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Abstract
Social media have a great potential to improve information dissemination in our society, yet
they have been held accountable for a number of undesirable effects, such as polarization
and filter bubbles. It is thus important to understand these negative phenomena and develop
methods to combat them. In this paper, we propose a novel approach to address the problem
of breaking filter bubbles in social media. We do so by aiming to maximize the diversity of
the information exposed to connected social-media users.We formulate the problem ofmaxi-
mizing the diversity of exposure as a quadratic-knapsack problem.We show that the proposed
diversity-maximization problem is inapproximable, and thus, we resort to polynomial nonap-
proximable algorithms, inspired by solutions developed for the quadratic-knapsack problem,
as well as scalable greedy heuristics. We complement our algorithms with instance-specific
upper bounds, which are used to provide empirical approximation guarantees for the given
problem instances. Our experimental evaluation shows that a proposed greedy algorithm fol-
lowed by randomized local search is the algorithm of choice given its quality-vs.-efficiency
trade-off.

Keywords Diversity maximization · Filter bubble · Quadratic knapsack ·
Combinatorial optimization · Greedy algorithms

1 Introduction

Social media play a critical role in today’s information society, not only by connecting people
with their friends, but also as a means of news dissemination. A recent survey estimates that
six out of ten adults in the USA get their news on social media [18]. Although initially
it appeared that social media can contribute to the democratization of content generation
and distribution, most recently, a series of negative effects and undesirable phenomena have
emerged, such as filter bubbles, polarization, fake news, and more. An indication for the
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extent of the problem can be seen by Facebook’s own press release that social media can
have the unintended consequence of corroding democracy.1

Given these negative effects, a recent body of research has focused on solving different
aspects of the problem. Recent work in the area includes methods for detecting polariza-
tion [2,5,7,13,15,19], proposals of reducing polarization of opinions by network-engineering
approaches [27,29], as well as recommending users to follow and content to bridge opposing
views [14,23,28], and balancing information exposure in social networks [12].

One particular aspect of the problem is the emergence of filter bubbles in social media
[31], where individuals are connected to like-minded net citizens or information sources of
similar disposition, and as a result, not being exposed to information they disagree with, and
effectively being isolated in their own cultural and ideological bubbles. By considering that
a filter bubble may be attributed to the lack of diversity in the exposure of information, a
desirable objective is to maximize the total diversity of the information that users receive
in the social network. In this paper, we aim at achieving this objective by formulating a
novel measure of diversity in a social network, which we call diversity index, and proposing
efficient algorithms to maximize this measure.

To justify our approach, we make a few assumptions. First, we assume that the operators
of the social-network platform gather user data, which can be used to build user models and
infer user leanings with respect to different topics. Second, we assume that it is possible to
maximize the diversity of content consumed by a given user via injecting diverse content
in the feed of the user. Furthermore, an important aspect of our approach is that diversity
can also be increased if users have contacts with different leanings than theirs. Finally, we
assume that it is best not to interfere with the organic operation of the network and make
only a small number of recommendations that aim to maximize diversity.

Therefore, in addition to content that circulates in the network organically via shares and
re-posts among users, the social-media platform may consider to strategically recommend
suitably chosen content to selected individuals in order to increase diversity. Note that in
order to increase transparency, the social-media platform may need to distinctly mark, or
display in a specific format, such recommendations so that users are aware of its presence
and objective. Additionally, users may need to opt in to receive such recommendations. We
consider, however, that such design considerations are orthogonal to our study and beyond
the scope of this paper.

A desirable property for such a mechanism of diversity-enabling recommendations is that
the social-media platform should make a small amount of recommendations, as these can be
perceived as interventions to the organic operation of the network. Thus, a natural question
to ask is: “given a fixed amount of content-recommendation activity, which users should we
target andwhat recommendations tomake, so as tomaximally increase diversity?” Intuitively,
we would like to target users who are part of filter bubbles (their friends and themselves
are exposed to similar content), are influential among their connections, and are likely to
take into account the recommended content. The importance of leveraging the structure of
social connections and their strength in order to break filter bubbles is highlighted by recent
empirical studies,2 which found that social trust has a higher impact on the likelihood of
consuming a news story than the source of the story itself.

1 http://money.cnn.com/2018/01/22/technology/facebook-democracy-social-media/index.html, January 22,
2018.
2 https://www.americanpressinstitute.org/publications/reports/survey-research/trust-social-media/, March
20, 2017.
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(a) Echo-chamber graph (b) Graph with diversified exposure

Fig. 1 Toy graph with different exposure assignments

Our problem setting puts together all these components. To formulate a well-defined prob-
lem, we make additional modeling assumptions. We assume that we know the structure of
the social graph and the influence that users exert on each other, expressed as edge weights
on the social graph. We also assume that we can quantify the information exposure of each
individual as a number in a prespecified range (we use [−1,1]), e.g., expressing the grade of
the content consumed by an individual in a continuous spectrum, for example, conservative-
liberal. Finally, we assume that we can estimate the degree to which an individual is likely
to take into account a specific recommendation, e.g., the probability to re-post the recom-
mended item. The problems of estimating these parameters, as well as the problem of making
appropriate diversity-enabling recommendations for a given user, are beyond the scope of
this paper and are left for future work. However, we believe that they are meaningful and
realistic problems, which can be solved with good accuracy, and thus, supporting our overall
approach.

Example A toy example demonstrating our concept is shown in Fig. 1, using the karate club
network, which is known to contain two communities. The colors on the nodes represent
different exposure levels, say two different “news diets” that the network users consume.
In Fig. 1a, each community has different exposure levels, leading to a network with echo
chambers and no diversity. In Fig. 1b, we depict the optimal solution to our problem, where
we ask for the best k = 4 users, to change their exposure and maximize the total network
diversity—assuming that all users opt in to receive alternative news diets and the user cost is
constant. In this simple example, the algorithm picks the two hubs of each community. ��

From the technical point of view, we first define the diversity index, which is a global mea-
sure of diversity in a social network, reflecting the structure of the network and the exposure
of users from different viewpoints. Then, we formulate the problem of maximizing diversity
of exposure as the problem of maximizing the diversity index. We show that the diversity-
maximization problem we define is a special case of the quadratic-knapsack problem (qkp)
[10]. The proposed problem formulation combines our modeling assumptions in a concise
way, while resulting in an interesting algorithmic problem through the novel connection to
quadratic knapsack.

Our first result shows that the diversity-maximization problem is not only NP-hard, but
also NP-hard to approximate within a multiplicative factor. Thus, we study a number of
polynomial algorithms inspired by the quadratic-knapsack formulation, such as methods
based on semidefinite-programming (sdp) relaxation and linearization techniques. We also
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propose two scalable greedy algorithms, which take advantage of the special structure of our
problem.

Our results show that the sdp-based algorithm is the best performing on a diverse range
of settings, followed very closely by one of the greedy methods. This is very useful because
while the sdp algorithm is expensive, the greedy has linear complexity with respect to the
number of nodes in the network, and thus, has excellent scalability properties.

Our relaxation provides upper bounds on the quality of solution. In addition, we propose
alternative upper bounds with varying trade-offs of tightness-vs.-efficiency. All these bounds
allow us to obtain empirical approximation guarantees for given problem instances. For
instance, for the problem instances used in our experiments, we are able to assert that our
algorithms give solutions with typical approximation factor between 1.5 and 2.5, despite the
problem being NP-hard to approximate.

In summary, in this paper we make the following contributions:

– Inspired by the problem of breaking filter bubbles, we formulate the problem of maxi-
mizing the diversity of exposure, as a special case of the quadratic-knapsack problem.

– We prove that the diversity maximization problem is NP-hard to approximate within a
multiplicative factor.

– We study several algorithms for the problem, including an sdp-based algorithm, an
algorithm based on linearization, and two greedy methods.

– We develop upper bounds with different trade-offs of tightness-vs.-efficiency, which
provide empirical approximation guarantees for given problem instances.

– We present an extensive experimental evaluation that provides evidence for the best
performing methods and quality-vs.-efficiency trade-offs.

The rest of the paper is organized as follows. We start our presentation by reviewing the
related work in Sect. 2. We then present our notation in Sect. 3, and we formally define
the diversity-maximization problem in Sect. 4. The NP-hardness proof is also presented in
Sect. 4. In Sect. 5, we discuss algorithms for the binary version of the problem, andwe present
upper bounds for the optimal solution. The extension of the diversity-maximization problem
to the continuous case is discussed in Sect. 6. We present our experimental evaluation in
Sect. 7, and we conclude in Sect. 8 by offering our final remarks and suggestions for future
work.

An earlier version of this paper appeared in the ICDM 2018 conference [26]. In this
submission, we have extended the conference version by studying continuous formulations
of the diversity-maximization problem (Sect. 6) and conducting empirical evaluation of those
continuous extensions (Sect. 7).

2 Related work

Our work relates to the emerging line of work on breaking filter bubbles and reducing polar-
ization on social media. To the best of our knowledge, this is the first work to approach
this problem from the point of view of increasing diversity of information exposure and
formulating it as a quadratic-knapsack-style problem.

Detecting polarization Recently, a significant body of work has emerged that focuses on
measures for characterizing polarization in online social media [2,7,13,19,27]. These works
consider mainly the structure in social-media interactions and quantify polarization or com-
pute node polarity scores using network-based techniques. Other papers study the emergence
of polarization on various opinion-formation models: Dandekar et al. [8] generalize DeG-
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root’s model to account for biased assimilation, while Vicario et al. [33] propose a variant
of the bounded-confidence model, where discordant edges are rewired and two opposing
opinion clusters emerge.
Reducing polarization Given the negative effects of fragmentation, there has been recent
work that focuses on methods for reducing polarization [14,27,29]. Matakos et al. [27] study
the problem of convincing a set of individuals to adopt a neutral opinion and act as mediators
in the discussion. Musco et al. [29] study a similar problem, albeit with the dual objective
of minimizing both polarization and disagreement among individuals. Garimella et al. [14]
consider the problem of introducing new edges between the two sides of a controversy, so as
to reduce polarization.

There are two key differences between these works and our approach. First, while these
works focus on minimizing other measures of polarization, our aim is to maximize the
diversity of content to which an individual is exposed. Second, while these works consider
how to affect user opinions, we only consider the exposure of a user. We consider our setting
more realistic since in practice it is difficult to know the user opinions.

A complementary line of work studies mechanisms that expose social-media users to
content that is not aligned with their prior beliefs [23,28,34]. While these works focus on
how to present information to users, addressing issues of interface and incentives, our work
addresses the question of who to approach with the new information.
Quadratic knapsack Our formulation maps the diversity-maximization problem to a special
case of the quadratic-knapsack problem (qkp). The general form of qkp was introduced
by Gallo et al. [10]. A classical technique to solve 0–1 quadratic problems is to linearize
them by introducing auxiliary variables and transforming the problem to an integer linear
program (ilp) formulation. Glover et al. [16] presented a concise way to rewrite a 0–1
quadratic problem as an equivalent 0–1 linear program with only n auxiliary variables and
4n constraints.

Of particular interest are semidefinite-programming (sdp) techniques, as they can yield
tighter relaxations than using linearization, albeit at the expense of higher running time.
Therefore, central to our work is the methodology of Helmberg et al. [20], who approach
qkp by introducing a series of sdp relaxations of increasing tightness. Additionally, to
strengthen the formulation, a number of inequalities defining the qkp polyhedron (called
the Boolean quadric polytope) have been studied [30]. On a high level, our problem is also
related to the max- cut problem, which has been shown to admit an approximation ratio
of 0.878 [17], using semidefinite programming. However, as we prove shortly, our problem
is harder as it admits no polynomial approximation guarantee.

3 Diversity index

Consider a social network represented as a graph G = (V , E, w), where the node set V
represents a set of individuals, the edge set E represents social connections, andw : E → R+
is a weight function that represents the strength of the social connections. The weight of an
edge (i, j) ∈ E is denoted bywi j . The number of nodes and the number of edges are denoted
by n and m, respectively.

We write A to denote the adjacency matrix of the graph G, whose entry Ai j is equal to
wi j if (i, j) ∈ E , and 0 otherwise. We assume that the graph G is undirected, and so A is
symmetric. We also denote byD the diagonal matrix whose i th diagonal entry is equal to the
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weighted degree of individual i , i.e., Dii = ∑
j wi j . The Laplacian matrix of the graph G is

L = D − A.
We assume that each individual i ∈ V has an overall exposure to content represented by

a value si . The value si may represent the leaning of the content individual i is exposed to
on an issue, as measured by endorsed or shared news articles. Without loss of generality, we
assume that si ∈ [−1, 1]. We also consider the discrete case where si ∈ {−1, 1}. The vector
of exposure for all the individuals in the graph is denoted by s = [si ]i∈V .

Given a vector of exposure s for the individuals of a network, we are interested in measur-
ing the network diversitywith respect to s. Intuitively, high diversity should indicate thatmany
individuals tend to have different exposures than those of their social connections. Further-
more, diversity should account for the strength of social connections. These considerations
motivate our definition of the diversity index in a social network.

Definition 3.1 (Diversity index) Given a graph G = (V , E, w) and a vector of exposure
s ∈ [−1, 1]n for the individuals in V , the diversity index η(G, s) of the graph G with respect
to the exposure vector s is defined as:

η(G, s) =
∑

(i, j)∈E
wi j

(
si − s j

)2
. (1)

An equivalent way of writing Eq. (1), using the laplacian L of the graph G is:

η(G, s) =
∑

(i, j)∈E
wi j

(
si − s j

)2 = s�Ds − s�As = s�L s. (2)

Higher value for the diversity index indicates more diverse networks.
In the rest of the paper, given a vector x we write Diag(x) to denote the matrix with x as

its diagonal and given a matrix X, we write Diag(X) to denote the vector corresponding to
the diagonal of X. As it is common, we denote by Tr(X) the trace of a matrix X. Finally, we
write X � 0 to denote that X is a positive semidefinite matrix.

4 Problem formulation

In this manuscript, we will first focus on the discrete case where exposure si is either −1
or 1. This corresponds to the case where discussions are characterized by two dominant
and opposing perspectives, which, exacerbated by filter bubbles, often leads to polarization
and lack of diversity of exposure: Some examples are the fragmentation into liberals vs.
conservatives, brexit vs bremain, right wing vs left wing. Additionally, this assumption leads
to a more attractive formulation, while being at least as challenging computationally. We also
investigate the continuous case but provide it more as an extension.

Our goal is to maximize the diversity index η(G, s) of a graph G, assuming that we
know the current exposure vector s. We consider maximizing the diversity index by selecting
individuals and “flipping” the leaning of their exposure (from −1 to 1, or vice versa), under
a budget constraint.

As mentioned in Introduction, changing the exposure of a individual corresponds to rec-
ommendations that an individual possibly opts in. The issue of interface and communication
with the individuals is of independent interest, and we consider it orthogonal to our work.

Given an exposure vector s, after changing the exposure of k individuals, the new exposure
vector can bewritten as y = s−s′, where s′ is a sparse vector with atmost k nonzero elements.
In particular, s′

i = −2 if si = −1 and s′
i = 2 if si = 1. Alternatively, we can write the new
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exposure vector as y = s− 2Diag(s) x, where x ∈ {0, 1}n is an indicator vector with xi = 1
if the exposure of the i th individual has changed and xi = 0 otherwise. This formulation
highlights the nature of the problem as a variable-selection problem.

We consider a knapsack-type constraint for x with a weight vector b, where bi expresses
the cost in altering the exposure of individual i (for example, some individuals may have a
strong predisposition toward certain issues). We define the following problem:

Problem 1 Given a graph G = (V , E), an exposure vector s, a node weight vector b, a
budget k, we ask to find a binary vector x, such that the knapsack constraint b�x ≤ k is
satisfied and the resulting diversity index η(G, y) is maximized, where y = s − 2Diag(s) x.

We now formulate the corresponding optimization problem. Using the definition of the
diversity index from Eq. (2), we have

y�Ly = (s − 2Diag(s) x)� L (s − 2Diag(s) x)

= s�L s + 4 x� Diag(s)LDiag(s) x

−4 s�LDiag(s) x.

Recall that we want to maximize this quantity. The term s�L s is a constant and has
no influence on the maximization and, therefore, can be removed from the objective. For
convenience, we define

Q = Diag(s)LDiag(s), q = s�LDiag(s), and

P = Q − Diag(q). (3)

Note that P is constant and does not depend on the optimization variable x. We take
advantage of the fact that x = x2 to write our program in purely quadratic form. We define
the following quadratic binary knapsack (qbk) problem:

max x�P x

subject to b�x ≤ k, b ∈ R
n

x ∈ {0, 1}n .

(qbk)

It is not difficult to see thatqbk isNP-hard, by a simple transformation frommax- cut.
It suffices to set bi = 0, and the problem reduces to:

max y�Ly
subject to y ∈ {−1, 1}n ,

which is equivalent to a general instance ofmax- cut. Despite this similarity, our problem
is harder than max- cut. This is because max- cut admits an approximation algorithm
with ratio 0.878 [17], while it can be shown that qbk is inapproximable.

Proposition 1 The qbk problem is NP-hard to approximate.

The proposition asserts that there cannot be a polynomial-time approximation algorithm
for the qbk problem with a multiplicative approximation guarantee. It does not preclude
through the existence of an algorithm with additive approximation guarantee.

Proof We prove the proposition by a reduction from subset- sum, a known NP-complete
problem [11]. An instance of subset- sum consists of n + 1 positive integers m1, . . . ,mn

and M . The problem asks whether there is a subset S ⊆ {1, . . . , n} such that ∑i∈S mi = M .
Define A = ∑n

i=1 mi .
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Given an instance of subset- sum, we construct an instance of qbk as follows: The
underlying graph G is a star graph with n + 1 leaves. The central node is node 0. We assign
weights to edges (0, i) by w0,i = −mi , for i = 1, . . . , n, and weight w0,n+1 = M − A − 1
to edge (0, n + 1). We set the budget k = M and the node weights b0 = 0, bi = mi , for
i = 1, . . . , n, and bn+1 = M + 1—for bn+1, any other number bigger than M also works,
since the goal is to make selection of this coefficient infeasible. Finally, we set si = 1, for
all i = 0, 1, . . . , n, n + 1, so that the matrix P is the Laplacian L. Observe that the resulting
laplacian has the form

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−M + 1 m1 · · · mn M − A − 1
m1 −m1 · · · 0 0
...

...
. . .

...
...

mn 0 · · · −mn 0
M − A − 1 0 · · · 0 −M + A + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Now consider a binary vector x = [xi ]i=0,...,n+1. We interpret x as a solution to qbk, and
the coordinates [x1, . . . , xn] as indicator variables for a solution to subset- sum.

First, note that due to the knapsack constraint b�x ≤ M , since bn+1 = M + 1 and since
bi ≥ 0 for all i , it is xn+1 = 0.

If x0 = 0, then any feasible solution to qbk can be at most 0, and in fact, the value 0 can
be obtained by the feasible vector x = 0.

If x0 = 1, let S ⊆ {1, . . . , n} be the set of all other nonzero coordinates in a feasible
solution to qbk. The value of the solution is f = (−M + 1) + 2

∑
i∈S mi − ∑

i∈S mi =∑
i∈S mi −M+1. Due to the knapsack constraint

∑
i∈S mi ≤ M , it follows that if the answer

to subset- sum is no we have f ≤ 0, while if the answer to subset- sum is yes then
f can obtain the value 1.
We conclude that the optimal value toqbk is 1 if and only if the answer to subset- sum

is yes, while the optimal value to qbk is 0 if and only if the answer to subset- sum is
no.

Furthermore, any polynomial-time approximation algorithm with a finite (multiplicative)
approximation guarantee that could be used to solve qbk will need to provide a nonzero
value for qbk if and only if the answer to subset- sum is yes. Thus, no such algorithm
can exist, unless P = NP. ��

5 Algorithms

In this section, we discuss the proposed algorithms for the diversity-maximization problem
and present upper bounds on the optimal solution.

We start by the observation that qbk is a nonconvex optimization problem (due to P
being not positive semidefinite and the constraint x ∈ {0, 1}n), which is expected since
convex problems can be solved in polynomial time. We can show, however, that we can still
produce a convex semidefinite relaxation to this problem. Such a relaxation forms the basis
for our first algorithm.
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5.1 Semidefinite-programming relaxation

Semidefinite-programming (sdp) relaxations have long been studied in the optimization
community. The idea was introduced by Lovasz [24], but it was arguably the seminal work
of Goemans and Williamson for the max- cut problem [17] that brought sdp relaxations
into the spotlight.

We have noted that our problem (qbk) is a nonconvex 0–1 quadratic program with a
linear constraint on x. The general quadratic knapsack problem, first introduced by Gallo et
al. [10], is defined for an arbitrary symmetric matrix. Since its introduction, a multitude of
methods have been developed to solve the problem. Of particular interest to us is the work
of Helmberg et al. [20], in which they introduce a series of sdp relaxations.

Now we present the sdp relaxation to the qbk problem.

Lift to amatrix variable As is the common practice with semidefinite relaxations, we “lift”
the program to the space of square matrices. In particular, we lift vector x to a matrix X by
introducing the constraint X = x x�. This constraint is equivalent to X having rank 1 and
being positive semidefinite. However, the rank 1 constraint is not convex; thus, we relax it to
X � x x�. From the Schur complement, this is equivalent to

[
X x
x� 1

]

� 0.

Observe that the constraint X − x x� � 0 implies also that X � 0.

Objective function The objective of the sdp relaxation is written as a function of the new
variable X in the trace form Tr(PX), since x�P x = Tr(x�P x) = Tr(P x x�).

Integrality constraint The integrality constraint x ∈ {0, 1}n can be written as x2 = x. In
the sdp relaxation, we write this as diag(X) = x. We note that the polytope corresponding
to the 0–1 quadratic optimization problem is called the Boolean quadric polytope [30]. The
Boolean quadric polytope has a number of facet-defining inequalities, which can used to
tighten the relaxation by cutting off parts of the relaxation polytope.

Knapsack constraintWe now proceed to describe how to express the linear knapsack-type
constraint b�x ≤ k with respect to the new variable X. One straightforward way is to apply
the constraint on the diagonal elements of X, leading to

Tr(Diag(b)X) ≤ k. (4)

In order to further tighten the relaxation, we replace constraint (4) by a tighter one, which is
due to Helmberg et al. [20]. In their work, they show that the square representation constraint

Tr(bb�X) ≤ k2

is tighter than constraint (4).

The resulting sdp relaxation Putting everything together, our sdp relaxation becomes

max Tr(PX)

subject to Tr(bb�X) ≤ k2

X − x x� � 0

diag(X) = x.

(sdp- qbk)

The sdp- qbk problem is convex and can be solved efficiently by readily available
packages.
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Rounding Let Opt = (X∗, x∗) be an optimal solution of sdp- qbk, obtained by a convex-
optimization solver.

The last step is to round the optimal solution Opt to a binary vector x̄ that is a feasible
solution for the qbk problem.

In order to derive such a binary solution for qbk, we follow the randomized-rounding
approach proposed by Luo et al. [25]: Consider a semidefinite program (p) over a binary
vector x and its relaxation (r) over a lifted variable matrixX, whereX = x x�. LetX∗ be the
optimal solution to (p), and consider a random vector z drawn from a Gaussian distribution
with zero mean covarianceX∗, or, z ∼ N (0,X∗). It can be shown that z defines a distribution
forwhich the quadratic objective of (r) ismaximized and its quadratic constraints are satisfied
in expectation. Then, a feasible binary solution x̄ to (p) can be constructed as follows:

1. solve (r) to find optimal solution X∗;
2. draw z ∼ N (0,X∗);
3. round z to a binary x̄;
4. repeat (3) until the constraints of (p) are satisfied.

As shown by Luo et al. [25], in certain cases, this randomized-rounding technique can give
solutions with a provable quality guarantee. This is clearly not the case in our problem, as
we have shown that it is inapproximable. However, the randomized-rounding technique can
still be used as a powerful heuristic in the context of sdp relaxation.

In our case, after solving the relaxed problem sdp- qbk and obtaining an optimal solution
Opt = (X∗, x∗), we draw a random vector z ∼ N (x∗,X∗ − x∗ x∗�), The coordinates of
x∗ are between 0 and 1, and the coordinates of z are truncated to be between 0 and 1. The
vector z is rounded to a binary vector x̄ using randomized rounding, i.e., x̄i is set to 1 with
probability equal to zi .

The optimal solution Opt = (X∗, x∗) of sdp- qbk maximizes the stochastic quadratic
objective

Ez∼N (x∗,X∗−x∗ x∗�)

[
z�P z

]
,

which is also the stochastic version of the objective for qbk. The optimal solution Opt =
(X∗, x∗) also satisfies the constraint

Ez∼N (x∗,X∗−x∗ x∗�)

[
z�bb�z

]
≤ k2.

Thus, the binary vector x̄ obtained by the randomized rounding satisfies the constraint
x̄�bb�x̄ ≤ k2 in expectation. In addition, until x̄ satisfies the knapsack constraint of the
qbk problem b�x̄ ≤ k, new randomized binary vectors x̄ are drawn. The resulting algo-
rithm SDP-Relax is shown as Algorithm 1.

5.2 Glover’s linearization

An alternative way to handle the quadratic programs is to perform linearization, i.e., refor-
mulate the quadratic program as a linear program using auxiliary variables and constraints. A
concise way to linearize a 0–1 quadratic programs is Glover’s linearization [16]. According
to this technique, we set zi = xi

∑n
j=1 Pi j x j and reformulate our program as:

maximize
n∑

i=1

zi (glover)
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Algorithm 1: SDP-Relax
input : matrix P; node weights b; budget k; number of iterations I
output: indicator vector x̄

1 solve sdp- qbk and obtain Opt ← (X∗, x∗);

2 form covariance matrix � ← X∗ − x∗x∗�;

3 compute the Cholesky factorization � = VV�;
4 initialize x̄ ← 0 and f ← 0;
5 for i ← 1, . . . , I do
6 sample z ← x∗ + V r, where r ∼ N (0, I);

// z ∼ N (x∗,X∗ − x∗ x∗�)

7 do
8 x̄′ ← randomized_rounding(z);
9 while b�x̄′ > k;

10 if f < x̄′P x̄′� then
11 x̄ ← x̄′ and f ← x̄′P x̄′�;

12 return x̄;

subject to x ∈ {0, 1}n
n∑

i=1

xi ≤ k

xi Li ≤ zi ≤ xiUi , i = 1, . . . , n (5)
n∑

j=1

Pi j x j −Ui (1 − xi ) ≤ zi , i = 1, . . . , n, (6)

zi ≤
n∑

j=1

Pi j x j − Li (1 − xi ), i = 1, . . . , n, (7)

where Li andUi are lower and upper bounds for zi , respectively. Observe that we can easily
obtain such bounds; for each Li , it suffices to set x j = 0 if Pi j < 0 and x j = 1 if Pi j ≥ 0,
while to obtain Ui it suffices to set x j = 0 if Pi j ≥ 0, and x j = 1 if Pi j < 0.

Inequalities (5)–(7) enforce the following equivalence between problems qbk and
glover. If xi = 0 for some i , then (5) ensures that zi = 0 and (6)+(7) are redundant.
If xi = 1 for some i , then (6)+(7) ensure that zi = ∑n

j=1 Pi j x j and (5) is redundant. In either
case, zi = xi

∑n
j=1 Pi j x j for each i .

After formulating glover, we solve the continuous relaxation of this integer program,
and we obtain a bound on the initial program. The obtained fractional solution x is converted
into a binary vector x̄ using a similar procedure as before:We repeatedly perform randomized
rounding, where each x̄i is set to 1 with probability equal to xi , until we obtain a feasible
solution.

5.3 Greedy algorithms

Solving an sdp problem, up to a desirable accuracy ε, requires time polynomial in the
problem size n and log 1

ε
. However, sdp solvers are using expensive interior-point methods

with running time Õ(n3). Thus, the SDP-Relax algorithm discussed in the previous section
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is expected to produce solutions of high quality, but it is not scalable to problem instances of
large size.

In this section,wepresent twogreedy algorithms for theqbkproblem,which scale linearly
to the size of the input graph. Additionally, as we will see in our experimental evaluation,
the greedy algorithms yield solutions of extremely high quality, in practice.
Simple greedy The first scalable algorithm is a simple greedy (S-Greedy), which takes
advantage of the structural properties ofP. Recall fromEq. (3) that the entries ofP incorporate
information about the structure of the social network, as well as the exposure values of the
neighbors of each node.

Notice that the diagonal entries Pii of matrix P take values in [−Dii , Dii ], where Dii is
the weighted degree of node i , while the rest of the matrix is sparse. Also observe that in
the 0–1 quadratic function x�P x, setting an element of x to 1 means that the corresponding
diagonal element of P is selected. Therefore, it is beneficial to select first those indices that
correspond to the highest diagonal values of P. In order to account for the node weight b,
we select the node with the highest ratio Pii/bi , that is, the most cost-effective node for its
contribution to the objective.

Altogether, the S-Greedy algorithm selects nodes in descending order of value Pii/bi ,
while the total weight of selected nodes (

∑
i bi xi ) does not exceed the budget k.

Iterative greedyAnobvious drawback ofS-Greedy is that nodes are selected independently,
and thus, selected nodes may have the effect of canceling each other.

Our second greedy strategy (named iterative greedy, or simply I-Greedy) overcomes
this drawback by selecting nodes iteratively and evaluating the gain in the objective function
for each new node. The I-Greedy algorithm first generates a feasible solution x by initially
setting all nodes to 0. Then, it iteratively sets the value of a variable from 0 to 1, so as to
achieve the highest gain in the objective value, normalized for node cost, i.e., it selects the

node i that achieves the highest value of the ratio x′�P x′
bi

, where x′ differs from the current
solution x as to having its i th coordinate equal to 1 instead of 0. The algorithm continues
adding nodes, while the total weight of selected nodes (

∑
i bi xi ) does not exceed the budget k.

To further explore the search space and allow the possibility of recovering from a bad
choice during the greedy selection, we enhance the algorithm with an additional local search
step. According to this, a node in the current solution is selected at random, removed from
the solution, and other nodes are selected greedily to replace the removed node. The local
search step is repeated for a given number of iterations I . The I-Greedy algorithm returns
the best solution found during its execution.

The I-Greedy algorithm is described in Algorithm 2.
To analyze the running time ofI-Greedy, consider the computation of the value x′�P x′.

A naïve implementation uses vector-matrix multiplication and results in complexity O(n2).
However, we can improve the running time considerably, by observing that multiplying a
matrix with a binary vector is equivalent to selecting its rows or columns that correspond
to indices with value 1 in the vector. Therefore, we can compute the updated value x′�P x′
by selecting a single column and row for the new index and summing the nodes that are
indexed by the current index set. Assuming that a solution has at most � nodes, the cost is
O(�). The total cost in selecting the best index is O(n�). Overall, the total running time of
the I-Greedy is O(n�2 I ). In typical scenarios, we can assume �, I << n, making the
algorithm very efficient.

123



Tell me something my friends do not know: diversity… 3709

Algorithm 2: I-Greedy
input : matrix P; node weights b; budget k; iterations I
output: indicator vector xb

1 initialize xb ← 0, x ← 0 and f ← 0;
2 for i ← 1, . . . , I do
3 x′ ← x;
4 while b�x′ ≤ k do
5 x ← x′;
6 j∗ ← argmax j

{
x′�P x′

b j
| x′ ← x and x ′

j ← 1
}
;

7 x ′
j∗ ← 1;

8 if f < x�P x then
9 xb ← x and f ← x�P x;

10 r ← random { j | x j = 1};
11 xr ← 0;

12 return xb;

5.4 Mixed-integer quadratic programming

For problem instances of small size, we can solve qbk optimally, using a mixed-integer
quadratic programming package. Although the computational complexity of such a method
is exponential in the worst case, powerful general-purpose solvers may work well for real-
world (not worst-case) inputs.

By solving the problemoptimally on small-size datasets,we can evaluate ourmore scalable
techniques by checking how far off they are from the optimal solution. In our experiments,
we use cplex, a standard mixed-integer quadratic programming solver.

5.5 Upper bounds

In this section, we derive three upper bounds for problem qbk. Our bounds are applicable
to the special case of all nodes having the same cost (b = 1). This is equivalent to setting a
cardinality constraint on vector x. The bounds also hold in the case that bi ≥ 1, but they may
not be as tight in that case. The three bounds we present differ in computational complexity
and tightness.

Computing a tight upper bound for our problem has several benefits. First, we can compare
the upper bound with the value of the solution obtained by amethod and having an estimation
of the approximation for a particular problem instance. Second, a bound can be used to speed
up some of our algorithms, e.g., in a branch-and-bound routine when computing the optimal
solution, or as a cutting plane in the sdp relaxation algorithm.

The Rayleigh theorem for Hermitian matricesM provides an upper bound for the quantity
x�Mx based on the maximum eigenvalue λmax(M) ofM:

x�Mx ≤ λmax(M) x�x.

The constraint 1�x ≤ k implies that x�x ≤ k, and therefore:

x�P x ≤ λmax(P) x�x ≤ λmax(P) k.
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We can estimate the dominant eigenvalue λmax(P) iteratively. Taking advantage of the
sparsity of P, the complexity of estimating this bound is O(r I ), where r is the number of
nonzero elements in P and I is the number of iterations required for convergence.

Our second bound can be computed in time O(n), based on the following lemma, which
is a consequence of Gershgorin’s theorem.

Lemma 1 λmax(M) ≤ R = maxi
{
Mii + ∑

i �= j |Mi j |
}

.

Recall the definition of P, and observe that Pii = −s�L·i si and Pi j = si Li j , for i �= j ,
where L·i is the i th column of the Laplacian matrix, and Li j the (i, j) entry. It follows that
Pii + ∑

i �= j |Pi j | = Pii + Dii , where Dii is the weighted degree of node i . From Lemma 1,
it follows that λmax(P) ≤ R = maxi {Pii + Dii } and consequently

x�P x ≤ kR.

The third bound is based on the following observation: Given upper bounds on the rows
of P, due to the cardinality constraint on x, the value of the objective function can be at most
the sum of the k highest row upper bounds. Accordingly, an upper bound on each row can be
obtained by summing the top k nonnegative nodes. This bound is more expensive than the
other two, as it requires O(n2) operations, but we expect it to be tighter.

6 Continuous extensions

Here, we extend our problem formulation and we provide two continuous variants. In the first
variant, wewant to select k individuals andmodify their exposure to some value in the interval
[−1, 1]. The goal is again to maximize the diversity index. The choice of the algorithm is
which individuals to select and a recommended exposure level for each one of them.We show
that in the first variant the optimal solution is reached when the new exposure vector takes
extreme values. We also propose a second variant of our continuous problem formulation, in
which we introduce an �2 constraint to bound the total change that the exposure vector s is
subject to.

6.1 Bounded-box diversity maximization

We start our exposition with the first problem variant, where we assume that the entries of
the input exposure vector si as well as the entries of the output exposure vector yi can take
any real value in the interval [−1, 1].
Problem 2 (Bounded-box diversity maximization) Given a graph G = (V , E, w) and an
exposure index vector s with si ∈ [−1, 1], i = 1, . . . , n; change at most k elements in s to get
a new exposure index vector y with yi ∈ [−1, 1], i = 1, . . . , n, such that the new diversity
index η(G, y) is maximized.

Problem 2 has a direct mathematical programming form as in Eq. (8).

maximize
y

η(G, y)

subject to ||y||∞ ≤ 1,
and card(y − s) ≤ k.

(8)
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Recall that η(G, y) = s�L s, where L is the Laplacian matrix of G. Since L is a positive
semidefinite matrix, without the cardinality constraint the maximization problem defined
by Eq. (8) is convex. According to the representation theorem [4, Chapter 2, page 72], the
optimal solution of convex maximization over a polyhedral set lies on its extreme points.
Similarly, as we show in Lemma 2, under the cardinality constraint in Eq. (8), the solution is
obtained for yi ∈ {−1, 1, si }, for all i = 1, . . . , n.

Lemma 2 In the optimal solution of Problem 2, it is yi ∈ {−1, 1, si }, for all i = 1, . . . , n.

Proof We write y� as [y�
1 y y�

2 ], where y is any element in y. Let � be the coefficient of y2

in the polynomial y�Ly. Then, � is one of the elements at the diagonal of the Laplacian L,
and y�Ly can be written as C1 +C2y + �y2. Here, C1 and C2 are independent of y. Since �

is a diagonal element of L, it is nonnegative. It follows that argmaxy∈[−1,1] y�Ly is either
1 or −1. ��

According to Lemma 2, Problem 2 can be equivalently expressed by Eq. (9):

maximize
y

y�Ly

subject to yi ∈ {−1, 1, si }, for all i = 1, . . . , n,

card(x) ≤ k,
and x = y − s.

(9)

A drawback of the above formulation is that it does not explicitly show which entries
of s are changed in the solution y. To address this issue, we reformulate our maximization
problem as follows: Let a be a binary vector, with ai = 1 if si is changed to 1, and ai = 0
otherwise. Similarly, let b be a binary vector, with bi = 1 if si is changed to −1, and bi = 0
otherwise. Let sa = e − s, and let sb = −e − s; We have

x = Diag(sa) a + Diag(sb)b.

Then, Equation (9) can be written as follows:

maximize
a,b

(s + x)�L (s + x)

subject to a ∈ {0, 1}n,
b ∈ {0, 1}n,
ai + bi �= 2, for all i = 1, . . . , n, and
e�(a + b) ≤ k.

(10)

Wefirst observe that the inequality constraint can be droppedwithout changing the optimal
solution of the problem defined by Eq. (10).

Lemma 3 Dropping the inequality constraint (ai + bi �= 2, for all i = 1, . . . , n) does not
influence the optimal solution of the problem defined by Eq. (10).

Proof Consider a solution with ai +bi = 2 for some i = 1, . . . , n. Since ai and bi are binary,
we have ai = bi = 1. Since x = Diag(sa) a + Diag(sb)b, we have xi = sai + sbi = −2si ,
which means that si is changed to −si . Furthermore, such a solution contributes exactly 2
to the cardinality of a + b. However, as proved in Lemma 2, if si is changed in the optimal
condition, then it should be changed to either 1 or −1. We conclude that ai + bi �= 2 will not
be violated in the optimal solution, and thus, it can be dropped. ��
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Let v be a binary vector of dimension 2n that concatenates vectors a and b, i.e., v� =
[a� b�]. We also define q� = [s�LDiag(sa) s�LDiag(sb)], and

P =
(
Diag(sa)LDiag(sa) Diag(sa)LDiag(sb)
Diag(sb)LDiag(sa) Diag(sb)LDiag(sb)

)

.

Then, Eq. (10) can be written as follows:

maximize
v

v�P v + 2 q�v + c1

subject to v ∈ {0, 1}2n
and e�v ≤ k

(11)

Note that the inequality constraint in Eq. (10) has been dropped from Eq. (11), according
to Lemma 3. The problem defined by Eq. (11) is an instance of the quadratic binary knapsack
problem (qbk). As we saw in Sect. 4, qbk is an NP-hard and inapproximable problem
[21,32]. To solve this problem by efficient heuristics, we use the same techniques as in the
discrete version of our problem formulation, i.e., semidefinite programming relaxation and
greedy algorithms.

Semidefinite relaxationWe introduce a 2n × 2n matrix V with V = vv�. We also define

P̃ =
(

P q
q� c1

)

, and Ṽ =
(

V v
v� 1

)

.

The objective function can be written as the Frobenius inner product of P̃ and Ṽ, which
we denote by 〈P̃, Ṽ〉. We relax the definition V = v v� into V � v v�, and we obtain the
following semidefinite-programming problem:

maximize
Ṽ

〈P̃, Ṽ〉

subject to Ṽ =
(

V v
v� 1

)

,

Ṽ � 0,
diag(V) = v,

and 〈e e�− I,V〉 ≤ k2 − k.

(12)

The last constraint is a relaxation of e�v ≤ k. Instead of relaxing it to 〈e e�,V〉 ≤ k2, we
use the tighter constraint 〈e e�− I,V〉 ≤ k2 − k, due to Helmberg et al. [20].

Lemma 4 (Helmberg et al. [20]) The constraint 〈e e�− I,V〉 ≤ k2 − k is tighter than the
constraint 〈e e�,V〉 ≤ k2.

Rounding By solving Eq. (12), we obtain an optimal matrix Ṽ∗. The next step is to round
Ṽ∗ and obtain a binary vector v∗. We obtain such a vector v∗ by applying a randomized-
rounding scheme, as before. Denote the optimal solution to the optimization problem by vopt,
and let f (v) = v�P v + 2 q�v + c1. The connection between v∗, vopt, and Ṽ∗ is given by
f (v∗) ≤ f (vopt) ≤ 〈P̃, Ṽ∗〉. Although we cannot have a guarantee on the quality of the
solution v∗, we can obtain an instance-specific bound by comparing whether f (v∗) is close
to 〈P̃, Ṽ∗〉.

6.2 �2-bounded diversity maximization

According to Lemma 2, the changed exposure index always takes extreme values, 1 or −1.
However, changing the users’ exposure index to extreme values may not lead to the desired
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effect in real-world situations. First, the users may not want their information exposure to be
dramatically changed.Receiving toomuch information that radically challenges their existing
ideas may harm the user experience and lead to abandonment of the platform. Second, if the
users’ exposure to information is different than the exposure of their social connections,
it may harm communication in the platform and possibly lead to disputes. To tackle this
situation, we add another constraint to our model, which prevents the modified exposure
index from taking extreme values.

We use an �2 constraint on the total change of the exposure index. In this new formulation,
the feasible area without the cardinality constraint is no longer a polygon, and the problem
can not be reduced to searching through the extreme points when the cardinality constraint
is added. Formally, we define the second continuous variant of our diversity-maximization
problem as follows.

Problem 3 (�2-bounded diversity maximization) We are given a graph G = (V , E, w), a
nonnegative constant α, and an exposure index vector s with si ∈ [−1, 1], for i = 1, . . . , n.
We want to change at most k elements in s and get a new exposure index vector y with
yi ∈ [−1, 1], for i = 1, . . . , n, such that ||y − s||22 ≤ α, and the new diversity index η(G, y)
is maximized.

Problem 3 can be written as:

maximize
y

y�Ly (13)

subject to ||y||∞ ≤ 1, (14)

||y − s||22 ≤ α, (15)

card(y − s) ≤ k. (16)

Problems related to the above have been studied in the literature. Boyd and Vandenberghe
[6] show that in the case of a single constraint (15), the global maximum can be found by
semidefinite relaxation. d’Aspremont et al. [9] give a semidefinite-programming relaxation
method to solve the problem with constraints (15) and (16). On the other hand, the problem
with constraints (14) and (15) was studied in the previous section. Finally, Ye [35] gives a
general-form quadratic programming with a box constraints.

Semidefinite Relaxation We follow the approach of d’Aspremont et al. [9], and we solve
Problem 3 by semidefinite-programming relaxation. Defining, as before, x = y − s, our
problem can be written as follows:

maximize
x

〈[
X x
x� 1

]

,

[
L L s

s�L s�L s

]〉

subject to ||x + s||∞ ≤ 1,[
X x
x� 1

]

� 0,

rank

([
X x
x� 1

])

= 1,

〈X, I〉 ≤ α,

card(x) ≤ k.

(17)

Lemma 5 (d’Aspremont et al. [9]) The constraint card(x) ≤ k can be relaxed to e�|X| e ≤
αk.

123



3714 A. Matakos et al.

Proof According to the Cauchy–Schwarz inequality, ||x||21 ≤ card(x)||x||22. Thus, ||x||21 =
e�|x||x|�e = e�|X| e, ||x||22 = 〈X, I〉, and card(x) ≤ k imply that e�|X| e ≤ αk. ��

The constraint ||x + s||∞ ≤ 1 can be kept in its original form, as the infinity norm ball
forms a convex set. After relaxing the constraint card(x) ≤ k into e�|X| e ≤ αk, according
to Lemma 5, we can write the sdp relaxation as:

maximize
x,X

〈[
X x
x� 1

]

,

[
L Ls

s�L s�Ls

]〉

subject to

[
X x
x� 1

]

� 0,

e�|X| e ≤ αk,
〈X, I〉 ≤ α,

||x + s||∞ ≤ 1,
X[i, i] ≤ s2i + 2|si | + 1, for all i = 1, . . . , n.

(18)

RoundingWe apply the Gaussian randomized-rounding method as before, to extract a solu-
tion x from the vector x∗ and the matrix X∗ obtained from the semidefinite relaxation. The
difference now is that the discretization is no longer needed; we only change the top-k entries
with the largest value |xi |, for i = 1, . . . , n.

Algorithm After solving the semidefinite program, we can obtain the vector y through
Algorithm 3. The procedure top(x0, k) returns a vector x′ such that

x ′
i =

{
x0i if |x0i | is in the top-k of |x0|,
0 otherwise.

Algorithm 3: SDP-Relax-top
input : The solution of the semidefinite relaxation X∗, x∗, k, α, L
output: The changed exposure vector y

1 Initialize y ← s, f = 0, initialize x.;

2 Form covariance matrix � ← X∗ − x∗ x∗�;
3 for i ← 1, . . . , 1000 do
4 sample x0 ∼ N (x∗, �);
5 do
6 x′ ← top(x0, k);
7 while x′�x′ > α;

8 if f < x′�Lx′ + 2 x′�L s then
9 x ← x′ and f ← x′�Lx′ + 2 x′�L s;

10 y ← s + x;
11 return y;

7 Experiments

In this section, we present an experimental evaluation of the algorithms we presented. The
goal of our experiments is threefold: First, we want to compare the performance of the
algorithms in terms of the achieved value of the objective function. Second, we want to
evaluate the scalability of the algorithms. Finally, we want to investigate the factors affecting
the performance of the algorithms.
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Table 1 Dataset statistics

Dataset Nodes Edges Avg degree Positive Negative η

Karate 34 78 4.58 17 17 40

Karate-D 34 78 4.58 18 16 172

Books 105 441 8.40 43 49 140

Books-D 105 441 8.40 54 51 896

Twitter100 80 1 403 17.53 25 55 360

Twitter100-D 80 1 403 17.53 42 38 2 840

Blogs 1 222 16 717 27.36 636 586 5 676

Elections 18 893 269 696 14.27 6 612 12 281 112 656

Twitter 200 073 4 009 548 50 038.04 81 793 118 280 1 000 800

All experiments are conducted on an HPC machine with 8-cores and 32GB of RAM.
Datasets We consider five datasets representing different types of social networks. We use
networks where each node is associated with a value between −1 and 1, which we assume
that reflects its exposure. We consider the following datasets:
Karate:3 The well-known dataset representing a social network of a karate club at a US univer-
sity in the 1970s. The social network is partitioned into two distinct equal-sized communities.
Books:4 A network of books about US politics, sold by amazon.com. Edges represent
frequently co-purchased books. Books are classified as Liberal (43), Conservative (49), and
Neutral (13). Neutral books are randomly assigned to one of the two communities.
Blogs:5 A directed network of hyperlinks between weblogs on US politics recorded in 2005
[1]. Blogs are classified as either Liberal or Conservative. We disregard edge directions and
keep the largest connected component. The resulting dataset contains two communities with
636 and 586 nodes each.
Elections: A network of twitter followers of D. Trump and H. Clinton collected in the end of
2016. We consider two communities of users, partitioned by the usage of hashtags #maga
and #imwithher. We keep the largest connected component and iteratively prune nodes to
guarantee that every node has degree greater than 1.
Twitter: A large network of twitter users collected between 2011 and 2016, filtered for key-
words related to three controversial topics: gun control, abortion, and obamacare [22]. For
the exposure of the users, we use the ideology scores estimated by Barberá et al. [3]. We
only expect the two greedy algorithms to scale on this dataset; therefore, in order to evaluate
all our algorithms, we also generate a smaller dataset. We rank the nodes of the network
according to their PageRank values and keep the largest connected component formed from
the subgraph of the top-100 nodes. We refer to this smaller dataset as Twitter100.

To evaluate our algorithms in networks that are already diverse and where there is no
latent community structure, we create a version of networks Karate, Books, and Twitter100,
where nodes are assigned a random exposure value. The resulting networks are called Karate-

D, Books-D, and Twitter100-D, respectively.
Table 1 shows the statistics of our datasets. All networks are treated as undirected. All

edge weights and node costs are set to 1.

3 https://networkdata.ics.uci.edu/data.php?id=105.
4 https://networkdata.ics.uci.edu/data.php?id=8.
5 https://networkdata.ics.uci.edu/data.php?id=102

123

https://networkdata.ics.uci.edu/data.php?id=105
https://networkdata.ics.uci.edu/data.php?id=8
https://networkdata.ics.uci.edu/data.php?id=102


3716 A. Matakos et al.

Performance evaluationWe evaluate the algorithms with respect to the diversity-index score
they achieve. SDP-Relax is the sdp-based algorithms, Glover is the linearization algo-
rithm, I-Greedy and S-Greedy are the two greedy algorithms, while IQP is the exact
algorithm.

Discrete problem setting First, we evaluate for the discrete problem Problem 1. Table 2
shows the results obtained by the algorithms on all datasets. For the smaller datasets, Karate,
Books, and Twitter100, we set k = 0.1 n, 0.2 n, n, while for the larger datasets, we set k = 0.1 n
for Blogs, and k = 0.01 n for Elections. For the largest dataset Twitter, we set k = 0.001 n.

We observe that SDP-Relax is the best performing algorithm: It finds solutions of
quality very close to that of IQP, which is optimal. Particularly surprising is the performance
of I-Greedy, which is almost equal to SDP-Relax. It even outperforms SDP-Relax
slightly in some instances. On the other hand, I-Greedy performs less well for k = n,
which is expected, given its greedy nature.

It is important to note that IQP terminates in reasonable time only for networks of up to
100 nodes. We also observe that the sdp relaxation is tight and achieves upper bounds very
close to the optimal value (always less than 1.007 times the optimal). Glover, on the other
hand, does not give tight relaxations: Its upper bounds can get quite off. Finally, S-Greedy
manages to achieve good performance for small-size instances, due to picking first the high
diagonal elements, but it fails to give good solutions for larger instances.

In addition, we evaluate the quality of the three upper bounds (Sect. 5.5). Table 3 shows
the results. Bound3 is the most expensive to compute, but is also tightest. On the other hand,
Bound1 is the cheapest to compute, but it can get quite bad. We also observe that it is more
tight for diverse networks. This is due to the impact of the diagonal elements of P on the
computation of the bound: The diagonal elements are smaller for diverse networks. Finally,
Bound2 is fairly tight for k = 0.1 n but it gets worse for k = n. In general, we observe that
for all bounds, the value is much closer to the optimal for small instances, which is somewhat
expected. It is worth noting that for the case k = n, despite the fact that the optimal diversity-
index value is the same no matter the initial assignment of exposures (since all exposures can
be changed), the bounds obtained are different.

Continuous problem settings Next, we evaluate the continuous problem formulations, for
bounded-box diversity maximization (Problem 2) and �2-bounded diversity maximization
(Problem 3). Table 4 contains the results for Problem 2, and Table 5 contains the results for
Problem 3. The algorithms are evaluated on the same datasets as Problem 1. The exposure
index of each node is randomly set to a value in the interval [−1, 1]. For Problem 3, we
randomly assign each edge of the graph with weight in the interval [0, 1].

Since Problem 2 can be formulated as quadratic knapsack, we apply similar methods as
those in Problem 1, i.e., algorithms IQP, SDP-Relax, S-Greedy, and I-Greedy. As a
comparison, we introduce the sdp-based SDP-Relax-Direct algorithm; the difference
is that the SDP-Relax-Direct does not sample z ∼ N (x∗,X∗ − x∗ x∗�), but rather, it
takes z ← x∗ in Algorithm 1. For the SDP-Relax algorithm, in Table 4 we also show the
relaxation value of the solution before rounding. We can see that in most cases the relaxation
value is very close to the rounded value, indicating that the quality of the solution obtained by
the SDP-Relax algorithm is very high. We can also observe that SDP-Relax outperforms
the I-Greedy for large values of k and obtains solutions whose value is extremely close to
the value of the exact algorithm IQP. However, for small values of k, I-Greedy is the best
algorithm (apart from IQP). SDP-Relax-Direct is in comparison with the SDP-Relax
when k is small; however,when k is large, the results aremuchworse. Finally, the performance
of S-Greedy is the worst across all values of the parameter k.
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Table 3 Upper bounds Dataset k Optimal Bound1 Bound2 Bound3

Karate 0.1n 46 122 63.62 57

0.2n 56 262 130.63 83

n 61 934 452.32 145

Karate-D 0.1n 50 99 76.43 59

0.2n 55 169 118.23 90

n 61 570 302.43 145

Books 0.1n 207 535 297.6 245

0.2n 264 1 035 560.20 387

n 309 5 235 2 766.04 857

Books-D 0.1n 265 552 363.26 338

0.2n 285 872 494.53 439

n 309 3 528 1 249.18 778

Twitter100 0.1n 425 890 498.27 481

0.2n 599 1 590 855.50 807

Twitter100-D 0.1n 743 1 176 1 035.32 809

Problem 3 can no longer be transformed into a quadratic-knapsack problem; however, we
can still use the SDP-Relax-top algorithm outlined in Algorithm 3. Results for Problem 3
on our datasets are shown in Table 5. The vector x at the left side of each algorithm indicates
the changes on the exposure vector s of that algorithm, and the parameter α is the upper
bound on ||x||22, i.e., ||x||22 ≤ α. For our experiments, we set α = 1

20αmax, where αmax =
∑n

i max{(1−si )2, (−1−si )2} is the maximum value that ||x||22 can take, taking into account
the bounded-box constraints. As we can see again by comparing the relaxation value with
the rounded value, the SDP-Relax-top algorithm gives solutions of high quality. As a
comparison, we adapted the I-Greedy and the S-Greedy in Problem 2 such that for each
element in s that changed to 1 or −1, we check the total changes on s does not violate the �2
constraint. It turns out the with the adapted greedy algorithm, the process stops after a small
number of elements in x are changed. Due to the �2 constraint, no more elements in x can
be changed, and as a result, the value of the solution does not increase with k. We conclude
that for Problem 3 the I-Greedy algorithm is not as effective as the SDP-Relax-top
algorithm.

ScalabilityWe also perform a scalability analysis of the algorithms. The results of problem 1
are shown in Table 6. We are able to run all algorithms for the smaller datasets, Karate, Books,
and Twitter100, although IQP did not terminate after two hours on Twitter100 for k = n and
Twitter100-D for k = 0.2 n. For the Blogs dataset, Glover, I-Greedy, and S-Greedy are
scalable, while IQP and SDP-Relax run out of memory. I-Greedy and S-Greedy are
very scalable, and run fast even on big datasets. S-Greedy scales well even on the very
large network, Twitter.

All in all, for the polynomial algorithms, the running time is in line with their theoretical
complexity, while IQP is very fast for some instances but does not terminate within two
hours for some other instances.

Next, Table 7 shows scalability results for Problem 2 and Table 8 for Problem 3. It is
worth mentioning that for the semidefinite-programming relaxation method, the total time
taken on SDP-Relax is much larger on solving sdp (in the parentheses), while it takes
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Table 6 Running times (in seconds)

Dataset k IQP SDP-Relax Glover I-Greedy S-Greedy

Karate 0.1n 0.093 1.355 0.814 0.009 0.002

0.2n 0.274 1.326 0.575 0.018 0.001

n 1.620 1.820 0.587 0.035 0.001

Karate-D 0.1n 0.172 1.436 0.692 0.010 0.002

0.2n 0.275 1.271 0.613 0.019 0.002

n 0.329 1.460 0.558 0.036 0.001

Books 0.1n 0.098 158.297 6.259 0.078 0.002

0.2n 0.334 165.299 5.157 0.154 0.002

n 2.543 213.720 4.744 0.266 0.006

Books-D 0.1n 0.503 146.344 6.138 0.123 0.002

0.2n 1.493 138.263 6.225 0.150 0.002

n 3.726 188.170 4.744 0.253 0.006

Twitter100 0.1n 0.855 44.813 3.745 0.042 0.001

0.2n 71.362 50.523 3.139 0.083 0.002

n > 7200 56.670 2.870 0.086 0.002

Twitter100-D 0.1n 40.284 40.972 3.687 0.041 0.002

0.2n > 7200 39.720 2.980 0.077 0.001

n > 7200 42.811 3.007 0.072 0.002

Blogs 0.1n − − 947.980 10.070 0.103

Elections 0.01n − − − 333.727 12.961

Twitter 0.001n − − − − 3 000.676

little time for SDP-Relax-Direct at the rounding stage; the time taken for solving sdp
is comparable with solving the greedy algorithms on small datasets. For larger datasets, the
greedy algorithm is more scalable.

From Table 8, we can see with the �2 constraints, it takes significantly more time than the
previous problems; however, rounding step alone takes less time.While both algorithms draw
random vectors from a Gaussian distribution, there are differences in three aspects. Firstly,
the size of covariance matrix of SDP-Relax in Problem 2 is (2n + 1) × (2n + 1), while
the size of covariance matrix of Problem 3 is (n + 1) × (n + 1); secondly, in Problem 2, we
round every entry of the vector into an integer; thirdly, for some subroutines in Problem 3,
it happens that the rounding results violate the cardinality constraint, so the subroutines are
repeated again until the cardinality constraint is satisfied. The greedy algorithms are much
faster.
Case studyWeconclude the experiments by taking a closer look at the first five nodes selected
by IQP in the Twitter100 dataset. We characterize the nodes by ranking them according to
three measures: the size of their “echo chamber,” defined as the number of their neighbors
with the same exposure, their centrality, measured by PageRank score, and their degree. The
results are shown in Table 9.We observe that the selected nodes are among the highest ranked
nodes in all three categories. It appears that the most important feature when changing the
exposure of an individual is the size of their echo chamber. This is in line with the observed
performance of S-Greedy that implements this logic and performs well for small k.
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Table 8 Running times (in seconds)

Dataset k SDP-Relax-top S-Greedy I-Greedy

Karate 0.1n 5.08 (5.02) 0.00 0.00

0.2n 5.52 (5.45) 0.00 0.00

0.3n 4.78 (4.72) 0.00 0.00

n 3.89 (3.80) 0.00 0.00

Karate-D 0.1n 4.80 (4.73) 0.00 0.00

0.2n 6.73 (6.67) 0.00 0.00

0.3n 5.80 (5.73) 0.00 0.00

n 3.86 (3.78) 0.00 0.01

Books 0.1n 2573.13 (2569.48) 0.00 0.01

0.2n 3227.13 (3223.47) 0.00 0.02

0.3n 3138.83 (3135.14) 0.00 0.03

n 2485.89 (2482.08) 0.00 0.11

Books-D 0.1n 3080.75 (3077.09) 0.00 0.01

0.2n 3111.62 (3107.96) 0.00 0.02

0.3n 2884.86 (2881.20) 0.00 0.03

n 2208.06 (2204.32) 0.00 0.11

Twitter100 0.1n 595.71 (593.75) 0.00 0.00

0.2n 646.11 (644.19) 0.00 0.01

0.3n 749.53 (747.61) 0.00 0.02

n 432.58 (428.61) 0.00 0.06

Twitter100-D 0.1n 644.68 (642.81) 0.00 0.00

0.2n 490.46 (488.56) 0.00 0.01

0.3n 564.60 (562.71) 0.00 0.01

n 573.19 (569.15) 0.00 0.05

Table 9 Characteristics of the
first five nodes selected by IQP
on Twitter100

# Echo chamber Degree PageRank

1 3 6 7

2 7 11 11

3 8 12 9

4 15 13 13

5 1 3 3

8 Conclusion

In this paper, we considered the problem of diversifying user exposure to content in social
networks. We formally defined the diversity index of a social network and formulated the
problem ofmaximizing diversity.We showed that the diversity-maximization problem isNP-
hard to approximate. Despite this result, we studied algorithms that in practice offer solutions
of high quality, including an sdp-based algorithm, an algorithm based on linearization, and
two scalable greedy methods. Furthermore, we provided several upper bounds with varying
tightness-vs.-efficiency trade-off. Finally, we extended our problem formulation with two
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continuous variants of our problem, with corresponding sdp relaxations. Our experiments
with real data demonstrate the effectiveness of our algorithms in the diversity-maximization
problem.
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