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Abstract
While business trends are constantly evolving, the timely prediction of sales volume offers
precious information for companies to achieve a healthy balance between supply and demand.
In practice, sales prediction is formulated as a time series prediction problem which aims
to predict the future sales volume for different products with the observation of various
influential factors (e.g. brand, season, discount, etc.) and corresponding historical sales
records. To perform accurate sales prediction under the offline setting, we gain insights
from the encoder–decoder recurrent neural network (RNN) structure and have proposed a
novel framework named TADA (Chen et al., in: ICDM, 2018) to carry out trend alignment
with dual-attention, multitask RNNs for sales prediction. However, the sales data accumu-
lates at a fast rate and is updated on a regular basis, rendering it difficult for the trained
model to maintain the prediction accuracy with new data. In this light, we further extend the
model into TADA+, which is enhanced by an online learning module based on our innova-
tive similarity-based reservoir. To construct the data reservoir for model retraining, different
from most existing random sampling-based reservoir, our similarity-based reservoir selects
data samples that are “hard” for the model to mine apparent dynamic patterns. The exper-
imental results on two real-world datasets comprehensively show the superiority of TADA
and TADA+ in both online and offline sales prediction tasks against other state-of-the-art
competitors.

Keywords Online sales prediction · Recurrent neural networks · Attention mechanism ·
Time series analysis

1 Introduction

For various retail businesses, keeping a balance between supply and demand is crucial to
retailers, and the accurate prediction of sales volume is becoming indispensable for commer-
cial success [6]. Overestimated sales can result in excessive inventory, unhealthy cash flow
and even bankruptcy, while the underestimated salesmay lead to unfulfilled orders, decreased
business reputation and profit [26]. In practice, sales prediction is formulated as a time series
forecasting problem, which aims to predict future sales volume based on the observed mul-
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tivariate time series data which consists of historical sales volume and influential factors
(e.g. brand, season, discount, etc.). Thus, a reasonable modelling of the influential factors
and historical sales information should be performed to successfully predict sales volume.

In recent years, time series prediction algorithms are widely adopted in many areas such
as financial market prediction [37,49], recommender systems [11,54] and medical research
[5,29]. Among these techniques, the discovery of trending events or repeating patterns based
on the clues from historical observations has inspired some interesting applications like traffic
modelling [28], solar intensity prediction [35] and argument discovery [23]. Undoubtedly,
the discovery of recurring trends will greatly benefit the forecast of sales by aligning relative
contextual information learned from the influential factors, and this insight is referred to
as trend alignment in this paper. However, both traditional autoregressive-based methods
[4,19] and recent trend mining models [28,40] are ineffective for the trend alignment in sales
prediction. This is because these methods assume that the trend in time series data recurs
periodically (i.e. distributes with a fixed time period), thus requiring domain knowledge for
every application area and carefully chosen parameters based on the data. Hence, existing
techniques are unable to align similar trends in sales time series where the sales patterns are
much more subtle and irregular due to the effect from complicated real-world situations, and
the difficulty increases when there are a large number of different products.

The formation of a trend in sales time series has specific contexts which can be modelled
from the interaction among various influential factors. In regard to contextual information
learning from raw time series, recurrent neural network (RNN) models have been intensively
studied and applied to learn vector representations from sequential inputs [17,28,42]. Com-
paredwith previous efforts on time series prediction like kernelmethods andGaussian process
[24,48] which are limited by their predefined nonlinear form, RNNs show their advantages
in flexible yet discriminative nonlinear relationship modelling. Moreover, two variants of
RNN, namely long short-term memory (LSTM) [21] and gated recurrent unit (GRU) [13],
further advance the performance in tasks related to neural machine translation [1] and image
captioning [50]. Among these applications, the encoder–decoder RNN architecture leverages
two independent RNNs to encode sequential inputs into latent contextual vectors and decode
these contexts into desired interpretations [1,43,50]. After showing its superiority in recent
time series modelling tasks [28,37], it is natural to consider encoder–decoder RNNs for sales
prediction by leveraging its capability to fully capture the nonlinear relationship between the
influential factors and the sales volume.

However, even with the state-of-the-art encoder–decoder RNNmodels, sales prediction is
still a challenging research problem because when multiple influential factors interact with
each other, they have different influences on different products. For instance, the temperature
has more impact on the sales of down jackets than shirts because shirts are intrinsically
cheaper and can be worn all year round. Furthermore, the influential factors are dynamic
and unpredictable in many cases, so it is impractical to assume their future availability.
For example, though the environmental policy significantly affects electrical car sales, and
the fashion trend dominates the clothing industry, we have very limited prevision on these
influential factors. To make things worse, when performing trend alignment using contexts
learned from the past, the decoder cannot generate rich contexts with the unknown states of
influential factors.

In real-life scenarios, sales data is always updated on a regular basis, e.g. on each business
day or at the end of each month. The aforementioned time series prediction methods may
show the promising results under the offline setting, but they lack adequate ability to adapt to
the updated data when performing sales prediction under the online setting. Thus, it is crucial
to extend the offline prediction scheme to an online sales prediction scheme. On the one hand,
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the incoming data stream is helpful for the verification of the correctness of the predicted
sales; on the other hand, the updated sales time series data enriches the data samples that can
be used to better tune the original model in order to better model the most recent sales trends
to ensure the prediction accuracy. In a broad range of existing online models that deals with
streaming data [7,14,45,46], a widely adopted strategy for online model parameter update is
the reservoir-based online learning.With the new incoming data, a data reservoir is utilized to
store a small portion of previously used data samples, and the stored data samples are further
leveraged to retrain the model along with the updated data. The motivation of keeping both
new and used data samples to retrain the model is to adapt the model parameters to emerging
dynamic patterns within the new data while retaining as much information of used data as
possible. Unfortunately, existing reservoir-based update methods may fail to help the model
memorize the important information contained in the previous training data. This is because
themajority of the reservoir-based updatemethods use the uniform random sampling to select
a subset of samples from the used data; hence, a lot of “easy” prediction tasks and outliers
will be absorbed by the reservoir for the retraining process. As a result, a random sampling-
based reservoir is incapable of selecting representative training samples that substantially
contribute to the optimization of model parameters.

Hence, the main challenges in online sales prediction are summarized as follows. The
first is how to fully capture the dynamic dependencies among multiple influential factors.
Second, without any prior knowledge ofmutative variables in the future, how canwe possibly
glean wisdom from the past to compensate for the unpredictability of influential factors.
Third, as different sales trends recur irregularly due to complex real-world situations, it is
necessary to align the upcoming trend with historical sales trends, thus selectively gather
relative contextual information for accurate prediction of sales volume. Forth, as the sales
data is updated on a regular basis, we need to address the way to develop an effective online
update approach that can adjust to the new data without forgetting useful past information.

In light of the first three challenges, we have proposed a novel sales prediction framework,
namely Trend Alignment with Dual-AttentionMultitask Recurrent Neural Network for Sales
Prediction (TADA), which is our offline sales prediction model published in [10]. TADA
consists of twomajor components: themultitask LSTMencoder and the dual-attention LSTM
decoder, which are illustrated in Fig. 1. Moreover, in this paper, we further extend TADA

Fig. 1 Workflow of the offline sales prediction model TADA
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with an online update mechanism, namely TADA+ to ensure the effectiveness under a more
practical online sales prediction setting.

In order to solve the first challenge, we make our own observation on the characteristics
of sales time series based on previous discussions. The semantics of influential factors in
sales prediction are diverse, which, however, has been ignored by the conventional time
series prediction methods. Specifically, for each product, its influential factors come with
its intrinsic properties which are directly related to customers’ subjective preference, e.g.
brand, category, price, etc. Meanwhile, there are also many factors that objectively affects
the sales, e.g. weather, holiday, promotion, etc. In this paper, we categorize the intrinsic
properties of a product as its internal feature and the other influential factors as the external
feature. While internal features and external features express different semantic meanings,
they both contribute to the fluctuations of the product sales volume at the same time. Hence,
comparedwith predictivemodels that treat all kinds of features in a unifiedway [28,37,53],we
propose a multitask LSTM encoder to learn contextual vector representations of historical
sales time series. As shown in Fig. 1, to solve the first challenge, we novelly model the
internal feature and external feature in parallel via two individual LSTM layers. Then, we
use a synergic LSTM layer to simultaneously join these two learned latent representations at
each time step. The insight of a multitask encoder structure is to comprehensively leverage
all available resources by modelling internal and external features separately first and then
pose a dynamic interaction between different features to generate contextual representations
of historical sales time series.

To address the challenges of trend alignment and unknown influential factors, we propose
an innovative dual-attention LSTMdecoder to tackle the difficulties. Grasping intuitions from
existing attention mechanisms [1,18,44] which aim to select relevant parts of hidden states
learned by the encoder to attend, we develop our simple yet effective attention mechanisms
which perfectly blend into the neural network for accurate sales prediction. As illustrated in
Fig. 1, in the decoding stage, the first attentionmodels the effect of unknown influential factors
using relevant contextual vectors from the encoder. After new sales contexts are generated
within the look-ahead time interval, the second attention gathers contextual information of
this upcoming trend and then actively aligns the new trend with historical ones. Eventually,
we combine the representation from the aligned trends to produce a sequence of estimated
sales volume in the future.

Finally, to grant TADA the ability of online learning, in TADA+, we present a novel
similarity-based reservoir for online model update. Intuitively, when constructing a data
reservoir using previous data samples, we aim to seek “hard” tasks and discard “easy” train-
ing samples based on the intermediate results. To select the most relevant contexts for the
decoder as well as perform trend alignment, the dual-attention mechanisms in TADA uti-
lize the similarity score (e.g. probability distribution) to pick the most important contextual
information. To this end, we propose to fully leverage the similarity score within the atten-
tion mechanisms. In short, when computing different similarity scores with the attention
mechanism, if the distribution of the similarity scores for different contexts is similar to
the uniform distribution, it implies that the model is having difficulties in differentiating
important contexts from irrelevant ones. Such cases are relatively challenging for the model
because they do not show obvious dynamic patterns that can be mined by the existing model.
So, in TADA+, we design a similarity-based reservoir to select useful past data samples with
a cut-off threshold for the distribution of the similarity scores and then combine the selected
past data samples with the new ones to update the model and enable effective online sales
prediction.
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We summarize the primary contributions of our research as follows:

– We are the first to categorize the influential factors in sales time series into internal fea-
tures and external features and innovatively model these two aspects with the multitask
LSTM encoder. We also adopt a synergic LSTM layer to model the dynamic interaction
between different types of influential factors.

– To obtain optimal sales prediction performance under the offline setting, we present
the dual-attention multitask recurrent neural network to tackle the aforementioned chal-
lenges in sales prediction. The novel encoder–decoder structure can comprehensively
model variables with different semantic meanings, and the dual-attention increases both
the interpretability and accuracy of the model by simulating unknown states of future
contexts and aligning the upcoming sales trend with the most relevant one from the
past.

– To achieve better real-life practicality under the online prediction setting, we extend
our conference version TADA [10] to TADA+ with an online update scheme. The online
update module uses a similarity-based reservoir to store new data as well as keep themost
important training samples from the used training data, which ensures the robustness of
the prediction results under an online setting.

– We conduct extensive experiments on two real-life commercial datasets. The results
showcase the superiority of our approach in sales prediction by outperforming a group of
state-of-the-art predictive models. We validate the vigorous contribution of each compo-
nent in TADA via ablation tests and visualizations. Additional experiments on training
efficiency further show promising scalability of TADA.

The rest of this paper is organized as follows. Section 3 formulates the sales prediction task
and explains our proposed TADA in detail. We outline the related research backgrounds in
Sect. 2. Section 4 verifies that the asymptotic time complexity of TADA is linearly associated
with the scale of the data. After reporting the experimental results of ourmodel in comparison
with state-of-the-art baselines in Sect. 5, we conclude our findings with Sect. 6.

2 Related work

With our motivation stated, we review relevant literatures in order to clearly position our
proposed method against different existing approaches. Specifically, our work is related to
time series prediction, trend modelling and multitask learning.

2.1 Time series prediction

When performing sales prediction using multivariate time series, the techniques can be
divided into linear models and nonlinear models. While linear models like autoregressive
integrated moving average (ARIMA) [4], support vector machine (SVM) [38] and robust
regression [39] mostly aim at finding parameterized functions from statistics, and nonlin-
ear models like Gaussian process [48,51] and gradient boosting machines [9,16] can better
model complicated dependencies by leveraging machine learning techniques. However, due
to the high computational cost and unsatisfying scalability in real applications [28,58], these
approaches are not ideal for sales time series which usually carries high dimensionality
and long time range. In addition, these methods mainly rely on carefully designed map-
ping functions, so sufficient domain knowledge of the data is a prerequisite. To address this
issue, recurrent neural network (RNN) [30], along with its two popular variants, namely long
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short-term memory (LSTM) [21] and gated recurrent unit (GRU) [13], have been proposed
to dynamically capture long-range dependencies among the sequential data via a flexible
nonlinear mapping from the inputs to the outputs.

Attempts on time series modelling using RNNs have demonstrated the efficacy of RNNs
in various time series prediction tasks, such as dynamic location prediction [52,57] and user
satisfaction prediction [33]. In the aforementioned applications, a single RNN is leveraged
to learn discriminative hidden states from the raw sequential inputs, and the last hidden state
in a sequence is used to generate the desired output. As real-life tasks get more complex, the
one-step prediction result generated from the last hidden state of a single RNN no longer suits
the demand. Consequently, the encoder–decoder network is first proposed in neural machine
translation scenarios [13,43], which further inspires relevant researches on multi-step ahead
time series prediction [2,3,41].

2.2 Trendmodelling

With the repetitive patterns in different time series, the discovery of recurring trends in
time series is worth more investigations [12,34,35,40]. Unfortunately, these methods are
either too rough to capture the subtle trend in sales time series or can only be applied to
periodic trends within the time series. Besides, it is doubtful whether these approaches can
be effectively embedded into the network structure. On the basis of encoder–decoder RNN
structure, several attention mechanisms are designed to align the output state with relevant
encoded hidden states, thus selectively picking valuable contextual information to enhance
the model’s performance [1,37,50]. However, these attention mechanisms are incompatible
with the requirement of trend alignment in sale time series because of the unknown state of
influential factors and the timely interaction between semantically different influential factors
(i.e. internal and external features). Recently, a framework incorporating a regular RNN layer
and a recurrent layer with skipping schemes is developed in [28] to capture repetitive trends
in the time series. However, the skipping step size in [28] needs to be either observed from
the data or obtained with a manual tuning process, which lacks enough flexibility to tackle
the irregular patterns in sales time series.

2.3 Multitask learning

Machine learning models, especially deep neural network-based models, rely on large num-
bers of labelled samples to fully optimize their parameters in order to achieve optimal
performance [56]. However, in many applications, data insufficiency problem inevitably
arises, rendering the deep neural networks hard to generate rich representations from the
inputs. In this light, multitask learning (MTL) is proposed as an important machine learning
paradigm. The main purpose of MTL is to enhance the model performance via multiple
learning sources, or to improve model generalizability on a specific task using other related
tasks [32].

In the context of deep neural networks, MTL has shown the promising results in various
applications, such as textual representation learning [31,32], graph-based recommendation
[55] and speech modelling [20,22]. In [15], the idea of MTL is first brought to sequence-to-
sequence learning, where one RNN-based encoder is used to extract sentence representation
while multiple decoders are deployed to generate translations in different languages simulta-
neously. Apart from this one-to-many MTL approach, [32] further extends the MTL scheme
with the many-to-many and many-to-one encoder–decoder architectures. The many-to-one

123



Online sales prediction via trend alignment-based… 2145

architecture consists of multiple encoders for different sequential inputs from different tasks,
and one decoder to compute the outputs for all tasks. However, since there are various objec-
tive functions to be optimized at the same time, the decoder is forced to achieve a performance
trade-off among all tasks. In contrast, our multitask encoder contains a synergic LSTM that
combines the learned features from different contexts into a unified representation, and the
decoder only focuses on the estimation of upcoming sales. On the one hand, the multitask
encoder holds expressive power [56] by learning representations from different sources. On
the other hand, the decoder is dedicated to only one objective, which ensures that the sales
prediction performance can be fully maximized.

3 TADA: themodel

In this section, we first mathematically formulate the definition of sales prediction, and then,
we present the technical details of our proposed model TADA. Finally, we introduce the loss
function and optimization strategy.

3.1 Problem formulation

The objective of sales prediction is to predict future sales volume according to multivariate
observations (e.g. previous sales, weather, price, promotion, etc.) from the past. The formu-
lation of sales prediction is similar to, but different from, multivariate time series forecasting
and autoregressive models (AR). Formally, for an arbitrary product, the input is defined as
its fully observed feature vector set {xt }Tt=1 = {x1, x2, ..., xT } and the corresponding sales
volume {yt }Tt=1 = {y1, y2, ..., yT } at time step t . Here, xt ∈ R

n , yt ∈ R and n is variable
according to the feature dimension, while T is the amount of total time steps. The output of
sales prediction is the estimated sales volume of following Δ time steps after T , denoted as
{ŷt }T+Δ

t=T+1 = {ŷT+1, ŷT+2, ..., ŷT+Δ}, where Δ is adjustable according to the business goal.

In this paper, we assume Δ � T to ensure the prediction accuracy because {xt }T+Δ
t=T+1 is

non-available in the prediction stage.
Importantly, compared with multivariate time series forecasting and AR, sales prediction

models behave differently. This is because our target is to acquire the one-dimensional scalar
representing the sales volume without prior knowledge of the features in the future. Mean-
while, in multivariate time series forecasting, the output is specifically {xt }T+Δ

t=T+1, which has

the same form and contextual meaning of its input [28]. Also, the AR assumes {xt }T+Δ
t=T+1 is

available when predicting {ŷt }T+Δ
t=T+1 [37] because it is designed to model a mapping function

between conditions and consequences.
Hence, we formulate sales prediction as a nonlinear mapping from time series features

{xt }Tt=1 and real sales {yt }Tt=1 in the history to the estimation of sales volume {ŷt }T+Δ
t=T+1 with

Δ time steps ahead:

{ŷt }T+Δ
t=T+1 = F

(
{xt }Tt=1, {yt }Tt=1

)
, (1)

where F(·) is the nonlinear mapping function to learn.

3.2 Multitask encoder structure

Taking a time series {xt }Tt=1 as input, recurrent neural network (RNN) encodes {xt }Tt=1 into
hidden states {ht }Tt=1 via ht = f (xt , ht−1), where f (·) is a nonlinear mapping function.

123



2146 T. Chen et al.

To capture the long-range dependency, we leverage RNNs with long short-term memory
architecture (LSTM) via the following formulation [21]:

it = σ(Wixt + Uiht−1 + bi ),

ft = σ(W f xt + U f ht−1 + b f ),

ot = σ(Woxt + Uoht−1 + bo),

ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ht = ot � tanh(ct ),

(2)

where � denotes element-wise multiplication and the recurrent activation σ is the Logistic
Sigmoid function. i, f, o and c are, respectively, the input gate, forget gate, output gate and cell
state vectors. When updating each of them, there are corresponding trainable input-to-hidden
and hidden-to-hidden weights W and U along with the bias vectors b.

For sales prediction, internal feature and external feature are two kinds of features with
different semantic meanings in sales time series. We use {xintt }Tt=1 and {xextt }Tt=1 to denote
the feature vectors of internal and external information in sales time series, respectively. As
we discussed in previous sections, internal features carry information of intrinsic attributes
directly linked with the product like store location and item category, while the external
features store information of extrinsic attributes viewed as external influential factors like
weather condition and holiday. As a result, a single LSTM structure may suffer from loss of
contextual information as it maps all raw features into one unified space, as we will reveal in
Sect. 5. Hence, we use two LSTMs in parallel to effectively capture the different semantics
by treating internal and external feature modelling as two sub-tasks. Correspondingly, we
extend the problem formulation in Eq. (1) as:

{ŷt }T+Δ
t=T+1 = F

(
{xintt }Tt=1, {xextt }Tt=1, {yt }Tt=1

)
. (3)

Figure 2 demonstrates our proposed encoder architecture. We use {hint
t }Tt=1 and {hext

t }Tt=1
to denote the latent representations learned from {xintt }Tt=1 and {xextt }Tt=1. After the hidden
states are learned from both sub-tasks, we simultaneously feed those hidden states into a
synergic LSTM layer to learn a joint representation, namely contextual vectors denoted by
{hcon

t }Tt=1 at all T time steps in the sales time series. Furthermore, to enhance the expressive
ability of the encoder, instead of adopting {yt }Tt=1 to calculate the prediction loss, we fuse
{yt }Tt=1 with hidden states from both internal and external encoding LSTMs to calculate the
input {xsynt }Tt=1 for the synergic layer:

xsynt = Wsyn[hint
t ; hext

t ; yt ] + bsyn, (4)

where [hint
t ; hext

t ; yt ] represents the concatenation of hint
t , hext

t and yt while Wcon and bcon are
weights and biases to be learned. For notation convenience, we format the multitask encoder
structure into the following equations:

hint
t = LST M int(xintt , hint

t−1),

hext
t = LST Mext(xextt , hext

t−1),

hcon
t = LST Msyn(xsynt , hcon

t−1),

(5)

where LSTMint(·), LSTMext(·) and LSTMsyn(·) denote internal, external and synergic LSTM
encoders, respectively. Note that the trainable weights are not shared across different LSTM
layers in our multitask encoder structure.
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Fig. 2 Unfolded structure of our proposed multitask LSTM encoder. Two sub-tasks consist of internal feature
learning and external feature learning LSTMs, denoted by LSTMint and LSTMext, respectively. After latent
representations of both internal and external features are generated, they are combined with the real sales
number {yt }Tt=1 to compute the contextual vectors {hcont }Tt=1 via the synergic task LSTM (LSTMsyn)

3.3 Dual-attention decoder structure

After encoding the entire historical sales time series with the multitask encoder, we have
the contextual vectors {hcon

t }Tt=1 where each hcon
t carries contextual information of the sales

time series at time step t . The latent representations, {hint
t }Tt=1 and {hext

t }Tt=1 for internal and
external features are also learned. To predict the desired sales volume {ŷt }T+Δ

t=T+1, we adopt
a LSTM decoder to mimic the contextual vectors in the following Δ time steps. Similar to
Eq. (5), when T < t ≤ T + Δ, we have:

dcon
t = LST Mdec(xdect , dcon

t−1), (6)

where dcon
t ∈ {dcon

t }T+Δ
t=T+1 is the contextual vector to learn in the decoding stage at time step

t , LST Mdec(·) is the decoder with the same formulation as Eq. (2), xdect is the attention-
weighted input for the decoder and dcon

t−1 is the previous decoder hidden state.

3.3.1 Attention for weighted decoder input mapping

According to the problem formulation, we assume that both {xintt }T+Δ
t=T+1 and {xextt }T+Δ

t=T+1
are non-available in the decoding stage because both of them contain attributes unknown to
the future, such as price as an internal feature and weather as an external feature. Thus, to
formulate the decoder input at time t > T , we propose an attentionmechanism to dynamically
select and combine relevant contextual vectors from {hint

t }Tt=1 and {hext
t }Tt=1 with:

xdect = Wdec

[
T∑

t ′=1

αint
t t ′ h

int
t ′ ;

T∑
t ′=1

αext
t t ′ hext

t ′

]
+ bdec, (7)

where αint
t t ′ and αext

t t ′ denote the attention weights mapped to t ′th hidden states of internal and
external feature encoders, respectively. We use Fig. 3 to illustrate the attention for weighted
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Fig. 3 Demonstration of proposed attention mechanism for weighted input mapping. The details of LSTMsyn

are omitted for a clearer view. With the calculated attention weights αintt t ′ and αextt t ′ , the latent representations
generated by LSTMint and LSTMext are mapped into the input vectors {xdect }T+Δ

t=T+1 for the decoder LSTM
dec

decoder input mapping process. We enforce
∑T

t ′=1 αint
t t ′ = ∑T

t ′=1 αext
t t ′ = 1, so that [·] in

Eq. (7) can be viewed as the concatenation of two probability expectations from {hint
t }Tt=1

and {hext
t }Tt=1. The rationale is that we simulate xdect by summarizing varied influences from

all 2T historical hidden states of both internal and external features. The influences are
computed through quantifying the relevance between dcon

t−1 and each hint
t ′ , hext

t ′ :

eintt t ′ = v�
int tanh

(
Mintdcon

t−1 + Hinthint
t ′

)
,

eextt t ′ = v�
ext tanh

(
Mintdcon

t−1 + Hexthext
t ′

)
,

(8)

where eintt t ′ and eextt t ′ are the relevance scores mapped to t ′th hidden states in {hint
t }Tt=1 and

{hext
t }Tt=1 for the decoder input at time t , while vint, vext, Mint , vext, Hint and Hext are param-

eters to learn. In particular, Eq. (8) compares two hidden states with different semantic
meanings. Intuitively, this is a scoring scheme that shows how well two vectors are corre-
lated by projecting them into a common space. Afterwards, we apply Sof tMax on both
attention weights:

αint
t t ′ = exp(eintt t ′ )∑T

s=1 exp(e
int
ts )

,

αext
t t ′ = exp(eextt t ′ )∑T

s=1 exp(e
ext
ts )

,

(9)

which enforces
∑T

t ′=1 αint
t t ′ = ∑T

t ′=1 αext
t t ′ = 1.
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Fig. 4 Demonstration of proposed attentionmechanism for trend alignment. The process for generating output
label is included as well. We omit LSTMint and LSTMext to be succinct. Note that we assume Δ = 3 in this
figure for better readability. The essence is to find a best match denoted by pi ′ for the current trend p̃.
Afterwards, we sequentially join the aligned contextual vector pairs within two trends to produce the final
contextual vectors {̃dcont }T+Δ

t=T+1 and then predict the upcoming sales {ŷt }T+Δ
T+1

3.3.2 Attention for trend alignment

Ideally, at time t , each acquired contextual vector in {hcon
t }Tt=1 and {dcon

t }T+Δ
t=T+1 carries

contextual information of both time t and previous time steps. However, as discussed in
[13,37], the performance of the encoder–decoder networks decreases significantly when the
length of time series grows. To alleviate the problem, traditional attention mechanisms have
been designed to align the current output with the targeted input by comparing the cur-
rent hidden state with the ones generated at previous time steps. Meanwhile, these methods
are not applicable as we aim to match similar trends for the prediction period Δ, and we
propose a novel attention mechanism for trend alignment. Mathematically, we represent a
Δ-step trend in sales time series as the concatenation of Δ successive contextual vectors in
{hcon

t }Tt=1:
pi = [

hcon
i ; hcon

i+1; ...; hcon
i+Δ−1

]
, 1 ≤ i ≤ T − Δ + 1 (10)

where pi denotes the i th trend in T with a time span ofΔ. Similarly, we represent the upcom-
ing trend p̃ in the [T +1, T +Δ] time interval via the concatenation of all contextual vectors

in {dcon
t }T+Δ

t=T+1:
p̃ = [

dcon
T+1; dcon

T+2; ...; dcon
T+Δ

]
. (11)

We explain the workflow of attention for trend alignment in Fig. 4. As demonstrated
in Fig. 4, when the trend index i increases from 1 to T − Δ + 1, pi can be
viewed as a sliding window that dynamically captures temporary contextual informa-
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tion learned from existing sales time series with respective step and window size as 1
and Δ. Hence, we compute the relevance score between p̃ and each pi ∈ {pi }T−Δ+1

i=1 ,
with:

etrdi = p�
i p̃ (12)

and then find out the best match of p̃:

i ′ = argmax
(
etrdi , etrdi+1, ..., e

trd
T+Δ−1

)
, (13)

where etrdi denotes the relevance between p̃ and pi , while i ′ indicates the i ′th trend in
{pi }T−Δ+1

i=1 is the most relevant to p̃. Because p̃ and pi express similar contextual semantics
with the same dimensionality, we do not use the scoring scheme in Eq. (8) but adopt the dot
product to be computational efficient. Intuitively, the closer p̃ and pi are, a larger e

trd
i will be

generated and vice versa (etrdi = 0 when orthogonal), so we can align the upcoming trend p̃
with its best match pi ′ = [hcon

i ′ ; hcon
i ′+1; ...; hcon

i ′+Δ−1].
More importantly, now the contextual vectors within both trends, i.e. {dcon

t }T+Δ
t=T+1 and

{hcon
t }i ′+Δ−1

t=i ′ are also aligned as trend components instead of individual hidden states. With
the upcoming sales trend p̃ aligned with the i ′th historical trend, we merge each pair of con-
textual vector in {dcon

t }T+Δ
t=T+1 and {hcon

t }i ′+Δ−1
t=i ′ into the aligned representation of contextual

vectors:
d̃
con
t = Wali[dcon

j ; hcon
k ] + bali,

T + 1 ≤ j ≤ T , i ′ ≤ k ≤ i ′ + Δ − 1,
(14)

where d̃
con
t is the aligned contextual vectors at time t , Wali and bali are parameters to learn

and [dcon
j ; hcon

k ] is the concatenation of aligned contextual vector pair. We use the following
algorithm to acquire the full set of aligned contextual vectors for sales prediction:

Algorithm 1 Generating Aligned Contextual Vectors
1: Input: prediction time steps Δ; aligned trend index i ′; encoded time length T ; sales contextual vectors

{dcont }T+Δ
t=T+1 and {hcont }i ′+Δ−1

t=i ′
2: Output: aligned representations of contextual vectors {̃dcont }T+Δ

t=T+1
3: initialize with j = T + 1, k = i ′;
4: while j ≤ T + Δ and k ≤ i ′ + Δ − 1 do
5: update d̃cont via Eq. (14);
6: j + +;
7: k + +;
8: end

Here, {̃dcon
t }T+Δ

t=T+1 = {̃dcon
T+1, d̃

con
T+2, ..., d̃

con
T+Δ} contains the final latent representation at

each upcoming time step in the simulated sales context.

3.4 Sales prediction andmodel optimization

With the aligned contextual vectors {̃dcon
t }T+Δ

t=T+1 generated, we approximate the future sales
with regression:

ŷt = v�
y b̃

con
t + by, (15)

where ŷt ∈ {ŷt }T+Δ
t=T+1 denotes the predicted sales at time t and v�

y and by are parameters to
learn.
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For model learning, we apply the simple yet effective mean squared error coupled with
L2 regularization (to prevent overfitting) on model parameters:

LF = 1

N

(
N∑

n=1

T+Δ∑
t=T+1

(ŷnt − ynt )
2

)
+ λ

L∑
l

θ2l , (16)

where n ≤ N is the number of training samples, l ≤ L is the index of model parameters,
ynt is the actual label of sales at t th time step, θl is the model parameter and λ is the weight
decay coefficient that needs to be tuned.

In the training procedure, we leverage a mini-batch stochastic gradient descent (SGD)
algorithm, namely Adam [25] optimizer. Specifically, we set the batch size as 128 according
to device capacity and the start learning rate as 0.001 which is reduced by 10% after every
10,000 iterations. We iterate the whole training process until the loss converges.

3.5 Similarity-based reservoir for onlinemodel update

In this part, we extend our proposed offline model TADA to an online setting, which is named
TADA+. As discussed in Sect. 1, as the sales companies usually track their timely sales for
many purposes, sales data may arrive in a streaming manner, thus offering new training
samples for TADA. On the one hand, a desirable model should be able to promptly adapt to
the new incoming data by updating themodel using the latest data, so as to provide timely and
precise predictions.On the other hand, a desirablemodel should be able to automatically retain
useful information in the past sales time series, such that the important trend patternswould be
retained during the retraining process. Though it is a straightforward way to directly combine
the new data with existing data to construct a new training set to update the parameters in the
model, the growing size of the training data will soon become unmanageable. Hence, instead
of storing all of all the training samples, we propose to leverage the data reservoir to keep a
portion of the training samples which are the most useful from the past.

We use S to denote the reservoir that contains all previous training samples. When the
new training samples in Snew arrive, our target is to select m samples from S denoted by
Shard ∈ S to construct an updated reservoir S ′ = Shard ∪ Snew. A naive approach for such
reservoir construction is shown in Algorithm 2. Then, the updated reservoir S ′ will be used
to resume the training process of TADA and update the parameters.

However, updating model parameters with Algorithm 2 can hardly help the model achieve
its optimal performance. This is because the random sampling strategy for reservoir construc-
tion treats all the past training samples equally, and a lot of “easy” prediction tasks and outliers
might be selected to retrain the model. Eventually, the model will be subject to degraded per-
formance over time. As shown in Eqs. (9) and (13), to generate accurate prediction results,
our model relies on the dual-attention mechanism scheme that leverages historical contextual

Algorithm 2 Online Model Update with Random Sampling-based Reservoir
1: Input: the current modelM, the current reservoir S, new data Snew
2: Output: the updated reservoir S ′, the updated model the current modelMnew
3: if the last training epoch has finished then
4: fetch m samples from Snew with uniform random sampling, denoted

as Srand ;
5: S ′ = Srand ∪ Snew ;
6: retrain modelM with S ′ and Adam optimizer, returnMnew ;
7: end
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Algorithm 3 Online Model Update with Similarity-based Reservoir
1: Input: the current modelM, the current reservoir S, new data Snew
2: Output: the updated reservoir S ′, the updated model the current modelMnew
3: initialize with D = ∅;
4: while in the last training epoch do
5: set n = 1;
6: while data sample sn ∈ S do
7: set t = T + 1;
8: while t ≤ T + Δ do
9: set d ′

n = 0
10: compute the internal feature attention scores αintt1 , αintt2 ,...,αinttT

and external feature attention scores αextt1 , αextt2 ,...,αexttT with Eq. (9),

denoted by �intt and �extt , respectively;
11: compute DKL (�intt |ξ) + DKL (�extt |ξ) with Eq. (17), where

|�| = |bmξ | and ξ = [ 1
|bmξ | ; 1

|bmξ | ; ...; 1
|bmξ | ], denoted by dsimt ;

12: d ′
n = dsimt + d ′

n ;

13: compute trend scores αtrd1 , αtrd2 ,...,αtrdT+Δ−1 = so f tmax(etrd1 , etrd2 , ..., etrdT+Δ−1),

denoted by �trdn ;
14: compute DKL (�trdn |ξ), where |�| = |bmξ | and ξ = [ 1

|bmξ | ; 1
|bmξ | ; ...; 1

|bmξ | ],
denoted by dtrdn ;

15: compute dn = dtrdn + d ′
n ;

16: dn 	→ D;
17: sort each dn ∈ D in ascending order;
18: fetch the indexes of last m elements in D, denoted by N ;
19: Shard = {sn}∀n∈N

n ;
20: S ′ = Shard ∪ Snew ;
21: retrain model M with S ′ and Adam optimizer, returnMnew ;
22: end

information to compensate for unknown future inputs as well as match the upcoming trend
with existing ones. Hence, to select a fraction of the hardest training cases Shard from S,
instead of treating all training cases equally with random sampling [14,46], we propose a
similarity-based reservoir construction strategy. In general, both attention mechanisms aim
to pick up information from historical contextual vectors based on how similar the current
contextual vector is to them. As a result, the distribution of similarity scores in Eqs. (9) and
(13) reflects how difficult it is for the model to distinguish the importance of difference con-
textual vectors. Intuitively, if the similarity scores are close to each other, it means the model
experiences difficulties in choosing the most relevant contextual information for weighted
decoder input mapping or trend alignment. Correspondingly, we utilize the Kullback–Leibler
(KL) divergence [27] defined as follows:

DKL(�|ξ) =
∑
∀i

ln

(
�i

ξi

)
, (17)

where |�| = |ξ | are two probability distribution vectors. Then, if we set ξ = [ 1
|ξ | ; 1

|ξ | ; ...; 1
|ξ | ],

DKL (�|ξ) will represent the closeness between the probability distribution in � and normal
distribution. Then, based on the KL divergence, we devise Algorithm 3 to select m used
training samples. Afterwards, the selected m samples are fused with the new data samples to
construct the updated reservoir S ′, which is eventually used to retrain and update the model
parameters. Note that in practice, we set m as 20% of the size of the previous training data
to achieve a trade-off between storage capacity and model performance.
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4 Time complexity analysis

Because the proposed multitask, dual-attention RNNmodel is heavily associated with multi-
ple parameters, here we discuss the model time complexity in detail. As the majority of time
consumption is associated with the training process rather than the reservoir construction,
we discuss the time complexity of the offline version, i.e. TADA in this section. We prove
that like a standard LSTM system, with the model parameters fixed, the asymptotic time
complexity of TADA is linear to the size of data.

For a basic LSTM cell in Eq. (2), we denote the number of hidden dimensions as q (i.e.
h ∈ R

q×1). According to [21,36], ignoring the biases, a single-task LSTM with T time
steps has the complexity of O(q2T ). Similarly, we formulate the time complexity for our
encoder–decoder structure.Assuming all LSTMs inTADAhaveq hidden dimensions, and the
multitask encoder structure with LSTMint, LSTMext and LSTMsyn are deployed in parallel,
the time complexity is O

(
q2(T + Δ)

)
, which is identical to a basic encoder–decoder LSTM

structure.
Then, we focus on the dual-attention mechanism. Since Eq. (8) can be viewed as two

parallel feed-forward networks, the complexity is O(q2) for each time step. Coupled with
Eq. (7), the time complexity of attention mechanism in Sect. 3.3.1 is O(q2TΔ + q2Δ) =
O

(
q2(T + 1)Δ

) � O(q2TΔ). According to [44], dot product-based attention mechanism
in Eq. (12) has the complexity of O

(
qΔ(T − Δ + 1)

) � O(qTΔ − qΔ2). Combining with
Eq. (14), the overall complexity of attention mechanism in Sect. 3.3.2 is O(q2Δ + qTΔ −
qΔ2).

With the complexity of encoder–decoder and dual-attention mechanism sorted, we
aggregate the complexity for generating the aligned contextual vectors {̃dcon

t }T+Δ
t=T+1. Note

that the complexity of Eq. (4) throughout time T is O(q2T ), and the complexity of
Eq. (15) throughout time Δ is qΔ2. Finally, the overall complexity of TADA comes to
O

(
2q2(T + Δ) + qT (q + Δ)

)
. In practice, we have Δ � T and Δ � q , so T and

q are dominating in dimensionality. Therefore, we simplify the final time complexity as
O(3q2T ) → O(q2T ). For a dataset with N samples (time series), it takes O(Nq2T ) to go
through the entire dataset once. In summary, when the hidden dimension q and total time
step T are fixed, the time complexity of TADA is linearly associated with the scale of the
data.

5 Experiments

In this section, we conduct experiments on real commercial datasets to showcase the advan-
tage of TADA in the task of sales prediction. In particular, we aim to answer the following
research questions via the experiments:

– (RQ1) Under the offline setting, how effectively and accurately TADA can predict con-
tinuous sales volume with observed sales time series from the past.

– (RQ2) How far into the future can TADA generate accurate predictions.
– (RQ3) Under the online setting, how the online update scheme helps TADA+ deal with

incoming data for sales prediction.
– (RQ4) How TADA and TADA+ benefits from each component of the proposed structure

for sales prediction.
– (RQ5) How efficiently our proposed model can be trained when handling training data

with different sizes.

123



2154 T. Chen et al.

Table 1 Statistics of datasets in
use

Dataset Time series Granularity Time range Variables

Favorita 11,536 1 day 365 days 13

OSW 1585 1 week 106 weeks 11

5.1 Datasets and features

To validate the performance of both TADA and TADA+, we use two real-life commercial
datasets shown in Table 1, namely Favorita and OSW. Here, we briefly introduce the prop-
erties of these two datasets below:

– Favorita It contains the daily features and sales volume of all products in 56 Ecuadorian-
based grocery stores. Note that the original Favorita dataset covers the time range from
1 January 2013 to 15 August 2017, but we only use the portion from 15 August 2016 to
15 August 2017 (365 days) due to two reasons: (1) a magnitude 7.8 earthquake struck
Ecuador on 16 April 2016, which exerted abnormal sales patterns in the following few
weeks1; (2) shorter time series suits the real-life conditions better as it is faster for the
model to learn.

– OSW One Stop Warehouse2 is one of the largest solar energy appliance suppliers in
Australia. The dataset covers 12 warehouses’ weekly sales volume of various products
(e.g. solar panels, batteries, etc.) from 22 February 2016 to 4 March 2017 (106 weeks).
Empirically, sales prediction on OSWdataset is more challenging from two perspectives:
(1) the sales volume of solar energy appliances is more dependent on external causes (e.g.
policy, electricity price, promotion, etc.), which are unavailable in this dataset; (2) the
sales volume in OSW dataset fluctuates more significantly than Favorita.

The features we used from the datasets are listed in Table 2. Features consist of binary
(represented as 1 or 0), categorical (represented via one-hot vectors) and numerical data,
which are marked by superscripts of b, c and n, respectively. To accelerate the training
process, we process all the numerical features by performing log10 transfer (a small bias of
0.001 was added to all numerics to avoid the case of 0). In addition, we leverage embedding
to reduce the original dimensionality of categorical data and combine all these features as
the model input. As suggested by the Tensorflow research team from Google,3 we set the
embedding dimension of each categorical feature by taking the 4th root of the total amount
of categories. In Table 2, numbers with “∗” mean the dimension of embedding for categorical
features.

In both datasets, each time series is actually a log file for a specific product. Hence, we do
not split different products up for training and test because it means many products are totally
new to the model during the test, which is not realistic in real business. So, we first randomly
take 3000 and 400 time series out of Favorita and OSW dataset for validation. Then, given
time series with the total time steps of M (365 for Favorita and 106 for OSW) and Δ steps to
predict, we apply the “walk-forward” split strategy on the remaining data. For training, we
encode the informationwith t ∈ [1, M−2Δ] and predict saleswith t ∈ [M−2Δ+1, M−Δ].
For evaluation, we encode the information with t ∈ [Δ + 1, M − Δ] and predict sales with
t ∈ [M −Δ+1, M] to test the accuracy. This test strategy has more practical meaning in the

1 https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data.
2 https://www.onestopwarehouse.com.au.
3 https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html.
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Table 2 Summarization of features extracted from datasets

Dataset Type Feature Dimension

Favorita Internal feature City of storec 3∗ 17

State of storec 2∗
Store typec 2∗
Store groupc 2∗
Item familyc 3∗
Item classc 5∗

External feature Promotion stateb 1 11

Datec 5∗
Store transactionn 1

Oil pricen 1

Local holidayb 1

National holidayb 1

Pay dayb 1

OSW Internal feature Item indexc 5∗ 16

City of storec 2∗
Item categoryc 5∗
Battery typec 3∗
Item pricen 1

External feature Week numberc 4∗ 9

Discontinued stateb 1

Solar exposuren 1

Temperaturen 1

Week(s) after last holidayn 1

Week(s) to next holidayn 1

real world, where most businesses tend to predict future sales volume according to previous
records.

5.2 Baselinemethods

We conduct experiments against the following state-of-the-art predictive methods:

– RandomForest (RF)We implement awidely used, predictive decision treemodel, namely
random forest to predict sales from the observed features.

– XGBoost It stands for extreme gradient boosting, proposed by Chen et al. [9]. It is a
state-of-the-art, gradient boosted regression tree approach based on the gradient boosting
machine (GBM) [16].

– SAE-LSTM From the cutting edge of economics research, we adpot the stacked autoen-
coder with LSTM (SAE-LSTM) [2] which is a neural network-based model proposed
for financial time series prediction.

– A-RNN Attention RNN (A-RNN)was originally designed byBahdanau et al. formachine
translation tasks [1], with the output of a probability distribution over the word dictionary.
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We modify the output layer by mapping the learned hidden states into scalar values and
use the loss function in Eq. (16) for the sales prediction task.

– DA-RNN This is a nonlinear autoregressor (AR) with attentions in both encoder and
decoder RNNs [37]. Compared with A-RNN, the proposed encoder attention in DA-
RNN assumes the inputs must be correlated along the time, which is not always true in
sales time series.

– LSTNet It is a deep learning framework (long- and short-term time series network)
designed for multivariate time series prediction [28]. This method combines a convo-
lutional neural network with a recurrent-skip network to capture both short-term and
long-term trending patterns of the time series.

Furthermore, to fully study the performance gain from each component of our proposed
model, we implement three degraded versions of TADA and conduct ablation tests under the
offline setting:

– TADA-SE We replace the multitask encoder with a single-task, 1-layer LSTM encoder.
The internal and external feature vectors are concatenated as the input of the single-task
encoder.

– TADA-SA1 We remove the first attention mechanism in Sect. 3.3.1 for decoder input
mapping to build a single-attention variant.

– TADA-SA2 We remove the second attention mechanism in Sect. 3.3.2 for trend alignment
to build another single-attention variant.

Note that when conducting experiments under the online setting, for a fair comparison
we adopt the random sampling-based reservoir in Algorithm 2 to update the parameters
in baseline models and TADA. In addition, we also test the prediction accuracy of TADA
without retraining, abbreviated as TADA(w/o retrain).

5.3 Parameters and experimental settings

In TADA, we apply the same size to the hidden states of all LSTM systems to maintain the
consistency of the contextual feature dimension. That is to say, there are only twohyperparam-
eters in TADA to be determined, namely the size of hidden states and theweight decay penalty
λ. We conduct grid search for the number of hidden states and λ over {32, 64, 128, 256, 512}
and {0.001, 0.01, 0.1, 1, 10}, respectively. The settings with the best performance on the val-
idation set (λ = 0.01 on Favorita, λ = 0.1 on OSW, and 128 hidden states for both datasets)
are used in the test.

To measure the overall effectiveness of all the methods in sales prediction under both
online and offline settings, we adopt two evaluation metrics, namely mean absolute error
(MAE) and symmetric mean absolute percentage error (SMAPE), which are widely used in
relevant tasks [8,47]. Mathematically, they are defined as follows:

MAE = 1

N × Δ

N∑
n=1

T+Δ∑
t=T+1

|yt − ŷt |,

SMAPE = 100%

N × Δ

N∑
n=1

T+Δ∑
t=T+1

(
0, i f yt = ŷt = 0
|yt−ŷt |

(|yt |+|ŷt |)/2 , otherwise

)
,

(18)

where yt and ŷt denote real and predicted sales volume, respectively.We choose thembecause
MAE is scale-dependent while SMAPE is not, soMAE is suitable for comparison of different
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Table 3 Sales prediction results under the offline setting

Dataset Method Δ = 2 Δ = 4 Δ = 8

MAE SMAPE (%) MAE SMAPE (%) MAE SMAPE (%)

Favorita RF 32.483 200 (max) 35.507 200 (max) 41.329 200 (max)

XGBoost [9] 16.705 87.433 19.833 91.230 22.547 158.461

SAE-LSTM [2] 7.364 39.447 8.033 44.384 8.116 46.932

A-RNN [1] 11.610 60.781 12.226 62.397 13.005 65.812

DA-RNN [37] 7.816 43.859 8.234 44.704 8.566 46.281

LSTNet [28] 7.419 43.523 7.982 45.662 8.729 48.469

TADA-SE 9.995 58.715 11.076 60.332 10.955 60.257

TADA-SA1 8.152 46.732 8.273 43.951 8.968 49.079

TADA-SA2 7.635 42.883 8.247 44.942 8.626 48.609

TADA 6.955 38.770 7.323 40.588 7.422 43.675

OSW RF 29.147 89.482 35.576 137.892 43.096 200(max)

XGBoost [9] 21.496 49.556 24.916 53.243 30.322 82.633

SAE-LSTM [2] 17.828 44.241 19.805 46.887 20.823 49.873

A-RNN [1] 17.391 44.635 18.823 44.603 22.129 49.180

DA-RNN [37] 17.634 44.215 19.578 47.139 20.693 48.365

LSTNet [28] 16.625 42.317 18.989 45.782 21.246 49.191

TADA-SE 19.635 53.017 20.884 49.370 21.687 51.685

TADA-SA1 16.585 42.620 18.624 44.331 21.699 51.195

TADA-SA2 17.087 42.199 18.643 45.219 21.190 49.825

TADA 15.418 41.354 17.572 43.265 19.618 47.782

Numbers in boldface are the best results within each column

methods on the same dataset and SMAPE suits comparison across different datasets. In terms
of online sales prediction with TADA+, we adopt the uniform random sampling in Algorithm
2 to construct the data sample reservoir and update all the models used for comparison.

5.4 Discussion on offline sales prediction effectiveness (RQ1)

To thoroughly evaluate the predictive capability of TADA under the offline setting, we test
all methods on two datasets with Δ ∈ {2, 4, 8} to showcase their robustness in multiple sales
prediction scenarios. We report the results of all tested methods on all Δ settings in Table 3,
where the best performance is highlighted with boldface. MAE measures the error with the
deviation between predicted and real sales volume, and SMAPE quantifies such error with a
proportional perspective. Noticeably, in both datasets, a small-scale MAE of predicted sales
volume causes a relatively large percentage error (SMAPE), which indicates a high potential
economic loss for the incorrect prediction results. This observation reflects the significance
and necessity of ensuring the accuracy of sales prediction.

It is as expected that all neural network-based predictive models outperform decision
tree-based models (RF and XGBoost) by a significant margin in both datasets. Hence, we
can empirically suggest that deep neural networks better suit the task of sales prediction
in the real-world scenario. Apparently, the performance of all methods starts to drop when
we gradually increase the time range for sales prediction with Δ ∈ {2, 4, 8}. However,
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(a)Prediction results on Favorita. (b) Prediction results on OSW.

Fig. 5 Sales prediction effectiveness on both datasetsw.r.t. differentΔ values. Generally, the sales performance
decreases as Δ increases, while TADA shows promising robustness when tackling longer prediction intervals

among this observation, TADA demonstrates the least negative impact from the increasingΔ

and presents the dominating prediction performance against all state-of-the-art baselines. In
other words, the trend alignment scheme from TADA can practically meet the requirement
of sales prediction when merchants are trying to look ahead at more upcoming time steps.
When comparing with other deep neural network-based approaches (SAE-LSTM, A-RNN,
DA-RNN and LSTNet), the results also support the superiority of TADA. This is because: (1)
the multitask encoder in TADA is better at capturing the interactive effect from both internal
and external features to the real sales than modelling all influential factors in the unified way;
(2) the dual-attention architecture in TADA successfully captures latent trends from the past
which are similar to the upcoming one, especially when comparing with existing attention
mechanisms (A-RNN and DA-RNN) and periodic trend modelling method (LSTNet). The
effectiveness of each proposed component in TADA is initially revealed in Table 3 by its
degraded versions, which we will further discuss in the following section.

5.5 Discussion onmodel sensitivity to prediction interval length (RQ2)

In Sect. 5.4, we verify the prediction effectiveness of TADA with a relatively small interval
length Δ. While a small Δ can be practical and realistic for retail businesses to actively
predict sales and adjust inventory, in some cases, it would also be beneficial for a retailer to
foresee the sales volume in a longer prediction interval (e.g. monthly or quarterly sales) in
order to devise long-term sales strategies. To further investigate the effect of a larger Δ on
the prediction accuracy of TADA, we aggressively set Δ = {2, 4, 8, 16, 32, 48, 64} for both
datasets and verify how the predictive performance can possibly deteriorate as Δ increases
(Fig. 5).

We visualize the performance fluctuations of MAE and SMAPE on both the Favorita and
OSW datasets. Note that as Δ increases, the time span of training data shortens accordingly.
At the first glance, TADA yields a gradually decreasing prediction performance on both
datasets, which is shown by the increasing MAE and SMAPE scores. Meanwhile, when
Δ ≥ 16, the prediction performance on Favorita drops slightly quicker than that on OSW.
The reason could be highly relevant to the properties of these two datasets. The sales volume
in Favorita is updated on a daily basis, which is more sensitive to the timely contexts within
different influential factors. As a result, a larger prediction interval length sets challenges for
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Table 4 The range of t for online sales prediction

Dataset Subset Train Test

Input t range Output t range Input t range Output t range

Favorita Set 1 [1, 333] [334, 341] [9, 341] [342, 349]
Set 2 [9, 341] [342, 349] [17, 349] [350, 357]
Set 3 [17, 349] [350, 357] [25, 357] [358, 365]

OSW Set 1 [1, 74] [75, 82] [9, 82] [83, 90]
Set 2 [9, 82] [83, 90] [17, 90] [91, 98]
Set 3 [17, 90] [91, 98] [25, 98] [99, 106]

Table 5 Sales prediction results under the online setting

Dataset Method Test set 1 Test set 2 Test set 3

MAE SMAPE (%) MAE SMAPE (%) MAE SMAPE (%)

Favorita SAE-LSTM [2] 8.180 42.806 8.873 45.104 7.891 44.977

A-RNN [1] 12.185 61.116 13.027 60.591 11.793 62.130

DA-RNN [37] 8.254 45.943 9.352 44.864 8.006 46.608

LSTNet [28] 8.153 45.968 8.845 44.720 7.913 46.085

TADA (w/o retrain) 7.845 43.622 9.265 44.128 8.282 47.046

TADA 7.845 43.622 8.839 42.168 7.621 44.466

TADA+ 7.845 43.622 8.418 40.788 7.448 44.100

OSW SAE-LSTM [2] 21.920 49.433 21.584 48.365 21.988 49.473

A-RNN [1] 21.983 49.027 21.969 47.724 22.262 48.753

DA-RNN [37] 22.759 51.942 21.956 50.110 22.117 49.303

LSTNet [28] 21.604 48.952 21.099 49.498 21.076 48.599

TADA (w/o retrain) 21.196 48.802 21.643 47.774 21.892 49.735

TADA 21.196 48.802 21.290 49.393 21.247 48.894

TADA+ 21.196 48.802 20.546 46.762 20.624 48.260

Numbers in boldface are the best results within each column

the model to precisely capture the future effects of unknown influential factors, impeding the
accuracy of predicted sales. In contrast, OSW records sales volume in a weekly granularity,
which tends to be more stabilized in terms of uncertainties, and the trend alignment scheme
can assist TADA to gather more seasonal information to ensure prediction effectiveness.

5.6 Discussion on online sales prediction effectiveness (RQ3)

To test the prediction performance of differentmodels under the online setting,we constructed
three test sets from theoriginal data. The split strategy for training and evaluation are described
in Table 4. Note that we choose Δ = 8 for this task.

The online sales prediction results are presented in Table 5. Because both RF andXGBoost
have underperformed with a significant margin compared with deep neural network-based
approaches in the offline test, we will not include RF and XGBoost in the online test for
brevity. It is worth mentioning that in the online test, we utilize the random sampling-based
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reservoir as shown in Algorithm 2 to update the parameters in the peer models (i.e. SAE-
LSTM, A-RNN, DA-RNN, LSTNet) as well as TADA. We use TADA(random) to denote
the retrained TADA model with randomly sampled reservoir and use TADA(w/o retrain) to
represent the static version without retraining. To validate the effectiveness of our proposed
similarity-based reservoir in TADA+, we also implement an online version of TADA with
the randomly sampled reservoir. Based on the online sales prediction results, we can draw
the following observations.

Obviously, the online sales prediction results show the dominating performance ofTADA+
when confronted with new data streams. Apparently, all models are inevitably affected by
a slight performance drop as the input time series length for the encoder is shorter than the
input used in Sect. 5.4, thus offering less available contextual information for the decoder.
Surprisingly, we find that TADA can still outperform several baselines even it is not retrained
with the incoming data samples. The online sales prediction performance further verifies that
TADA can fully utilize various information sources to ensure the accuracy of sales prediction.

5.7 Discussion onmodel components (RQ4)

We implement three variants of TADA, namely TADA-SE, TADA-SA1 and TADA-SA2, by
removing one of the key components each time. With the degraded versions of TADA, we
carry out the ablation study on the performance gain from every proposed component within
TADA. As shown in Table 3, the evaluation results on two real datasets indicate that these
variants suffer from noticeable drops in the prediction performance. Specifically, TADA-SE
shows more obvious infection. This provides evidence for our assertion that by dividing the
influential factors in sales time series into semantically different internal and external features,
the multitask encoder structure can extract more latent contextual information related to the
real sales volume. In TADA-SE, the dynamic interaction of internal and external features is
no longer modelled, causing insufficient performance accuracy.

According to Table 3, when we remove each one of the two proposed attention mech-
anisms in TADA-SA1 and TADA-SA2, the prediction performance both drops. Combining
their performance on both datasets, the performance reduction is similar when either part
of the dual-attention mechanism is blocked. So, we draw the observation that both atten-
tions contribute positively and almost equally, and they are indispensable to each other for
precise sales prediction. Thus, after the contextual vectors are learned from the encoder, it
is crucial to leverage the dual-attention decoder to mimic the contextual information in the
future as well as aligning the upcoming trend with historical ones to enhance the prediction
of sales. Furthermore, as the attention mechanism provides TADA (full version) with bet-
ter interpretability, we visualize the intermediate results of aligned trends in the predicting
(decoding) stage, along with the predicted sales. Fig. 6 visualizes the results of trend align-
ment from samples selected from both Favorita and OSW datasets by highlighting the sales
trend with the highest attention weight. As a result, we find that similar sales contexts lead to
similar sales volume, which confirms the rationale of performing trend alignment for sales
prediction and the effectiveness of all components in TADA.

From Table 5, we can notice that the similarity-based reservoir in TADA+ helps the model
achieve constant and significant improvement over TADA with the random sampling-based
reservoir under the online setting. Also, by updating the model with the random sampling-
based reservoir, the offline model TADA yields slightly better results compared with TADA
(w/o retrain). The results have demonstrated: (1) updating the model parameters is essential
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Fig. 6 Demonstration of the proposed trend alignment scheme in TADA with attention mechanism. Among
these four visualizations, a and b are selected from Favorita, while c and d are selected from OSW. The
sales axis is rescaled via log10 transfer on each dataset for better readability. Apparently, there are no obvious
recurring trends in all these sales records, but TADA successfully selects the most relevant one to assist the
prediction. The figures illustrate that aligned trends in sales time series not only share similar contexts, but
also have close sales volume
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Fig. 7 Training time of TADA with varied proportions of training data

to maintain the sales prediction accuracy; (2) the dedicated similarity base reservoir devised
for TADA+ is proved to be effective in terms of both MAE and SMAPE.

5.8 Discussion on training efficiency and scalability (RQ5)

Due to the importance of practicality in real-life applications, we validate the scalability of
the proposed model. As we proved in Sect. 4, when all the parameters in the network are
fixed (in our case, the dimension for all hidden states is 128, and T is determined according
toΔ), the training time for TADA and TADA+ is only associated with the number of training
samples. Ideally, the training time should increase linearly as we enlarge the scale of the
training data. Note that we set Δ = 8 (T = 349 correspondingly) for this validation.

We test the training efficiency and scalability by using different proportions of the whole
training set from Favorita and then report the corresponding training time (excluding I/O).
The test is conducted under the offline training setting with TADA. The growth of training
time along with the data size is shown in Fig. 7. When the ratio of training data gradually
extends from 0.2 to 1.0, the training time for TADA increases from 3.54 × 103 seconds
to 22.15 × 103 seconds. It shows that the link between training time and the data scale is
approximately linear. Hence, we conclude that since its linear time complexity can ensure
high scalability, both TADA and TADA+ can be efficiently trained with large-scale datasets.

6 Conclusion

Sales prediction is a significant yet unsolved problem due to the subtle influential patterns
among different factors and the irregular sales trends triggered by complex real-life situa-
tions. We first introduce TADA in our conference version [10], a novel model that performs
trend alignment with dual-attention, multitask recurrent neural networks to predict sales vol-

123



Online sales prediction via trend alignment-based… 2163

ume under the offline setting. The internal and external features within the influential factors
are modelled in a multitask fashion, thus maintaining their unique semantic meanings when
timely modelling their mutual influences to the sales. Besides, the dual-attention decoder
simulates the sales contextual information in the future and then aligns the generated repre-
sentation of the upcoming trend with the most relevant one from the past. In this paper, to
ensure the model’s practicality in real-life data streams, we further extend our model TADA
into TADA+, which is enhanced by an online learning module with a novel similarity-based
data reservoir. Thus, TADA+ can adaptively update the model parameters with both new
data and the most challenging data samples from the past. In the future work of sales predic-
tion, it will be appealing to further investigate cold-start predictions and the mutual influence
between two products in the retail commerce.
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