceed through the action sequences action by action,
and we treat the following two cases:

@ Springer

Modeling, learning, and simulating human activities of daily... 3893

1. The action is the same for all sequences, we add this action in the sequence, and then we
get the next one.

2. The action is not the same for all sequences; we create as many branches as there is a
different action. To create these branches, we create as many “sequence” nodes as there
are branches to create. The corresponding action is added to each created node. A selector
node is created to which all the created “sequence” nodes are added as sons. Finally, the
selector is added as son of the current node; the data are divided into continue processing
from the action of the new branch.

In this algorithm, lines 14 initialize the tree by creating the root node. Lines 7-16 deal
with the first case; lines 18—25 deal with the second case.

ALGORITHM 1: LEARNING: Tree learning and generation algorithm

Input: data the behavior tree, current_node the current node to develop
if bt = 0;
then
add root_node into bt;
current_node < root_node;
end
if data # ;
then
actionList <= Get the list of the next action in each sub sequence;
if Next actions are the same for all sub sequences;
then
if current_node is a sequence node;
then
Add action as son of current_node;
else
Create a composite sequence_node and add the action as son;
sequence_node.SETPARENT(current_node);
current_node < sequence_node;
end
Remove actionList from data;
LEARNING(data, current_node);
else
Create a composite random_selector;
random_selector SETPARENT(current_node);
for each action in actionList do
Create a composite sequence and add the action as son;
sequence_node.SETPARENT(random_selector);
current_node < sequence_node;
subdata < Get action sequences that start with action from data ;
LEARNING(subdata, current_node);
end
end
end

4.3 Algorithm: a step-by-step example

Let’s take a simple example to illustrate how the algorithm works. We take two different
people who have to do a coffee making activity. With our method, these people perform

@ Springer

3894 Y. Francillette et al.

Table 4 Sequences log # Sequence

A, B,C,D,E, F
A,C,D,G,H
A,C,E,H,D
E,G F,J

E,G F,J
A,C,D,G, H

[R N S

Each letter presents an atomic action that has been recognized by an
action recognition system

0
N2

N
T
_
5 B EEEE

Fig.4 BT for the person 1

these ADLs several times in order to generate a dataset containing all the ways people use
them. In our example, these datasets give the following sequence sets for person 1:

— Sequence 1: Take a cup; place the cup in the machine; take coffee; place the coffee in
the machine; start the machine; take the cup; leave the kitchen with the cup.

— Sequence 2: Take a cup; place the cup in the machine; take coffee; place the coffee in the
machine; start the machine; take the cup; take sugar; put sugar in the cup; take the cup;
leave the kitchen.

If we apply our algorithm to this set of sequences, we obtain the behavior tree in Fig. 4.
We notice that the first 5 actions are identical for the two ways of doing the ADLs. This
fact implies that the algorithm executes lines 6—16 and produces the first sequence. The 6th
action is different for the two ways of doing things. This is where the algorithm performs
lines 18-25 which will create the new branches (in our case, 2 branches). The data will also
be divided into n parts (n is equal to the number of branches); each part will contain the
subsequences related to each new branch.

For the second example, let us consider that the second person produces the following
sequences of actions:

@ Springer

Modeling, learning, and simulating human activities of daily... 3895

— Sequence 1: Take cup; take sugar; put sugar into the cup; take milk; pour milk into cup;
put cup in coffee machine; take coffee; put coffee in the machine; start coffee machine;
take cup; leave the kitchen.

— Sequence 2: Take sugar; take milk; take cup; put cup in coffee machine; take coffee; put
coffee in the machine; start coffee machine; put sugar into the cup; take cup; leave the
kitchen.

— Sequence 3: Take cup; take sugar; put sugar into the cup; take milk; put cup in coffee
machine; take coffee; put the coffee in the machine; start coffee machine; take cup; pour
milk into cup; leave the kitchen.

If we apply our algorithm to this set of sequences, we obtain the behavior tree in Fig. 5.
In this example, the first actions are not the same for the three sequences. Only sequences 1
and 3 have the first four identical actions. Thus, with this sequence set, the algorithm creates
2 branches from the beginning and separates the data into two subsets. One subset from
sequences 1 and 3, the other from sequence 2. The subset derived from sequence 2 gives
the right branch of this behavior tree. In the subset derived from sequences 1 and 3, the fifth
action is different in these two sequences, so our algorithm creates two new branches at this
point and generates two new subsets, one for each sequence. At this point, the algorithm
processes a subsequence twice to complete its current branch.

5 Validation

In the previous sections, we presented a model based on behavior trees to represent ADLs
and an approach to learn these behavior trees. These methods meet our first two challenges:
(1) Construct a model to represent the sequences of actions necessary for the realization
of an ADL and (2) design an approach to automatically learn this model. The intelligent
environment simulator helps us to meet the third challenge, which is to have a tool that
allows us to generate datasets in order to test new Al algorithms [27].

In this section, we present the experiment carried out to validate our approach. The formal
contribution of this paper consists mainly in introducing new operators and tools extending
the model of behavior trees in order to use it to automatically learn human activity models.
The scope and the goal of the proposed experiment were only to demonstrate that. The
experimental question was: Is the proposed new leaning technique and the new formal tools
are able to learn behavior tree’ models that are equivalent to the one observed in the smart
home from sensors’ activation?

To answer this question, we used our simulation tools to automatically generate a behaviour
tree that allows to reproduce the behaviour of a cognitively impaired person in the performance
of an activity of daily life, and this from the log of the sequences of atomic actions performed
by him/her. These scenarios are inspired from previous experiments that our team performed
with end-users. Thus, the objective of the test was to verify if the tree built from a log file
allows to reproduce all the cases that are present. We focus specifically on the verification
of the tree generation and not on the recognition of the atomic actions. We assume that the
global system has tools capable of performing atomic action recognition.

Thus, to perform the validation we used a simulator to generate a log file containing the
atomic actions. The particularity of this simulator is that it uses behavior trees to simulate
the performance of everyday activities. We will therefore generate a new behavior tree from
the log file and check if the new tree is equivalent to the one used to generate the log.

@ Springer

3896 Y. Francillette et al.

/>

1

lé-'é-"-"-"-'é-'\
1

Fig.5 BT for the person 2. The arrows in tilted dots mean that the nodes are brothers

@ Springer

Modeling, learning, and simulating human activities of daily... 3897

Fig.6 Screenshot of a virtual
smart home designed with our
simulator

5.1 Generation of the atomic action dataset

In order to generate our atomic action dataset, we use our simulator described in the article
[27]. This simulator allows to generate datasets thanks to its behavior tree interpreter. We
define the tree in Fig. 7 representing the ADL of preparing a coffee and a dish and consisting
of the following atomic actions: Take a cup (t.,); take a coffee capsule (Zcofee); place the
cup in the machine (pc,p); place the coffee in the machine (p¢,free); start the coffee machine
(Scoffee); leave the kitchen with the cup (Ixischeen); take a frypan (t frypan); place the frypan
on the cooker (p frypan); start the cooker (Scooker); turn the cooker off (fo¢ooker); take a plate
(tplate); pour meal (from the frying pan) into the plate (popjare). We define the following non-
regular actions: Take milk (,;x), pour milk into the cup (popmiix), take sugar (g4), pour
sugar in the cup (pog,gar), take salt (£54;;), pour salt into the dish (poyqir). These non-regular
actions are, by definition, not carried out in some of ADL’s achievements. To define these
non-regular actions, we specify the “Ignore” operator who takes as parameter the percentage
of chance not to realize his son.

In our tree, the “random sequence” operators allow to create variations in the completion
of the ADL. We simulate this ADL 20 times and record the atomic action sequences. For each
action, we record the time when the action begins and the time when the action is completed.
The simulation environment is shown in Fig. 6. We conduct two tests, the first on a log of
25 sequences generated using the trees shown in Figs. 7, 8, 9 and 10. The second test is
performed on a log of 10 sequences generated using the same tree, but setting the “Ignore”
operators to 100 (actions will never be performed). Table 5 presents the log generated for the
first test. Table 6 shows the log generated for the second test.

5.2 Behavior tree learning

By applying Algorithm 1 to the data in Table 5, we obtain the behavior trees shown in Figs. 11,
12 and 13. The tree is split and rendered on multiple figures to make it easier to read.

We can notice that the trees learned from the atomic action logs are bigger than the tree used
as the source to generate the log. This specificity comes from the approach we use to learn the
sequences of identical actions that can be performed in a different order. This is specifically

@ Springer

3898 Y. Francillette et al.

Fig.7 BT for the experiment.
The nodes between dashed lines
are detailed in Figs. 8, 9 and 10

~ v Set table E

Fig.8 Sub-tree “Make a meal” of the BT of the experiment of Fig. 7

.~
[
'
'

B

o] o Eall

Fig.9 Sub-tree “Make coffee” of the BT of the experiment of Fig. 7

@ Springer

Modeling, learning, and simulating human activities of daily... 3899

/

— —

(ea) (o)] (o)

Fig. 10 Sub-tree “Set table” of the BT of the experiment of Fig. 7

possible with the “random sequence” operator. With our approach, we use a combination of
the “selector” operator and a “sequence” operator for each sequence possibility.

The irregular actions that appear in some sequences are also the cause of a larger tree.
Indeed, these actions that sometimes insert themselves into sequences will be interpreted by
our algorithm as new subsequences. It will therefore create new branches using the combi-
nation of the “selector” operator and a “sequence” operator.

We have seen the differences between the three trees, now let us check if the trees produced
are equivalent to the trees used to generate the logs (which we will call “original trees’) and
using more different operators. To achieve this, let us compare the trees. The first original
tree defines a sequence of 3 activities: (a) Make a coffee; (b) make a meal; (c) set the table.
In addition, it uses the “random sequence” operator to allow activity “b” to be performed
before activity “a.” This is reflected in the log by action sequences (see Tables 5, 6) starting
either:

— by the first action belonging to the sequence of activity group “a” (sequences, 1, 5, 7, 8,
11, 12, 15, 20, 23, 24 and 25);

— by the first action belonging to the sequence of activity group “b” (sequence 2, 3,4, 6, 9,
10, 13, 14, 16, 17, 18, 19, 21 and 22).

The first generated tree starts with a structure using a “selector” with two “sequence’ operators
as children. The actions in each sequence belong to one of the sequences in activity group
“a” or “b.” This structure makes it possible to reproduce the behavior of doing one or the
other activity first.

Let us focus on the activity “make a meal,” it consists of a sequence of actions including
two irregular actions (“‘take the salt” and “pour the salt”). In the original tree, the non-regular
nature of these actions is modeled using the “ignore” operator which allows the actions
to be performed with a 20% probability. This irregularity potentially creates two different
subsequences of actions. This is represented in our tree by the presence of the “selector”
operator with two “sequence” operators as children after the action “start the stove.” This
case appears twice in the generated tree. The first case in Fig. 12 represents the case where
the individual started by making a coffee without sugar or milk before making the meal.
The second case appears in Fig. 13 and represents the case where the individual started by
making the meal. This structure is not present on all branches (for example, the case where
the individual started by making coffee, did not put sugar, but put milk), because even if the
structure of the original tree means that the individual can potentially add salt in this case,

@ Springer

Y. Francillette et al.

3900

uvd{afq — &afq cundlafy — £1f;

dnogd <dnoy < [pautgd «uvd{ify «21vjd o <210]dy 12§00y < 123000 <upd{a f g cuvddify <22 [[oog <22 [[00q <22 [J0o; «dnod <uv8nsod <4vSnsy <dndy

4

dnogd <dnoy <[pauigq «uvddify <21v)d o <210]d) <1400 < 12§000g cuvdda [g cupdfafy <22 [[05g <22 [fooq <22 [[05) <dndog <dnd; T

dnog(<dndy <[pauigq <undiafy <21vpd o <21v]d) < 12§0020); < 12Y00dg cund{af cuvd{afy g Yy <22 [fodog <22 [[0oq <22 [0y «dnoq <dnoy €z
dnogd <dnoy < [pautgq UE\“L%&C coinpd o <a1v]dy <yt <Yy <22 [[oog <22 [[00 <22 [Joo; cdnog <dndy <42§003 ;1 <1IDSo <1[DS) < 42§002g <Kuf Mib w@
wauigg <upd&afy <a1vpd o q <211y <dndgd <dnoy <22 [fodg <22 [[0d <22 [[00; «dnod <dndy 42§00y < 423000 cund{if q <uvddafy 1z

dnogd <dnoy <[pautgq «uvddify <210)d o <210]d) <194000) < 12§000g cuvdda [g <updfafy <22 [[05g <22 [fooq <22 [[05; <dndog <dnd; 0z

augq <uvddafy <a1pjd o <21v]d) <dnog «dnoy <22 ff0dg <22 [f0dq <22 [f00; «dnog «dndy <4300y <.19¥000g cund{if g <undiif, 61

dnogd <dnoy < [poutgq <uvd{ify <21vjd o <210]dy <22 [f0dg <22 [[00q <22 [[00; <dndod <uv8nspd <AvSnsy «dndy 42§00 < 12§000g cuvdlaf g cuvd{if; 81
dnood Mﬁ?& Lz WSE.?&N <o101d o d MEE&N g <Ny <22 [foog <22 [fooq Q»\.\Q& «dnog M&:ww €200 ¢ 42Y00Dg cuvd{af g msmm,?\.h L1
aug g <uvddafy <a1vpd o <21v]dy <dndgd «dnoy <22 [f0dg <22 [f0dq <22 [f00; «dnog «dndy <4300y <42¥000g cund{if g <undiif, 91

dnogd MQSQN <paulyd MS:N\QQQ MEERQQ MmNERN 420001 < 42Y00Dg <1[DSo (] <1]DS) ”:Eb:\aw EGQ%&C wmwb?uw wwwb?w& Mwu&%:.d cdnog uks.d Sl
dnogd <dnoy «[poutd <uvd&ify <21vjd o <210]dy <22 [Jooq <22 [0y <22 [[0og c«dndoq <dndy <42§002 ;1 <1IDSo <1]DS) < 42§002g cuvdLif g <updLaf; 1
augq <uvddafy <a1vjd o <210]d) <dnogd «dnoy <22 [f05g <22 [[0dq <22 [[00) «dnog «dnoy <4300y <42¥000g cund{if g <undiif, €1

augq «uvddafy <a1pjd o <210]d) <dndg «dnoy <493002¢ < 12§002g cuvddi [g cundsafy <22 [[05g <22 [fooq <22 [[05; <dndog <dnd; 4

dnogd wn:& <paulgy Ec%ﬁ&? MNNEQQQ MNNSQN €42Y000y 1 < 42Y00Dg <1[DSo (] <1]DS) 135?%& UEQL%&C nuwk\auw wwwb?w& nmu\&a& cdnog uus.d 11
wautgg <upd&afy <a1vpd o g <21)dy <dndgd <dnoy <22 [fodg <22 [[0d <22 [[00; «dnod <dndy 12§00y < 423000 cund{i f q <uvddafy o1

dnogd <dnoy <pauigq «uvddify <a1vjd o <21v]dy <22 [f00g <22 [f0dq <22 [f00) «dnog «dndy <4300y <42¥000g cund{if g <undiif, 6

dnogd MR:uN <paulg MSE,?KN copd od MEE} €400 <42Y00Dg cund{af g uzama&? <22 [foog <22 [fooq umm\\:@ cdnog u&xug 9

autgq K1 fya1pd o <210]dy <dndgd «dndy < 124003 < 4240025 <Kaf f <Lify iulgq Y]ty <22 [[0dg <22 [[0dq <22 [[02) «dndog <up3nsp(< 4p8nsy <dnoy L
aulg g <upd&afy <a1vpd o g <211y <dndgd <dnoy <22 [fodg <22 [[0d4 <22 [[00; «dndog <dndy 42§00y < 423000 «und{i f g <uvddafy 9

dnogd <dnoy <[pautyq «<uvd{ify <avjd o <210]dy <4400 < 19§00 cuvd{i [g <undlafy <22 [[05g <22 [fooq <22 [[00) <dnog <.av8nsod <ivSnsy <dnd; c
augq «uvddify <a1pid o <21v]dy <dnog «dnoy <22 [f00g <22 [fooq <22 [f00; <dndg «dndy < 423000y <.493000g <K f f <L fy ¥y

dnogd wms,d <paulg Q?b uEE&eQ. MES& mmw&\aww wmmk\euh Qws\\e& ﬁ:m& M&xé €19Y002; ¢ 125000 t?&& T?b IS

dnogg <dnoy <ppauigq <& [y <aiv)d o <210]d)y yj1UG g <Y1y <22 [[05g <22 [oo <22 [[05) cdnog <dndy < 12§00y <1IDSo <I]DS) < 42Y00dg Kd [K4 f; T
dnogd <dnoy <[pautgq <& [y <2iv)d o <210]d) < 42Y002 g < 42Y00Dg <K f (f <K fy Y[Y[ty <22 [f00g <22 [fooq <22 ff05; <dndog <dnd; 1

douanbog #

1 159 10J S0 seouanbog ¢ a|qe]

pringer

Ns

3901

Modeling, learning, and simulating human activities of daily...

uvd{afq — &afq cundSafy — £1f;

wauig wﬁst,f,\u coivpd o d meEQN cdnog ”Qx,d <22 [foog <22 [foo Mmm.\.\e.d cdnog w%.um £19002 g ¢ 423000 ¢ cuvddaf g M:Bmkx.\m
dndgd <dnog <pauig g éu&?\h coinpd o d mw::ﬁ <22 [foog <22 [foo Mmm&&aé cdnog <dnoy ¢14970000 g ¢ 124000 ¢ cunddaf g @ESC&Q
waugd t:u%?kh campd o d MEE&g «dnog q M&:& 142000 g ¢ 1200Dg cundfaf g wiiaéC <22 ffoog <aa [foo mmmb&.c& cdnog WR:&
dnogd mtsu“ < pauig g M:S\\C\N co1vpd o d MEEQN <22 [foog <22 [foo me\\e& cdnog W%\GN £49002) g ¢ 423000 ¢ cuvdqaf g Mzc&axxm
dnogd «dnoy <ppautgd <unddify <apd g <21v]dy < 425002 ¢ 425000g cunddif g cuvddify <22 [foog <22 [food <22 [f0oy <dnog <dno,
aulgd EQSCQQ campd o d Q:»?C «dnogd M%BN <22 [Joog <aa [fooq me.ﬁ& cdnog muxow ¢490000 g ¢ 12000 ¢ cuvd{a f g M:cu,fb
dnogd wkxug ¢paulg g M:SbC\N coivd o d QEEN $42002() 5 ¢ 125000 cuvd€af g M:u&ig: <22 [foog <22 [oo wmwk.\e& cdnog Mtxﬁ
aulg q ”23&?.\“ co1vpd o d wuNEQN cdnogd Mh:.d $.495002) g ¢ 125000 cuvd€af 4 wtcmi.b <22 [foog <22 [foo Mww.\\a.d cdno g mhx.d
dnog WSSN < pautg d MSQSC&N coipd o d WEER“N $42Y000) g ¢ 127000 cund{af g Eu&a?ﬁ <22 [foog <22 [foo Mmmx&eﬁ cdno g mncau
dnogd w&:& ¢paulg g M:QSC\N coivd o d meRN $49002() 5 ¢ 125000 cuvd€af g w_:v%?\.h <22 [[oog <22 [oo mmmk.\,cuh cdnog Mm:&

0

— N N T v O >~ 0 N~

douanbog

#

7 159 10J 30[seouanbog 9 3|qe]

pringer

Qs

3902 Y. Francillette et al.

e () -< - G
D - - B G- - G

Fig. 11 BT obtained by applying Algorithm 1 to the data in Table 5

this has never been done. We can see this on the logs. This is a difference with the original
tree, but the generated tree highlights this irregular characteristic of the action.

The activity “make a coffee” has similar characteristics to the activity “make a meal.” It
consists of a sequence of actions with 4 non-regular actions (these actions are linked to the
use of milk and sugar or not). We therefore find in the generated tree similar characteristics
to the treatment of the activity “make a meal” for this activity. These characteristics consist
in the presence of the “selector” and “sequence” operator structure and the non-presence of
this structure on all branches, because in the logs we do not have all the potential cases.

@ Springer

Modeling, learning, and simulating human activities of daily... 3903

see Fig. 11

D¢ D - G- - D
A

s
ED -G T G- S

Fig. 12 BT obtained by applying Algorithm 1 to the data in Table 5

Finally, the last activity is to “set the table.” This consists of two sub-activities that can be
performed in any order (place the cup and place the meal). Again, we can notice that when
both variations have been made, the curent branch is divided into two parts. However, this is
not the case for all branches, as the simulation did not cover all possible cases.

The second tree generated is smaller than the first one in particular, because there are no
longer any non-regular actions. It starts with the same structure as the first tree generated,
with a “selector” and two “sequences,” because the individual can start by making a meal or
a coffee. Then, each branch is divided into two new branches, as the individual finishes the
activity in two ways (place the cup first or the meal). This tree covers 4 ways of doing the
activity just like the original tree; we can consider the two trees as equivalent (Fig. 14).

6 Discussions

We noticed that the first original tree and the first generated tree are not strictly equivalent,
in particular, because the original tree did not generate a log containing all possible cases.
The tree generated from this log does not cover cases that have not been produced. The first
original tree can generate 32 different sequences. The first generated log shows 11 possibilities
or 34.375% of the possibilities, so our tree covers 34.375% of the possibilities of the first
original tree.

If we learn on a log with all 32 possibilities we get a bigger tree, but one that will be
equivalent to the original tree. However, the flexibility of the behavior trees allows us to
develop the one we have obtained in order to cover all possibilities. Indeed, if we generate a

@ Springer

3904 Y. Francillette et al.

see Fig. 11

Fig. 13 BT obtained by applying Algorithm 1 to the data in Table 5

new log containing new sequences, we can use an algorithm that will verify for each sequence
if it is present in the current tree and if not, it will add a branch to cover the sequence.

We can notice in our logs that the action sequences do not have the same frequencies. To
improve the matching of the generated behavior tree to the reality represented by the log, we
can learn these frequencies in order to assign them to the “selectors” that control the choice
of sequences. For example, we can see in our first log that the scenario starts 11 times out of
25 times with the activity “make a coffee.” We can therefore learn this frequency to associate
it with the first “selector.” In addition, by computing the time of each action, we can calculate
an average time that will be assigned to the action nodes in the tree.

@ Springer

Modeling, learning, and simulating human activities of daily... 3905

Coptoee Jée = {Poew e+ hewn) ()
% %
(poptate) -~ Hbsrypank -~ H(@omea) - (Foptate)

s
(G2 S WD SO D S

Fig. 14 BT obtained by applying Algorithm 1 to the data in Table 6

Finally, the flexibility of the model allows us to easily create new scenarios from the
behavior trees already learned. To do this, we can add action nodes to the trees already
learned, but also combine several trees to create a new behavior from the old ones. For
example, we can combine the two trees in the previous section to create a tree that will cover
the possibilities covered by these two trees.

Finally, the fact that the generated tree is large enough (in our example they are larger
than the original trees) raises the question of reducing the size of the trees. Indeed, in order
to make it easier to read, we can try to reduce the tree in order to reduce the number of nodes.
To reduce the tree, a first idea is to search in two sibling branches for identical subsequences
(the actions and their order must be identical) and then to bring this subsequence up to the
same level as the branches by adding a new “sequence” operator. Each original branch will
be separated into two branches.

@ Springer

3906 Y. Francillette et al.

7 Conclusion

The impact of having an increasingly aged population will have, in the next decades, sig-
nificant consequences on the healthcare system in many developed countries [59]. Because
most countries want to promote the concept of living at home longer, it is important to find
news innovative and technological solutions to help seniors stay in their residence in a safe
and comfortable space. Ambient intelligence [52], with its application in Smart Homes [31],
constitutes one of the best opportunities to achieve the dreams of people aging at home in
an ambient assisted living [9] environment. However, as we have described in Introduc-
tion, before being able to deploy such systems, scientists and engineers are facing three key
research challenges, which are: (i) how to represent, in the sense of knowledge engineering,
the computer model of an activity of daily living (ii) how to be able to automatically create
the library of models based on observation of the resident’s behavior, and (iii) how to be able
to rigorously test the assistive algorithm by conducting experiments in their laboratory with
simulated scenarios or with recorded data.

In the paper, we addressed these three challenges and proposed a solution that brings
answers to theses issues. To address the first challenge, we proposed an approach to model
human activities, based on behavior trees, that is easily interpretable and flexible [12]. This
approach is inspired by the research done in the videogame industry to model the behavior
of artificial players. Thereafter, we presented a solution to the second challenge, in the form
of nan-adapted learning approach for automatically generates behavior trees from low-level
action recognition corresponding to the occupant behavior. In previous works [7,25], we have
already shown how to recognize and transform sensors’ data into semantically significant
low-level actions. This simple and efficient approach allows constructing an entire library
of activity models generalizing the behavior of a specific user. Finally, to answer the last
challenge, we introduce a new way of simulating user’s behavior using these two formal
tools in combination with our virtual smart home simulator, which is an open-source tool
freely downloadable online.” The tests that we conducted on our global solution showed that
our formal tools can be used in a smart home environment to answer the three challenges.

A limitation of our proposal come from designed scenarios that has been automatically
generated. While our generation parameters and crafting has been based on previous exper-
imentation with real people, it is not as accurate as reality. Moreover, the system could
benefit of been improved in multiple way by applying, for the further design steps, a co-
design approach implying targeted end users. Of course, in the near future, more tests will
be needed to assess the potential and the weakness of the proposed tools. By giving our tools
freely online, we sincerely hope that many scientists and engineers will use them to simulate
a real environment and to develop new Al algorithms. Their feedback will be precious to
orientate the future development of our LIARA Smart Homes BT Global Kit. On our side,
we already planned to use the software solution in experiments with real users in order to
test the approach on a large scale and with real targeted users.

References

1. Al-Shaqi R, Mourshed M, Rezgui Y (2016) Progress in ambient assisted systems for independent living
by the elderly. SpringerPlus 5(1):624

2. Alshammari N, Alshammari T, Sedky M, Champion J, Bauer C (2017) OpenSHS: open smart home
simulator. Sensors 17(5):1003

2 https://github.com/Iannyck/shima.

@ Springer

https://github.com/Iannyck/shima

Modeling, learning, and simulating human activities of daily... 3907

11.
12.

18.
19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

Ariani A, Redmond SJ, Chang D, Lovell NH (2013) Simulation of a smart home environment. In: 3rd
International conference on instrumentation, communications, information technology, and biomedical
engineering (ICICI-BME). IEEE, pp 27-32

Artikis A, Sergot M, Paliouras G (2010) A logic programming approach to activity recognition. In:
Proceedings of the 2nd ACM international workshop on events in multimedia. ACM, pp 3-8

Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic
handbook: theory, implementation, and applications. Cambridge University Press, New York

Barwise J, Perry J (1981) Situations and attitudes. J Philos 78(11):668-691

Belley C, Gaboury S, Bouchard B, Bouzouane A (2015) Nonintrusive system for assistance and guidance
in smart homes based on electrical devices identification. Expert Syst Appl 42(19):6552—-6577
Bergeron F, Giroux S, Bouchard K, Gaboury, S (2017) RFID based activities of daily living recogni-
tion. In: IEEE SmartWorld, ubiquitous intelligence computing, advanced trusted computed, scalable
computing communications, cloud big data computing, internet of people and smart city inno-
vation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 1-5. https://doi.org/10.1109/UIC-
ATC.2017.8397548

Blackman S, Matlo C, Bobrovitskiy C, Waldoch A, Fang ML, Jackson P, Mihailidis A, Nygard L, Astell
A, Sixsmith A (2016) Ambient assisted living technologies for aging well: a scoping review. J Intell Syst
25(1):55-69

Botia JA, Campillo P, Campuzano F, Serrano E. UbikSim website. https://github.com/emilioserra/
UbikSim/wiki. Accessed 28 May 2020

Bouchard B (2017) Smart technologies in healthcare. CRC Press, Boca Raton

Bouchard B, Gaboury S, Bouchard K, Francillette Y (2018) Modeling human activities using behaviour
trees in smart homes. In: Proceedings of the 11th PErvasive technologies related to assistive environments
conference. ACM, pp 67-74

Bouchard B, Giroux S, Bouzouane A (2007) A keyhole plan recognition model for alzheimer’s patients:
first results. Appl Artif Intell 21(7):623-658

Bouchard K, Ajroud A, Bouchard B, Bouzouane A (2012) Simact: a 3d open source smart home simulator
for activity recognition with open database and visual editor. Int J Hybrid Inf Technol 5(3):13-32
Bouchard K, Bouchard B, Bouzouanea A (2017) Practical guidelines to build smart homes: lessons
learned. In: Hasan SF (ed) Opportunistic networking: vehicular, D2D and cognitive radio networks. CRC
Press, Boca Raton, pp 206-234

Bouchard K, Fortin-Simard D, Gaboury S, Bouchard B, Bouzouane A (2013) Accurate rfid trilateration
to learn and recognize spatial activities in smart environment. Int J Distrib Sens Netw 9(6):936816
Camilleri G (1999) A generic formal plan recognition theory. In: International conference on information
intelligence and systems. Proceedings. IEEE, pp 540-547

Carberry S (2001) Techniques for plan recognition. User Model User Adap Interact 11(1-2):31-48
Charniak E, Goldman RP (1993) A bayesian model of plan recognition. Artif Intell 64(1):53-79

Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z (2012) Sensor-based activity recognition. IEEE Trans Syst
Man Cybern Part C (Appl Rev) 42(6):790-808

Chen W, Augusto JC, Seoane F (2015) Recent advances in ambient assisted living-bridging assistive
technologies, e-health and personalized health care, vol 20. IOS Press, Amsterdam

Cilla R, Patricio MA, Garcia J, Berlanga A, Molina JM (2009) Recognizing human activities from sensors
using hidden markov models constructed by feature selection techniques. Algorithms 2(1):282-300
Fahad LG, Ali A, Rajarajan M (2015) Learning models for activity recognition in smart homes. In: Kim
KJ (ed) Information science and applications. Springer, Berlin, pp 819-826

Fleury A, Vacher M, Noury N (2010) Svm-based multimodal classification of activities of daily living in
health smart homes: sensors, algorithms, and first experimental results. IEEE Trans Inf Technol Biomed
14(2):274-283

Fortin-Simard D, Bilodeau JS, Bouchard K, Gaboury S, Bouchard B, Bouzouane A (2015) Exploiting
passive RFID technology for activity recognition in smart homes. IEEE Intell Syst 30(4):7-15
Fortin-Simard D, Bilodeau JS, Gaboury S, Bouchard B, Bouzouane A (2015) Method of recognition and
assistance combining passive RFID and electrical load analysis that handles cognitive errors. Int J Distrib
Sens Netw 11(10):643273

Francillette Y, Boucher E, Bouzouane A, Gaboury S (2017) The virtual environment for rapid prototyping
of the intelligent environment. Sensors 17(11):2562

Gadelhag Mohmed Ahmad Lotfi CLAP (2018) Unsupervised learning fuzzy finite state machine for
human activities recognition. In: Conference: the 11th PErvasive technologies related to assistive envi-
ronments conference, pp 1-8

Geib CW, Goldman RP (2005) Partial observability and probabilistic plan/goal recognition. In: Proceed-
ings of the international workshop on modeling other agents from observations (MOO-05), vol 8

@ Springer

https://doi.org/10.1109/UIC-ATC.2017.8397548
https://doi.org/10.1109/UIC-ATC.2017.8397548
https://github.com/emilioserra/UbikSim/wiki
https://github.com/emilioserra/UbikSim/wiki

3908 Y. Francillette et al.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.

Giegerich R, Kurtz S (1997) From ukkonen to mccreight and weiner: a unifying view of linear-time suffix
tree construction. Algorithmica 19(3):331-353

Giroux S, Pigot H (2013) Smart homes for people suffering from cognitive disorders. In: Computer
science and ambient intelligence, pp 225-262

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Adaptive computation and machine learning
series. MIT Press, Cambridge, p 800

Grze$ M, Hoey J, Khan SS, Mihailidis A, Czarnuch S, Jackson D, Monk A (2014) Relational approach to
knowledge engineering for POMDP-based assistance systems as a translation of a psychological model.
Int J Approx Reason 55(1):36-58

Helal A, Cho K, Lee W, Sung Y, Lee J, Kim E (2012) 3d modeling and simulation of human activi-
ties in smart spaces. In: 9th International conference on ubiquitous intelligence and computing and 9th
international conference on autonomic and trusted computing (UIC/ATC). IEEE, pp 112-119

Ho B, Vogts D, Wesson J (2019) A smart home simulation tool to support the recognition of activities of
daily living. Proc S Afr Inst Comput Sci Inf Technol 2019:1-10

Humphreys G, Forde E (1998) Disordered action schema and action disorganisation syndrome. Cogn
Neuropsychol 15(6):771-812

Kautz HA (1991) A formal theory of plan recognition and its implementation. In: Reasoning about plans.
Morgan Kaufmann Publishers Inc., San Francisco, pp 69-124. http://dl.acm.org/citation.cfm?id=117019.
117021. Accessed 28 May 2020

Kingston A, Collerton J, Davies K, Bond J, Robinson L, Jagger C (2012) Losing the ability in activities
of daily living in the oldest old: a hierarchic disability scale from the newcastle 85+ study. PLoS ONE
7(2):e31665

Krishnan NC, Cook DJ (2014) Activity recognition on streaming sensor data. Pervasive Mob Comput
10:138-154

Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) MASON: a multiagent simulation envi-
ronment. Simulation 81(7):517-527

Lundstrom J, Synnott J, Jarpe E, Nugent CD (2015) Smart home simulation using avatar control and
probabilistic sampling. In: IEEE international conference on pervasive computing and communication
workshops (PerCom workshops). IEEE, pp 336-341

Marcotte R, Hamilton HJ (2017) Behavior trees for modelling artificial intelligence in games: a tutorial.
Comput Games J 6(3):171-184. https://doi.org/10.1007/s40869-017-0040-9

Mojidra HS, Borisagar VH (2012) A literature survey on human activity recognition via hidden Markov
model. In: IJCA proceedings on international conference on recent trends in information technology and
computer science, pp 1-5

Nazerfard E, Cook DJ (2012) Bayesian networks structure learning for activity prediction in smart homes.
In: 8th International conference on intelligent environments (IE). IEEE, pp 50-56

Nazerfard E, Das B, Holder LB, Cook DJ (2010) Conditional random fields for activity recognition in
smart environments. In: Proceedings of the 1st ACM international health informatics symposium. ACM,
pp 282-286

Ni Q, Pau de la Cruz I, Garcia Hernando AB (2016) A foundational ontology-based model for human
activity representation in smart homes. J Ambient Intell Smart Environ 8(1):47-61

Park B, Min H, Bang G, Ko I (2015) The user activity reasoning model in a virtual living space simulator.
Int J Softw Eng Appl 9(6):53-62

Paterno F (2004) ConcurTaskTrees: an engineered notation for task models. The handbook of task analysis
for human—computer interaction, pp 483-503

Paterno F, Mancini C, Meniconi S (1997) ConcurTaskTrees: a diagrammatic notation for specifying task
models. In: Human—computer interaction INTERACT’97. Springer, pp 362-369

Patterson DJ, Fox D, Kautz H, Philipose M (2005) Fine-grained activity recognition by aggregating
abstract object usage. In: Ninth IEEE international symposium on wearable computers. Proceedings.
IEEE, pp 44-51

Puybaret E (2016) Sweet home 3d. https://sourceforge.net/projects/sweethome3d/. Accessed 28 May
2020

Ramos C, Augusto JC, Shapiro D (2008) Ambient intelligence-the next step for artificial intelligence.
IEEE Intell Syst 23(2):15-18

Rook A, Knauss A, Damian D, Thomo A (2014) A case study of applying data mining to sensor data
for contextual requirements analysis. In: IEEE 1st international workshop on artificial intelligence for
requirements engineering (AIRE). IEEE, pp 43-50

Roy PC, Abidi SR, Abidi SS (2017) Possibilistic activity recognition with uncertain observations to
support medication adherence in an assisted ambient living setting. Knowl Based Syst 133:156-173

@ Springer

http://dl.acm.org/citation.cfm?id=117019.117021
http://dl.acm.org/citation.cfm?id=117019.117021
https://doi.org/10.1007/s40869-017-0040-9
https://sourceforge.net/projects/sweethome3d/

Modeling, learning, and simulating human activities of daily... 3909

55.

56.

57.

62.

63.

64.
65.

Roy PC, Bouchard B, Bouzouane A, Giroux S (2013) Ambient activity recognition in smart environments
for cognitive assistance. Int J Robot Appl Technol (IJRAT) 1(1):29-56

Serrano E, Botia J (2013) Validating ambient intelligence based ubiquitous computing systems by means
of artificial societies. Inf Sci 222:3-24. https://doi.org/10.1016/.ins.2010.11.012

Synnott J, Chen L, Nugent C, Moore G (2014) The creation of simulated activity datasets using a graph-
ical intelligent environment simulation tool. In: 36th Annual international conference of the IEEE on
engineering in medicine and biology society (EMBC). IEEE, pp 4143-4146

. Technologies U (2016) Unity-game engine. https://unity3d.com. Accessed 28 May 2020

United Nations D.o.E., Social Affairs, PD (2019) World population ageing 2019, p 46
Van Viamen AE (2018) Person-environment fit: a review of its basic tenets. Ann Rev Organ Psychol
Organ Behav 5:75-101

. Wang J, Chen Y, Hao S, Peng X, Hu L (2018) Deep learning for sensor-based activity recognition: a

survey. Pattern Recognit Lett 119:3-11

Wang WY, Cohen WW (2016) Learning first-order logic embeddings via matrix factorization. In: IJCAI,
pp 2132-2138

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques.
Morgan Kaufmann, Burlington

Wobcke W (2002) Two logical theories of plan recognition. J Logic Comput 12(3):371-412

Ziaeefard M, Bergevin R (2015) Semantic human activity recognition: a literature review. Pattern Recognit
48(8):2329-2345

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Yannick Francillette is a professor at the Université du Québec a
Chicoutimi since August 2019. He received a Ph.D. in Computer Sci-
ence from the University of Montpellier (France). He completed a
postdoctoral fellowship at the LIARA laboratory of the Université
du Québec a Chicoutimi in the field of intelligent environments. He
worked on simulating intelligent environments and activities of daily
life in smart houses. His main research interests are adaptive systems
and serious games.

Bruno Bouchard is a full professor and a researcher at the LIARA
laboratory of the University of Quebec at Chicoutimi (UQAC). He
received a Ph.D. in computer science from the University of Sher-
brooke (Canada) and he completed a postdoctoral fellowship at the
University of Toronto (Canada) in 2007. He was the cofounder of the
LIARA lab in 2008, which develops smart home technologies dedi-
cated to people suffering from cognitive impairments. The lab conducts
real size experiments in a smart home prototype infrastructure financed
by the Canada Foundation for Innovation (CFI Leaders Opportunity
Fund). Dr. Bouchard has received the precious support of multiples
sponsors during his career, such as: NSERC, FQRNT, CFI, CIHR, Bell
Canada, UQAC and multiples companies. His main research interests
are ambient intelligence, smart environments, sensors, data mining, and
activity recognition. Bruno Bouchard has been elevated to the rank of
Senior IEEE member in 2016.

@ Springer

https://doi.org/10.1016/j.ins.2010.11.012
https://unity3d.com

3910

Y. Francillette et al.

@ Springer

Kévin Bouchard is a professor at the Université du Québec a Chicoutimi
since August 2016. He completed his doctorate in computer science
in 2014. He carried out a postdoctoral fellowship on ambient intelli-
gence for the support of people who suffered traumatic brain injuries at
the Université de Sherbrooke before spending a short time at CASAS
lab of Washington State University. He then worked as Project Scien-
tist at the Center for SMART Health at the University of California
Los Angeles where he co-led a deployment project of ambient technol-
ogy for a rehabilitation center in Santa Monica. His research interests
mainly relate to the exploitation of artificial intelligence and machine
learning for the development of technologies for health. He has, among
other things, worked on RFID localization, ambient sensing, activity
recognition with UWB, wearable technologies, etc. He has published
over 70 papers and has been supervising/co-supervising more than
twenty graduate students.

Sébastien Gaboury received the Ph.D. degree in mathematics from the
Royal Military College of Canada, Kingston, ON, Canada, in 2012.
He is currently an associate professor and a Scientist with the Depart-
ment of Mathematics and Computer Science, University of Quebec at
Chicoutimi, Chicoutimi, QC, Canada, where he is also the head of
the Ambient Intelligence Laboratory for the Recognition of Activities.
His research is sponsored by the Natural Sciences and Engineering
Research Council of Canada, the Québec Research Fund on Nature and
Technologies, and the Canadian Foundation for Innovation. His current
research interests include assistive technologies for elders and cogni-
tively impaired people and artificial intelligence.

	Modeling, learning, and simulating human activities of daily living with behavior trees
	Abstract
	1 Introduction
	1.1 The need of assistive technology
	1.2 Challenges in developing assistive technology
	1.3 Toward a solution to model human activities

	2 Related work
	2.1 Modeling the activity of daily living
	2.2 Learning automatically the activities models
	2.3 Simulating users' behavior in a smart environment

	3 Behavior tree model for modeling ADL
	4 Learning BT from datasets
	4.1 Generation of atomic action logs
	4.2 Learning BT from atomic action logs
	4.3 Algorithm: a step-by-step example

	5 Validation
	5.1 Generation of the atomic action dataset
	5.2 Behavior tree learning

	6 Discussions
	7 Conclusion
	References

