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Abstract
Multi-aspect data appear frequently in web-related applications. For example, product
reviews are quadruplets of the form (user, product, keyword, timestamp), and search-engine
logs are quadruplets of the form (user, keyword, location, timestamp). How can we ana-
lyze such web-scale multi-aspect data on an off-the-shelf workstation with a limited amount
of memory? Tucker decomposition has been used widely for discovering patterns in such
multi-aspect data, which are naturally expressed as large but sparse tensors. However, existing
Tucker decomposition algorithms have limited scalability, failing to decompose large-scale
high-order (≥4) tensors, since they explicitly materialize intermediate data, whose size grows
exponentially with the order. To address this problem, which we call “Materialization Bot-
tleneck,” we propose S- HOT, a scalable algorithm for high-order Tucker decomposition.
S- HOT minimizes materialized intermediate data by using an on-the-fly computation, and
it is optimized for disk-resident tensors that are too large to fit in memory. We theoretically
analyze the amount of memory and the number of data scans required by S- HOT. Moreover,
we empirically show that S- HOT handles tensors with higher order, dimensionality, and rank
than baselines. For example, S- HOT successfully decomposes a real-world tensor from the
Microsoft Academic Graph on an off-the-shelf workstation, while all baselines fail. Espe-
cially, in terms of dimensionality, S- HOT decomposes 1000× larger tensors than baselines.
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1 Introduction

Tensor decomposition is a widely used technique for the analysis of multi-aspect data. Multi-
aspect data, which are naturally modeled as high-order tensors, frequently appear in many
applications [9,28,33,34,43,49,50], including the following examples:

– Social media: 4-way tensor (sender, recipient, keyword, timestamp).
– Web search: 4-way tensor (user, keyword, location, timestamp).
– Internet security: 4-way tensor (source IP, destination IP, destination port, timestamp).
– Product reviews: 5-way tensor (user, product, keyword, rating, timestamp).

Most of these web-scale tensors are sparse (i.e., most of their entries are zero). For example,
since typical customers buy and review a small fraction of products available at e-commerce
sites, intermittently, most entries of the aforementioned product-review tensors are zero.
To analyze such multi-aspect data, several tensor decomposition methods have been pro-
posed, and we refer interested readers to an excellent survey [26]. Tensor decompositions
have provided meaningful results in various domains [1,9,20,26,28,29,34,43,51]. Especially,
Tucker decomposition [58] has been successfully applied in many applications, including
web search [55], network forensics [54], social network analysis [10], and scientific data
compression [4].

Developing a scalable Tucker decomposition algorithm has been a challenge due to a huge
amount of intermediate data generated during the computation. Briefly speaking, alternating
least square (ALS), the most widely used Tucker decomposition algorithm, repeats two
steps: (1) computing an intermediate tensor, denoted by Y, and (2) computing the SVD of
the matricized Y (see Sect. 2 or [26] for details). Previous studies [22,27] pointed out that
a huge amount of intermediate data are generated during the first step, and they proposed
algorithms for reducing the intermediate data by carefully ordering computation.

However, existing algorithms still have limited scalability and easily run out of memory,
particularly when dealing with high-order (≥ 4) tensors. This is because existing algorithms
explicitlymaterializeY, which is usually thinner but much denser than the input tensor, despite
the fact that the amount of space required for storingY grows rapidly with respect to the order,
dimensionality, and rank of the input tensor. For example, as illustrated in Fig. 2, the space
required for Y is about 400 Giga Bytes for a 5-way tensor with 10 million dimensionality
when the rank of Tucker decomposition is set to 10. We call this problem Materialization
Bottleneck (or M-Bottleneck in short). Due to M-Bottleneck, existing algorithms are not
suitable for decomposing tensors with high order, dimensionality, and/or rank. As seen in
Fig. 1, even state-of-the-art algorithms [27] easily run out of memory as these factors increase.

To avoidM-Bottleneck, in this work, we propose S- HOT, a scalable Tucker decomposition
algorithm for large-scale, high-order, but sparse tensors.S- HOT is designed for decomposing
high-order tensors on an off-the-shelf workstation. Our key idea is to compute Y on the
fly, without materialization, by combining both steps in ALS without changing its results.
Specifically, we utilize the reverse communication interface of a recent scalable eigensolver
called implicitly restart Arnoldi method (IRAM) [30], which enables SVD computation
without materializing Y. Moreover, S- HOT performs Tucker decomposition by streaming
nonzero tensor entries from the disk, which enables it to handle disk-resident tensors that
are too large to fit in memory. We offer the following versions of S- HOT with distinct
advantages1:

1 S- HOTspace and S- HOTscan appeared in the conference version of this paper [35]. This work extends [35]
with S- HOTmemo, which is significantly faster than S- HOTspace and S- HOTscan, space complexity analyses,
and additional experimental results.
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Fig. 1 S- HOT scales up. Every version of S- HOT successfully decomposes tensors with high order, dimen-
sionality, and rank, while the baseline algorithms fail, running out of memory as those three factors increase.
Especially, every version of S- HOT handles a tensor with 1000 times larger dimensionality. We use two
baselines: (1) BaselineNaive (described in Sect. 3.1): naive algorithm for Tucker decomposition, and (2) Base-
lineOpt [27] (described in Sect. 3.2): the state-of-the-art memory-efficient algorithm for Tucker decomposition.
Note that all the methods have the same convergence properties (see Observation 1 in Sect. 4)
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Fig. 2 Illustration of M-Bottleneck. For a high-order (≥ 4) sparse input tensor, the amount of space required
for the intermediate tensor Y can be much larger than that for the input tensor and the outputs. As in the figure,
Y is usually thinner but much denser than the input tensor. In such a case, materializing intermediate data
becomes the scalability bottleneck of existing Tucker decomposition algorithms
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– S- HOTspace: the most space-efficient version that does not require additional copies the
input tensor.

– S- HOTscan: a faster version that requires multiple copies of the input tensor.
– S- HOTmemo: the fastest version that requires multiple copies of the input tensor and a

buffer in main memory.

Our experimental results demonstrate that S- HOT outperforms baseline algorithms by
providing significantly better scalability, as shown in Fig. 1. Specifically, all versions of
S- HOT successfully decompose a 6-way tensor, while baselines fail to decompose even a
4-way tensor or a 5-way tensor due to their high memory requirements. The difference is
more significant in terms of dimensionality. As seen in Fig. 1b, S- HOT decomposes a tensor
with 1000 × larger dimensionality than baselines.

Our contributions are summarized as follows.

– Bottleneck resolution We identify M-Bottleneck (Fig. 2), which limits the scalability
of existing Tucker decomposition algorithms, and we avoid it by using an on-the-fly
computation.

– Scalable algorithm design We propose S- HOT, a scalable Tucker decomposition algo-
rithm carefully designed for sparse high-order tensors that are too large to fit in memory.
Compared to baselines, S- HOT scales up to 1000× bigger tensors (Fig. 1) with identical
convergence properties (Observation 1).

– Theoretical analyses We provide theoretical analyses on the amount of memory space
and the number of data scans that S- HOT requires.

Reproducibility: The source code of S- HOT and the datasets used in the paper are available
at http://dm.postech.ac.kr/shot.

In Sect. 2, we give preliminaries on tensors and Tucker decomposition. In Sect. 3, we
review related work and introduce M-Bottleneck, which past algorithms commonly suffer
from. In Sect. 4, we propose S- HOT, a scalable algorithm for high-order tucker decompo-
sition, to address M-Bottleneck. After presenting experimental results in Sect. 5, we make
conclusions in Sect. 6.

2 Preliminaries

In this section, we give the preliminaries on tensors (Sect. 2.1), basic tensor operations
(Sect. 2.2), Tucker decomposition (Sect. 2.3), and implicitly restarted Arnoldi method
(Sect. 2.4).

2.1 Tensors and notations

A tensor is a multi-order array which generalizes a vector (an one-order tensor) and a matrix
(a two-order tensor) to higher orders. Let X ∈ R

I1×···×IN be the input tensor, whose order
is denoted by N . Like rows and columns in a matrix, X has N modes, whose lengths, also
called dimensionality, are denoted by I1, . . . , IN ∈ N, respectively. We assume that most
entries of X are zero (i.e., X is sparse), as in many real-world tensors [38,40,47].

We denote general N -order tensors by boldface Euler script letters e.g., X, while matrices
and vectors are denoted by boldface capitals, e.g.,A, and boldface lowercases, e.g., a, respec-
tively. We use the MATLAB-like notations to indicate the entries of tensors. For example,
X(i1, ..., iN ) (or xi1...iN in short) indicates the (i1, ..., iN )th entry of X. Similar notations are
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Table 1 Table of symbols Symbol Definition

N Number of modes

X N -order input tensor ∈ R
I1×···×IN

X(i1, ..., iN ) (i1, ..., iN )th entry of X (also denoted by xi1...iN )

�(X) Set of the indices of all nonzero entries in X

�
(n)
i (X) Subset of �(X) where the nth mode index is i

X(n) mode-n unfolding of X

M Number of nonzero entries in X

In Dimensionality of the nth mode of X

Jn Number of component (rank) for the nth mode

G N -order core tensor ∈ R
J1×···×JN

{A} set of all the factor matrices of X

A(n) mode-n factor matrix ( ∈ R
In×Jn ) of X

ā(n)
i i th row vector of A(n)

a(n)
j j th column vector of A(n)

◦ Outer product

×̄n n-mode vector product

×n n-mode matrix product

used for matrices and vectors. A(i, :) and A(:, j) (or āi and a j in short) indicate the i th row
and the j th column of A. The i th entry of a vector a is denoted by a(i) (or ai in short).

2.2 Basic tensor terminologies and operations

We review basic tensor terminologies and operations, which are the building blocks of Tucker
decomposition. Table 1 lists the symbols frequently used in this paper.

Definition 1 (Fiber) A mode-n fiber is an one-order section of a tensor, obtained by fixing
all indices except the nth index.

Definition 2 (Slice) A slice is a two-order section of a tensor, obtained by fixing all indices
but two.

Definition 3 (Tensor unfolding/matricization) Unfolding, also known as matricization, is the
process of re-ordering the entries of an N-order tensor into a matrix. The mode-n matricization
of a tensor X ∈ R

I1×···×IN is a matrix X(n) ∈ R
In×(

∏
q �=n Iq ) whose columns are the mode-n

fibers.

Definition 4 (N-order outer product) The N -order outer product of vectors v1 ∈ R
I1 , v2 ∈

R
I2 , . . . , vN ∈ R

IN is denoted by v1 ◦v2 ◦ · · · ◦vN and is an N -order tensor in R
I1×I2×···×IN .

Elementwise, we have

[v1 ◦ v2 ◦ · · · ◦ vN ](i1, . . . , iN ) = v1(i1)v2(i2) . . . vN (iN ).
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For brevity, we use the following shorthand notations for outer products:

◦(i1,...,iN ){A} = ā(1)
i1

◦ · · · ◦ ā(N )
iN

, and

◦−n
(i1,...,iN ){A} = ā(1)

i1
◦ · · · ◦ ā(n−1)

in−1
◦ [1] ◦ ā(n+1)

in+1
◦ · · · ◦ ā(N )

iN
.

Definition 5 (n-mode vector product) The n-mode vector product of a tensor X ∈ R
I1×···×IN

and a vector v ∈ R
In is denoted by X×̄nv and is an (N -1)-order tensor in R

I1×...In−1

×In+1×···×IN . Elementwise, we have

[X×̄nv](i1, . . . , in−1, in+1, . . . , iN ) =
In∑

in=1

xi1...iN vin .

Definition 6 (n-mode matrix product) The n-mode matrix product of a tensor X ∈
R

I1×···×IN and a matrix U ∈ R
Jn×In is denoted by X×nU and is an N -order tensor in

R
I1×...In−1×Jn×In+1×···×IN . Elementwise, we have

[X×nU](i1, . . . , in−1, jn, in+1, . . . , iN ) =
In∑

in=1

xi1...iN u jn in .

We adopt the shorthand notations in [27] for all-mode matrix product and matrix product in
every mode but one:

X × {U} ≡ X×1U(1) . . . ×NU(N ), and

X×−n{U} ≡ X×1U(1) . . . ×n−1U(n−1) ×n+1U(n+1) . . . ×NU(N ).

2.3 Tucker decomposition

Tucker decomposition [58] decomposes a tensor into a core tensor and N factor matrices so
that the original tensor is approximated best. Specifically, X ∈ R

I1×···×IN is approximated
by

X ≈ G × {A} = G ×1 A(1) ×2 A(2) · · · ×N A(N ),

where (a) G ∈ R
J1×···×JN , (b) Jn denotes the rank of the nth mode and (c) {A} is the set of

factor matrices A(1), . . . ,A(N ), each of which is in R
In×Jn .

The most widely used way to solve Tucker decomposition is Tucker-ALS (Algorithm 1),
also known as higher-order orthogonal iteration (HOOI) [18].2 It finds factor matrices whose
columns are orthonormal by alternating least squares (ALS). Since G is uniquely computed
by X × {AT } once {A} is determined [27], the objective function is simplified as

max{A} ||X × {AT }||. (1)

2.4 Implicitly restarted Arnoldi method (IRAM)

Vector iteration (or power method) is one of the fundamental algorithms for solving large-
scale eigenproblem [44]. For a given matrix U ∈ R

n×n , vector iteration finds the leading

2 Other methods include the truncated higher-order singular value decomposition (THOSVD) [19] and the
sequentially THOSVD [59].
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Algorithm 1: Tucker-ALS (also known as HOOI)

Input : X, an N -order tensor of RI1×···×IN .
J1, . . . , JN , rank in each mode.
T , the number of iterations.

Output: {A}, a set of factor matrices {A(1), . . . , A(N )} where A(n) ∈ R
In×Jn .

G, an N -order core tensor of RJ1×···×JN .
1 Initialize all A(n)

2 for t ← 1..T do
3 for n ← 1..N do
4 Y(n) ← [X ×−n {AT }](n)

5 A(n) ← top-Jn left singular vectors of Y(n)

6 G ← Y(N )×NA(N )T

7 return G, {A}

eigenvector corresponding to the largest eigenvalue by repeating the following updating rule
from a randomly initialized v(0) ∈ R

n .

v(k+1) = Uv(k)

||Uv(k)|| .

As k increases, v(k+1) converges to the leading eigenvector [44].
Arnoldi, which is a subspace iteration method, extends vector iteration to find k leading

eigenvectors simultaneously. Implicitly restarted Arnoldi method (IRAM) is one of the most
advanced techniques for Arnoldi [44]. Briefly speaking, IRAM only keeps k orthonormal
vectors that are a basis of the Krylov space, updates the basis until it converges, and then
computes the k leading eigenvectors from the basis. One virtue of IRAM is the reverse
communication interface, which enables users to compute eigendecomposition by viewing
Arnoldi as a black box. Specifically, the leading k eigenvectors of a square matrix U are
obtained as follows:

(1) User initializes an instance of IRAM.
(2) IRAM returns v( j) (initially v(0)).
(3) User computes v′ ← Uv( j), and gives v′ to IRAM.
(4) After an internal process, IRAM returns new vector v( j+1).
(5) Repeat steps (3)–(4) until the internal variables in IRAM converges.
(6) IRAM computes eigenvalues and eigenvectors from its internal variables, and it returns

them.

For details of IRAM and the reverse communication interface, we refer interested readers
to [30,44].

3 Related work

We describe the major challenges in scaling Tucker decomposition in Sect. 3.1. Then, in
Sect. 3.2, we briefly survey the literature on scalable Tucker decomposition to see how these
challenges have been addressed. However, we notice that existing methods still commonly
suffer fromM-Bottleneck, which is described in Sect. 3.3. Lastly, we briefly introduce scalable
methods for other tensor decomposition methods in Sect. 3.4.
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3.1 Intermediate data explosion

The most important challenge in scaling Tucker decomposition is the intermediate data
explosion problem which was first identified in [27] (Definition 7). It states that a naive
implementation of Algorithm 1, especially the computation of [X×−n {AT }](n), can produce
huge intermediate data that do not fit in memory or even on a disk. We shall refer to this
naive method as BaselineNaive.

Definition 7 (Intermediate data explosion in BaselineNaive [27]) Let M be the number
of nonzero entries in X. In Algorithm 1, naively computing X ×−n {AT } requires O(M∏

p �=n Jp) space for intermediate data.3

For example, if we assume a 5-order tensor with M = 100 millions and Jn = 10 for
all n, M

∏
p �=n Jp = 1 trillions. Thus, if single-precision floating-point numbers are used,

computing X ×−n {AT } requires about 4TB space, which exceeds the capacity of a typical
hard disk as well as RAM.

3.2 Scalable tucker decomposition

Memory-efficient tucker (MET) [27]: MET carefully orders the computation of X×−n {AT }
in Algorithm 1 so that space required for intermediate data is reduced. Let Y = X×−n {AT }.
Instead of computing entireY at a time, MET computes a part of it at a time. Depending on the
unit computed at a time, MET has various versions, and METfiber is the most space-efficient
one.

In METfiber, each fiber (Definition 1) of X is computed at a time. The specific equation
when X is a 3-way tensor is as follows:

Y(:, j2, j3) ←
I1

︷ ︸︸ ︷

X×̄2a
(2)
j2

×̄3a
(3)
j3

. (2)

The amount of intermediate data produced during the computation of a fiber in Y by Eq. (2)
is only O(I1), and this amount is the same for general N -order tensors. However, since entire
(matricized) Y still needs to be materialized, METfiber suffers from M-Bottleneck, which is
discussed in Sect. 3.3. METfiber is one of the most space-optimized tensor decomposition
methods, and we shall refer to METfiber as BaselineOpt from now on.

Hadoop tensor method (HaTen2) [22]: HaTen2, in the same spirit as MET, carefully
orders the computation of X×−n {AT } in Algorithm 1 on MapReduce so that the amount of
intermediate data and the number of MapReduce jobs are reduced. Specifically,HaTen2 first
computes X×p (A(p))T for each p �= n and then combines the results to obtain X×−n {AT }.
However, HaTen2 requires O(MN

∑
p �=n Jp) disk space for intermediate data, which is

much larger than O(In) space, which BaselineOpt requires.
Other work related to scalable tucker decomposition: Several algorithms were proposed

for the case when the input tensor X is dense so that it cannot fit in memory. Specifically,
[57] uses random sampling of nonzero entries to sparsify X, and [4] distributes the entries of

3 When the input tensor is sparse, a straightforward way of computing X ×−n {AT } is to (1) compute

X(i1, ..., iN )
[
◦−n
i1,...,iN

{A}
]

(n)
for each nonzero element X(i1, . . . , iN ) and (2) combine the results together.

The result ofX(i1, . . . , iN )
[
◦−n
i1,...,iN

{A}
]

(n)
takes O(

∏
p �=n Jp) space. Since there are M nonzero elements,

O(M
∏

p �=n Jp) space is required in total.
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X across multiple machines. However, in this chapter, we assume that X is a large but sparse
tensor, which is more common in real-world applications. Moreover, our method stores X in
disk, and thus, the memory requirement does not depend on the number of nonzero entries
(i.e., M).

Another line of research focused on reducing redundant computations that occur during
a tensor-times-matrix chain operation (TTMc) (i.e., X ×−n {AT } in line 4 of Algorithm 2),
which is the dominant computation in Tucker-ALS. It was observed in [6] that partial
computations of TTMcs can be reused. For example, X×3A(3)T . . . ×NA(N )T , which is
a partial computation of X ×−1 {AT }, can be reused when computing X ×−2 {AT }. To
exploit this, in [6], the N modes are partitioned into two groups: N1 := {1, ..., �N/2�} and
N2 := {�N/2� + 1, ..., N }. Then, X×1A(1)T . . . ×�N/2�A(�N/2�)T is stored and used for
computing X ×−n {AT } for each n ∈ N2. Similarly, X×�N/2�+1A(�N/2�+1)T . . . ×NA(N )T

is stored and used for computing X×−n {AT } for each n ∈ N1. In [25], partial computations
of TTMcs are stored in the nodes of a binary tree and reused so that the number of n-mode
products is limited to log(N ) per TTMc. It was shown in [47] that the partial computations
can be reused “on the fly” and faster without having to be stored, while an additional amount
of user-specified memory can be used for further reducing the number of n-mode products.
To this end, the input tensor is stored in the compressed sparse fiber (CSF) format [46],
where a tensor is stored as a forest of In trees with N levels so that each path from a root
to a leaf encodes a nonzero entry. All these algorithms are parallelized in shared-memory
[6,25,47] and/or distributed-memory [25] environments, and a lightweight but near-optimal
scheme for distributing the input tensor among processors was proposed in [15]. Note that
these algorithms do not suffer from intermediate data explosion (see Definition 7), which
may occur in TTMcs (line 4 of Algorithm 1), by computing Y(n) row by row. However, they
suffer from M-Bottleneck, which is described in the following subsection, since they com-
pute (truncated) singular value decomposition (as in line 5 of Algorithm 1) on materialized
Y(n).4 To minimize memory requirements, our proposed methods, described in Sect. 4, store
the input tensor on disk in the coordinate format and stream its nonzero entries one by one.
Alternatively, the CSF format [46] can be used to reduce redundant computations that occur
during TTMcs, as in [47], while it requires additional memory space.

In [11,36], several algorithms were proposed for (coupled) Tucker decomposition when
most entries of the input tensor are unobserved (or missing), and they were extended to
heterogeneous platforms [37]. However, since they have time complexities proportional to
the number of observed entries, they are inefficient for fully observable tensors (i.e., tensors
without missing entries), which our algorithms assume. A fully observable tensor has I1 ×
... × IN observed entries.

3.3 Limitation: M-bottleneck

Although BaselineOpt and HaTen2 successfully reduce the space required for intermediate
data produced whileY(n) ← [X×−n {AT }](n) is computed, they have an important limitation.
Both algorithms materialize Y(n), but its size O(In

∏
p �=n Jp) is usually huge, mainly due

to In , and more seriously, it grows rapidly as N , In or {Jn}Nn=1 increases. For example, as
illustrated in Fig. 2 in Sect. 1, if we assume a 5-order tensor with In = 10 millions and Jp = 10
for every p �= n, then In

∏
p �=n Jp = 100 billions. Thus, if single-precision floating-point

numbers are used, materializing Y(n) in a dense matrix format requires about 400GB space,

4 For example, see line 13 of Algorithm 4 in [25].
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which exceeds the capacity of typical RAM. Note that simply storing Y(n) in a sparse matrix
format does not solve the problem since Y(n) is usually dense.

Considering this fact and the results in Sect. 3.2, we summarize the amount of intermediate
data required during the whole process of tucker decomposition in each algorithm in Table 2.
Our proposed S- HOT algorithms, which are discussed in detail in the following section,
require several orders of magnitude less space for intermediate data.

3.4 Scalable algorithms for other tensor decompositionmodels

Comprehensive surveys on scalable algorithms for various tensor decomposition models
can be found in [39,45]. Among other models except Tucker decomposition, PARAFAC
decomposition, which can be seen as a special case of Tucker decomposition where the core
tensor has only super-diagonal entries, has been widely used. Below, we summarize previous
approaches for scalable PARAFAC decomposition:

– Parallelize standard approaches Standard optimization algorithms including ALS,
(stochastic) gradient descent, and coordinate descent are optimized and parallelized in
distributed-memory [12,24] and MapReduce [8,21–23,51] settings.

– Sampling or Subdivision Smaller subtensors of the input tensor are obtained by sampling
[38] or subdivision [16,17]. Then, each subtensor is factorized. After that, the factor
matrices of the entire tensor are reconstructed from those of subtensors.

– Compression In [14,52], the input tensor is compressed before being factorized.
– Concise representation: Several data structures, including compressed sparse fiber (CSF)

[46], flagged coordinate (F-COO) [32], hierarchical coordinate (HiCOO) [32], have been
developed for concisely representing tensors and accelerating tensor decomposition.

– Memoization A sequence of matricized tensor times Khatri-Rao products (MTTKRPs)
is the dominant computation in PARAFAC decomposition. In [31], partial computations
of MTTKRPs are memoized and reused to reduce redundant computations that occur
during MTTKRPs.

4 Proposedmethod: S-HOT

In this section, we develop a novel algorithm called S- HOT, which avoids M-Bottleneck
caused by the materialization of Y. S- HOT enables high-order Tucker decomposition to
be performed even in an off-the-shelf workstation. In Table 3, the different versions of S-
HOT are compared with baseline algorithms in terms of objectives, update equations, and
materialized data.

Specifically, we focus on the memory-efficient computation of the following two steps
(lines 4 and 5 of Algorithm 1):

Y(n) ← [X×−n{AT }](n)(∈ R
In×(

∏
p �=n Jp))

A(n) ← top-Jn left singular vectors of Y(n).

Our key idea is to tightly integrate the above two steps and compute the singular vectors
through IRAM directly from X without materializing the entire Y at once. We also use the
fact that top-Jn left singular vectors of Y(n) are equivalent to the top-Jn eigenvectors of
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Table 3 Summary of the algorithms

We show the key differences in the objectives, update equations, materialized data of the algorithms. The
figures, where the colored regions need to be explicitly materialized in memory at once, illustrate how the
algorithms work

Y(n)Y(n)
T ∈ R

In×In .5 Specifically, if we use the reverse communication interface of IRAM,
the above two steps are computed by simply updating v′ repeatedly as follows:

v′ ← Y(n)Y(n)
T v, (3)

where we do not need to materialize Y(n) (and thus, we can avoid M-Bottleneck) if we are
able to update v′ directly from the X. Note that using IRAM does not change the result of
the above two steps. Thus, final results of Tucker decomposition are also not changed, while
space requirements are reduced drastically, as summarized in Table 3.

The remaining problem is how to update v′ directly fromX, which is stored in disk, without
materializing Y(n). To address this problem, we first examine a naive method extending

5 Instead of computing the eigenvectors of Y(n)Y(n)
T , we can use directly obtain the singular vectors of Y(n)

using, for example, Lanczos bidiagonalization [7]. We leave exploration of such variation for future work.
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BaselineOpt and then eventually propose S- HOTspace, S- HOTscan, and S- HOTmemo, which
are the three versions of S- HOT with distinct advantages.

Note that all our ideas described in this section do not change the outputs of BaselineNaive
and BaselineOpt. Thus, all versions of S- HOT have the same convergence properties of
BaselineNaive and BaselineOpt, as described in Observation 1.

Observation 1 (Convergence property of S- HOT) When all initial conditions are identi-
cal, S- HOTspace, S- HOTscan, and S- HOTmemo give the same result of BaselineNaive and
BaselineOpt after the same number of iterations.

4.1 First step: “Naive S-HOT”

How can we avoid M-Bottleneck? In other words, how can we compute Eq. (3) without
materializing the entire Y? We describe Naive S- HOT, which computes Y fiber by fiber,
for computing Eq. (3). Thus, Naive S- HOT computes v′ progressively on the basis of each
column vector of Y(n), which corresponds to a fiber in Y, as follows:

v′ ← Y(n)Y(n)
T v =

∑

c

yc
(
ycT v

)
, (4)

where yc ∈ R
In is a column vector of Y(n).

This equation can be reformulated by X and {AT }. For ease of explanation, let X be a
3-order tensor. For each column vector yc, there exists a fiber Y(:, j2, j3) corresponding to
yc. By plugging Eq. (2) into Eq. (4), we obtain

v′ ←
∑

c

yc
(
ycT v

)
=

∑

∀( j2, j3)

Y(:, j2, j3)
(
Y(:, j2, j3)T v

)

=
∑

∀( j2, j3)

(
X×̄2a

(n)
j2

×̄3a
(n)
j3

)((
X×̄2a

(n)
j2

×̄3a
(n)
j3

)T
v
)

.

As clarified in Eq. (2),X×̄2a
(n)
j2

×̄3a
(n)
j3

is computed within O(I1) space, which is significantly
smaller than space required for Y(n).

However, Naive S- HOT is impractical because the number of scans of X increases
explosively, as stated in Lemmas 1 and 2.

Lemma 1 (Scan cost of computing a fiber) Computing a fiber on the fly requires a complete
scan of X.

Proof Computing a fiber consists of multiple n-mode vector products. Each n-mode vector
product is considered as a weighted sum of (N − 1)-order section of X as follows:

X×̄nv =
In∑

in=1

X(:, . . . , :
︸ ︷︷ ︸
n−1

, in, :, . . . , :︸ ︷︷ ︸
N−n

)vin . (5)

Thus, a complete scan of X is required to compute a fiber. ��
Lemma 2 (Minimum scan cost of Naive S- HOT) Let B be the memory budget, i.e., the
number of floating-point numbers that can be stored inmemory at once. Then,Naive S- HOT
requires at least In

B

∏
p �=n Jp scans of X for computing Eq. (4).
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Proof Since we compute yc
(
yTc v

)
, yc should be stored in memory requiring In space, until

the computation of yTc v finishes. Thus, we can compute at most B
In

fibers at the same time

within one scan of X. Therefore, Naive S- HOT requires at least In
B

∏
p �=n Jp scans of X to

compute Eq. (4). ��

4.2 Proposed: “S-HOTspace”

How can we avoid the explosion in the number of scans of the input tensor required in
Naive S- HOT? We propose S- HOTspace, which computes Eq. (3) within two scans of
X. S- HOTspace progressively computes v′ from each row vector of Y(n). Specifically, v′ is
computed by:

1 ≤ ∀i ≤ In, v′(i) ← ȳiY(n)
T v = ȳi

In∑

k=1

v(k)ȳTk (6)

where ȳi is the i th row vector of Y(n), which corresponds to an (N − 1)-order segment of Y
where the nth mode index is fixed to i . When entire Y does not fit in memory, Eq. (6) should
be computed in the following two steps:

s ←
In∑

i=1

v(i)ȳTi (7)

1 ≤ ∀i ≤ In, v′(i) ← ȳi s. (8)

This is since we cannot store all ȳi in memory until the computation of
∑In

i=1 v(i)ȳ
T
i finishes.

A pictorial description and a formal description of S- HOTspace are provided in Fig. 3 and
Algorithm 2, respectively. As shown in Lemma 3, S- HOTspace requires two scans of X for
computing Eq. (3).

Lemma 3 (Scan Cost of S- HOTspace) S- HOTspace requires two scans of X for computing
Eq. (3).

Proof Each ȳi can be computed as follows.

ȳi ← [X×−n{AT }](n)(i, :) =
∑

p∈�
(n)
i (X)

X(p)×−n{AT }

=
∑

p∈�
(n)
i (X)

X(p)
[
◦−n
p {A}

]

(n)
, (9)

where p is a tuple (i1, . . . , iN ) whose nth mode index is fixed to i ; X(p) is an entry specified
by p. Based on each ȳi , Eq. (7) can be computed progressively as follows:

s ←
In∑

i=1

v(i)ȳTi =
In∑

i=1

v(i)
∑

p∈�
(n)
i (X)

X(p)
[
◦−n
p {A}

]

(n)

=
∑

p∈�(X)

v(in)X(p)
[
◦−n
p {A}

]

(n)
. (10)
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Fig. 3 Illustration of the two steps of S- HOTspace for computing Eq. (6). Note that we scan the nonzero entries
of X once during each step. a First step for Eq. (7): For each nonzero element, we add its contribution to s. To
compute the contribution to s, we first compute the contribution to the corresponding row of Y(n) (i.e., �ȳi
where i is the nth mode index of the element) by outer products and then multiply it and the corresponding
element of v (i.e., v(i)). b Second step for Eq. (8): For each nonzero element, we add its contribution to the
corresponding entry of v′ (i.e., v′(i) where i is the nth mode index of the element). To compute the contribution
to v′(i), we first compute the contribution to the corresponding row of Y(n) (i.e., �ȳi ) by outer products and
then multiply it and s, which is obtained in the first step

Thus, computing Eq. (7) requires only one scan of X. Similarly, Eq. (8) also can be computed
within one scan of X. Therefore, Eq. (6), which consists of Eqs. (7) and (8), can be computed
within two scans of X. ��

In Lemma 4, we prove the amount of space required by S- HOTscan for intermediate data.

Lemma 4 (Space complexity in S- HOTspace) The update step of S- HOTspace lines (16–22
of Algorithm 2) requires

O

⎛

⎝ max
1≤n≤N

(In +
N∏

p=1

Jp/Jn)

⎞

⎠

memory space for intermediate data.

Proof S- HOTspace maintains v, v′, and s in its update step. When each factor matrix A(n)

is updated, v and v′ are In by 1 vectors and s is a
∏N

p=1 Jp/Jn by 1 vector. Thus, O(In +
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Algorithm 2: Formal description for S- HOT.
Input : N -order tensor: X,

Rank in each mode: J1 × · · · × JN
Output: Core tensor: G ∈ R

J1×···×JN ,
Factor matrices: {A}

1 Initialize {A}
2 repeat
3 for n ← 1 . . . N do
4 v ← IRAM_init(In , Jn)
5 repeat
6 v′ ← UpdateMethod(X, n, v)
7 v ← IRAM_doIter(v′)
8 until IRAM_isconv();

9 A(n) ← getSingularVec()

10 until terminal condition;

11 G ← X × {AT }
12 return G, {A}

13 Subroutine NaiveTucker(X, n, v)

14 Materialize Y(n) =
[
X ×−n {AT }

]

(n)
if it does not exist.

15 return Y(n)Y(n)
T v

16 Subroutine S-HOTspace (X, n, v)
17 s, v′ ← 0
18 forall the (i1, . . . , iN ) ∈ �(X) do

19 s ← s + vinX(i1, . . . , iN )
[
◦−n
(i1,...,iN )

{A}
]

(n)

20 forall the (i1, . . . , iN ) ∈ �(X) do

21 v′
in

← v′
in

+ sTX(i1, . . . , iN )
[
◦−n
(i1,...,iN )

{A}
]

(n)

22 return v′

23 Subroutine S-HOTscan (X, n,w)
24 w′ ← 0
25 for i ← 1 . . . In do

26 yi ← ∑

p∈�
(n)
i (X)

X(p)
[
◦−n
p {A}

]

(n)

27 w′ ← w′ + (yTi w)yi
28 Deallocate yi
29 return w′

∏N
p=1 Jp/Jn) space is required in the update step for each factor matrix A(n). Since the

factor matrices are update one by one, O(max1≤n≤N (In + ∏N
p=1 Jp/Jn)) space is required

at a time. ��

4.3 Faster: “S-HOTscan”

How can we further reduce the number of required scans of the input tensor? We propose
S- HOTscan, which halves the number of scans of X at the expense of requiring multiple
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(disk-resident) copies of X sorted by different mode indices. In effect, S- HOTscan trades off
disk space for speed.

Our key idea for the further optimization is to compute Jn right leading singular vectors
of Y(n), which are eigenvectors of Y(n)

TY(n), and use the result to compute the left singular
vectors. Let Y(n) = U�VT be the SVD of Y(n). Then,

Y(n)V�−1 = U�VTV�−1 = U. (11)

Thus, left singular vectors are obtained from right singular vectors.
S- HOTscan computes top-Jn right singular vectors of Y(n) by updating the vector w ∈

R

∏
p �=n Jp as follows:

w′ ← Y(n)
TY(n)w =

In∑

i=1

(ȳTi w)ȳi . (12)

The virtue of S- HOTscan is that it requires only one scan of X for calculating Eq. (12), as
stated in Lemma 6.

Lemma 5 (Scan cost for computing ȳi ) ȳi can be computed by scanning only the entries of
X whose n-mode index is i .

Proof Proven by Eq. (9). ��
Lemma 6 (Scan cost of S- HOTscan) S- HOTscan computes Eq. (12) within one scan of X
when X is sorted by the n-mode index.

Proof By Lemma 5, only a section of tensor whosen-mode index is i is required for computing
ȳi . If X is sorted by the nth mode index, we can sequentially compute each yi on the fly.
Moreover, once ȳi is computed, we can immediately compute (ȳTi w)ȳi . After that, we do not
need ȳi anymore and can discard it. Thus, Eq. (12) can be computed on the fly within only a
single scan of X. ��

In this paper, we satisfy the sort constraint for all modes by simply keeping N copies of
X sorted by each mode index.

A formal description for S- HOTscan is in Algorithm 2. It is assumed that w is initialized
by passing (

∏
p �=n Jp , Jn) instead of (In , Jn) at Line 4. Although one additional scan of

X is required for computing left singular vectors from the obtained right singular vectors
(Eq. (11)), S- HOTscan still requires fewer scans of X than S- HOTspace since it saves one
scan during w′ computation, which is repeated more frequently.

In Lemma 7, we prove the amount of space required by S- HOTscan for intermediate data.

Lemma 7 (Space complexity of S- HOTscan) The update step of S- HOTscan( lines 23–29 of
Algorithm 2) requires

O

⎛

⎝ max
1≤n≤N

(

N∏

p=1

Jp/Jn)

⎞

⎠

memory space for intermediate data.

Proof In its update step for each factor matrix A(n), S- HOTscan maintains w, w′, and yi at
a time. All of them are

∏N
p=1 Jp/Jn by 1 vectors. Thus, O(

∏N
p=1 Jp/Jn) space is required

in the update step for each factor matrix A(n). Since the factor matrices are updated one by
one, O(max1≤n≤N (

∏N
p=1 Jp/Jn)) space is required at a time. ��
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Fig. 4 Power-law degree distributions in the Microsoft Academic Graph dataset (see Sect. 5.3 for a description
of the dataset). a, b show the skewed degree distributions in the author and keyword modes, which are exploited
by S- HOTmemo for speed-up. c, d show that S- HOTmemo can avoid accessing many (e.g., 50–75%) nonzero
entries by memoizing a small percentage (e.g., 10%) of rows

4.4 Even faster: “S-HOTmemo”

How can we make good use of remaining memory when memory is underutilized by
S- HOTscan, which requires little space for intermediate data (see Table 2)? We propose
S- HOTmemo, which improves S- HOTscan in terms of speed by introducing the memoization
technique. The memoization technique leverages the spare memory space, which we call
memo, to store a part of intermediate data (i.e., some rows of Y(n)) in memory instead of
computing all of them on the fly. Especially, within a given memory budget, S- HOTmemo

carefully decides the rows of Y(n) to be memoized so that the speed gain is maximized.
A formal description of S- HOTmemo is given in Algorithm 3, where the steps added for
memoization (i.e., lines 5, 14–19, 23–24) are in red.

Given a memory budget B, let kn be the maximum number of rows of Y(n) that can be
memoized within B. When updating each factor matrix A(n), S- HOTmemo memoizes the
kn rows that are most expensive to compute. Such rows can be found by comparing the
degrees of the nth mode indices (see Definition 8 for the definition of degree), as described
in lines 14-19.

Definition 8 (Degree of mode indices) The degree of each nth mode index i is defined as
|�(n)

i (X)|, i.e., the number of nonzero entries whose nth mode index is i .
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Algorithm 3: Formal description for S- HOTmemo. The steps added for memoization
(i.e., lines 5, 14-19, 23-24) are in red.
Input : N -order tensor: X,

Rank in each mode: J1 × · · · × JN ,
Memory budget for memoization: B (or equivalently k1, ..., kN )

Output: Core tensor: G ∈ R
J1×···×JN ,

Factor matrices: {A}
1 Initialize {A}
2 repeat
3 for n ← 1 . . . N do
4 v ← IRAM_init(In , Jn)
5 Map ← Memoization(X, n, kn)
6 repeat
7 v′ ← Update(X, n, v, Map)
8 v ← IRAM_doIter(v′)
9 until IRAM_isconv();

10 A(n) ← getSingularVec()

11 until terminal condition;

12 G ← X × {AT }
13 return G, {A}

14 Subroutine Memoization(X, n, kn)
15 Top ← top-kn highest-degree n-th mode indices
16 Map ← an empty map
17 forall the i ∈ Top do

18 Map.put(i,
∑

p∈�
(n)
i (X)

X(p)
[
◦−n
p {A}

]

(n)
)

19 return Map

20 Subroutine Update(X, n, w, Map)
21 w′ ← 0
22 for i ← 1 . . . In do
23 if i ∈ Map.keys() then
24 yi ← Map.get(i)

25 else

26 yi ← ∑

p∈�
(n)
i (X)

X(p)
[
◦−n
p {A}

]

(n)

27 w′ ← w′ + (yTi w)yi
28 Deallocate yi
29 return w′

This is because computing each row yi of Y(n) takes time proportional the degree of nth

mode index i (i.e., |�(n)
i (X)|), as shown in Eq. (9). The remaining steps for updating A(n) are

the same as those of S- HOTscan except for that the memoized rows are used, as described in
lines 20-29.

This careful choice of the rows of Y(n) to be memoized in memory is crucial to speed up
the algorithm. This is because, in real-world tensors, the degree of mode indices often follows
a power-law distribution [13], and thus, there exist indices with extremely high degree (see
Figs. 4a, b for example). By memoizing the rows of Y(n) corresponding to such high-degree
indices, S- HOTmemo avoids accessing many nonzero entries (see Fig. 4c, d for example) and
thus saves considerable computation time, as shown empirically in Sect. 5.5.

123



2784 J. Zhang et al.

We prove the scan cost of S- HOTmemo in Lemma 8 and the space complexity of
S- HOTmemo in Lemma 9.

Lemma 8 (Scan cost of S- HOTmemo) S- HOTmemo computes Eq. (12) within one scan of X
when X is sorted by the n-mode index.

Proof Given memoized rows, S- HOTmemo computes Eq. (12) in the same way as does
S- HOTscan only except for that S- HOTmemo uses the memoized rows. Thus, S- HOTmemo

and S- HOTscan require the same number of scans of X, which is one, as shown in Lemma 6.
We do not need an additional scan of X for the memoization step if it is done while Eq. (12)
is first computed. ��
Lemma 9 (Space complexity of S- HOTmemo) The update step of S- HOTmemo (lines 20-29
of Algorithm 3) requires

O

⎛

⎝B + max
1≤n≤N

(

N∏

p=1

Jp/Jn)

⎞

⎠

memory space for intermediate data.

Proof In addition to those maintained inS- HOTscan, which require O
(

max
1≤n≤N

(
∏N

p=1 Jp/Jn)
)

space at a time (see Lemma 7), S- HOTmemo maintains the memoized rows, whose size is
within the given budget B. Thus, O(B + max1≤n≤N (

∏N
p=1 Jp/Jn)) space is required at a

time. ��
Table 3 summarizes the key differences of BaselineOpt,S- HOT,S- HOTscan,S- HOTmemo

in terms of objective, update equations, and materialized data of methods. The table also
presents the figures illustrating how the methods work.

5 Experiments

In this section, we present experimental results supporting our claim that S- HOT outperforms
state-of-the-art baselines. Specifically, our experiments are designed to answer the following
two questions:

– Q1. How scalable is S- HOT compared to the state-of-the-art competitors with respect
to the dimensionality, the rank, the order, and the number of nonzero entries?

– Q2. Can S- HOT decompose real-world tensors that are both large-scale and high-order?
– Q3. How does the memory budget affect the speed of S- HOTmemo?
– Q4.How does the degree distribution of the input tensor affect the speed of S- HOTmemo?

5.1 Experimental setting

Competitors: Throughout all experiments, we use two baseline methods and three versions
of our proposed method:

(1) BaselineNaive: a naive method computing X×−n{A} in a straightforward way.
(2) BaselineOpt [27]: the state-of-the-art memory-efficient Tucker decomposition which

computes Y fiber by fiber.
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Table 4 Statistics of the real-world tensors used in our experiments

Tensor Nonzeros Order Dimensionality

LBNL 1,698,825 5 1605 × 4198 × 1631 × 4209 × 868, 131

MS Academic Graph 35,400,035 4 9, 380, 418 × 18, 894 × 2016 × 37, 000

Enron 54,202,099 4 6066 × 5699 × 244, 268 × 1176

(3) S- HOTspace (Sect. 4.2): the most space-efficient version of S- HOT.
(4) S- HOTscan (Sect. 4.3): a faster version of S- HOT.
(5) S- HOTmemo (Sect. 4.4): the fastest version of S- HOT with the memoization technique.

We set the size of memo so that we can memoize up to 30 rows of Y(n) for each nth mode
unless otherwise stated.6

For BaselineOpt and BaselineNaive, we use the implementation in Matlab Tensor Toolbox
2.6 [5]. We exclude HaTen2 because HaTen2 is designed for Hadoop, and thus, it takes too
much time in a single machine. For example, in order to decompose a synthetic tensor with
default parameters, HaTen2 takes 10,700 seconds for an iteration, which is almost 100 ×
slower than S- HOTscan.

Real-world datasets: We use the following high-order real-world tensors, whose statistics
are given in Table 4:

– LBNL [48]: This dataset, which was collected during the Traces project [41], contains
information on internal network traffics from LBNL/ICSI. It is modeled as a 5-order
tensor whose modes are sender IPs, sender ports, destination IPs, destination ports, and
timestamps.

– MS Academic Graph [53]: This dataset is a snapshot of the Microsoft Academic Graph
on Feb 5, 2016. It contains 42 million papers; 1,283 conferences and 23,404 journals;
115 million authors; and 53,834 keywords used to annotate the topics of the papers. It
is modeled as a 4-order tensor whose modes are authors, venues, years, and keywords.
Since the papers with missing attributes are ignored, the final tensor is of size 9,380,418×
18,894 × 2016 × 37,000.

– Enron [48]: This dataset, which was collected for an investigation by the federal energy
regulatory commission, contains information on emails from or to the employees of
Enron Corporation [56]. It is modeled as a 4-order tensor whose modes are senders,
receivers, words, and dates, respectively.

Note that both BaselineNaive and BaselineOpt methods fail to run on the three real-life
tensors due to “out-of-memory” errors, while our S- HOT family successfully decompose
them.

Synthetic datasets We also use synthetic tensors mainly to evaluate the scalability of
methods with respect to various factors (i.e., the dimensionality, rank, order, and the number
of nonzero entries) by controlling each factor while fixing the others. We generate synthetic
tensors where the degree of their mode indices follows a Zipf distribution, which is common
in real-world data [2,42]. Specifically, to create an N -order tensor, we sample M entries
where each nth mode index is sampled from the following probability density function:

p(x) = x−α

∑∞
k=1

1
kx

,

6 The size of the memo never exceeds 200KB unless otherwise stated.
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where α is a parameter determining the skewness of the distribution. We set the value of each
entry to 1.7 As default parameter values, we use N = 4, M = 105, In = 103 for every n,
Jn = 8 for every n, and α = 1.5. These default values are chosen to effectively compare
the scalability of competitors. We show that baselines (i.e., BaselineNaive and BaselineOpt)
run out of memory if we increase these values. All experiments using synthetic datasets are
repeated nine times (three times for each of three randomly generated tensors), and reported
values are the average of the multiple trials.

Equipment All experiments are conducted on a machine with Intel Core i7 4700@3.4GHz
(4 cores), 32GB RAM, and Ubuntu 14.04 trusty. Every version of S- HOT is implemented in
C++ with OpenMP library and AVX instruction set, and the source code is available at http://
dm.postech.ac.kr/shot. We used Arpack [30], which implements IRAM supporting reverse
communication interface. It is worth noting that Arpack is an underlying package for a
built-in function called eigs(), which is provided in many popular numerical computing envi-
ronments including SciPy, GNU Octave, and Matlab. Therefore, S- HOT is numerically
stable and has the similar reconstruction error with eigs() function in the above-mentioned
numerical computing environments.

For fairness, we must note that a fully optimized C++ implementation could potentially
be faster than that of Matlab (although that is unlikely, since Matlab is extremely well
optimized for matrix operations). But in any case, our main contribution still holds: regardless
of programming languages, S- HOT scales to much larger settings, thanks to our proposed
“on-the-fly” computation (Eqs. (6) and (12)).

5.2 Q1: Scalability of S-HOT

We evaluate the scalability of the competing methods with respect to various factors: (1) the
order, (2) the dimensionality, (3) the number of nonzero entries, and (4) the rank. Specifically,
we measure the wall-clock time of a single iteration of each algorithm on synthetic tensors.
Note that all the methods have the same convergence properties, as described in Observation 1
in Sect. 4.

Order First, we investigate the scalability of the considered methods with respect to the
order by controlling the order of the input tensor from 3 to 6 while fixing the other factors
to their default values. As shown in Fig. 1a, S-HOT outperforms baselines. BaselineNaive
fails to decompose the 4-order tensor because it suffers from the intermediate explosion prob-
lem. BaselineOpt, which avoids the problem, is more memory efficient than BaselineNaive.
However, it fails to decompose a tensor whose order is higher than 4 due to M-Bottleneck.
On the contrary, every version of S- HOT successfully decomposes even the 6-order tensor.
Especially, S- HOTmemo is up to 50× faster than S- HOTspace and S- HOTscan.

Dimensionality Second, we investigate the scalability of the considered methods with
respect to the dimensionality. Specifically, we increase the dimensionality In of every n from
103 to 107. That is, since the default order is 4, we increase the tensor from 103 × 103 ×
103 × 103 to 107 × 107 × 107 × 107. As shown in Fig. 1b, S-HOT is several orders
of magnitude scalable than the baselines. Specifically, BaselineNaive fails to decompose
any 4-order tensor, and thus, it does not appear in the plot. BaselineOpt fails to decompose
tensors with dimensionality larger than 104 since the space for storing Y increases rapidly
with respect to the size of dimensionality (M-Bottleneck). On the contrary, every version

7 However, this does not mean that S- HOT is limited to binary tensors nor our implementation is optimized
for binary tensors. We choose binary tensors for simplicity. Generating realistic values, while we control each
factor, is not a trivial task.
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of S- HOT successfully decomposes the largest tensor of size 107 × 107 × 107 × 107.
Moreover, the running times of S- HOTscan and S- HOTmemo are almost constant since they
solve the transposed problem, whose size is independent of the dimensionality. Between
them, S- HOTmemo is up to 6× faster than S- HOTscan. On the other hand, the running time
of S- HOTspace depends on dimensionality and increases as the dimensionality becomes
greater than 106. For smaller dimensionalities, however, the effect of dimensionality on its
running time is negligible because the outer products (i.e., lines 19 and 21 of Algorithm 2)
are the major bottleneck.

Rank Third, we investigate the scalability of the considered methods with respect to the
rank. To show the difference between the competitors clearly, we set the dimensionality of the
input tensor to 20,000 in this experiment. However, the overall trends do not depend on the
parameter values. As shown in Fig. 1c, the S-HOT has better scalability than baselines.
Specifically, BaselineNaive fails to decompose any tensor and does not appear in this plot.
BaselineOpt fails to decompose the tensors with rank larger than 6. On the contrary, every
version of S- HOT successfully decomposes the tensors with larger ranks. Among them,
S- HOTmemo is up to 7× faster than S- HOTscan and S- HOTspace. S- HOTscan is faster than
S- HOTspace, but the difference between them decreases as the rank increases. This is because,
as the rank increases, the outer products (i.e., lines 19 and 21 of Algorithm 2) become the
major bottleneck, which are common in S- HOTspace and S- HOTscan.

Nonzero entries Lastly, we investigate the scalability of the considered methods with
respect to the number of nonzero entries. We increase the number of nonzero entries in the
input tensor from 104 to 107. As shown in Fig. 1d, every version of S-HOT scales near lin-
early with respect to the number of nonzero entries. This is because the S- HOT family scans
most nonzero entries (especially, S- HOTspace and S- HOTscan scan all the nonzero entries),
and processing each nonzero entry takes almost the same time. Among them, S- HOTmemo is
4× faster than S- HOTscan and S- HOTspace. With respect to the number of nonzero entries,
BaselineOpt shows better scalability than S- HOT since it explicitly materializesY. OnceY is
materialized, since its size does not depend on the number of nonzero entries, the remaining
tasks of BaselineOpt are not affected by the number of nonzero entries.

5.3 Q2: S-HOT at work

We test the scalability of S- HOT on the MS Academic Graphdataset. We note that since
this tensor is high-order and large, both baseline algorithms fail to handle it running out of
memory. However, every version of S- HOT successfully decomposes the tensor.

To better interpret the result of Tucker decomposition, we runs k-means clustering [3]
where we treat each factor matrix as the low-rank embedding of the entities in the corre-
sponding mode, as suggested in [27]. Specifically, for Tucker decomposition, we set the rank
of each mode to 8 and run 30 iterations. For k-means clustering, we set the number of clusters
to 400 and run 100 iterations.

Table 5 shows sample clusters in the venue mode. The first cluster contains many venues
related to Computer Science. The second cluster contains many nanotechnology-related
venues such as Nature Nanotechnology, Journal of Experimental Nanoscience. The third
one have many venues related to Medical Science and Diseases. This result indicates that
Tucker decomposition discovers meaningful concepts and groups entities related to each
other. However, there is a vast array of methods for multi-aspect data analysis, and we leave
a comparative study as to which one performs the best for future work.
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Table 5 Sample clusters of
venues in the Microsoft
Academic Graph dataset

CS-related International Conference on Networking(ICN),
Wired/Wireless Internet Communications(WWIC),
Database and Expert Systems Applications(DEXA),
Data Mining and Knowledge Discovery, IEEE
Transactions on Robotics,…

Nanotech. Nature Nanotechnology, PLOS ONE, Journal of
Experimental Nanoscience, Journal of Nanoscience
and Nanotechnology, Journal of Semiconductors,
Trends in Biotechnology,…

Clinical European Journal of Cancer, PLOS Biology, Clinical
and Applied Thrombosis-Hemostasis, Journal of
Infection Prevention, RBMC Clinical Pharmacology,
Regional Anesthesia and Pain…

5.4 Q3: Effect of thememory budget on the speed of S-HOTmemo

We measure the effect of memory budget B for memoization on the speed of S- HOTmemo

using synthetic and real-world tensors. We use three 4-order tensors with dimensionality
20,000 for each mode. All the tensors have 106 nonzero entries, while they have different
degree distributions characterized by the skewness α of the Zipf distribution. We also use the
real-world datasets listed in Table 4.

Figure 5a shows the result with the synthetic tensors where we set the rank of each mode
to 6. S- HOTmemo tends to be faster as we use more memory for memoization. However,
the speed-up slows down because we prioritize rows to be memoized by the degree of the
corresponding mode indices, as described in Sect. 4.4. As the memory budget increases,
S- HOTmemo memoizes rows corresponding to mode indices with smaller degree, which saves
less computation. Notice that with only the 10KB memory budget, S- HOTmemo becomes
over 3.5× faster than S- HOTscan, which does not use memoization.

As shown in Fig. 5b–d, we obtain the same trend with the real-world tensors. Notice that,
in the MS Academic Graphdataset, S- HOTmemo becomes over 2× faster than S- HOTscan,
which does not use memoization, with only a 4MB memory budget. S- HOTscan saves much
computation by memoization a small number of rows due to the power-law degree distribu-
tions, shown in Fig. 4.

Additionally, Fig. 5e–h shows how the normalized number of floating-point operations
(FLOPs) required for recomputing the “unmemoized” rows of Y(n) changes depending on
the memory budget B for memoization. The computation costs are significantly reduced even
when a small fraction of rows are memoized, due to our prioritization scheme.

5.5 Q5: Effect of the skewness of data on the speed of S-HOTmemo

We measure the effect of the skewness of degree distribution on the speed of S- HOTmemo.
To this end, we use three 4-order tensors with different degree distributions characterized
by the skewness α of the Zipf distribution. All of them have 106 nonzero entries, and their
dimensionality for each mode is 20,000.

Figure 5a shows how rapidly the speed-up of S- HOTmemo increases depending on the
skewness α. In tensors with larger α, the speed-up of S- HOTmemo tends to increase faster.
For example, with a 2KB memory budget, S- HOTmemo achieves over 2.5× speed-up in the
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Speedup under different memoization budgets:

(a) Synthetic (b)MS Academic Graph

(c) Enron (d) Speed-up in the LBNL tensor

FLOPS under different memoization budgets:

(e) Synthetic (f)MS Academic Graph

(g) Enron (h) LBNL

Fig. 5 S- HOTmemo significantly reduces computational cost on both synthetic and real-world tensors. In the
synthetic tensors, S- HOTmemo achieves over 3.5× speed-up by memoizing less than 0.05% of rows with
a 10 KB memory budget. In the MS Academic Graphdataset, S- HOTmemo achieves over 2× speed-up by
memoizing less than 0.05% of the rows with a 5 MB memory budget. In e–h the y-axis represents the number
of floating-point operations (FLOPs) for recomputing “unmemoized” rows of Y(n)
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tensor with α = 2.5, while it achieves less than 1.5× speed-up in the tensor with α = 1.5.
This is because, with larger α, more nonzero entries are concentrated in few mode indices.

For every realistic degree distribution with α > 1, S- HOTmemo achieves over 3.5× speed-
up with a 10 KB memory budget. S- HOTmemo reverts to S- HOTscan if the input tensor has
an unrealistic uniform degree distribution with α = 0.

6 Conclusions

In this paper, we propose S- HOT, a scalable algorithm for high-order Tucker decompo-
sition. S- HOT solves M-bottleneck, which existing algorithms suffer from, by using an
on-the-fly computation. We provide three versions of S- HOT: S- HOTspace, S- HOTscan, and
S- HOTmemo, which provide an interesting trade-off between time and space. We theoretically
and empirically show that all versions of S- HOT have better scalability than baselines.

In summary, our contributions are as follows.

– Bottleneck resolution We identify M-Bottleneck (Fig. 2), the scalability bottleneck of
existing Tucker decomposition algorithms, and avoid it by a novel approach based on an
on-the-fly computation.

– Scalable algorithm designWe propose S- HOT, a Tucker decomposition algorithm that is
carefully optimized for large-scale high-order tensors. S- HOT successfully decomposes
1000 × larger tensors than baselines algorithms (Fig. 1) with identical convergence
properties (Observation 1).

– Theoretical analyses We prove the amount of memory space and the number of data
scans that the different versions of S- HOT require (Table 2 and Lemmas 3–9).

Future work includes reducing redundant computations that occur during TTMcs, which is
a subroutine of S- HOT, using advanced data structures (e.g., compressed sparse fiber [46]),
as suggested in [47]. For reproducibility and extensibility of our work, we make the source
code of S- HOT publicly available at http://dm.postech.ac.kr/shot.
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