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Abstract
Crowdsourcing services provide an efficient and relatively inexpensive approach to obtain
substantial amounts of labeled data by employing crowd workers. It is obvious that the
labeling qualities of crowd workers directly affect the quality of the labeled data. However,
existing label aggregation strategies seldom consider the differences in the quality of workers
labeling different instances. In this paper, we argue that a single worker may even have
different labeling qualities on different instances. Based on this premise, we propose four
new strategies by assigning different weights to workers when labeling different instances. In
our proposed strategies,wefirst use the similarity amongworker labels to estimate the specific
quality of the worker on different instances, and then we build a classifier to estimate the
overall quality of the worker across all instances. Finally, we combine these two qualities to
define the weight of the worker labeling a particular instance. Extensive experimental results
show that our proposed strategies significantly outperform other existing state-of-the-art label
aggregation strategies.

Keywords Crowdsourcing · Label aggregation · Specific quality · Overall quality · Label
similarity

1 Introduction

Supervised learning algorithms require extensive labeled data to train models and then make
predictions on new data [7,8,25,30]. Conventional labeling tasks have been typically marked
by domain experts or well-trained workers [19]. This kind of method provides high-quality
labels, but is inefficient and expensive [10,11]. The social network service has supplied a
novel method to resolve the labeling problem. In fact, programs such as the Listen game [21]
have proven the feasibility of using public resources to address difficult machine learning
problems [22]. Although these methods provide free-labeled data, guaranteeing their quality
is difficult. Therefore, a more direct and economical method is to hire online crowd workers

B Liangxiao Jiang
ljiang@cug.edu.cn

1 School of Computer Science, China University of Geosciences, Wuhan 430074, China

2 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-020-01475-y&domain=pdf
http://orcid.org/0000-0003-2201-3526


2522 F. Tao et al.

to label the data. This has become possible thanks to the rapid growth of crowdsourcing
platforms such as Amazon Mechanical Turk1 and Crowdflower.2

These crowdsourcing platforms have been widely used to obtain extensive labeled data
in applications such as ImageNet [3], computer vision [13], and natural language processing
[9]. However, owing to differences in personal preferences and cognitive abilities, the quality
of labels collected by a single crowd worker is often poor, which may compromise practical
applications that use such data. To solve this problem,multiple labels are frequently requested
from different workers for a single instance. Indeed, many existing works [20,29] have
revealed the efficiency of repeated labeling. After each instance has been labeled by different
crowd workers and, thus, obtains its multiple noisy label set, a label aggregation strategy is
needed to infer the unknown true label from its multiple noisy label set, a method known as
label aggregation (integration).

In recent years, label aggregation (integration) from multiple noisy labels has attracted
much attention, and a large number of label aggregation strategies have been proposed [18,
28]: Dawid and Skene [1] proposed the DS strategy, which uses the maximum likelihood
estimation to estimate a confusion matrix for each labeler and a class prior. Raykar et al. [16]
proposed the RY strategy, which based on the Bayesian estimation to model the sensitivity
and the specificity of labelers. Demartini et al. [2] proposed ZC strategy, which uses a two-
element parameter to weight the reliability of a labeler. Karger et al. [9] proposed the KOS
strategy based on the reliabilities of labelers to capture the presence of spammers. Zhang et
al. [28] proposed the GTIC strategy based on Bayesian statistics for multi-class labeling. Ma
et al. [14] proposed the FaitCrowd strategy, which uses a novel probabilistic Bayesian model
to address the challenge of inferring fine grained source reliability. Zhang et al. [26] proposed
the BLC strategy, which clusters two layers of features (conceptual-level and physical-level)
to infer true labels of instances. Zhang et al. [24] proposed the MNLDP strategy, which
considers the intercorrelation among multiple noisy label sets of different instances.

Of the numerous strategies,majority voting (MV) is themost straightforward, efficient, and
widely used [4,6,19]. However, it discards a lot of useful information, such as the certainty
information of the majority class and all the information of the minority class. To solve
this problem, Sheng et al. [17] proposed four improved strategies, including two soft MV
strategies and two paired soft MV strategies, to avoid this loss of information. Nevertheless,
these strategies do not account for the labeling qualities of the crowd workers, especially
the differences in the quality of workers labeling different instances. In other words, these
strategies assume that different crowd workers have the same labeling quality, which is rarely
true in real-world crowdsourcing scenarios.

To relax this assumption, in this paper, we propose four new strategies, including two
weighted soft MV strategies and two weighted paired soft MV strategies, by assigning dif-
ferent weights to workers when labeling different instances. Specifically, we first use the
similarity among worker labels to estimate the specific quality of the worker on different
instances. Then, we build a classifier on the training set with the labels given by the worker
and evaluate the classification accuracy on the test set as the overall quality of the worker
across all instances. Finally, we combine these two qualities to define theweight of theworker
labeling a particular instance. It can be seen that the differences in the quality of workers
labeling different instances are considered in our proposed strategies. More importantly, the
extensive empirical studies validate the effectiveness of our four newly proposed strategies.

1 http://www.mturk.com.
2 http://crowdflower.com.
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The remainder of this paper is organized as follows. Our research starts from soft MV and
pairing and, thus, we first provide a comprehensive introduction in Sect. 2. Then, we propose
four new strategies in Sect. 3. The experiments and results are reported in Sect. 4. Some
extensions to multi-class classification are discussed in Sect. 5. Finally, the conclusions are
drawn and some main directions for future work are outlined in Sect. 6.

2 Soft MV and pairing

For a crowdsourcing system, a training instance set is defined as E = {ei }ni=1, where each
instance is ei =< xi , yi ,Li >, xi is the feature vector, yi is the unknown true label, and
Li = {

li j
}m
j=1 is the multiple noisy label set provided by m crowd workers for the i th

instance xi . For simplicity, in this paper, we provisionally restrict our discussion to binary
classification, and thus both yi and li j take values from a finite set {+,−} only.

When each instance has only a multiple noisy label set, conventional supervised learn-
ing algorithms cannot learn a model from these instances directly. Thus, label aggregation
strategies are required to infer the unknown true label from its multiple noisy label set. Of the
numerous strategies, MV is the most straightforward, efficient, and widely used. However,
it discards a lot of useful information, such as the certainty information of the majority class
and all the information of the minority class. For example, there exist two instances with
the multiple noisy label sets {+,+,+,+,−} and {+,+,+,−,−}, respectively. According
to MV, their aggregated (integrated) labels are of course the majority class +. However, the
certainty (confidence) information of + is ignored, which means that we cannot express the
information regarding how “far off” they are from belonging to +. At the same time, all the
information of the minority class − is thoroughly discarded. As a result, we cannot distin-
guish between these two entirely different multiple noisy label sets, although the certainty
(confidence) of them belonging to the majority class + are totally different.

2.1 Soft MV

By exploiting the certainty information of the majority class, Sheng et al. [17] proposed two
soft MV strategies: MV-Freq and MV-Beta. Similar to MV, MV-Freq and MV-Beta still use
the majority class of a multiple noisy label set as the aggregated label, but at the same time
assign a weight that represents the certainty of the majority class.

For MV-Freq, the certainty of the majority class is defined as the appearance frequency
of the majority class in the multiple noisy label set. The detailed formula is

WHi =
{
P (+|Li ) , P (+|Li ) ≥ P (−|Li )

P (−|Li ) , P (+|Li ) < P (−|Li )
, (1)

where P (+|Li ) (or P (−|Li )) is the certainty of the majority class + (or −) of the multiple
noisy label set Li of the i th instance xi , which can be estimated by

P(+|Li ) =
∑m

j=1 δ
(
li j ,+

)

∑m
j=1 δ

(
li j ,+

) + ∑m
j=1 δ

(
li j ,−

) , (2)

P(−|Li ) =
∑m

j=1 δ
(
li j ,−

)

∑m
j=1 δ

(
li j ,+

) + ∑m
j=1 δ

(
li j ,−

) , (3)
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where li j is the class label provided by the j th worker for the i th instance, and δ(·) is an
indicator function that outputs 1 if its two parameters are identical, and 0 otherwise.

Please note that Eqs. (2)–(3) are a little different from those of the original paper by
[17], which uses Laplace correction to reduce the effect of extreme probability estimations.
However, to our knowledge, Laplace correction should be removed from these equations to
reflect the true frequency of each class in the multiple noisy label set. More importantly,
our experiments show that using Laplace correction reduces the performance of the related
strategies to some extent. For saving space, we do not present the detailed experimental
results in this paper.

Now, for the above two different multiple noisy label sets {+,+,+,+,−} and
{+,+,+,−,−}, their weights are 4

5 = 0.8 and 3
5 = 0.6, respectively. Therefore, they

can be represented by {(+, 0.8)} and {(+, 0.6)}, respectively.
For MV-Beta, the certainty of the majority class in the multiple noisy label set is defined

as

WHi = max {I0.5(αi , βi ), 1 − I0.5(αi , βi )} , (4)

where I0.5(αi , βi ) is the value of the cumulative distribution function (CDF) of the Beta
distribution at the decision threshold 0.5. The detailed formula is

I0.5(αi , βi ) =
αi+βi−1∑

k=αi

(αi + βi − 1)!
k!(αi + βi − 1 − k)!0.5

αi+βi−1, (5)

where αi and βi are two shape parameters of the Beta distribution, which are calculated by

αi =
m∑

j=1

δ
(
li j ,+

) + 1. (6)

βi =
m∑

j=1

δ
(
li j ,−

) + 1. (7)

2.2 Paired soft MV

Just as shown in Sect. 2.1, MV-Freq andMV-Beta indeed exploit the certainty information of
themajority class.However, similarly to the simplestMV, they also discard all the information
regarding theminority class. According to the observations by [17], the information regarding
the minority class is also very important, especially when there are only a few labels available
in the multiple noisy label set.

By further exploiting the information about the minority class, Sheng et al. [17] proposed
two paired soft MV strategies: Paired-Freq and Paired-Beta. Different from MV-Freq and
MV-Beta, Paired-Freq and Paired-Beta generate a pair of weighted pairwise instances (a
majority class instance and a minority class instance) from a single instance with a multiple
noisy label set, where the weights of each pair of instances are defined as the certainty of the
majority class and the certainty of the minority class, respectively.

For Paired-Freq, the certainty of the majority class is also calculated by Eqs. (1)–(3).
After obtaining the certainty of the majority, the certainty of the minority class can be esti-
mated by 1 − WHi . Now, the above two different multiple noisy label sets {+,+,+,+,−}
and {+,+,+,−,−} can be represented by {(+, 0.8) , (−, 0.2)} and {(+, 0.6) , (−, 0.4)},
respectively. For Paired-Beta, the certainty of the majority class is also calculated by Eqs.
(4)–(7). In the same way, the certainty of the minority class is 1 − WHi .
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3 Proposed strategies

Compared with the simplest MV, the four improved strategies [17] MV-Freq, MV-Beta,
Paired-Freq, and Paired-Beta indeed avoid the loss of much information, such as the certainty
information of themajority class and the certainty information of theminority class. However,
none of these methods consider the labeling qualities of the crowd workers, especially the
differences in the quality of workers labeling different instances. In other words, all of them
assume that different crowd workers have the same labeling quality, which is rarely true in
real-world crowdsourcing scenarios.

In many real-world crowdsourcing scenarios, to the best of our knowledge, even a
high-quality worker may provide an incorrect label for a particular instance, whereas a
low-quality worker may provide a correct label. Assume that the same worker has the
same labeling quality on different instances; the influence of incorrect labeling from the
high-quality workers will be strengthened, whereas the influence of correct labeling from
the low-quality workers will be weakened. We call this phenomenon “quality inversion.”
For example, for a particular instance with a multiple noisy label set {+,+,+,−,−}, if
we do not account for the labeling qualities of the crowd workers, Paired-Freq represents
it as {(+, 0.6) , (−, 0.4)}. However, suppose that these five workers have different label-
ing qualities, such as {0.95, 0.6, 0.94, 0.92, 0.59}, on this instance, this can be represented
as {(+, 0.6225) , (−, 0.3775)}. By taking the labeling quality into account, we can scale
up the certainty of the majority class + and reduce the certainty of the minority class −.
Again suppose that each of these five workers has the same labeling quality on another
instance with a multiple noisy label set {−,−,+,+,+}, then this instance is represented as
{(+, 0.6125) , (−, 0.3875)}. Thus, the certainty of the majority class + decreases slightly,
whereas the certainty of the minority class − increases slightly. In other words, for this
instance, the influence of incorrect labeling (−) from the high-quality worker (the first worker
with the labeling quality 0.95) is strengthened, whereas the influence of correct labeling (+)
from the low-quality worker (the last worker with the labeling quality 0.59) is weakened.

To deal with the phenomenon of “quality inversion” discussed previously, in this paper, we
argue that the same worker may also have different labeling qualities on different instances.
Based on this premise, we propose four new strategies, including two weighted soft MV
strategies and two weighted paired soft MV strategies, by assigning different weights to
workers when labeling different instances. Specifically, a label similarity-based weighting
method that combines the specific quality of the worker on different instances and the overall
quality of the worker across all instances is proposed to estimate the weight of each crowd
label. We simply denote the resulting strategies by WMV-Freq, WMV-Beta, WPaired-Freq,
and WPaired-Beta, respectively.

3.1 Weighted soft MV

Similar to MV, MV-Freq and MV-Beta also assume that all crowd workers have the same
labeling quality. To improve MV-Freq and MV-Beta, we propose two weighted soft MV
strategies: WMV-Freq and WMV-Beta, respectively.

For WMV-Freq, the weight formula is the same as Eq. (1). We repeat it here for conve-
nience:

WHi =
{
P (+|Li ) , P (+|Li ) ≥ P (−|Li )

P (−|Li ) , P (+|Li ) < P (−|Li )
, (8)
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where P (+|Li ) (or P (−|Li )) is also the certainty of the majority class + (or −) of the
multiple noisy label set Li of the i th instance xi , but they are estimated using Eqs. (9)–(10)
instead of Eqs. (2)–(3), respectively:

P(+|Li ) =
∑m

j=1 wi jδ
(
li j ,+

)

∑m
j=1 wi jδ

(
li j ,+

) + ∑m
j=1 wi jδ

(
li j ,−

) , (9)

P(−|Li ) =
∑m

j=1 wi jδ
(
li j ,−

)

∑m
j=1 wi jδ

(
li j ,+

) + ∑m
j=1 wi jδ

(
li j ,−

) , (10)

where wi j is the weight of li j .
For WMV-Beta, the weight formula is the same as Eq. (4). We also repeat it here for

convenience:

WHi = max {I0.5(αi , βi ), 1 − I0.5(αi , βi )} , (11)

where

I0.5(αi , βi ) =
[αi+βi ]−1∑

k=[αi ]

([αi + βi ] − 1)!
k!([αi + βi ] − 1 − k)!0.5

[αi+βi ]−1, (12)

where [·] is an integer-valued function, αi and βi are also two shape parameters of the Beta
distribution, but they are estimated using Eqs. (13)–(14) instead of Eqs. (6)–(7), respectively,

αi =
m∑

j=1

wi jδ
(
li j ,+

) + 1, (13)

βi =
m∑

j=1

wi jδ
(
li j ,−

) + 1. (14)

3.2 Weighted paired soft MV

Similar to MV-Freq and MV-Beta, WMV-Freq and WMV-Beta also only use the certainty
information of the majority class and discard all the information of the minority class. Conse-
quently, to improve WMV-Freq and WMV-Beta, we also adapt Paired-Freq and Paired-Beta
to propose twoweighted paired softMV strategies:WPaired-Freq andWPaired-Beta, respec-
tively.

For WPaired-Freq, the certainty of the majority class is also calculated using Eqs. (8)–
(10). After we obtain the certainty of the majority, the certainty of the minority class can be
estimated by 1−WHi . ForWPaired-Beta, the certainty of the majority class is also calculated
using Eqs. (11)–(14). In the same way, the certainty of the minority class can be estimated
by 1 − WHi .

3.3 Label similarity-based weighting

Now, the only question left to answer is how to define the weight wi j of each crowd worker
labeling a particular instance. Generally speaking, there are mainly two kinds of methods
to define (learn) such weights. The first is to conduct a sophisticated search process to find
the weights that maximize the performance of the resulting model. Usually, this kind of
method leads to a good weight assignment, but it requires a significant amount of time and
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an appropriate fitness function for the search. The other is to directly compute the weights
using the statistical characteristics of the available data, and thus it is often more efficient.

In this paper, we focus our attention on the second method and propose a label similarity-
based weighting method, which combines the specific quality of the worker on different
instances and the overall quality of the worker across all instances to estimate the weight
wi j of each crowd label. We expect that the learned weights could weaken the influence of
incorrect labeling on high-quality workers and strengthen the influence of correct labeling on
low-quality workers. Inspired by [12], we define the normalized weight wi j of each crowd
label as

wi j = 1

Z
w′
i j , (15)

where Z is a normalization constant, which ensures that the sum of all crowd label weights for
the i th instance is still equal tom, the detailed formula is Eq. (16). w′

i j is the non-normalized
weight of each crowd label defined by Eq. (17).

Z = 1

m

m∑

j=1

w′
i j , (16)

w′
i j = 1

1 + e−γi j
, (17)

where γi j is estimated by

γi j = τ j

(
1 + s2i j

)
, (18)

where τ j is the overall quality of the j th worker across all instances, si j is the specific quality
of the j th worker for the i th instance, s2i j is used to strengthen the influence of the specific

quality si j , and 1 + s2i j is used to avoid the effect of the extreme estimation of si j = 0.
Next, we introduce how to estimate si j . Inspired by the similarity assumption [12], we

propose to use the similarity among worker labels to estimate the specific qualities of the
same worker for different instances. For a specific instance ei , if the j th worker uses the same
label as most other workers, this indicates that the worker has a high degree of confidence in
this instance. That is, the specific quality of the j th worker for the i th instance is very high.
Based on this idea, we can define si j as the label similarity among workers:

si j =
m∑

j ′=1∧ j ′ �= j

δ
(
li j , li j ′

)
. (19)

We now introduce how to estimate τ j . Estimating the overall qualities of different workers
is not a new research topic in the crowdsourcing learning community. To the best of the
authors’ knowledge, there exist many state-of-the-art algorithms, such as Dawid–Skene [1],
ZenCrowd , KOS [9], and DEW [15,23]. However, none of them exploit feature vectors of
instances, which makes it impossible to take full advantage of the statistical characteristics of
the available data when evaluating the label qualities. According to the observation by [30],
in traditional supervised learning, there exists a schema to exhibit the relationship between
data features and the ground-truth labels. For example, suppose there exists a high-quality
worker; the data schema will be well-inherited in their labels, because the difference between
their labels and ground-truth labels is small. Meanwhile, suppose there exists a low-quality
worker, the data schema may be broken because their labels will be very different from the
ground-truth labels. Therefore, we can estimate the overall quality of a worker by evaluating
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how well the schema is inherited in their labels. Specifically, we can first extract all training
instances’ feature vectors and the corresponding crowd labels provided by the j th worker
to form a new single-label data set. Then, we use tenfold cross-validation to evaluate the
classification accuracy of a classifier. In theory, this classifier can be any classifier. Finally,
we define the overall quality of the j th worker as the classification accuracy of the built
classifier. The detailed formula can be expressed as

τ j =
∑n

i=1 δ
(
li j , f j (xi )

)

n
, (20)

where n is the size of the extracted data set and f j (xi ) is the class label of the feature vector
xi predicted by the built classifier.

It can be seen that although the existing FaitCrowd strategy [14] also considers the quality
of workers on different tasks, our label similarity-based weighting method is totally different
from it. The FaitCrowd strategy jointly models question content and source answering behav-
ior to learn latent topics and estimate the topical source expertise. By contrast, our method
directly uses the similarity among worker labels to estimate the specific quality of the worker
on different instances. Yet at the same time, our method is totally different from the existing
BLC strategy [26] that also takes the features of instances into account. The BLC strategy
utilizes the conceptual-level features extracted from crowdsourced labels to infer the true
labels of instances by clustering. By contrast, our method only uses the original features of
instances to build a classifier to estimate the overall quality of the worker across all instances.

4 Experiments and results

The purpose of this section is to validate the effectiveness of our proposed strategies: WMV-
Freq, WMV-Beta, WPaired-Freq, and WPaired-Beta. Therefore, we designed four groups
of experiments to compare them with the original MV-Freq, MV-Beta, Paired-Freq, and
Paired-Beta, respectively. We conducted our experiments on 12 real-world datasets from the
University of California at Irvine (UCI) repository [5] listed in Table 1, which includes all
nine binary datasets from the website of the CEKA platform [27] and three transformed
binary datasets used in [17].

To simulate a crowdsourcing process to obtain multiple noisy labels of each instance, the
original true labels of all instances were hidden, and all simulated workers were employed
to label each instance. For each worker, the original true label was assigned to each instance
with the probability p, and the opposite value was assigned with the probability 1 − p.
In our experiments, the labeling quality p of each worker was generated randomly from a
uniform distribution on the interval (0.3, 0.9). In fact, in our experiments, we also tested some
other distributions, such as the normal (Gaussian) distribution N (0.65, 0.352), to randomly
generate the labeling quality of each worker. Owing to virtually the same experimental
conclusions and for brevity, we do not present the detailed experimental results here.

After obtaining the multiple noisy label set of each instance, we use label aggregation
strategies to infer its aggregation label. Then, the classifier is built on the training set with the
aggregation labels and evaluated on the test set with the true labels. Because the simulation
process has a certain degree of randomness, we use tenfold cross-validation to evaluate the
classification accuracy of the built classifier. In our experiment, we use C4.5, one of the top 10
data mining algorithms, to estimate the overall quality of each worker τ j ( j = 1, 2, . . . ,m)
in our proposed strategies and evaluate the performance of all label aggregation strategies.
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Table 1 Descriptions of the used
datasets

Dataset #Features #Instances #Positives #Negatives

kr–vs–kp 37 3196 1669 1527

mushroom 22 8124 4208 3916

sick 30 3772 231 3541

spambase 58 4601 1813 2788

tic–tac–toe 10 958 332 626

splice 61 3190 1535 1655

thyroid 30 3772 291 3481

waveform 41 5000 1692 3308

biodeg 42 1055 699 356

horse-colic 23 368 136 232

ionosphere 35 351 126 225

vote 17 435 267 168

Figures 1, 2, 3, and 4 show the detailed classification accuracy (%) comparison results
between our proposed four strategies and their original counterparts, respectively. From
these comparison results, we can see that assigning different weights to different workers
when labeling different instances can largely improve the performance of the existing label
aggregation strategies. Now, we summarize some of the highlights.

1. Our proposed two weighted soft MV strategies (WMV-Freq and WMV-Beta) are better
overall than the original two soft MV strategies (MV-Freq and MV-Beta). Our proposed
twoweighted paired softMV strategies (WPaired-Freq andWPaired-Beta) are also better
overall than the original two paired soft MV strategies (Paired-Freq and Paired-Beta).
All these results validate our viewpoints: different workers should have different labeling
qualities and the same worker should also have different labeling qualities on different
instances.

2. The accuracies of our weighted strategies, WMV-Freq, WMV-Beta, WPaired-Freq, and
WPaired-Beta, are much higher than those of the original MV-Freq, MV-Beta, Paired-
Freq, and Paired-Beta, respectively. However, the advantages between our weighted
strategies and the original strategies gradually degraded as the number of workers
increased.

3. As expected, the accuracies of our weighted strategies and the original strategies rapidly
upgraded as the number of workers increased. However, the same as Paired-Freq [17],
we also notice that the performance of WPaired-Freq does not produce an expected
increment when more and more labels for each instance are available. Its learning
curves are completely flat and even fall back a little over three datasets (i.e., “biodeg”,
“ionosphere”, and “vote”). Why does WPaired-Freq perform so? The fundamental rea-
son is that WPaired-Freq also keeps the noise completely. Suppose there exists an
instance with a multiple noisy label set {+,+,+,−,−} and the labeling qualities of
these five workers are 0.95, 0.6, 0.94, 0.92, and 0.59, respectively. WPaired-Freq repre-
sents it as {(+, 0.6225), (−, 0.3775)}. If these five workers label this instance twice, its
multiple noisy label set becomes {+,+,+,−,−,+,+,+,−,−}. However, WPaired-
Freq represents it as {(+, 0.6225), (−, 0.3775)} as well. It can be seen that as more
labels are acquired for each instance, the certainty of the majority class + and the
certainty of the minority class − do not change anymore. By contrast, WPaired-Beta
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Fig. 1 Classification accuracy (%) comparisons for WMV-Freq versus MV-Freq. The labeling quality p ∈
(0.3, 0.9)

does not incur this issue. For the same example, WPaired-Beta represents them as
{(+, 0.6563), (−, 0.3437)} and {(+, 0.8867), (−, 0.1133)}, respectively. That is to say,
as more labels are acquired for each instance, the certainty of the majority class + keeps
rising and the certainty of the minority class − continues to decrease, which means that
the influence of correct labeling (+) is further strengthened and the influence of incorrect
labeling (−) is further weakened.
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Fig. 2 Classification accuracy (%) comparisons for WMV-Beta versus MV-Beta. The labeling quality p ∈
(0.3, 0.9)

To further validate the effectiveness of our proposed four strategies, we performed another
group of experiments to compare them with some other existing state-of-the-art label aggre-
gation strategies such as ZC [2], RY [16], KOS [9], and GTIC [28]. Owing to virtually
the same experimental conclusions and for brevity, we only show the detailed comparison
results when the number of workers is six. Table 2 shows the detailed comparison results in
terms of the classification accuracy of the target classifier. From these comparison results,
we can see that the average classification accuracies (79.14%, 79.5%, 80.93%, and 83.66%)
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Fig. 3 Classification accuracy (%) comparisons for WPaired-Freq versus Paired-Freq. The labeling quality
p ∈ (0.3, 0.9)

of our proposed four strategies are all much higher than those of ZC (77.47%), RY (78.41%),
KOS (75.65%), and GTIC (76.44%). Besides, we also observed the performance of our pro-
posed four strategies in terms of the integration accuracy, which is defined as the proportion
of instances whose integration labels are the same as their true labels. Table 3 shows the
detailed comparison results. From these comparison results, we can see that the average inte-
gration accuracies (87.72%, 87.57%, 87.95%, and 88.92%) of our proposed four strategies
are all also much higher than those of ZC (83.54%), RY (86.52%), KOS (87.33%), and GTIC
(83.23%).
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Fig. 4 Classification accuracy (%) comparisons for WPaired-Beta versus Paired-Beta. The labeling quality
p ∈ (0.3, 0.9)

5 Discussion

Aswehave validated the effectiveness of our proposed four strategies for binary classification,
we now discuss and extend the proposed new strategies to multi-class classification in this
section.

At first, we focus on how to define the uncertainty of the majority class when multi-class
classification is need. Given amultiple noisy label setLi of the i th instance xi , we can directly
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Table 2 Classification accuracy (%) comparisons for our proposed four strategies versus ZC, RY, KOS, and
GTIC

Dataset ZC RY KOS GTIC WMV WMV WPaired WPaired
-Freq -Beta -Freq -Beta

kr–vs–kp 93.06 98.28 97.93 92.09 94.87 94.68 96.56 96.53

mushroom 84.71 89.89 89.9 84.66 94.07 93.49 98.66 98.58

sick 88.39 90.56 88.22 87.64 89.47 89.15 95.94 97.67

spambase 80.96 74.58 74.87 79.11 80.74 80.74 80.03 81.4

tic–tac–toe 69.02 71.82 69.54 65.97 64.11 65.76 67.34 74.85

splice 50.94 56.52 58.12 50.94 51.22 61.41 50.94 65.08

thyroid 91.99 90.74 89.47 90.27 92.07 92.18 91.91 96.29

waveform 78.1 74.86 74.66 77.76 78.14 79.54 82.1 79.36

biodeg 64.92 58.88 58.59 62.92 68.7 65.3 71.08 73.55

horse-colic 64.51 61.27 58.03 64.21 66.66 63.67 63.7 65.59

ionosphere 79.5 82.33 63.1 80.07 80.09 80.65 80.51 82.32

vote 83.49 91.24 85.38 81.64 89.48 87.39 92.43 92.64

Average 77.47 78.41 75.65 76.44 79.14 79.5 80.93 83.66

Table 3 Integration accuracy (%) comparisons for our proposed four strategies versus ZC, RY, KOS, and
GTIC

Dataset ZC RY KOS GTIC WMV WMV WPaired WPaired
-Freq -Beta -Freq -Beta

kr–vs–kp 88.31 93.54 91.69 82.77 89.54 92.62 92.62 90.77

mushroom 100 100 100 100 100 100 100 100

sick 71.24 91.29 98.68 98.42 81 85.75 93.14 97.63

spambase 91.97 91.97 91.97 81.34 92.19 91.11 90.89 92.84

tic–tac–toe 79.61 75.73 78.64 72.82 79.61 79.61 74.76 79.61

splice 82.45 80.25 82.45 93.73 93.1 92.48 82.45 83.07

thyroid 76.52 92.08 95.42 97.89 95.51 96.83 91.82 99.21

waveform 77.2 74.4 76 77.8 77.8 78.2 78.2 78

biodeg 72.73 80 76.36 78.18 77.27 71.82 77.27 70.91

horse-colic 90.91 90.91 88.64 85.91 90.91 90.91 90.91 90.91

ionosphere 77.78 80.56 80.56 69.44 77.78 77.78 91.67 86.11

vote 93.75 87.5 87.5 60.42 97.92 93.75 91.67 97.92

Average 83.54 86.52 87.33 83.23 87.72 87.57 87.95 88.92

borrow the definitions on the impurity of a given decision-tree node to define its uncertainty
of the majority class. In decision-tree learning, Error, Gini and Entropy have been widely
used for measure the impurity of a given decision-tree node. The detailed definitions are

Error(Li ) = 1 − arg
q

max
j=1

P(ck |Li ), (21)

Gini(Li ) = 1 −
q∑

k=1

P(ck |Li )
2, (22)
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Entropy(Li ) = −
q∑

k=1

P(ck |Li ) log2 P(ck |Li ), (23)

where q is the number of classes and 0 log2 0 = 0.
Then, the corresponding certainty of the majority class are defined as

WHi = 1 − Error(Li ) = arg
q

max
j=1

P(ck |Li ), (24)

WHi = 1 − Gini(Li ) =
q∑

k=1

P(ck |Li )
2, (25)

WHi = 1 − Entropy(Li ) = 1 +
q∑

k=1

P(ck |Li ) log2 P(ck |Li ), (26)

where P(ck |Li ) is the appearance frequency of class ck in Li estimated by

P(ck |Li ) =
∑m

j=1 wi jδ
(
li j , ck

)

∑q
k=1

∑m
j=1 wi jδ

(
li j , ck

) , (27)

where

wi j = 1

Z

1

1 + (q − 1)e−γi j
. (28)

where Z is a normalization constant.
At last, weighted pairing can also be extended by decomposing each instance with a

multiple noisy label set Li into q class-specific weighted instances, where the weight of each
class-specific instance is defined as the certainty of each class P(ck |Li ), respectively.

6 Conclusion and future work

In this paper, we have argued that a single worker may even have different labeling qualities
on different instances. Based on this premise, we have proposed two weighted soft MV
strategies and two weighted paired soft MV strategies. We have simply denoted the resulting
strategies as WMV-Freq, WMV-Beta, WPaired-Freq, and WPaired-Beta, respectively. In
addition, we have proposed a label similarity-based weighting method, which combines the
specific quality of the worker on different instances and the overall quality of the worker
across all instances to estimate the weight of each worker labeling different instances. The
experimental results have validated the effectiveness of our proposed four new strategies.

Given a weighted multiple noisy label set, the definition of the certainty of the majority
class is a crucial problem in our proposed strategies, and thus exploring some other effective
definitions is the main direction for our future work. In addition, exploiting some other
sophisticated weight learning method is another interesting topic for future work.
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