
Knowledge and Information Systems (2020) 62:1571–1609
https://doi.org/10.1007/s10115-019-01402-w

REGULAR PAPER

Consistent updating of databases with marked nulls

Jacques Chabin1 ·Mirian Halfeld-Ferrari1 · Dominique Laurent2

Received: 21 December 2018 / Revised: 13 September 2019 / Accepted: 15 September 2019 /
Published online: 28 September 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper revisits the problem of consistency maintenance when insertions or deletions are
performed on a valid database containing marked nulls. This problem comes back to light in
real-world linked data or RDF databases when blank nodes are associated with null values.
This paper proposes solutions for the main problems one has to face when dealing with
updates and constraints, namely update determinism, minimal change and leanness of an
RDF graph instance. The update semantics is formally introduced and the notion of core is
used to ensure a database as small as possible (i.e. the RDF graph leanness). Our algorithms
allow the use of constraints such as tuple-generating dependencies, offering a way for solving
many practical problems.

Keywords Updates · Null values · Constraints · TGD · Logical database · RDF

1 Introduction

Today, dealing with incomplete data is imperative, specially due to the increasing use of
applications involving data integration and data exchange. After having been largely studied
in relational databases (as for instance in Imielinski and Lipski Jr. [31], Grahne [22], Libkin
[37], Reiter [49], Zaniolo [56]), incomplete information appears, nowadays, as an important
issue in the semantic web domain [5,44,54].

Incompleteness can be of many kinds, and finding a trade-off between expressivity and
the difficulty in query answering queries is still a challenging issue [1]. Our work focusses on
a database perspective where incompleteness arises when values (such as attribute values, or
class or property instances) are missing. In this setting, we follow Reiter [49] who has shown
how to extend the relational data model accordingly, thus providing FOL (first-order logic)
semantics to null values of type ‘value exists but is currently unknown’. Indeed, in Reiter
[49], databases are not presented as models but as theories (i.e. a set of formulas)—a point
of view which proved to be very suited to provide an intuitively correct semantics for null
values. Logical database approach has then been largely influenced by that work. To focus
the discussion, let us consider an example, similar to the one used in Reiter’s paper.

B Mirian Halfeld-Ferrari
mirian@univ-orleans.fr

1 LIFO EA, Université d’Orléans, INSA CVL, Orléans, France

2 ETIS, CNRS, Université Paris Seine, Cergy-Pontoise, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01402-w&domain=pdf
http://orcid.org/0000-0002-7264-9576

1572 J. Chabin et al.

Example 1.1 In a database storing researcher names, conferences and their attendances, the
information that Ann and Bob are researchers and that Ann attends V LDB ′18 can be stored
through the formula

Researcher(Ann) ∧ Researcher(Bob) ∧ Conf(V LDB ′18) ∧ Attends(Ann, V LDB ′18)).

In order to store the fact that ‘Bob attended a conference, but we do not know which one’,
Reiter proposed the following formula

(∃x)(Conf(x) ∧ Attends(Bob, x))

which asserts the existence of a conference x to which Bob attended. Furthermore, by naming
this conference with a null value N1 and by writing

Conf(N1) ∧ Attends(Bob, N1),

Reiter linked the database terminology to the FOL in the following terms: logicians call [the
null value] a Skolem constant, providing a technical device for the elimination of existential
quantifiers in proof theory. ��
The viewpoint illustrated in the above example is exactly the one we adopt in this paper.
However, instead of dealing with query answering (as in Reiter [49] and also in the majority
of the papers dealing with incomplete information, such as Imielinski and Lipski Jr. [31],
Grahne [22], Libkin [37] and Zaniolo [56]), our proposal focusses on updates. Although
updates on incomplete database have been the subject of several work such as Grahne [22]
and Winslett [55], it is worth noting that the dynamic aspects of data are usually neglected
in favour of querying features. Modelling database updates as updates on FOL theory has
been a way to organise and explain different update approaches. In this context, the question
becomes: given a FOL theory Th and new information concerning changes on Th, how can
we find a new theory Th1 which integrates this new information? Update semantics has been
considered under different viewpoints varying not only with respect to applications but also
with respect to the considered research domain (whether it is artificial intelligence, database,
philosophy, etc.). No consensus has been established, and many different approaches are
available. However, Winslett offers in Winslett [55] a classification identifying two semantic
classes for FOL theory updating: the model-based approach (whose goal is to update the
models of a theory) and the formula-based approach (whose goal is to update the set of
formulas). The approach proposed in this paper falls in the latter category. Our choice to start
this paper by a theoretical overview of our update semantic goals reveals our preoccupation
in placing our work in this wide picture of updating policy.

To achieve our goal, we first recall the following basic aspects which are taken into account
in our proposal: (i) ThD,C consists of a unique conjunctive formula D which represents the
database instance and a set of axioms C which represents constraints (logical implications);
(ii) ThD,C is consistent in the sense that any instantiation of the variables inD yields a model
ofC; and (iii) the well-known closed world assumption (CWA) and unique name assumption
(UNA) hold.

In this context, an updatemay change the conjunctive formulaD (i.e.the database instance)
to obtain a new consistent theory ThD′,C from the original one ThD,C. The changes on D,
when they are possible, follow the basic principle that: (i) the insertion of a formula β in
D transforms D in a new conjunctive formula D’ having β as a sub-formula1 and (ii) the

1 Informally speaking, a sub-formula γ of a FOL formula α is a string occurring in α which is itself a FOL
formula.

123

Consistent updating of databases with marked nulls 1573

deletion of a formula β from D transforms D into a new formula D’ of which β is not a
sub-formula.

Example 1.2 In Example 1.1, the current database instance D is the FOL formula

Researcher(Ann) ∧ Researcher(Bob) ∧ Conf(V LDB ′18)
∧Attends(Ann, V LDB ′18) ∧ (∃x)(Conf(x) ∧ Attends(Bob, x))

Moreover, assume now that C consists of the following axiom:

(∀x, y)(Attends(x, y) ⇒ Researcher(x)) (1)

Clearly, ThD,C is consistent (because Ann and Bob attend conferences and are researchers).
Now, the insertion of Attends(Alice, V LDB ′18) transforming formula D above into
D ∧ Attends(Alice, V LDB ′18) renders the theory non-consistent, because (1) cannot be
satisfied for any instantiation of the variable x occurring in D. However, the insertion of
Attends(Alice, V LDB ′18)∧Researcher(Alice) results inD∧Attends(Alice, V LDB ′18)∧
Researcher(Alice) giving as a result a new consistent theory. Therefore, in our approach,
would a user ask for inserting Attends(Alice, V LDB ′18), consistency is automatically pre-
served through the additional insertion of Researcher(Alice) as a side effect.

Similarly, the deletion from D of Attends(Ann, V LDB ′18) ∧ Researcher(Ann) results
in the new conjunctive formula D′

Researcher(Bob) ∧ Conf(V LDB ′18) ∧ (∃x)(Conf(x) ∧ Attends(Bob, x))

thus leading to a new consistent theory ThD′,C. Notice that consistency would not hold when
deleting from D the only atom Researcher(Ann). ��
It should be clear from the above example that our constraints (as FOL axioms) follow a
database perspective, in the sense that (i) they are never modified by updates and (ii) they
always must be satisfied by the database instance (the other option being to see constraints
as inference rules used in query processing).

On the other hand, as we focus on updates while keeping database consistency, we have to
face the important problem of data redundancy, which has been the subject of many studies
(see for instance [16,20]). This problemoccurs because, given a consistent theory andupdates,
there could be different target consistent theories (differing from the original one only on
formulaD). Then, the question of whether there is a best solution has been answered in Fagin
et al. [16] by the definition of the core. The results of this work are applied in this paper to
define the ‘best’ database instance resulting from an update. The following example shows
the intuition of our reasoning.

Example 1.3 Let us consider the following theory where axioms (constraints) impose a con-
ference to be assigned to a location for which a web page informing about visa regulations
is available.

C : (∀x)(Conf(x) ⇒ (∃y)(Loc(x, y)))
(∀x, y)(Loc(x, y) ⇒ (∃z)(VisaReg(y, z)))

D : Conf(V LDB ′18) ∧ (∃x, y)(Loc(V LDB ′18, x) ∧ VisaReg(x, y))

Intuitively, ThD,C states thatV LDB ′18 is settled in a locationwhich is currently unknown and
that this location should be associated with some (currently unknown) visa regulation. The
insertion in ThD,C of Loc(V LDB ′18, Rio) requires to insert an associated information about
visa regulations according to the second constraint. However, since the associatedURL is still

123

1574 J. Chabin et al.

unknown, the inserted formula is (∃u)(Loc(V LDB ′18, Rio) ∧ VisaReg(Rio, u)), yielding
D
1
1

Conf(V LDB ′18) ∧ (∃x, y)(Loc(V LDB ′18, x) ∧ VisaReg(x, y))

∧ (∃u)(Loc(V LDB ′18, Rio) ∧ VisaReg(Rio, u)).

Notice that, in D1
1, the last conjunct is a partial instantiation of the second one, implying that

D
1
1 contains redundancies. To avoid this situation, the result of the insertion is simply defined

equivalent formula D1

Conf(V LDB ′18) ∧ (∃u)(Loc(V LDB ′18, Rio) ∧ VisaReg(Rio, u)).

As a last update, assume now the insertion of VisaReg(Rio, url1), meaning that the URL
containing visa regulations is now identified as url1. A similar reasoning as above would
then produce the following non-redundant instance D2

Conf(V LDB ′18) ∧ Loc(V LDB ′18, Rio) ∧ VisaReg(Rio, url1).

According to Fagin et al. [16], simplifications as above refer to the core of an instance, shown
as being a ‘condensed’ version that preserves the answers to queries.

Notice that this approach is not the one adopted by Reiter for whom a database instance
as D1

1 above would be acceptable. But keeping the database size as small as possible was out
of the scope of Reiter [49]. ��
We emphasize that the above example illustrates current challenges considered in the RDF
world (see [54]) and that examples from these contexts can be expressed in a FOL formalism,
ensuring generic solutions.

The main goal of our paper is to propose an approach to update databases with incomplete
information that not only generalizes naive tables [1] but also applies in most current new
database models, such as graph database systems or RDFS triple store systems. To achieve
this goal, we consider the following context, based on the generic FOL formalism:

– A database instance is a closed conjunctive formula built up with atoms, possibly con-
taining existentially quantified variables.

– The database instance must satisfy a set of constraints, each of them being a closed
universally quantified implication with possibly, existentially quantified variables in the
right hand side. These constraints are also called TGDs (tuple-generating dependencies)
in the literature.

In this context, the following issues are investigated.

How to deal withmarked nulls?

There is no consensus on how database semantics should be extended to deal with nulls and,
furthermore, more difficulties arise when considering non-relational database models such
as graph databases. To cope with this issue, we consider a FOL formalism (as in Reiter [49],
where existentially quantified variables appear in their skolemization form, as marked nulls,
Imielinski and Lipski Jr. [31], Lipski Jr. [41]). In doing so, we can model not only naive
tables, but also most database models that are based on FOL. However, it should be noticed
that updating naive tables has been the object of very few investigations and, in any case, this
issue has not been studied in the presence of TGDs.

123

Consistent updating of databases with marked nulls 1575

How to avoid redundancies?

As shown in Example 1.3, updates with incomplete information can yield redundancies that,
when dealing with real size databases, must be avoided. We argue in this respect that our
update processing maintains the database instance as ‘small’ as possible, while preserving
answers to queries as defined in Fagin et al. [16]. We achieve this important feature by
considering only instances equal to their core (see [19]). Although the complexity of core
computation is known to be high in general [20], we refer to Sect. 7 for possible optimizations
in our context.

How to preserve consistency while avoiding to generate toomany nulls?

When considering TGDs, non-redundant incomplete informationmay be generated, possibly
in an infinite way, when maintaining database consistency. A simple example of this issue is
illustrated in the following.

Example 1.4 Consider the following constraints about citations:

C : (∀x, y)(Cites(x, y) ⇒ Paper(x))
(∀x, y)(Cites(x, y) ⇒ Paper(y))
(∀x)(Paper(x) ⇒ (∃y)(Cites(x, y)))

These constraints stipulate that citations deal with papers and that every paper must contain
at least one citation. Due to the third constraint, inserting the formula Cites(P1, P2) ∧
Paper(P1) ∧ Paper(P2) implies that the formula (∃y1)(Cites(P2, y1) ∧ Paper(y1)) has to
be inserted as well. We are then clearly entering an infinite processing requiring the insertion
of a formula of the form (∃y1 . . . yk . . .)(Cites(P2, y1)∧Paper(y1)∧ . . .∧Cites(yk−1, yk)∧
Paper(yk) ∧ . . .). ��

To cope with this problem, it is usual to impose restrictions on the constraints so as to ensure
the termination of the generation of nulls, known as the chase procedure (see [6,13,23,45]).
In our approach, we make no restriction regarding the constraints. Instead, we define the
notion of degree of a null as being the imbrication degree assigned to a null generated by
applying a constraint (roughly speaking the degree is represented by the integer k − 1 in
Example 1.4). Then, assuming a pre-defined maximal degree δmax , we reject insertions that
entail that a null has a degree higher than δmax . In this way, whatever the constraints, we
limit the spreading of nulls in the database instance. Referring to Example 1.4, we allow the
constraints but, for any maximal degree δmax , we reject the insertion. Notice, however, that
the insertion of Cites(P1, P2)∧ Cites(P2, P1)∧ Paper(P1) ∧ Paper(P2) is allowed.

How to keep update deterministic?

We propose algorithms for inserting or deleting sets of atoms involving incomplete informa-
tion (represented as nulls not occurring in the current database instance). As illustrated in the
following example, deterministic updating is an issue for deletions, and we overcome this
issue by assuming that choices can be made a priori at the design phase of constraints.

123

1576 J. Chabin et al.

Example 1.5 Consider the following theory ThD,C where the constraint imposes that for any
conference, all attendees must be registered.

C : (∀x, y)(Attends(x, y) ∧ Conf(y) ⇒ Registered(x, y))
D : Attends(Bob, V LDB ′18) ∧ Conf(V LDB ′18)

∧ Registered(Bob, V LDB ′18)

If Bob’s registration is cancelled, at least one of the facts Attends(Bob, V LDB ′18) or
Conf(V LDB ′18) has to be deleted along with Registered(Bob, V LDB ′18), in order to
maintain consistency. This situation yields three possible ways for processing the dele-
tion, thus showing a case of non-deterministic update. In our approach, we assume that,
for each constraint, the atom in the body to be deleted in case of the deletion of the head is
known. In our example, a ‘natural’ choice would be the atom Attends(x, y). In this case, the
deletion of Registered(Bob, V LDB ′18) would imply deleting Attends(Bob, V LDB ′18)
in order to maintain consistency. In order to take into account this choice, we denote the
chosen atom with ‘-’ as an exponent. In our example, the constraint would be written as
(∀x, y)(Attends−(x, y) ∧ Conf(y) ⇒ Registered(x, y)). ��
Additionally to determinism, the usual properties of minimal change and of monotonicity
are also investigated in our framework.

Paper organization Section 2 provides the basics of our approach, using FOL, while database
instance and database constraints are defined in Sect. 3. Then, Sect. 4 deals with the two ways
constraints are applied in our updating processing: in a standard way for insertions and in
an ‘opposite’ way that we call backward for deletions. Section 5 introduces our approach
to updates by means of two algorithms, one for insertions and one for deletions. Properties
of updates are studied in Sect. 6, while Sect. 7 positions our chase approach with regard to
other chase versions and provides details on the core algorithm. Section 8 presents the results
of some experiments and possible optimizations. In Sect. 9, related work are discussed and
Sect. 10 concludes the paper.

2 Background: the core of a set of instantiated atoms

We assume that we have a standard FOL alphabet composed of three pairwise disjoint sets,
namely: const, a set of constants, var, a set of variables, and pred, a set of predicates,
every predicate being associated with a positive integer called its arity. In this setting, a
term is a constant or a variable and an atomic formula, or an atom, is a formula of the form
P(t1, . . . , tn) where P is a predicate of arity n and t1, . . . , tn are terms. Every atom in which
no variables occur is called a fact.

A homomorphism from a set of atoms A1 to a set of atoms A2 is a mapping h from the
terms of A1 to the terms of A2 such that: (i) if t ∈ const, then h(t) = t and (ii) if P(t1, . . . , tn)
is in A1, then P(h(t1), . . . , h(tn)) is in A2.

A homomorphism associating every variable x in A1 with a constant a occurring in A2

is called a valuation of the variables in A1. The set A1 is isomorphic to the set A2 iff there
exists a homomorphism h1 from A1 to A2 which admits an inverse homomorphism (from
A2 to A1).

We let � be the set of all formulas φ of the form (∃X)(ϕ1(X1) ∧ . . . ∧ ϕn(Xn)) where X
is a vector of variables made of all variables occurring in Xi (i = 1, . . . , n) and where for
every i = 1, . . . , n, ϕi (Xi) is an atomic formula in which the free variables are those in Xi .
Moreover, the set {ϕ1(X1), . . . , ϕn(Xn)} is denoted by atoms(φ).

123

Consistent updating of databases with marked nulls 1577

Given φ in �, a model M of φ is a set of facts such that there exists a homomorphism
from atoms(φ) to M . In such a setting, for all φ1 and φ2 in �, φ1 ⇒ φ2 holds if each model
of φ1 is a model of φ2, and as usual, φ1 and φ2 in � are said to be equivalent, denoted by
φ1 ⇔ φ2, if φ1 ⇒ φ2 and φ2 ⇒ φ1 both hold, that is, if φ1 and φ2 have the same models.

Lemma 2.1 For all φ1 and φ2 in �, if there exists a homomorphism h from atoms(φ2) to
atoms(φ1), then φ1 ⇒ φ2 holds.

Proof Given a model M1 of φ1, there exists a homomorphism h1 from atoms(φ1) to M1.
Then, assuming that there exists a homomorphism h from atoms(φ2) to atoms(φ1) we
have h(atoms(φ2)) ⊆ atoms(φ1). Hence, by composition we obtain h1(h(atoms(φ2))) ⊆
h1(atoms(φ1)), and with h1(atoms(φ1)) ⊆ M1, we conclude that M1 is also a model of φ2.
Thus, φ1 ⇒ φ2 holds. ��
The following basic lemma is a consequence of Lemma 2.1.

Lemma 2.2 For all φ1 and φ2 in � such that atoms(φ1) ⊆ atoms(φ2), the equivalence
φ1 ⇔ φ2 holds if and only if there exists a homomorphism h from atoms(φ2) to atoms(φ1).

Proof By Lemma 2.1, assuming that there exists a homomorphism h from atoms(φ2) to
atoms(φ1) implies that φ1 ⇒ φ2 holds. On the other hand, the inclusion atoms(φ1) ⊆
atoms(φ2) shows that every model of φ2 is also a model of φ1, that is, φ2 ⇒ φ1 also holds.

Conversely, assuming that φ1 ⇔ φ2 holds, the proof relies on the fact that every φ in� has
at least one model M defined by a valuation of variables h such that (i) for all variables x1 and
x2 in φ, h(x1) �= h(x2) and (ii) for every fact A in M , h−1(A) contains exactly one atom in φ.
To see this, letM be amodel ofφ defined by a valuation h such that, for all x1 and x2 occurring
in φ, h(x1) and h(x2) are distinct constants not occurring in φ. By definition, h satisfies (i).
Regarding point (ii), let A in M such that h−1(A) = {ϕ1, ϕ2}. Then, ϕ1 and ϕ2 differ at least
by one variable at a given position. Assume that at a given position p, x1 occurs in ϕ1 and
not in ϕ2. If the term in ϕ2 at position p is a constant c, then it is not possible that h(x1) = c
and so it is not possible that h(ϕ1) = h(ϕ2). If the term in ϕ2 at position p is a variable x2,
then according to (i), h(x1) �= h(x2) and so, it is not possible that h(ϕ1) = h(ϕ2). On the
other hand, if h−1(A) = ∅, then it is clear that M\{A} is also a model of φ. Therefore, φ has
at least one model M satisfying (i) and (ii).

Now let φ1 and φ2 be equivalent formulas in � such that atoms(φ1) ⊆ atoms(φ2) and
let M be a model of φ1 satisfying points (i) and (ii). Since φ1 and φ2 are equivalent, M is also
a model of φ2. Let h1 (respectively h2) the valuation of variables in φ1 (respectively in φ2)
such that h1(φ1) = M (respectively h2(φ2) ⊆ M). Then, let h be defined for every variable
x occurring in φ2 by h(x) = h−1

1 (h2(x)). Since h1 satisfies (ii), h is well defined and for
every ϕ in atoms(φ2), h(ϕ) is in atoms(φ1). Thus, the proof is complete. ��
If φ1 and φ2 are two formulas in�, φ1 is said to be a simplification of φ2, denoted by φ1 � φ2,
if (i) φ1 ⇔ φ2 holds, and (ii) atoms(φ1) ⊆ atoms(φ2).

The relation� is a partial ordering. A simplification φ′ of φ is said to beminimal if φ′ � φ

and there is no φ′′ such that φ′′ ≺ φ′.
To illustrate the notion of simplification, consider the following very simple casewhereφ is

the formula (∃x, y)(P(a, x)∧P(a, y)). It is easy to see that (∃x)(P(a, x)) and (∃y)(P(a, y))
are two distinct but equivalent simplifications of φ. The following proposition shows that
this always holds, i.e. that minimal simplifications are equal up to variable renaming.

Proposition 2.1 If φ is a formula of � and φ1 and φ2 two minimal simplifications of φ, then
atoms(φ1) and atoms(φ2) are isomorphic.

123

1578 J. Chabin et al.

Proof By Lemma 2.2, for i = 1, 2, there exists hi such that for every ϕ in atoms(φ), hi (ϕ)

is in atoms(φi). For i = 1, 2, if Hi is the restriction of hi to the terms in φ j (j = 1, 2 and
j �= i), we have Hi (atoms(φ j)) ⊆ atoms(φi).

We show that the inclusion is in fact an equality. Indeed, for i = 1 and j = 2, considering
the morphism h′

1 = h1◦h2, for every ϕ in atoms(φ), implies that h′
1(ϕ) is in h1(atoms(φ2)).

Therefore, by Lemma 2.2, the formula φ′
1 such that atoms(φ′

1) = h1(atoms(φ2)) is a
simplification of φ. Consequently, assuming that atoms(φ′

1) ⊂ atoms(φ1) entails that φ′
1 ≺

φ1, which is a contradiction to the fact that φ1 is a minimal simplification of φ. Recalling
that atoms(φ′

1) = h1(atoms(φ2)), we obtain h1(atoms(φ2)) = atoms(φ1).
Since a similar reasoning holds for i = 2 and j = 1, and since for i, j = 1, 2 and i �= j ,

hi (atoms(φ j)) = Hi (atoms(φ j)), we obtain that Hi (atoms(φ j)) = atoms(φi), and the
proof is complete. ��
We recall that in the literature, the result of Proposition 2.1 follows from a similar result for
graphs (see [30]), whereas our proof rather relies on FOL. Minimal simplifications are also
called cores in the literature, and in the remainder of this paper, we shall follow this usual
terminology and the core of a given formula φ is denoted by core(φ).

3 Consistent database withmarked nulls

Database instanceAdatabase instance is basically a formulaφ in� that cannot be simplified,
i.e. such that core(φ) = φ. However, in order to simplify notation, we ‘skolemize’ formulas
in � by replacing the variables with specific constants referred to as Skolem constants or as
(marked) nulls and by omitting the existential quantifier. To do so, we assume an additional
set of symbols in our alphabet, denoted by null, and assumed to be disjoint from the sets
const and var. Skolem constants are then elements of the set null, and this induces that a
term can be of one of the following types: either a constant, or a null, or a variable. Any atom
of the form P(t1, . . . , tn) where for every i = 1, . . . , n, ti is in const ∪ null, is called an
instantiated atom (not to be confused with a fact for which the terms ti are in const).

Moreover, as usual, the transformed conjunctive formula is written as the set of its con-
juncts. In other words, a database instance is a set of instantiated atoms that can be written as
atoms(Sk(φ))where Sk(φ) is the Skolem version of a formula φ in� such that core(φ) = φ.

Example 3.1 Given φ defined by (∃x, y)(Q(a, x) ∧ S(a, x, y) ∧ Q(a, b)), we have φ =
core(φ). Indeed, although Q(a, x) can be mapped to Q(a, b) there is no atom of the form
S(a, b, _) to which we can map S(a, x, y). Thus, the set {Q(a, N1), S(a, N1, N2), Q(a, b)}
denotes the corresponding database instance, assuming that N1 and N2 are elements of the
set null.

Now let φ′ be defined by (∃x, y)(Q(a, x)∧ R(a, y)∧ S(a, x, y)∧ Q(a, b)∧ S(a, b, y)).
Since core(φ′) is defined by (∃y)(Q(a, b) ∧ R(a, y) ∧ S(a, b, y)), φ′ cannot be seen as a
database instance. In this case, the associated instance is {Q(a, b), R(a, N1), S(a, b, N1)}
where N1 is in null. ��
Constraints In database domain, constraints are usually established in order to ensure con-
sistency and, thus, data quality. In this paper, we consider that constraints are implications
known as tuple-generating constraints or TGDs for short [1], and of the generic form:

(∀X1, . . . ,Xk,Y1, . . . ,Yk)((L
−
1 (X1,Y1) ∧ . . . ∧ Lk(Xk,Yk))

⇒ (∃Z)(L(X1, . . . ,Xk,Z)))

123

Consistent updating of databases with marked nulls 1579

where L(X1, . . . ,Xk,Z) is an atom and for i = 1, . . . , k, Li (Xi ,Yi) is an atom in which
Xi (respectively Yi) is the vector of variables occurring in Li and in L (respectively not in
L). Removing quantifiers and denoting the left-hand side conjunction as B(X,Y) yields the
simplified form B(X,Y) ⇒ L(X,Z).

The set of all atoms in B(X,Y) is denoted by body(c), and the atom L(X,Z) is referred
to as head(c). Moreover, in order to ensure determinism of deletions (as discussed in Exam-
ple 1.5), for every constraint c, a unique atom in body(c) is identified using an hyphen
character ‘-’ as an exponent. In what follows, this atom is denoted by body−(c), with the
convention that the exponent might be forgotten when body(c) contains only one atom.

Constraints where no existentially quantified variables occur are said to be full (or safe
according to Datalog terminology).

Constraint satisfaction is defined as usual in this context: given a set I of instantiated
atoms, I satisfies the constraint c, denoted as I |� c, if for every homomorphism h such that
h(body(c)) ⊆ I , there is an homomorphism h′ such that h(body(c)) = h′(body(c)) and
h′(head(c)) belongs to I . Notice that here, by homomorphism we mean any mapping from
the variables in c to the set of constants or nulls. If C is a set of constraints, I satisfies C,
denoted as I |� C, if for every c in C, I |� c.

Example 3.2 Let C be a set containing the following two constraints:

– c1 : Conf(x1) ⇒ Loc(x1, y1)
– c2 : Loc(x2, y2) ⇒ VisaReg(y2, z2)

and consider the following sets of instantiated atoms:

D1 = {Conf(V LDB ′18), Loc(V LDB ′18, N1),VisaReg(N1, N2)}
D2 = {Conf(V LDB ′18), Loc(V LDB ′18, N1),VisaReg(N1, N2),

Loc(V LDB ′18, Rio)}
D3 = {Conf(V LDB ′18), Loc(V LDB ′18, N1),VisaReg(N1, N2),

Loc(V LDB ′18, Rio),VisaReg(Rio, N3)}.
Notice thatD1 andD3 satisfyC, whereasD2 does not, due to c2. Moreover, it should be clear
thatD3 contains redundancies since instantiating N1 by Rio shows that Loc(V LDB ′18, N1)

and VisaReg(N1, N2) are not in core(D3). ��
The following lemma states that considering the core of a consistent set of instantiated atoms
cannot destroy consistency.

Lemma 3.1 Given a set of constraintsC, for every set of instantiated atoms I , if I |� C, then
core(I) |� C.

Proof Let c : B(X,Y) ⇒ L(X,Z) inC such that core(I) �|� c. In this case, core(I) contains
all instantiated atoms in the instance B(α, β) of body(c), but no atom of the form L(α, γ).
However, since core(I) ⊆ I , we have that B(α, β) ⊆ I , implying that I contains an atom of
the form L(α, γ), because I |� C. Thus, core(I) contains an instance L(α′, γ ′) of L(α, γ)

where α′ �= α. We obtain a contradiction because in this case, core(I) would contain atoms
in B(α′, β ′) instead of B(α, β). ��
DatabasesWe are now ready to formally define the notion of database as consisting of a set of
instantiated atoms and a set constraints as follows. In our approach, only consistent databases
are considered, i.e. database instances should satisfy the database constraints. Nulls play a
central role in our database model; their impact in update strategies will be described in the
next section.

123

1580 J. Chabin et al.

Definition 3.1 (Database) A database 	 is a pair of the form 	 = (D,C) where D is a
finite set of instantiated atoms and C is a finite set of constraints such that (i) core(D) = D

and (ii) D |� C.

Referring back to Example 3.2, it is easy to see that 	1 = (D1,C) satisfies Definition 3.1,
because D1 |� C and core(D1) = D1. On the other hand, neither 	2 = (D2,C) nor
	3 = (D3,C) do satisfy Definition 3.1, because on the one hand D2 �|� C and on the
other hand core(D3) �= D3. However,	′

3 = (core(D3),C) satisfies Definition 3.1, because
core(D3) |� C.

4 Constraint application

Given a set of instantiated atoms I , and a set of constraints C, constraints can be applied
forward (i.e. from body to head) or backward (i.e.from head to body) to I in order to generate
a new set of atoms I ′. These two ways of applying constraints are precisely the subject of
the present section.

4.1 Applying constraints forward

Applying forward a constraint c : B(X,Y) ⇒ L(X,Z) to a given set of instantiated atoms I
means (i) check whether I contains an instance B(α, β) of body(c) and then, if the answer
is yes, (ii) if I contains no atom of the form L(α, γ), create new nulls N and add in I the
instantiated atom L(α,N).

More generally, this process has been widely studied in the past decades [15,16,20,45,47]
under the name of chasing. While checking whether a set of constraints has terminating
chase is undecidable [13], weak acyclicity [15] has been established as a sufficient condition
for testing whether a set of constraints has terminating chase. In this paper, we propose a
practical solution which not only guarantees chase termination, but also allows for flexibility
when handling nulls. To this end, we define a specific chasing operator that, as explained in
Example 1.4, avoids infinite generation of nulls by associating every null N with an integer
denoted by δ(N) and called the degree of N .

We assume that we are given amaximal null degree δmax, and starting the iterative chasing
process with null degrees equal to 0, when a new null N has to be inserted due to the
application of a constraint c, then:

– If the instance of body(c) contains a null N ′ such that δ(N ′) ≥ δmax, then the constraint
is not applied;

– Otherwise, δ(N) is set to the maximal degree occurring in the instance of body(c) plus
1.

Formally, chasing and handling null degrees are defined using an operator called forward
operator as follows.

Definition 4.1 (Forward Operator) Given a set of constraints C and a maximum degree of
nulls δmax , the associated forward operator, denoted by: Tfw, is defined for every set of
instantiated atoms I by:

123

Consistent updating of databases with marked nulls 1581

Tfw(I) = I ∪ {h(L(X,Z)) | (∃c : B(X,Y) ⇒ L(X,Z) ∈ C)(∃h)

((c is full) ∧ (h(body(c)) ⊆ I))}
∪ {h′(L(X,Z)) | (∃c : B(X,Y) ⇒ L(X,Z) ∈ C)(∃h)

((c is not full) ∧ (h(body(c)) ⊆ I)∧
(∀h′′)((h′′(body(c)) = h(body(c))) ⇒
h′′(L(X,Z)) /∈ I)∧

(for all nulls N in h(body(c)), δ(N) < δmax)∧
(h′ extends h so as h′(Z) are new nulls N with
δ(N) = 0 if h(body(c)) contains no null, or
δ(N) = Nmax + 1, where
Nmax = max{δ(N ′) | N ′ occurs in h(body(c))}))}.

Given a finite set of instantiated atoms I , let
(
T k
fw

)
k∈N be defined by:

– T 0
fw = I where for every null N in I , δ(N) has been set to 0;

– T k+1
fw = Tfw(T k

fw).

The following lemma shows that this sequence has a limit which is computed after a finite
number of steps. In what follows, this limit is denoted by T ∗

fw(I).

Lemma 4.1 Considering the sequence
(
T k
fw

)
k∈N as defined above, there exists an integer k0

such that, for every k ≥ k0, T
k+1
fw = T k

fw.

Proof Since I ⊆ Tfw(I), holds,we trivially have that for every k ≥ 0, T k
fw ⊆ T k+1

fw . Therefore,

the sequence
(
T k
fw

)
k∈N ismonotonous.As a consequence, either T k+1

fw = T k
fw or T k+1

fw contains

at least one atom not in T k
fw.

On the other hand, to compute T k+1
fw from T k

fw, according to Definition 4.1, two sets may be
computed. The first set is built using the full constraints, which does not create new constants
or nulls. Therefore, the number of atoms incurred by full constraints is finite, since I is finite.
The second set is built using the constraints with an existential variable in their head. An
infinite computation would necessitate to apply at least one rule an infinite number of times.
However, since degrees of nulls are bounded, each such constraint can only be applied a finite
number of times. Therefore, the number of atoms containing nulls is also finite.

Hence, there must exist k0 such that Tfw(T k0
fw) generates no new atom, that is, by mono-

tonicity, such that Tfw(T k0
fw) = T k0

fw . Applying again monotonicity, this implies that for every

k ≥ k0, T
k+1
fw = T k

fw, which completes the proof. ��
The following example illustrates computations of T ∗

fw(I). In this example, as well as in the
remainder of the paper, we use the notation Nd to specify that N is a null of degree d , i.e.
Nd means that δ(N) = d holds.

Example 4.1 In the context of Examples 1.3 and 1.5, consider the set C of the following
constraints:

– c1 : Attends−(x1, y1),Conf(x1) ⇒ Registered(x1, y1)
– c2 : Conf−(x2) ⇒ Loc(x2, y2)
– c3 : Loc−(x3, y3) ⇒ VisaReg(y3, z3)

and I = {Attends(Bob, V LDB ′18), Conf(V LDB ′18)}.

123

1582 J. Chabin et al.

For δmax = 0, the computation of T ∗
fw(I) yields the following: first, Tfw(I) is set to

I ∪{Registered(Bob, V LDB ′18), Loc(V LDB ′18, N 0
1)} due to c1 and c2. Then, when com-

puting Tfw(Tfw(I)), the only constraint to apply is c3 with Loc(V LDB ′18, N 0
1). However,

as this atom contains a null whose degree is equal to δmax, c3 is not triggered, implying that
Tfw(Tfw(I)) = Tfw(I) and thus that T ∗

fw(I) = Tfw(I). Notice that, in this case T ∗
fw(I) does

not satisfy C.
Now, for δmax = 2, the computation of T ∗

fw(I) yields first Tfw(I) = I ∪{Registered(Bob,
V LDB ′18), Loc(V LDB ′18, N 0

1)} as above. Then, contrary to the previous case, c3 is trig-
gered for computing Tfw(Tfw(I)), thus generating VisaReg(N 0

1 , N 1
2). As no further constraint

applies, we obtain that T ∗
fw(I) = I ∪ {Registered(Bob, V LDB ′18), Loc(V LDB ′18, N 0

1),

VisaReg(N 0
1 , N 1

2)}. Notice that, in this case, T ∗
fw(I) does satisfy C. ��

The following proposition states that Tfw allows for restoring consistency when no nulls N
such that δ(N) ≥ δmax are generated.

Proposition 4.1 For every set of instantiated atoms I , if T ∗
fw(I) contains no null N such that

δ(N) ≥ δmax , then T ∗
fw(I) |� C.

Proof Suppose that c : B(X,Y) ⇒ L(X,Z) is a constraint not satisfied by T ∗
fw(I). There

exists a homomorphism h such that h(body(c)) ⊆ T ∗
fw(I) satisfying the following:

(a) If c is full, then h(head(c)) is not in T ∗
fw(I). However, by Definition 4.1, h(head(c))

belongs to Tfw(T ∗
fw(I)) = T ∗

fw(I), a contradiction.
(b) If c is not full, then for every h′ such that h′(boby(c)) = h(body(c)), h′(head(c)) is not

in T ∗
fw(I). However, since every null N in h(body(c)) is such that δ(N) < δmax , accord-

ing to Definition 4.1, Tfw(T ∗
fw(I)) = T ∗

fw(I) contains an instantiated atom h′(head(c))
containing newnullswith a degree d such that d ≤ δmax , a contradictionwhich completes
the proof. ��

Referring to Proposition 4.1, it is important to notice from Example 4.1 that when T ∗
fw(I)

contains nulls N such that δ(N) ≥ δmax , then T ∗
fw(I) |� C does not hold in general. In

this paper, nulls N such that δ(N) ≥ δmax are said to be disallowed. We emphasize in this
respect that when the underlying set of constraint is empty and δmax is strictly positive, then
no disallowed nulls can occur. On the other hand, whatever the set of constraints, when
δmax = 0 no nulls are allowed in the database (as in Halfeld Ferrari and Laurent [28]).

The following example illustrates that considering disallowed nulls has an impact on the
computation of the core.

Example 4.2 Consider a database dealing with assistant professors and PhD students, as
people who teach and do research in certain domains. Let us suppose that the following set
is obtained by applying constraints forward with δmax = 1. (We refer to Example 5.1 for the
details of this application.)

I = {AssistProf(Alice), Researcher(Alice), Teaches(Alice, N 0
1), PhD(Alice),

doesResearchIn(Alice, N 0
2), Teaches(Alice, N 1

3)}.
When computing the core of I , two homomorphisms are possible, namely:

– h1 such that h1(N 0
1) = N 1

3 , which gives

core(I) = {AssistProf(Alice), Researcher(Alice), PhD(Alice),

doesResearchIn(Alice, N 0
2), Teaches(Alice, N 1

3)}

123

Consistent updating of databases with marked nulls 1583

– h2 such that h2(N 1
3) = N 0

1 , which gives

core(I) = {AssistProf(Alice), Researcher(Alice), PhD(Alice),

doesResearchIn(Alice, N 0
2), Teaches(Alice, N 0

1)}
Although these two sets are isomorphic (as stated earlier in Proposition 2.1), the first one
contains disallowed nulls, contrary to the second one. Consequently, in our approach, the
second one is accepted, whereas the first one is not. ��
In order to take this situation into account, we consider a restricted version of the core,
called R_core, descarding homomorphisms that associate disallowed nulls with allowed
ones. These homomorphisms, called restricted homomorphisms, are defined as follows.

Definition 4.2 (Restricted homomorphism) A homomorphism h is said to be restricted if for
all nulls Ni and N j such that h(Ni) = N j , it holds that if δ(Ni) < δmax, then δ(N j) < δmax.

The following lemma, whose proof follows from the definitions and Proposition 2.1, shows
the relationship between the core and the restricted core.

Lemma 4.2 Given a set of instantiated atoms I and a maximal null degree δmax,

– if R_core(I) contains no disallowed nulls, then R_core(I) and core(I) are equal up to
a null renaming;

– if R_core(I) contains disallowed nulls, then for every homomorphism h leading to
core(I), h(I) contains disallowed nulls.

4.2 Applying constraints backward

Applying backward a constraint c : B(X,Y) ⇒ L(X,Z) to a given a set of instantiated
atoms I with respect to another set of instantiated atom J means:

1. Check whether I contains an instance L(α, γ1) of head(c) and whether J\I contains
an instance B(α, β1) of body(c). If the answer is yes, then proceed to the step in the
following.

2. If J\I contains no atom of the form L(α, γ2)where γ1 �= γ2, add to I the atom A(α0, γ0),
where A(α0, γ0) is the instantiation of body−(c).

This processing is defined through a backward operator as follows.

Definition 4.3 (BackwardOperator) Given a set of constraintsC and two finite sets of instan-
tiated atoms I and J , Tbw(I , J) is defined as follows:

Tbw(I , J) = I ∪ {A | (∃c ∈ C)(∃h)((A = h(body−(c)))∧
(h(body(c)) ⊆ (J\I)) ∧ (h(head(c)) ∈ I)∧
(∀h′)((h′(body(c)) = h(body(c))) ⇒ h′(head(c)) /∈ (J\I)))}.

Given two finite sets of instantiated atoms I and J , let
(
T k
bw

)
k∈N be defined by:

– T 0
bw = I ;

– T k+1
bw = Tbw(T k

bw, J).

The following lemma shows that this sequence has a limit which is computed after a finite
number of steps. In what follows, this limit is denoted by T ∗

bw(I , J).

123

1584 J. Chabin et al.

Lemma 4.3 Considering the sequence
(
T k
bw

)
k∈N as defined above, there exists an integer k0

such that, for every k ≥ k0, T
k+1
bw = T k

bw.

Proof Since I ⊆ Tbw(I , J) holds, we trivially have that for every k ≥ 0, T k
bw ⊆ T k+1

bw .

Therefore, the sequence
(
T k
bw

)
k∈N is monotonous. As a consequence, either T k+1

bw = T k
bw or

T k+1
bw contains at least one atom not in T k

bw. Moreover, since Tbw(I , J) is a subset of J , J is
a finite set, and Tbw(I , J) ⊆ Tbw(Tbw(I , J), J), the total number of iterations is finite.

Hence, there must exist k0 such that Tbw(T k0
fw , J) generates no new atom, that is, by

monotonicity, such that Tbw(T k0
bw, J) = T k0

bw. Applying again monotonicity this implies that

for every k ≥ k0, T
k+1
bw = T k

bw, which completes the proof. ��
The following proposition states that the limit T ∗

bw(I , J) allows to restore consistency of J .

Proposition 4.2 For all finite sets of instantiated atoms I and J , it holds that J\T ∗
bw(I , J) |�

C.

Proof Suppose that there exists c which is not satisfied by J\T ∗
bw(I , J). Then, there exists

a homomorphism h such that h(body(c)) ⊆ J\T ∗
bw(I , J) and h(head(c)) /∈ J\T ∗

bw(I , J).
In this case, by Definition 4.3, h(body−(c)) would appear in Tbw(T ∗

bw(I , J), J), thus in
T ∗
bw(I , J). Hence, h(body(c)) ⊆ J\T ∗

bw(I , J) does not hold, which is a contradiction.
Therefore, the proof is complete. ��
Example 4.3 Referring to Example 4.1, let C = {c1, c2, c3} defined by:
– c1 : Attends−(x1, y1),Conf(x1) ⇒ Registered(x1, y1)
– c2 : Conf(x2) ⇒ Loc(x2, y2)
– c3 : Loc(x3, y3) ⇒ VisaReg(y3, z3)

Different computations of T ∗
bw(I , J) are presented as follows for the following set J :

J = {Attends(Bob, V LDB ′18),Conf(V LDB ′18), Registered(Bob, V LDB ′18),
Loc(V LDB ′18, Rio),VisaReg(Rio, url1),VisaReg(Rio, url2)}.

Considering first I1 = {Registered(Bob, V LDB ′18)}, c1 applies backward, produc-
ing Tbw(I1, J) = I1 ∪ {Attends(Bob, V LDB ′18)}. Since no other constraint applies,
T ∗
bw(I1, J) = {Registered(Bob, V LDB ′18), Attends(Bob, V LDB ′18)}.
For I2 = {VisaReg(Rio, url1)}, c3 is considered as follows: (J\I2) contains one instance

of body(c3) associated with the two instances of head(c3), among which one is in (J\I2),
namely VisaReg(Rio, url2). Hence, according to Definition 4.3, we have T ∗

bw(I2, J) = I2
because no constraint other than c3 applies.

For I3 = {VisaReg(Rio, url1), VisaReg(Rio, url2)}, (J\I3) contains an instance of
body(c3), namely Loc(V LDB ′18, Rio), associated with the two instances of head(c3)
that belong to I2. Thus, according to Definition 4.3, we have Tbw(I3, J) = I3 ∪
{Loc(V LDB ′18, Rio)}. Applying c2 backward yields Tbw(Tbw(I3, J)) = Tbw(I3, J) ∪
{Conf(V LDB ′18)}. As no other constraint applies backward, T ∗

bw(I3, J) = I3 ∪
{Loc(V LDB ′18, Rio), Conf(V LDB ′18)}. ��
We point out that the backward operator Tbw does not require to consider null degrees,
contrary to the case of the forward operator Tfw. In the next section, we show how the two
operators Tfw and Tbw are used in our update processing.

123

Consistent updating of databases with marked nulls 1585

5 Update processing

An update in our approach is a deterministic processing that modifies the database instance
according to the following guidelines: given a database	 = (D,C) and a set I of instantiated
atoms such that nulls occurring in I do not occur in D:

Inserting I in	means generating a database	′ = (D′,C) such thatD′ contains an instance
of every atom of I . More precisely:

1. Compute first T ∗
fw(D ∪ I) and then the restricted core of the output.

2. If disallowed nulls occur, then the insertion is rejected and 	 is not changed. Otherwise
	′ = (D′,C) where D′ is the instance defined above is returned.

Deleting I from 	 means generating a database 	′ = (D′,C) such that D′ contains no
atom isomorphic to an atom in I . More precisely, under the restriction that in I every null
occurs in one single atom:

1. Delete from D all atoms isomorphic to an atom of I . Denoting by D1 the resulting set
of instantiated atoms, compute T ∗

fw(D1) and then the restricted core of the output.
2. The computation of the restricted core can imply that atoms isomorphic to atoms in I

are back in the output or that constraint satisfaction cannot be restored due to disallowed
nulls. Denoting by ToDel the set of all these atoms, compute T ∗

bw(ToDel,D1). After
removing all these atoms, the resulting instance D′ is the core of the result of this last
removal.

The details of update operations are introduced in the following.

5.1 Insertion processing

Given a database 	 = (D,C) and a maximal null degree δmax , the insertion in 	 of a set of
instantiated atoms iRequest is defined as the output of Algorithm 1. Notice that, as earlier
mentioned, insertions might be rejected due to a null degree greater than or equal to δmax .
Different situations are illustrated by the following example.

Algorithm 1: I nsert(, iRequest)
Input: The database 	 = (D,C), the maximal degree of nulls δmax and

iRequest, a set of instantiated atoms sharing no nulls with D
Output: The updated database 	′ = (D′,C)

1: for all null N occurring in D ∪ iRequest do
2: δ(N) := 0
3: D1 := T ∗

fw(D ∪ iRequest)
4: D1 := R_core(D1)
5: if max{δ(N) | N occurs in D1} < δmax then
6: D′ := D1
7: else
8: D′ := D // The insertion is rejected
9: return 	′ = (D′,C)

Example 5.1 In the context of Example 4.2, let 	 = (D,C) be a database whereD = ∅ and
C is the set of constraints below which state the following: c1 and c2 state, respectively, that

123

1586 J. Chabin et al.

assistant professors are researchers and that a PhD student does some research in a scientific
domain, and c3 and c4 state that doing research implies teaching at least a course.

– c1 : AssistProf(x1) ⇒ Researcher(x1)
– c2 : PhD(x2) ⇒ doesResearchIn(x2, y2)
– c3 : doesResearchIn(x3, y3) ⇒ Teaches(x3, z3)
– c4 : Researcher(x4) ⇒ Teaches(x4, z4)

We apply Algorithm 1 for iRequest = {AssistProf(Alice), PhD(Alice)}, first for δmax = 0
and then for δmax = 1.

In the first case, the computation of T ∗
fw(D ∪ I) on line 3 first produces T 1

fw(D ∪
iRequest) = iRequest ∪ {Researcher(Alice),doesResearchIn(Alice, N 0

1)}. Then, when
computing T 2

fw(D ∪ iRequest), c3 is not applied forward because its instantiated body
contains N 0

1 whose degree is equal to δmax. However, c4 applies forward, generating
Teaches(Alice, N 0

2). We thus obtain

T ∗
fw(D ∪ I) = iRequest ∪ {doesResearchIn(Alice, N 0

1), Teaches(Alice, N 0
2)}.

Since the computation of the restricted core on line 4 does not change this set, the test on
line 5 fails, and so the insertion is rejected. This shows that when δmax = 0, nulls are not
accepted in the database instance, as was the case in our previous work [28].

Now, for δmax = 1, the computation of T ∗
fw(D ∪ I) on line 3 is as follows:

T 1
fw(D ∪ iRequest) = iRequest ∪ {Researcher(Alice),doesResearchIn(Alice, N 0

1)}
T 2
fw(D ∪ iRequest) = T 1

fw(D ∪ iRequest)
∪ {Teaches(Alice, N 0

2), Teaches(Alice, N 1
3)}

T 3
fw(D ∪ iRequest) = T 2

fw(D ∪ iRequest).

Thus, T ∗
fw(D ∪ I) = T 2

fw(D ∪ I), and the computation of the restricted core on line 4 is as
discussed in Example 4.2, that is, the atom Teaches(Alice, N 1

3) is discarded as an instance
of Teaches(Alice, N 0

2). Since in the produced set all nulls have a degree strictly less than
δmax, the test on line 5 succeeds, and so the insertion is performed producing the following
database instance:

D′ = {AssistProf(Alice), Researcher(Alice), Teaches(Alice, N2),

PhD(Alice),doesResearchIn(Alice, N1)}.
��

We refer to Sect. 7 regarding the relationship of our insertion processing and the chase
procedures as summarized in Onet [45]. In particular, we show that, when an insertion is not
rejected and when chase procedures terminate, our approach is similar to the procedure of
core chase.

5.2 Deletion semantics

Before considering how deletions are performed, their semantics should be clarified by con-
sidering three particular aspects: (i) the meaning of a deletion of an atom with a null value,
(ii) the possibility of considering linked nulls in the deletion request and (iii) the determinism
of deletions.

Concerning aspect (i), in our approach, a deletion expressed as ‘delete P(a, N)’ means
‘delete all atoms over P where a is associated with a null’. We draw attention on the fact

123

Consistent updating of databases with marked nulls 1587

that this update should not be understood as ‘delete all atoms of the form P(a, _)’. To avoid
confusions, we do not consider updates whose expression involves the placeholder ‘_’.

Concerning aspect (ii), the presence of nulls in the atoms to be deleted raises subtle issues,
as illustrated by the following example.

Example 5.2 In the context of Example 1.5, let 	1 = (D1,C1) where C1 = ∅ and D1 =
{Attends(Bob, V LDB ′18)}.

If the atoms in I1 = {Attends(Bob, V LDB ′18), Conf(V LDB ′18)} have to be deleted,
then any database system will output the database instanceD′

1 = ∅.
Now, as a case where nulls are involved, let 	2 = (D2,C1) where D2 =

{Attends(Bob, N1)}. Considering that the atoms in I2 = {Attends(Bob, N2), Conf(N2)}
have to be deleted, the following question arises: should the database instance be changed
nor not? The following two answers are then possible:

– Referring to the previous case, the answer isyes because I2 contains an atom isomorphic
to the one in D2, meaning that the result is D′

2 = ∅.
– Referring to FOL semantics, I2 stipulates that we are deleting all pairs of atoms stating

that Bob attends a conference whose name is unknown. SinceD2 contains no such pair,
the deletion should not change the database instance. Thus, the answer to the question
above is no!

To keep deletion semantics for null and non-null atoms intuitively similar, while avoiding
questions as above, we do not allow nulls to have several occurrences in the set of atoms
to be deleted. That is, in our case, the set I2 above is changed to I = {Attends(Bob, N2),

Conf(N3)}.
It is worth noting that the above question also concerns: (1) a choice between an ‘or’

semantics (delete if it matches this OR that) or an ‘and’ semantics (delete if it matches
this AND that), together with (2) the verification whether the required deletion englobes a
whole partition in the database instance (e.g. the situation where we have I2 and an instance
containingAttends(Bob, N1),Conf(N1) andLoc(N1, Rio)). Since the ‘and’ semantics raises
further important issues, this point lies out of the scope of the present paper. ��
Finally, regarding aspect (iii), we recall from Sect. 4.2 that the backward operator Tbw defi-
nition is based on the fact that for every constraint c, a literal Li (Xi ,Yi) in B(X,Y) of c has
been marked with ‘-’ as its exponent, meaning that:

– When the database contains the atom Li (αi , βi) along with L(α, γ),
if L(α, γ) has to be deleted and D\{L(α, γ)} does not satisfy c,
then Li (αi , βi) is deleted to restore constraint satisfaction.

Deletion is thus deterministic because when restoring consistency, each constraint applied
backward generates a unique side effect. It should be noticed, as argued later in Sect. 9, that
this way of ensuring the determinism of deletions can be related to what is called active rules
in the literature [50].

5.3 Deletion processing

Algorithm 2 implements deletions and is illustrated in the following examples. We recall
that, as argued in Example 5.2, we assume that in the sets of atoms to be deleted, every null
occurs once.

Example 5.3 In this example, we consider 	 = (D,C) whereC is as in Example 4.3, that is:

123

1588 J. Chabin et al.

Algorithm 2: Delete(,dRequest)
Input: The database 	 = (D,C), the maximal degree of nulls δmax and

dRequest, a set of instantiated atoms where nulls occur only once and do not occur inD
Output: The updated database 	′ = (D′,C)

1: ToDel := {A ∈ D | (∃ϕ ∈ dRequest)(ϕ is isomorphic to A)}
2: for all null N occurring in D\ToDel do
3: δ(N) := 0
4: D1 := T ∗

fw(D\ToDel)
5: D1 := R_core(D1)
6: Disallowed := {A ∈ D1 | A contains a null N such that δ(N) ≥ δmax }
7: Back := {A ∈ D1 | (∃ϕ ∈ ToDel)(ϕ is isomorphic to A)}
8: if Disallowed ∪ Back = ∅ then
9: D′ := D1
10: else
11: D2 := D1\T ∗

bw((Disallowed ∪ Back),D1)

12: D′ := R_core(D2)
13: return 	′ = (D′,C)

– c1 : Attends−(x1, y1),Conf(y1) ⇒ Registered(x1, y1)
– c2 : Conf(x2) ⇒ Loc(x2, y2)
– c3 : Loc(x3, y3) ⇒ VisaReg(y3, z3)

Moreover, we set δmax to be equal to 1 and we considerD as follows:

D = {Attends(Bob, V LDB ′18),Conf(V LDB ′18), Registered(Bob, V LDB ′18),
Loc(V LDB ′18, Rio),VisaReg(Rio, url1),VisaReg(Rio, url2)}.

We first apply Algorithm 2 for dRequest = {Registered(Bob, V LDB ′18)}. We have
ToDel = dRequest and on line 4, D1 = D because when applying Tfw to D\dRequest,
Registered(Bob, V LDB ′18) is generated. Then, the restricted core computation on line 5
does not change D1, meaning that we have Disallowed = ∅ (since no nulls are present)
and Back = {Registered(Bob, V LDB ′18)}. Therefore, the test on line 8 fails and
T ∗
bw({Registered(Bob, V LDB ′18)},D1) is computed on line 11. By Example 4.3, the result

is {Registered(Bob, V LDB ′18), Attends(Bob, V LDB ′18)} and so, on line 11, D2 is set
toD\{Registered(Bob, V LDB ′18), Attends(Bob, V LDB ′18)}. Since no null is involved,
the computation of the restricted core on line 12 produces D′ = D2, which is the updated
database instance.

Now, we apply Algorithm 2 for dRequest = {VisaReg(Rio, url1)}. As above, ToDel =
dRequest, but on line 4, we have D1 = D\dRequest, because head(c3) has two instances
in D matching with Loc(V LDB ′18, Rio). Then, it is easy to see that the sets Disallowed
and Back are set to ∅, and so the result D′ = D1 is output on line 9. That is, the deletion is
processed by removing VisaReg(Rio, url1) from D.

As another deletion, let dRequest = {VisaReg(Rio, url1), VisaReg(Rio, url1)}. As in
the previous two cases, ToDel = dRequest, but on line 4, D1 is set to (D\ToDel) ∪
{VisaReg(Rio, N 0

1)} due to c3. Then, as in the previous case, the sets Disallowed and Back
are set to ∅, and the resulting updated instance D1 is output on line 9. That is, the updated
database instanceD′ is processed by removing VisaReg(Rio, url1) and VisaReg(Rio, url2)
and adding VisaReg(Rio, N 0

1). We point out that in this caseD′ ⊆ D does not hold.
As a last deletion in this example, let dRequest = {Loc(V LDB ′18, Rio)}, which again

is equal to ToDel on line 1 of Algorithm 2. Then, on line 4, D1 is set to (D\ToDel) ∪
{Loc(V LDB ′18, N 0

1), VisaReg(N 0
1 , N 1

2)} due to c2 and c3. Since Loc(V LDB ′18, N 0
1) can-

123

Consistent updating of databases with marked nulls 1589

not be instantiated, the restricted core computation on line 5 does not change D1, and so,
on line 6 we have Disallowed = {VisaReg(N 0

1 , N 1
2)} because δmax = 1. On line 7 Back

is set to ∅, and the test on line 8 fails implying that T ∗
bw({VisaReg(N 0

1 , N 1
2)},D1) is com-

puted on line 11, producing {VisaReg(N 0
1 , N 1

2), Loc(V LDB ′18, N 0
1), Conf(V LDB ′18)}.

Since D2 as computed on line 11 contains no null, the restricted core computation on
line 12 does not change D2. Consequently, D′ is obtained by removing from D the atoms
Loc(V LDB ′18, Rio) and Conf(V LDB ′18). ��
In the following two examples, we show that the core computations on lines 5 and 12 in
Algorithm 2 are necessary in order to properly implement deletions.

Example 5.4 As for the core computation on line 5 of Algorithm 2, let 	 = (D,C) where
D = {P(a, b), P(a, N1), P(a′, N1)} and where C = ∅ (which satisfies that R_core(D) =
D). We also set δmax = 1. Since C is empty, this implies that all null degrees are equal to 0.
Hence, no null can be disallowed and thus, all homomorphisms are restricted.

For dRequest = {P(a′, N)}, we have ToDel = {P(a′, N1)} and T ∗
fw(D\dRequest) =

D\{P(a′, N1)}. Therefore, on line 4, we have D1 = {P(a, b), P(a, N1)}, and thus, at this
stage we do not have that R_core(D1) = D1, since R_core(D1) = {P(a, b)}. This is what
is computed on line 5 and returned by Algorithm 2, since in that case, the sets Disallowed
and Back are empty.

We point out from this example that even when no constraints are considered in 	, the
core computations are necessary in order to keep the size of the database instance as small
as possible. ��
Example 5.5 To illustrate the core computation on line 12 of Algorithm 2, consider that
δmax = 1 and let 	 = (D,C) where D = {P(a, N1), Q(N1), Q(b), R(a, N2)} and C =
{c1, c2} defined as follows:
– c1 : P(x1, y1) ⇒ Q(y1)
– c2 : P(x2, y2) ⇒ R(x2, z2)

For dRequest = {R(a, N)}, we have ToDel = {R(a, N2)}, and due to c2, D1 =
T ∗
fw(D\ToDel) is (D\{R(a, N 0

2)}) ∪ {R(a, N 0
3)}. Therefore, on line 6, the set Disallowed

is set to ∅, and on line 7, the set Back is set to {R(a, N 0
3)}. Since T ∗

bw({R(a, N 0
3)},D1) =

{R(a, N 0
3), P(a, N 0

1)}, on line 11 we have D2 = {Q(N 0
1), Q(b)}. Thus, the core compu-

tation of line 12 returns R_core(D2) = {Q(b)}, and so Algorithm 2 outputs 	′ = (D′,C)

where D′ = {Q(b)}. ��

5.4 Complexity remarks

Checking whether all previously satisfied TGDs are still satisfied after an update is an NP-
complete problem in the general case (see [19,47]).

In Algorithm 1, the most expensive computations concern the chase (performed on line 3)
and the core (performedon line 4). Similarly, inAlgorithm2, themost expensive computations
appear on lines 4 and 11 (where the forward or the backward operator is applied) and on
lines 5 and 12 (where the core is computed). We refer to Sect. 7 for a detailed discussion on
our core algorithm together with its computation.

Here, following a similar reasoning as in Halfeld Ferrari and Laurent [28], we consider
complexity aspects of the computing T ∗

fw(I) for a given instance I . Denoting byα themaximal
arity of predicates, the number of constants occurring in I is bounded by α × |I |, and so the

123

1590 J. Chabin et al.

number of possible instantiations of an atom L(x1, . . . , xα) is (α×|I |)α . Thus, for a constraint
c withmc atoms in its body, the number of its possible instantiations is ((α ×|I |)α)mc or just
O|I |α.mc . This implies that, for one constraint c, the number of possible atoms generated by
the application of Tfw on c and I is O|I |α.mc . Hence, applying Tfw on C and I generates a
new set of atoms in time O(|I |α.m), where m is the maximal number of atoms in the bodies
of the constraints in C. As by Lemma 4.1, constraints are applied at most (k0 + 1) times,
the complexity of computing T ∗

fw(I) is in O(|I |α.m.(k0+1)). Consequently, the computation
of T ∗

fw(D ∪ iRequest) (line 3 of Algorithm 1) is in O(|D ∪ iRequest|α.m.(k0+1)).
In Algorithm 2, a similar reasoning shows that the complexity of computing line 4

is O(|D\ToDel|α.m.(k0+1)). Moreover, the complexity of applying the operator Tbw is
similar to that obtained for the forward operator, except that Tbw operates on rules hav-
ing only one atom in the body and in the head. Thus, the complexity of computing
T ∗
bw((Disallowed ∪ Back),D1) (line 11) is O(|Disallowed ∪ Back|α.(k0+1)) where k0

is the integer in Lemma 4.3.
To sum up the above remarks, it can be stated that the generation of side effects for

insertions and deletions in our approach is polynomial with respect to the sizes ofD, iRequest
and dRequest.

6 Update properties

In this section, we investigate the properties of the updates as defined in the previous section.
To this end, given 	 = (D,C) and the insertion of iRequest or the deletion of dRequest,
we denote by 	′ = (D′,C) the result of the update and we consider the following issues:

Effectiveness This property states that the output of any update is indeed a database, i.e.
	′ satisfiesDefinition 3.1.Moreover,when the update is not rejected, the property ensures
that the update is effective, meaning that in case of insertion,D′ contains an instance of
every atom in iRequest and in case of deletion, D′ contains no atom isomorphic to an
atom in dRequest.
Determinism The way an insertion (respectively a deletion) is processed depends only
on 	 and on the set iRequest (respectively dRequest), i.e. no choice has to be made
during the processing.
Monotonicity This property requires an ordering over instances to state that after any
insertion (respectively any deletion), D′ is greater (respectively less) than or equal to
D. Example 5.3 shows that, in our approach, set inclusion cannot be considered, as in
standard approaches. Instead we compare instances according to a relation denoted by
�, based on homomorphisms and to be defined in the following.
Minimal change Intuitively, minimal change states that updates should modify the
database instance as few as possible. However, to check this property, all instances have to
be considered, which is in general non-tractable. Even if this would be feasible, there exist
in general several distinct instances satisfying minimal change, which is in contradiction
to the property of determinism. Instead, minimal change in our approach is expressed as
follows: the insertion of iRequest (respectively the deletion of dRequest) satisfies the
minimal change property if, when ‘forgetting’ one of the specified side effects, at least
one constraint is not satisfied.

It should be clear that our update processing is deterministic because no choice has to be
made when running Algorithms 1 or 2. We, however, recall that deletions are deterministic
thanks to the choice of an atom in the bodies of constraints, a choice made at design phase

123

Consistent updating of databases with marked nulls 1591

and not during update processing. We now define the relation according to which instances
are compared.

Definition 6.1 (Comparison of sets of instantiated atoms) Let I1 and I2 be two sets of instanti-
ated atoms.We say that I1 � I2 holds if there exists a homomorphism h such that h(I1) ⊆ I2.

Notice that � is a partial pre-ordering and that � generalizes set inclusion, because I1 ⊆ I2
implies I1 � I2. Moreover, it is easy to see that if φ1 and φ2 are the formulas in� associated,
respectively, with I1 and I2, then I1 � I2 holds if and only if so does φ1 ⇒ φ2. As a
consequence, for every set of instantiated atoms I , I � R_core(I) and R_core(I) � I both
hold.

Regarding insertions, it should be clear that given 	 = (D,C) and a set iRequest, if
Algorithm 1 returns 	′ = (D′,C) where D′ = D, then the update is not effective when D

contains no instanceof an atom in iRequest.However, such anupdate is trivially deterministic,
monotonic and satisfies minimal change. Knowing that it has already been stated that our
update processing is deterministic, the following proposition shows that when D′ �= D

(implying that the insertion is not rejected), the insertion satisfies all properties listed above.
Moreover, in this proposition, minimal change is stated by considering side effects as

those instantiated atoms not in iRequest (up to null renaming) are inserted so as to maintain
consistency.

Proposition 6.1 Let	 = (D,C)be adatabase and iRequestafinite set of facts. If Algorithm1
returns 	′ = (D′,C) where D′ �= D, then D′ satisfies the following statements:

1. Effectiveness: (a) for everyϕ in iRequest,D′ contains an instance ofϕ, (b) R_core(D′) =
D′ and (c) D′ |� C.

2. Monotonicity:D � D′.
3. Minimal change: For every ϕ inD′ not inD and not isomorphic to an atom in iRequest,

D′\{ϕ} �|� C.

Proof See (“Appendix A”). ��
The following proposition gives basic properties of Algorithm 2, namely deletions are effec-
tive and monotonic. However, as will be argued later, deletions do not satisfy the requirement
of minimal change. We notice in this respect that, for deletions, side effects as those instan-
tiated atoms not in dRequest (up to null renaming) have been deleted so as to maintain
consistency.

Proposition 6.2 Let 	 = (D,C) be a database and dRequest a finite set of instantiated
atoms where every null occurs at most once. Algorithm 2 returns 	′ = (D′,C) where D′
satisfies the following statements:

1. Effectiveness: (a) for every ϕ in dRequest, D′ contains no atom isomorphic to ϕ, (b)
R_core(D′) = D′, and (c) D′ |� C.

2. Monotonicity:D′ � D.

Proof See (“Appendix B”). ��
The following example shows that our approach does not satisfy minimal change in the sense
that deletions might be performed with fewer changes.

Example 6.1 Consider the set C containing the following two constraints

123

1592 J. Chabin et al.

– c1 : P−(x1, y1), Q(y1, z1) ⇒ R(x1, z1)
– c2 : Q(x2, y2) ⇒ S(x2, t2)

along with	 = (D,C)whereD = {P(a, b), Q(b, c), R(a, c), S(b, N1)}. For δmax = 1 and
dRequest = {R(a, c), S(b, N)}, according to Algorithm 2, we have first ToDel = {R(a, c),
S(b, N1)}, implying that T ∗

fw(D\ToDel) = {P(a, b), Q(b, c), R(a, c), S(b, N 0
2)}. In other

words, D1 is equal to D up to a renaming of N2. Hence, R_core(D2) = D2, showing
that Disallowed = ∅ and that Back = {R(a, c), S(b, N 0

2)}. Thus, T ∗
bw(Disallowed ∪

Back,D1) = {R(a, c), S(b, N 0
2), P(a, b), Q(b, c)} and so D′ = ∅.

However, it is easy to see that the deletion of P(a, b) is not necessary. Indeed, 	′′ =
(D′′,C) where D′′ = {P(a, b)} is an acceptable result of the deletion because atoms in
dRequest are not in D′′, D′′ |� C and R_core(D′′) = D′′. ��
The following proposition shows nevertheless that when the bodies of constraints contain
one atom, our approach to deletions does satisfy minimal change.

Proposition 6.3 Let	 = (D,C) be a database such that all constraints inC have one literal
in their body, and dRequest a finite set of atoms. Let	′ = (D′,C) be the database returned by
the call of Algorithm 2with	 and dRequest as input. Then, for every ϕ in ((D\ToDel)\D′),
D′ ∪ {ϕ} �|� C.

Proof Since ϕ is in ((D\ToDel)\D′), line 11 in Algorithm 2 has been run, and ϕ is
in T ∗

bw(Disallowed ∪ Back,D1) and in D. By definition of Tbw, there exist k > 0,
c : B(X,Y) ⇒ L(X,Z) in C and h such that ϕ = h(B(X,Y)) = B(α, β), h(B(X,Y)) ∈
(D\T k

bw(Disallowed ∪ Back,D1)) and all atoms in D of the form L(α, _) are in
T k
bw(Disallowed ∪ Back,D1). As a consequence, D2 ∪ {ϕ} contains h(body(c)) but no

atom of the form L(α, _), and so, D2 ∪ {ϕ} �|� C.
Let us now assume thatD′∪{ϕ}, i.e. R_core(D2)∪{ϕ}, satisfiesC. Since R_core(D2) ⊆

D2, R_core(D2)∪{ϕ} contains no atom of the form L(α, _), and thus, our assumption entails
that R_core(D2) ∪ {ϕ} contains no atom of the form B(α, _). This is a contradiction to the
fact that ϕ is such an atom that clearly belongs to R_core(D2) ∪ {ϕ}. Therefore, the proof is
complete. ��

7 Chasing versions and core computation

This section first offers a discussion about our chase approach, with regard to different chase
versions available in the literature, and then provides details on the core computation, which
is the most complex step in our algorithms.

7.1 Chasing: our choice of controlling null propagation

It is well known that when chasing an instance with respect to TGDs, the process might not
terminate due to the specific form of the constraints; Example 1.4 shows such a case. The
usual way to address this issue is to identify those rules that might lead to a non-terminating
chase so as to discard them. However, as the problem is known to be undecidable, sufficient
conditions ensuring termination have been proposed in the literature [45]. In our approach,
we avoid such restrictions through the introduction of the parameter δmax, thus offering the
possibility of dealing with any kind of constraints while avoiding infinite processing.

123

Consistent updating of databases with marked nulls 1593

More precisely, we show that: (i) for computations where δmax is not reached, our chasing
operator Tfw corresponds to a well-defined chase semantics and (ii) for situations where
constraints meet the conditions ensuring chase termination, we can determine δmax so that
all null degrees are less than δmax .

Positioning our Chase Procedure We first recall from Onet [45] that various chasing
versions have been proposed in the literature, under the names of standard, oblivious, semi-
oblivious and core chase. We show here that our chasing approach as defined through the
operator Tfw is closely related to the standard-chase and the core-chase procedures. To this
end, we define a new operator T as follows, for every set I of instantiated atoms:

T (I) = I ∪ {h(L(X,Z)) | (∃c : B(X,Y) ⇒ L(X,Z) ∈ C)(∃h)

((c is full) ∧ (h(body(c)) ⊆ I))}
∪ {h′(L(X,Z)) | (∃c : B(X,Y) ⇒ L(X,Z) ∈ C)(∃h)

((c is not full) ∧ (h(body(c)) ⊆ I)∧
(∀h′′)((h′′(body(c)) = h(body(c))) ⇒
h′′(L(X,Z)) /∈ I))}

Roughly speaking, T is a simplified version of Tfw in which all considerations about null
degrees are omitted. In other words, T can be seen as a ‘parallelized’ version (i.e. constraints
are applied in a breadth first manner) of a step of the standard-chase procedure, where
constraints are applied in a depth first manner [45]. Thus, when standard chase terminates,
the following sequence:

– T 0 = I
– for every k > 0, T k = T (T k−1)

has a limit, denoted by T ∗(I), which is precisely the result of the standard-chase procedure
applied to I .

On the other hand, another variant of the chase procedure is known as core chase procedure
and can be defined as follows. For every I , let Tc(I) = core(T (I)) and let core_chase(I)
be the limit of the sequence defined by

– T 0
c = I

– for every k > 0, T k
c = Tc(T k−1

c)

when this limit exists. If the limit doest not exist, core_chase(I) is set to ⊥.
The relation between the two versions of the chase procedure as set in Fagin et al. [15]

shows that when standard chase terminates, core_chase(I) = core(T ∗(I)). Thus, the fol-
lowing proposition holds.

Proposition 7.1 Let I be a set of instantiated atoms such that the computation of T ∗
fw(I)

yields no nulls whose degree is greater than or equal to δmax. Then, core_chase(I) �= ⊥
and core_chase(I) = core(T ∗

fw(I)).

Proof Since the computation of T ∗
fw(I) yields no nulls whose degree is greater than or equal

to δmax, we have T ∗
fw(I) = T ∗(I) and thus core_chase(I) = core(T ∗(I)) = core(T ∗

fw(I)),
and the proof is complete. ��
Chase Termination Conditions and δmax We recall that the threshold δmax has been intro-
duced to cope with two important issues when dealing with TGDs in practice:

1. Avoid non-terminating computations of Tfw(D). This issue is the most important one
because it is known that termination of the chase procedure is non-decidable in general

123

1594 J. Chabin et al.

(see [45]). In the literature, sufficient conditions for termination of the chase procedure
have been proposed, and in this section, we relate one of these suffisent conditions to the
value of δmax.

2. Avoid any non-suitable spreading of nulls throughout the database instance. Even when
the constraints are such that termination can be ensured, it is likely that an instance
containing a huge number of nulls produced by cascading constraint applications is of
very limited interest.

Focussing on the first item above, we now recall the notion of weak acyclicity of the depen-
dency graph of C as introduced in Fagin et al. [15]. The dependency graph of C, denoted by
DG(C), is a labelled directed graph defined as follows:

– the vertices of DG(C) are all pairs (P, i) where P is an n-ary predicate occurring in a
constraint c of C and i is an integer such that 1 ≤ i ≤ n representing a position in the
argument of P .

– an edge occurs between vertices (P, i) and (Q, j) if there exists a constraint c :
B(X,Y) ⇒ L(X,Z) inC such that body(c) contains an atom over P for which position
i is a variable x in X, Q is the predicate L and one of the following holds:

(a) x occurs in L(X,Z) at position j ,
(b) there exists a variable z in Z occurring at position j in L(X,Z).

In case (a), the edge is said to be universal and in case (b) the edge is said to be existential.
The graph DG(C) is said to be weakly acyclic if it contains no cycle involving an existential
edge.

It has been shown in Fagin et al. [15] that when the dependency graph is weakly acyclic,
standard chase always terminates. Using this result in our context, we show the following
proposition.

Proposition 7.2 LetC be such that DG(C) is weakly acyclic and K be the maximum number
of existential edges occurring in a path of DG(C). If δmax > K, then the computation of
T ∗
fw(I) yields no nulls whose degree is greater than or equal to δmax.

Proof By definition of Tfw, when δ(N) is set to k, this means that there exists a path in
DG(C) involving k existential edges. Thus, the result follows. ��
As a consequence of Propositions 7.1 and 7.2, it turns out that, in our approach, when the
dependency graph ofC is weakly acyclic, δmax can be chosen so as all insertions are accepted,
producing the same instance as if the core-chase procedure were applied. On the other hand,
we recall that sets of constraintsCwhose dependency graph is notweakly acyclic are accepted
in our approach, at the cost of rejecting some insertions.

7.2 Computing the core

As earlier mentioned, computing cores is necessary in our approach to keep the database
instance as small as possible and to avoid the presence of useless, and thus confusing, nulls
in the database. In what follows, we give details about core computations and its complexity.

Given a set I of instantiated atoms, the computation of R_core(I) is based on a partition

(I) of I whose construction can be explained based on the so-called Gaifman graph of the
nulls of I (see [16]). This graph, denoted by G(I), is defined as follows:

– the vertices of G(I) are all the nulls occurring in I ,

123

Consistent updating of databases with marked nulls 1595

– (N , N ′) is an edge of G(I) if N and N ′ both occur in one atom in I .

The connected components ofG(I), sayG1, . . . ,Gn , allow to partition I into n+ p pairwise
disjoint subsets I1, . . . , In, In+1, . . . , In+p where, for j = 1, . . . , n, I j contains all atoms in
I in which nulls in G j occur and where In+1, . . . , In+p are all pairwise distinct singletons,
each of them containing an atom in I with no nulls. Then, denoting by
(I), respectively,

(I), the set {I1, . . . , In}, respectively, {I1, . . . , In, In+1, . . . , In+p}, Algorithm 3 shows
how R_core(I) is computed. This algorithm can be seen as a simplification of the one given
in Fagin et al. [16], because the chase computation is not part of our algorithm. Notice,
however, that the computation of the homomorphism is given in more details than in Fagin
et al. [16], in order to better explain the optimizations we focus on.

Algorithm 3: Compute_R_Core
Input: A set I of instantiated atoms, the associated partition
(I) and a maximal degree δmax .
Output: R_core(I) (the last obtained �) and the modified partition
(R_core(I)).
1: for all π in
(I) do
2: Compute hom(π) = {h | h(π) �= π ∧ h(π) ⊆ I ∧ h is restricted}
3: � := I
4: H := {hom(π) | π ∈
(I) ∧ hom(π) �= ∅}
5: while H �= ∅ do
6: Choose an element hom(π) in H
7: if exists h in hom(π) such that h(π) ⊆ � then
8: Choose one such h in hom(π)

9: � := (�\π) ∪ h(π)

10: H := H\{hom(π)}
11:
 := {π ∩ � | π ∈
(I) ∧ (π ∩ �) �= ∅}
12: return �,

It is important to note that the loop on line 1 can be computed in parallel because any
two sets in
(I) share no nulls. Such parallel processing would thus result in a fast global
computation, in particular when the sizes of the sets π are small.

However, the loop on line 5 cannot be computed by just choosing one homomorphism in
each set hom(π) and combining these chosen homomorphisms into one global homomor-
phism. To see this, consider I = {P(a, N1), P(a, N2)} where for the sake of simplification
no disallowed nulls occur, implying that null degrees are omitted and that all homomorphisms
are restricted. We have
(I) =
(I) = {{P(a, N1)}, {P(a, N2)}} and h1 and h2 such that
h1(N1) = N2 and h2(N2) = N1 are found on line 2, possibly in parallel. Thus, one global
homomorphism would simply exchange the nulls, and thus, I would not be changed. This
is not correct because, as found by Algorithm 3, R_core(I) is {P(a, N1)} (or equivalently
{P(a, N2)}). The following example illustrates Algorithm 3 in a less simple case, where
again, no disallowed nulls are present and thus where null degrees are omitted.

Example 7.1 Assuming that all homomorphisms in this example are restricted, let I = {P(a),

P(N1), Q(a, b), Q(a, N2), R(a, N3), S(a, b, N3), S(a, N2, N3)}. Then,
(I) = {π1, π2}
where π1 = {P(N1)} and π2 = {Q(a, N2), R(a, N3), S(a, b, N3), S(a, N2, N3)}, whereas

(I) =
(I) ∪ {{P(a)}, {Q(a, b)}}.

On line 2 ofAlgorithm3, it is found that hom(π1) = {h1}where h1 is defined by h1(N1) =
a and hom(π2) = {h2} where h2 is defined by h2(N2) = b and h2(N3) = N3. In the loop
line 5, choosing π1 and then π2, � is first set to (I\{P(N1)}) ∪ {P(a)} = (I\{P(N1)}), and
then changed to (�\{Q(a, N2), R(a, N3), S(a, b, N3), S(a, N2, N3)})∪{Q(a, b), R(a, N3),

123

1596 J. Chabin et al.

S(a, b, N3)}. Hence, R_core(I) = {P(a), Q(a, b), R(a, N3), S(a, b, N3)}, and asπ1∩� =
∅ and π2 ∩ � = {R(a, N3), S(a, b, N3)},
(R_core(I)) = {{R(a, N3), S(a, b, N3)}}. ��

Complexity It has been shown in Fagin et al. [20] that the complexity of Algorithm 3 is equal
to that of computing the homomorphisms on line 2, which itself is in O(|I |b) where b is the
maximum number of nulls occurring in the sets of I j of
(I). We also recall from Gottlob
[20] that, in our context, this complexity can be brought down to O(|I |(b/2+2)).

8 Experimental study

We have implemented a prototype of our approach which can be uploaded together with all
the details of our tests (see [10]). The implementation, written in JAVA, allows running all
examples provided in the present paper and serves as a proof of concepts to our updating
methods. Even if the mentioned implementation deals with facts stored in main memory, it
allows us to offer a preliminary study on the trade-off between the gain of expression power
and efficiency in updating. Our tests were run on an Intel(R) Core(TM) i7-6600U CPU
2.60GHz x 4; 16 GB of RAM. Time results correspond to the average time of 5 executions
of each test.

8.1 Synthetic example

As a preliminary test, we run our algorithms on a synthetic example, reproducible according
to instructions available in DBOrleans-Team [10]. To provide a fair idea of the impact of
allowing more complex constraints in consistency maintenance of a database, we propose
the following evolving testing scenario:

1. The initial database instanceD is fixed, with a fixed set of instantiated atoms (nulls may
exist) over 525 distinct predicates.

2. Each test consists in performing a fixed number of updates (K) on the initial instanceD.
3. Three different sets of constraints, denoted by C0np , C1np and C2np , give rise to three

different tests. The difference between these tests is the increasing number of side effects,
i.e. each test is performed on a set of constraints which evolves in the following way:

C0np In this first test, there is no null propagation, i.e. a constraint generates a null-
atom, but this new atom cannot match the body of another constraint. More
precisely, each constraint has the form Ai (x, y) ⇒ Bi (y, z) for i ∈ [1, K]. This
scenario corresponds to the restrictions imposed on constraints in Alves et al.
[25].

C1np In the second test, each generated null propagates generating a new side effect.
The set of constraints is composed by subsets containing two constraints of the
form Ai (x, y) ⇒ Bi (y, z) and Bi (x, y) ⇒ Ci (x, y, z) for i ∈ [1, K].

C2np In the third test, the set of constraints is composed by subsets containing three
constraints of the form Ai (x, y) ⇒ Bi (y, z), Bi (x, y) ⇒ Ci (x, y, z) and
Ci (x, y, z) ⇒ Di (x, y, z, u) for i ∈ [1, K].

Tests are built by increasing the side effect chain triggered by an atom Ai . Moreover,
each new generated side effect corresponds to an atom with a new null, containing as
well the nulls generated by the previous constraint of the chain. For instance, in C1np ,

123

Consistent updating of databases with marked nulls 1597

the insertion of A1(a, b) generates B1(a, N1) and C1(a, N1, N2). In C2np , this insertion
will generate B1(a, N1), C1(a, N1, N2) and D1(a, N1, N2, N3).

4. Each insertion is a set of facts on predicates Ai for i ∈ [1, K]. The constants appearing in
such facts are randomly chosen from the active domain of the database instance together
with new nulls. Similarly, a deletion is a set of facts on the predicate appearing at the
end of the side effect chain considered in the corresponding test, e.g. for the second test,
deletions are on predicate Ci .

5. Besides constraints with only one atom in the body, we also offer some tests with con-
straints having two atoms in the body. Three tests are performed in this scenario:

C
2B
0np In this test, the set of constraints is composed of constraints of the form

Ai (x, y), Ai+1(x, z) ⇒ AAi (x, z).
C
2B
1np In this test, the set of constraints is composed of subsets containing two con-

straints, one of the form Ai (x, y), Ai+1(x, z) ⇒ AAi (x, z) and the other of the
form Ai (x, y), Ai+1(y, z) ⇒ ABi (x, u) for i ∈ [1, K − 1].

C
2B
2np In this third test, In this test, the set of constraints is composed of subsets con-

taining the two constraints of C2B
1np together with a third constraint of the form

AAi (x, y), ABi (x, z) ⇒ ACi (x, z, u).

In this scenario, insertions are sets containing instantiated atoms on the predicates Ai

and Ai+1.

Our tests offer a preliminary evaluation of how update performance is impacted by the use
of complex constraints such as TGDs.
(A) The first impact is, naturally, the possibility of performing an automatic verification for
applications requiring such complex constraints.
(B) The second impact concerns the time needed for processing updates. We analyse time
results for insertions and deletions separately, on the basis of the scenario described above:
starting with a very simple case, where each update triggers a single constraint and has one
side effect, we continue, as explained above, by increasing the complexity of our constraints,
the null propagation and the number of generated nulls.
(B.1)Table 2 shows our results for insertions. Insertions are done according to the explanations
given in item4and, thus, concern theworst casewhere all constraints are triggered. The results
are promising: the gain of expression power does not compromise the performance. To better
analyse the situation, we compare the results obtained for C0np with the other results in
Table 2:

(a) From C0np to C1np: while the number of triggered constraints is doubled, the increase
of total time for the insertion of 75 atoms is only of 6.4%. Similarly, from C0np to C2np ,
while the number of triggered constraints is tripled the increase of the total insertion time
is only of 1.7%.

(b) Experiments with constraints with more than one atom in the body (lines 4–6 of Table 2)
show that the insertion time increases, respectively, by 0.4%, 4.7% and 13.7%, when
compared to C0np .

(c) Unsurprisingly, the core is the most time-expensive part of our algorithm, responding,
here, formore than 80%of the total computation time. Inserting a set of atomswith linked
null values in an instance with an important number of null values renders the search for
instantiations expensive, because the algorithm looks for instantiating partitions and not
only one atom. In our synthetic database, 44% of the instantiated atoms have null values.
Section 8.3 proposes some optimizations which should soften this problem.

123

1598 J. Chabin et al.

Moreover, the core computationdeserves someattention, even if it is independent of constraint
complexity. In our examples, the forward operator always produces atoms with nulls.2 The
core procedure tries to instantiate these atoms, but as the original database instance has 44%
of its atoms with null values, such instantiations are rare. The situation is illustrated by the
results on column |D′| of Table 2 which show that all computed side effects are inserted in
the database, meaning that no core reduction is possible. However, to complete the example,
consider now a different insertion scenario:

– Take the set of constraints and database instance of line 3 in Table 2.
– Consider iRequest as containing the 75 atoms as before plus 25 facts corresponding

to instantiations of atoms appearing in the database instance and in the head of some
constraints.

In this new scenario, our results are: |T ∗
fw(D ∪ iRequest)| = 243, |D′| = 49, 888, tT ∗

fw
=

0.197s and tCore = 2.256s. In this case, the core eliminates 75 atoms (sine (243+49, 710)−
49, 888 = 75), thus resulting in a significant simplification.
(B.2)Table 3 shows our results for deletions. The tests consider only theworst case of deletion,
i.e. when Back is not empty, (line 12 of Algorithm 2) which requires computations involving
the operator Tbw and the restricted core.

Deleting atoms with a null value is much more expensive than inserting them, since the
deletion requires a database traversal to determine all possible null instantiations while the
insertion needs just one instantiation. For instance, considering a database instance D =
{A(a, N), B(a, c), B(a, b), B(a, d)}, the constraint B(x, y) ⇒ A(x, z), and the deletion of
A(a, N1), the algorithm has to find all the instantiations of B(a, _) in the database instance.
This operation is expensive in the current implementation because data are stored in regular
files. This should be significantly improved in the new version (under construction) where
data are stored using a database management system (DBMS). In this case, thanks to the
optimized query processing in any DBMS, the instantiations of B(a, _) can be efficiently
retrieved. Notice that a similar situation is described in Halfeld Ferrari et al. [25] and Halfeld
Ferrari [27], where only constraints as those in C0np are considered.

Table 3 shows that, once again, even if our tests concern only the worst case, the results
are promising, because the gain of expression power does not compromise the performance.

8.2 URBS example

Recalling that our approach is well adapted to RDF data sources, we now illustrate such an
application. As explained in Halfeld Ferrari and Laurent [28], our constraints can be settled
to express RDF/S semantic constraints. For instance, in Halfeld Ferrari and Laurent [28]
and Halfeld Ferrari et al. [27], this is done by using the formalism of Flouris et al. [19]
and classifying predicates into two sets: one concerning schema and another concerning
instances. Then, general constraints of RDF/S are written.

In this paper, we test our approach over the RDF data set used for tests in Halfeld Ferrari et
al. [25],whichhadbeengeneratedby importingdata from theCuritibaUrbanizationCompany
(URBS).We recall that Curitiba (Brazil) is known by itsmass transport corridors andmobility
solutions using bus rapid transit (BRT) systems since the 1970s [48]. The complete system,
according to Curitiba’s Institute of Research and Urban Planning (IPPUC), includes about
482 routes, distributed among 9940 bus stops, 23 bus terminals and 17 categories of streets

2 Recall that our forward operator (Definition 4.1) does not compute atoms which are already in the database
instance.

123

Consistent updating of databases with marked nulls 1599

Table 1 Notation used for results of the synthetic tests

Notation Meaning

|D| Database size, i.e. number of instantiated atoms before
updates

|D′| New database size , i.e. number of instantiated atoms
after updates

|iRequest| Number of required insertions

|C| Number of constraints

|T ∗
fw(D ∪ iRequest)| Number of atoms generated by the forward operator

|T ∗
bw((Disallowed ∪ Back),D1)| Number of atoms generated by the backward operator

on line 11 of Algorithm 2

tT ∗
fw

Time for computing side effects by applying the forward
operator

tCore Time for computing the core

ttotal Total time for the insertion of iRequest

Table 2 Results for insertions: examples consider different constraint sets on a database instanceD such that
|D| = 49,710. The set iRequest is fixed and contains 75 instantiated atoms. Results are presented using the
notation shown in Table 1

Set C |C| |T ∗
fw(D ∪ iRequest)| |D′| tT ∗

fw
(s) tCore (s) ttotal (s)

1 C0np 75 109 49,819 0.1138 2.22 2.3338

2 C1np 150 143 49,853 0.1822 2.3002 2.4824

3 C2np 225 177 49,887 0.2148 2.1638 2.3786

4 C
2B
0np 75 205 49,915 0.1908 2.1526 2.3434

5 C
2B
1np 150 209 49,919 0.3424 2.1034 2.4458

6 C
2B
2np 225 213 49,923 0.5698 2.0842 2.654

7 C2np ∪ C
2B
2np 450 315 50,025 0.7558 2.188 2.9436

Table 3 Results for deletions: examples consider different constraint sets on a database instance D such that
|D| = 49, 710. The set dRequest is fixed and contains 10 instantiated atoms. Results are presented using the
notation shown in Table 1

Set C |C| |T ∗
bw((Disallowed ∪ Back),D1)| ttotal (s)

1 C0np 75 20 3.3892

2 C1np 150 55 3.5998

3 C2np 225 43 3.779

4 C
2B
0np 75 20 3.6824

5 C
2B
1np 150 20 3.8172

6 C
2B
2np 225 30 4.1518

7 C2np ∪ C
2B
2np 450 30 4.3212

123

1600 J. Chabin et al.

Table 4 Constraints for the RDF database concerning Curitiba Urbanization Company

Constraints

c1 Mini Bus(XX) ⇒ CardOnly(XX)

c2 Expressline(XX) ⇒ Start Stop(XX , XY)

c3 ExpressLineStop(XX) ⇒ Fast Boarding(XX)

c4 ExpressV ehicle(XX , XY) ⇒ Expressline(XX)

c5 ExpressLineStop(XX , XY) ⇒ ExpressStop(XY)

c6 ExpressLineStop(XX , XY) ⇒ ExpressLine(XX)

c7 MADRUGUE I RO(XX), Night Line(XY , XX) ⇒ ExpressLineStop(XX , XY)

c8 Alimentador(XY , XX) ⇒ AlocaExpresso(XX , X Z)

c9 AlocaExpreso(XX , XY) ⇒ ExpressLineStop(XX , X Z)

c10 ConventionalLineStop(XX , XY), ExpressLineStop(X Z , XX) ⇒ NovoMobiliario(XY , XV)

c11 DowntownLineStop(XY , XX) ⇒ DowntownV ehicle(X Z , XX)

Table 5 Results for insertions in the RDF database URBS: examples consider different constraint sets on a
database instance D such that |D| = 115,910. The set iRequest is fixed and contains 10 instantiated atoms.
Results are presented using the notation shown in Table 1

Set C |C| |T ∗
fw(D ∪ iRequest)| |D′| tT ∗

fw
(s) tCore (s) ttotal (s)

C1 7 27 115,937 23.4146 0.128 23.5334

C2 12 27 115,937 72.000 0.73 72.0735

[35]. Different types of routes, such as express routes, inter-district and local lines, or feeder,
are implemented.

In this paper, each RDF triple of the form (sPo) (i.e. subject–predicate–object) is trans-
lated into an atom of the form P(s, o). Notice also that we do not use special predicates as
in Flouris et al. [19], Halfeld Ferrari and Laurent [28] and Halfeld Ferrari et al. [25] (such as
P I , standing for property instance, orC I , standing for class instance). Instead, we perform a
translation in order to obtain only atoms on application predicates. For example, the instance
of property ExpressLineStop, expressed in RDF as P I (a, b, ExpressLineStop), is translated
into ExpressLineStop(a, b). Our choice is only motivated by performance issues. Indeed,
considering predicates P I and C I , finding, for instance, that P I (a, N1, ExpressLineStop)

and P I (a, b, ExpressLineStop) unify would require testing all atoms on P I , whereas in our
implementation, only atoms on ExpressLineStop are tested.

Table 5 shows the result of our tests onURBSdata. Based onTable 4, two sets of constraints
are considered, namelyC1 = {c1, c2, c3, c4, c5, c6} andC2 = C1∪{c7, c8, c9, c10, c11}. The
setC1 contains simple constraints, that is, constraints with no null propagation, as in Halfeld
Ferrari et al. [25]. The set C2 is obtained by adding more sophisticated constraints to the
previous set. This new set contains constraints with more than one atom in the body (c7 and
c10) and allows for null propagation. In this way, it is possible to express constraints estab-
lishing, for instance, that we should allocate express lines (c9) to join lines doing connections
between districts and the town terminals (c8). The iteration between constraints c8 and c9, not
possible in Halfeld Ferrari et al. [25], is allowed in the present approach, thus representing
an important gain in the expression power of constraints.

123

Consistent updating of databases with marked nulls 1601

8.3 Possible optimizations

Our experiments have shown that the core computations may become expensive. This is why
wenowdiscuss possible optimizations of the core computation in our current implementation,
based on the fact that given 	 = (D,C), we have that R_core(D) = D.

In the case of an insertion, as can be seen from Algorithm 1, one core computation is
necessary for the set T ∗

fw(D ∪ iRequest), which we denote as D ∪ I where I contains the
atoms in iRequest along with the side effects of the insertion. We notice that, althoughD and
iRequest have no nulls in common, I may contain nulls occurring in D. As a consequence,
the partition
(D ∪ I) is not equal to
(D) ∪
(I). However, assuming that
(D) is
available, the computation of
(D ∪ I) can be optimized, as compared with a computation
from scratch. This is so because every partition block associated with a connected component
of G(D ∪ I) that occurs in G(D) has not to be modified.

Assuming that
(D∪ I) has been computed, and referring to line 2 of Algorithm 3, since
we have R_core(D) = D, if the block π of
(D ∪ I) being considered was already in

(D), then, clearly, a homomorphism exists only if one atom in π can be instantiated by
one atom in I . Therefore, this narrows the search space for the computation of hom(π).

Turning now to deletions, by Algorithm 2, two core computations are involved, and both
address an instance that can bewritten asD\I where I is a subset ofD. In this case,
(D) has
first to be modified so as to generate
(D\I). This can be optimized because the only blocks
π to be modified are such that π ∩ I �= ∅, in which case π is changed into π\I . Every such
block π\I that gets empty is removed and the others have to be checked because they might
have to be split. To see this, letD = {P(N1), Q(N1, N2), R(N2)} and I = {Q(N1, N2)}, in
which case
(D) = {D}. Then, the block of
(D) is changed to {P(N1), R(N2)} that has
clearly to be split into two blocks.

Assuming that
(D\I) has been computed, and referring to line 2 of Algorithm 3, the
only blocks to process are those that do not belong to
(D), which in general shortens the
execution of the loop.

9 Related work

Semantic for nulls Incomplete data in the relational model have been the subject of different
work. In Reiter [49], we find the proposal for a first-order interpretation of the null value
together with query answering algorithms. At the same time, proposals on relational theory
have emerged. In particular, the landmark paper [31] introduced the notion of Table (a relation
containing nulls) and of representation system (detailing two of them considered of ‘practical
interest’). Assuming that a table contains only constants and variables (representing missing
information), the first representation system deals with Codd Tables [9] where variables
occur at most once. However, it has been noticed in Imielinski and Lipski Jr. [31] that ‘no
representation system based on Codd Tables can support join and projection at a time’. The
second representation system is based on naive Tables, allowing different marked variables
(or nulls) occurring more than once. It is shown in Imielinski and Lipski Jr. [31] that this
system allows arbitrary conjunctive queries. A third representation system, based on the
idea of conditional table and considered mainly of theoretical interest, is also described in
Imielinski and Lipski Jr. [31]. Since then, considerable work has been done on querying
incomplete databases as, for instance, in Grahne [22], Zaniolo [56], Fagin et al. [17] and
Libkin [38].

123

1602 J. Chabin et al.

Updating incomplete data Updates on incomplete databases have drawn less attention than
queries. We mention (i) the work of Abiteboul and Grahne based on conditional tables (see
[1]); (ii) the work in Fagin et al. [18] which discusses the fact that the result of an update
is dependent upon the way the logical database is constructed; (iii) the survey in Winslett
[55] which offers a clear distinction between model-based and formula-based approaches to
updating logical theories.

However, the interest of updates on incomplete data sources is now stemming from needs
on theweb semantic domain [12].Work, such asNikolaou andKoubarakis [44], extends to the
RDFworld concepts introduced in Imielinski and Lipski Jr. [31] and explores SPARQL query
evaluation.Moreover, whenDeGiacomo et al. [11] propose an ontology updatemanagement,
it seems to revive previous proposals such as Halfeld Ferrari et al. [26]. Indeed, when dealing
with different rule levels and when proposing semantics tolerant with inconsistencies coming
from the intentional level, the relation with the exceptions proposed in Halfeld Ferrari et al.
[26] is undeniable. The problem of updating an incomplete database also concerns when and
how null values should be replaced by the new data coming with the updates. Part of the
problem is connected to the core computation. In Halfeld Ferrari and Laurent [28], we dealt
with a non-null database, situation which corresponds to the case δmax = 0. The differences
between update and revision are another important aspect to be considered. (We refer to
Hansson [29] for an overview.) These differences are the consequence of different views of
the problem and influence the semantic of changes of each particular proposal.

Tuple-generating constraints (TGD) generalize the commonly used foreign key con-
straints, allowing to express restrictions found in web semantic or graph database domains.
But considering TGD increases expressiveness at the cost of some difficulties. The first one
concerns the computation of the semantics which has been addressed through a chase pro-
cedure (see [45] for a survey). Work, as in Fagin et al. [16], Gottlob [20], Fagin et al. [15]
and Pichler and Skritek [47], considers the use of the chase procedure in data exchange. Fur-
thermore, in an update context, the chase procedure is associated with the generation of side
effects—imposing extra insertions or deletions (with respect to those required by the user)
to preserve consistency. Clearly, constraints are expected not only to be inherently consistent
(e.g. a set of constraints generating contradictory side effects for the same update u is not
acceptable) but also to avoid contradicting the original intention of the user’s update. (For
example, if the user asks for the deletion of f , the insertion of f is not an acceptable side
effect.) The existence of non-repairable transitions (i.e. with side effects that invalidate the
required update) is the focus of Schewe and Thalheim [50] which establishes sufficient and
necessary conditions of a set of constraints to work correctly. In Halfeld Ferrari et al. [26], we
can find results on the detection of inconsistency in a set of more simple constraints, such as
those used in Halfeld Ferrari and Laurent [28]. In both cases, the authors use paths on a graph
(defined from constraints) to detect inconsistency. The theory of consistency enforcement in
databases has been the subject of Link [39], Link and Schewe [40] and Schewe and Thal-
heim [51] as well. Another difficulty is that more expressive constraints represent a barrier to
the update determinism. In Halfeld Ferrari and Laurent [28] and Halfeld Ferrari et al. [26],
determinism is guaranteed because constraints have only one atom in the body and in the
head, while in Flouris et al. [19], determinism is possible thanks to a total ordering, which
imposes arbitrary choices.

In the current approach, the determinismof deletions is ensured by distinguishing one atom
in the body of each constraint.Notice, however, that this could be generalized so as to allow the
deletion ofmore that one atom.Our solution is a practical answer to an update scenariowhere
users want to juggle with different possibilities, namely: (a) expressing constraints richer than
those usually allowed by keys and foreign keys; (b) ensuring an automatic maintenance of

123

Consistent updating of databases with marked nulls 1603

the database consistency; and (c) not wasting time in considering different possible new
consistent database instances.

In fact, our solution corresponds to a very popular way of specifying updates in relational
databases, known as ‘active rules’. Indeed, a constraint such as p−, q ⇒ r can be seen as
the active rule: when delete r , if p and q are in the database, then delete p. Active rules
have been widely studied in the literature (e.g. in Schewe and Thalheim [50]), and it is well
known that they do not satisfy some suitable properties such as convergence, independence
from the application order (which is related to determinism), minimal change, monotonicity,
etc. Clearly, there is a price to pay for having deterministic deletion as a practical solution
for users.

MinimalData InstanceWhen applying the chase over TGD to generate newdata, one should
naturally consider universal solutions (those having homomorphisms into every possible
solution). They are identified in Fagin et al. [15], while Fagin et al. [16] and Gottlob [20]
consider the problem of finding the smallest one (the core). Updates are not considered,
except in Pichler and Skritek [47], which studies complexity of the TGD checking problem,
including its update variant.

Positioning our work Our approach adopts the FOL formalism introduced in Reiter [49]
(which, in fact, is a different way of modelling naive tables) to deal with updates. We extend
our previous work in Halfeld Ferrari and Laurent [28] and Halfeld Ferrari et al. [27] by
dealing both with an incomplete database and with linear tuple-generating dependencies
(TGD) without restrictions. Determinism of deletion is ensured by a pre-established choice
giving priority to one side effect (marked in the constraint’s body). Although, in our approach,
the behaviour of a deletion depends on the non-existence of side effects invalidating it, the
problem of determining such kind of behaviour in a set of constraints is out of the scope of this
paper.We conjecture that the approaches proposed in Schewe and Thalheim [50] and Schewe
and Thalheim [51] can be adapted to our context—together with their results concerning the
conditions and the complexity of performing such tests. As updates yield their side effects
which may involve nulls, we propose two ways of avoiding instances with too many nulls
generated from other nulls, namely: the possibility of fixing a pre-defined depth for such null
generation and the strategy of keeping the instance as small as possible by applying the core
computation. In this context, our updates are performed by taking into account marked null
values (which can be stored). Notice that our results can be related to work on repair checking
(such as Afrati and Kolaitis [2]), because the updated database can be seen as a repair of
an inconsistent database obtained by performing only updates in dRequest and iRequest.
However, our minimal change conditions are not necessarily considered in those papers.

Our update strategy, applied to the RDF world, is different from proposals such as Ahmeti
et al. [3], Chirkova and Fletcher [8], Gutierrez et al. [24] and Lösch et al. [42]. Although
some of themdiscuss non-determinism, all these approaches consider constraints as inference
rules (as in Gottlob et al. [21], Lausen et al. [36], Motik et al. [43] and Patel-Schneider [46]),
whereas we deal with constraints in a traditional database viewpoint, as in Flouris et al. [19].
(But the latter does not deal with null values.) Constraints are taken into account in the context
of RDF technologies such as ShEx [52], SPIN [33] and SHACL [34]. However, their focus
is on schema and ours is on integrity constraints. Stardog [53] deals with constraints which
are closer to ours. Finally, it is worth noting that we consider updates as changes in the world
and not as a revision in our knowledge of the world [4,29,32]. However, as our model does
not include any explicit representation of time, it is possible to relate results of our method to
the core principles of Belief Revision. Indeed, our delete and insertion operations are similar

123

1604 J. Chabin et al.

to contraction and revision in Belief Revision and guided by precepts corresponding to the
principles of closure, success, inclusion, consistency and vacuity (see [4]).

10 Concluding remarks

In this paper, we present a formal semantics for updates of incomplete databases. Although
this problem hasmotivatedmany research efforts during the last decades, no consensus exists.
In proposing a generic framework based on FOL, it is expected that our approach can deal
with many different contexts, including RDF data where blank nodes are the cause of many
issues.

Indeed, new applications on linked data (such as on urban transportation system [7,14,25])
need to ensure the trust and thequality of information theygive. In such a context, updating and
consistency maintenance of RDF data is an increasingly required task. The update strategies
and properties settled up in this paper contribute to the development of tools capable to deal
with data evolution in RDF databases where nulls (blank nodes) are marked as semantically
connected.

In our approach, updates are performed in a deterministic way, without any arbitrary
choice, while preserving consistency with respect to TGDs and while ensuring that use-
less incompleteness has been discarded. One should possibly point as a drawback of our
approach the fact that the complexity of our update processing is high in theory, due to
core computations. However, our paper outlines possible optimizations that would lead to
tractable implementation. Indeed, a prototype of our method has been implemented and is
publicly available [10]. This initial in-memory version allows testing and is a proof of con-
cepts setting the basis for the next step where the prototype will be enhanced to be able to
deal with standard databases. Our future work includes enhancing the expression power of
our constraints towards a more general framework.

Acknowledgements We thank our colleagues CarmemHara, Nádia P. Kozievitch and Flávio Uber who kindly
shared the use of RDF-URBS data, and our student Julien Revaud for his work on the current implementation.
We also wish to thank the reviewers for their remarks and suggestions that lead to important improvements of
a preliminary version of our work.

A Proof of Proposition 6.1

Proposition 6.1 Let	 = (D,C)be adatabase and iRequestafinite set of facts. If Algorithm1
returns 	′ = (D′,C) where D′ �= D, then D′ satisfies the following statements:

1. Effectiveness: (a) for everyϕ in iRequest,D′ contains an instance ofϕ, (b) R_core(D′) =
D′ and (c) D′ |� C.

2. Monotonicity:D � D′.
3. Minimal change: For every ϕ inD′ not inD and not isomorphic to an atom in iRequest,

D′\{ϕ} �|� C.

Proof 1(a) Let ϕ in iRequest. Then, ϕ is in T ∗
fw(D∪ iRequest) = D1 (line 3 of Algorithm 1).

Thus, if ϕ is not in D′, then ϕ has been instantiated due to the computation of the restricted
core on line 4 of Algorithm 1. Therefore, in this case R_core(D1) = D′ contains an instance
of ϕ.

1(b) The fact that R_core(D′) = D′ is an obvious consequence of Algorithm 1.

123

Consistent updating of databases with marked nulls 1605

1(c) If D1 contains no null N such that δ(N) ≥ k, then D′ |� C holds because, by
Proposition 4.1, D1 satisfies C and thus, by Lemma 3.1, so does its core which is equal to
its restricted core due to Lemma 4.2(1).

Now, assume that D1 contains at least one null N with δ(N) ≥ δmax and that D′ �|� C.
This means that there exists c : B(X,Y) ⇒ L(X,Z) in C such that D′ �|� c. Thus, there
exists a homomorphism h such that h(body(c)) ⊆ D′ and, for any extension h′ of h to the
variables occurring in Z, h′(head(c)) is not in D′. Denoting h(body(c)) by B(α, β), this
means that B(α, β) ⊆ D′ and thatD′ contains no atom of the form L(α, _). SinceD′ ⊆ D1,
we have h(body(c)) ⊆ D1. As for every null N in h(body(c)), δ(N) < δmax ,D1 contains an
atom of the form L(α, ν) where ν is made of nulls whose degree is δmax . Therefore, L(α, ν)

has been removed during the core processing, meaning that D1 also contains an instance
L(α′, γ) of L(α, ν). Denoting by h the homomorphism computing the restricted core D′,
D1 contains h(L(α,N)) = L(α′, γ) along with all atoms in B(α, β) or in h(B(α, β)). The
case h(α) �= α is not possible because this implies that B(α, β) ⊆ D′ does not hold. Hence,
h(α) = α, and so, h(L(α, ν)) = L(α, γ) is inD′, a contradiction to the fact thatD′ contains
no atom of the form L(α, _). Therefore, this part of the proof is complete.

2. InAlgorithm1, on line 3,we haveD ⊆ T ∗
fw(D∪iRequest), thusD � T ∗

fw(D∪iRequest)
holds. As earlier noticed, T ∗

fw(D∪ iRequest) � R_core(T ∗
fw(D∪ iRequest)), which implies

by transitivity that on line 4, D � D1 holds. Therefore, the proof of this part is complete.
3. Let ϕ in D′, not in D and not isomorphic to an atom in iRequest, and assume that

D′\{ϕ} |� C. Then,ϕ has beengeneratedduring the computationofD1 = T ∗
fw(D∪iRequest).

Hence, there exists c : B(X,Y) ⇒ L(X,Z) inC and a homomorphism h such that h(c) ⊆ D1

and h(head(c)) = ϕ.
Since D′\{ϕ} |� c, c cannot be full, meaning that c has existentially quantified variables

and thatD′\{ϕ} contains an atom of the form L(α, γ) where α = h(X) and γ �= h(Z). Let p
be the least integer such that h(body(c)) ⊆ T p

fw(D∪ iRequest) and ϕ /∈ T p
fw(D∪ iRequest).

Since ϕ is in D′, for every null N in ϕ, δ(N) < δmax. Thus, when computing T p+1
fw (D ∪

iRequest), all nulls occurring in the instantiated body of the corresponding constraint have
a degree strictly less than δmax − 1, meaning that ϕ is generated as the atom L(α,N) where
N is a vector of fresh nulls whose degrees are strictly less than δmax . As a consequence,
by definition of Tfw, L(α, γ) is not in T p

fw(D ∪ iRequest) (otherwise L(α,N) would not
be generated), meaning that L(α, γ) is generated at a subsequent computation step q (i.e.
q > p + 1).

Now, let h0 be the homomorphism defined by h0(N) = γ and h0(N) = N for every N
not occurring in N. We first notice that h0 is restricted because, since L(α, γ) is in D′ (this
so because L(α, γ) ∈ D′\{ϕ}), all nulls in γ have a degree strictly less than δmax. Denoting
by Atoms(N) the set of atoms inD1 in which at least one null in N occurs, we show that for
every A in Atoms(N), h0(A) is also in D1. Consider now the step m where the first atom
A in Atoms(N) different from ϕ appears in Tm

fw(D ∪ iRequest). During the computation, a
constraint cA is instantiated into hA(cA) so as to contain ϕ in its body (the only atom so far in
which N occurs), in order to generate A = hA(head(cA)). Hence, as soon as h0(ϕ) appears
in T q

fw(D ∪ iRequest), h0(hA(cA)) applies and generates h0(A), showing that h0(A) is in
D1. Since this reasoning applies step by step for every A in Atoms(N), this implies that for
every A in Atoms(N), h0(A) is in D1.

Hence, in the computation of R_core(D1), N can be instantiated into γ using h0 (or one
of its extensions), which implies that ϕ is not inD′, a contradiction to our hypothesis that ϕ
is in D′. Therefore, the proof is complete. ��

123

1606 J. Chabin et al.

B Proof of Proposition 6.2

Proposition 6.2 Let 	 = (D,C) be a database and dRequest a finite set of instantiated
atoms where every null occurs at most once. Algorithm 2 returns 	′ = (D′,C) where D′
satisfies the following statements:

1. Effectiveness (a) for every ϕ in dRequest, D′ contains no atom isomorphic to ϕ, (b)
R_core(D′) = D′, and (c) D′ |� C.

2. Monotonicity D′ � D.

Proof 1(a) Let ϕ in dRequest and suppose an atom ϕ1 isomorphic to ϕ that belongs to D′,
when running Algorithm 2. If ϕ1 is in ToDel on line 1, then for ϕ1 to belong toD′, it must be
that on line 5, ϕ1 is inD1 and thus that, on line 7, ϕ1 is in Back. If ϕ1 is not in ToDel, then
ϕ1 is not in D showing that this atom appears in D1 on line 4, the only step in Algorithm 2
where atoms are added to the instance. In this case, we again have that ϕ1 is in Back. But
then, on line 11, ϕ1 belongs to T ∗

bw(Disallowed∪Back,D1) showing that ϕ1 cannot belong
to D2. Since D′ is a subset of D2, it is not possible that ϕ1 belongs to D′, a contradiction
that completes this part of the proof.

1(b) R_core(D′) = D′ is an obvious consequence of the statements on lines 5 and 12 of
Algorithm 2.

1(c) If D′ is output by Algorithm 2 on line 9, then Disallowed is empty, meaning
that every null N in D1 is such that δ(N) < δmax . Thus, by Proposition 4.1, we have
T ∗
fw(D\ToDel) |� C, implying that, by Lemma 3.1, D′ |� C. Otherwise, D′ is output on

line 13, in which case Proposition 4.2 shows thatD2 |� C, and thus, by Lemma 3.1, we have
D′ |� C, which completes this part of the proof.

2. To prove that D′ � D, we first show that for D1 = R_core(T ∗
fw(D\ToDel)) as

computed on line 5 of Algorithm 2, we have D1 � D. To this end, let us first prove by
induction that T ∗

fw(D\ToDel) � D. The base case of the induction, that is,D\ToDel � D,
holds becauseD\ToDel ⊆ D. Then, for a given integer p, assuming that T k

fw(D\ToDel) �
D for every 0 ≤ k ≤ p, we show that T p+1

fw (D\ToDel) � D. To see this, let h p be the
homomorphism such that h p(T p

fw(D\ToDel)) ⊆ D and consider the two cases as follows:

– Assume first that T p+1
fw (D\ToDel) = T p

fw(D\ToDel). This means that the least fixed
point has been reached, in which case hk+1 is equal to hk .

– When T p+1
fw (D\ToDel) �= T p

fw(D\ToDel), for every null N in T p
fw(D\ToDel) let

h p+1(N) = h p(N). Then, considering a null N in T p+1
fw (D\ToDel) but not in

T p
fw(D\ToDel) implies that δ(N) ≤ δmax and that there exists c in C and a homomor-

phism h such that h(body(c)) ⊆ T p
fw(D\ToDel) and N occurs in ϕ = h(head(c)).

In this case, we have h p(h(body(c)) ⊆ D because, by our induction hypothesis,
h p(T p

fw(D\ToDel)) ⊆ D. Since D |� C, c applies in D, meaning that D contains
an atom A = v(ϕ)where v is defined over the nulls ν in ϕ by v(ν) = t where t is the cor-
responding term in A. Notice that v is well defined because any null ν in ϕ either occurs
in T p

fw(D\ToDel), in which case v(ν) = ν, or ν is a fresh null such N , in which case v(ν)

is uniquely defined. In this case, let h p+1(N) be v(N). We thus obtain a homomorphism
h p+1 such that h p+1(T p+1

fw (D\ToDel)) ⊆ D, showing that T p+1
fw (D\ToDel) � D.

Therefore, T ∗
fw(D\ToDel) � D holds. Moreover, since D1 = R_core(T ∗

fw(D\ToDel)),
D1 � T ∗

fw(D\ToDel) holds, implying D1 � D. Thus, if the test on line 9 succeeds, we
trivially have D′ � D. Otherwise, since D′ ⊆ D2 ⊆ D1, D′ � D holds as well, and the
proof is complete. ��

123

Consistent updating of databases with marked nulls 1607

References

1. Abiteboul S, Hull R, Vianu V (1995) Foundations of databases, vol 8. Addison-Wesley, Reading
2. Afrati FN, Kolaitis PG (2009) Repair checking in inconsistent databases: algorithms and complexity. In:

Proceedings of the 12th international conference on database theory—ICDT, Russia, March 23–25, 2009,
pp 31–41

3. Ahmeti A, Calvanese D, Polleres A (2014) Updating RDFS ABoxes and TBoxes in SPARQL. CoRR
arXiv:1403.7248

4. Alchourrón CE, Gärdenfors P, Makinson D (1985) On the logic of theory change: partial meet contraction
and revision functions. J Symb Log 50(2):510–530. https://doi.org/10.2307/2274239

5. Arenas M, Pérez J (2011) Querying semantic web data with SPARQL. In: Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART symposium on principles of database systems, PODS, Athens, Greece, pp
305–316

6. Benedikt M, Konstantinidis G et al (n.d.) Benchmarking the chase. In: Principles of database systems
(PODS 2017) (to appear)

7. Chabin J, Gomes Jr L, Halfeld Ferrari M (2018) A context-driven querying system for urban graph
analysis. In: IDEAS. ACM, pp 297–301

8. Chirkova R, Fletcher GHL (2009) Towards well-behaved schema evolution. In: 12th international work-
shop on the web and databases, WebDB, USA

9. Codd EF (1975) Understanding relations (installment #6). FDT Bull ACM SIGMOD 7(1):1–4
10. DBOrleans-Team (2018) A prototype—updating with marked nulls—version 2018. http://www.univ-

orleans.fr/lifo/Members/Mirian.Halfeld/mi2-software.html. Accessed 23 Oct 2018
11. De Giacomo G, Lembo D, Oriol X, Savo DF, Teniente E (2017) Practical update management in

ontology-based data access. In: Proceedings of the semantic web—ISWC–16th international semantic
web conference, Vienna, Austria, Part I, pp 225–242

12. De Giacomo G, Lenzerini M, Poggi A, Rosati R (2009) Dealing with inconsistencies and incompleteness
in database update (position paper)

13. Deutsch A, Nash A, Remmel JB (2008) The chase revisited. In: Proceedings of the twenty-seventh
ACMSIGMOD-SIGACT-SIGART symposium on principles of database systems, PODS 2008, June 9–
11, 2008, Vancouver, BC, Canada, pp 149–158

14. D’Orazio L,Halfeld-FerrariM,HaraCS,KozievitchNP,MusicanteMA (2017)Graph constraints in urban
computing: dealing with conditions in processing urban data. In: DARLI-AP, international workshop
on data analytics solutions for Real-LIfe APplications in conjunction with the 3rd IEEE international
conference on smart data, England, UK

15. Fagin R, Kolaitis PG, Miller RJ, Popa L (2003) Data exchange: semantics and query answering. In:
Proceedings of the database theory—ICDT, 9th international conference, Italy, pp 207–224

16. Fagin R, Kolaitis PG, Popa L (2005) Data exchange: getting to the core. ACM Trans Database Syst
30(1):174–210

17. Fagin R, Kuper GM, Ullman JD, Vardi MY (1986) Updating logical databases. Adv Comput Res 3:1–18
18. Fagin R, Ullman JD, Vardi MY (1983) On the semantics of updates in databases. In: Proceedings of the

second ACM SIGACT-SIGMOD symposium on principles of database systems, Colony Square Hotel,
Atlanta, Georgia, USA, pp 352–365

19. Flouris G, Konstantinidis G, Antoniou G, Christophides V (2013) Formal foundations for RDF/S KB
evolution. Knowl Inf Syst 35(1):153–191

20. Gottlob G (2005) Computing cores for data exchange: new algorithms and practical solutions. In: Pro-
ceedings of the twenty-fourth ACM SIGACT-SIGMOD-SIGART symposium on principles of database
systems, Baltimore, Maryland, USA, pp 148–159

21. Gottlob G, Orsi G, Pieris A (2011) Ontological queries: rewriting and optimization. In: Proceedings of
the 27th international conference on data engineering, ICDE, Germany, pp 2–13

22. Grahne G (1991) The problem of incomplete information in relational databases. Lecture notes in com-
puter science, vol 554. Springer, New York

23. GrahneG, Onet A (2011) On conditional chase termination. In: Proceedings of the 5thAlbertoMendelzon
international workshop on foundations of data management, Santiago, Chile, May 9–12, 2011

24. Gutierrez C, Hurtado CA, Vaisman AA (2011) RDFS update: from theory to practice. In: Proceedings
of the semanic web: research and applications—8th extended semantic web conference, ESWC, Greece,
Part II, pp 93–107

25. Halfeld Ferrari Alves M, Hara CS, Kozievitch NP, Uber FR (2018) Urban data consistency in RDF: a
case study of Curitiba transportation system. In: ‘LADaS@VLDB’, volume 2170 of CEUR workshop
proceedings, CEUR-WS.org, pp 33–40

123

http://arxiv.org/abs/1403.7248
https://doi.org/10.2307/2274239
http://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/mi2-software.html
http://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/mi2-software.html

1608 J. Chabin et al.

26. Halfeld Ferrari Alves M, Laurent D, Spyratos N (1998) Update rules in datalog programs. J Log Comput
8(6):745–775

27. Halfeld Ferrari M, Hara CS, Uber FR (2017) RDF updates with constraints. In: Proceedings of the
knowledge engineering and semantic web—8th international conference, KESW, Szczecin, Poland, pp
229–245

28. Halfeld Ferrari M, Laurent D (2017) Updating RDF/S databases under constraints. In: Proceedings of the
advances in databases and information systems—21st European conference, ADBIS, Nicosia, Cyprus,
pp 357–371

29. Hansson SO (2016) Logic of belief revision. In: Zalta EN (ed) The Stanford encyclopedia of philosophy,
winter 2016 edition, 2016th edn. Metaphysics Research Lab, Stanford University, Stanford

30. Hell P, Nesetril J (1992) The core of a graph. Discrete Math 109(1–3):117–126. https://doi.org/10.1016/
0012-365X(92)90282-K

31. Imielinski T, Lipski W Jr (1984) Incomplete information in relational databases. J ACM 31(4):761–791
32. Katsuno H, Mendelzon AO (1991) On the difference between updating a knowledge base and revising

it. In: Proceedings of the 2nd international conference on principles of knowledge representation and
reasoning (KR’91). Cambridge, MA, USA, April 22–25, pp 387–394

33. Knublauch H, Hendler JA, Idehen K (2011) SPIN—overview and motivation. W3C member submission.
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222. Accessed 3 Nov 2017

34. Knublauch H, Ryman A (2017) Shapes constraint language (SHACL). W3C first public working draft,
w3c. http://www.w3.org/TR/2015/WD-shacl-20151008/. Accessed 3 Nov 2017

35. KozievitchNP,GaddaTMC,FonsecaKVO,RosaMO,Gomes JrLC,AkbarM(2016)Exploratory analysis
of public transportation data in Curitiba. In: ‘XXXVI CSBC’. Sociedade Brasileira de Computação, pp
1656–1666

36. Lausen G, Meier M, Schmidt M (2008) Sparqling constraints for RDF. In: Proceedings of the EDBT,
11th international conference on extending database technology, France, pp 499–509

37. Libkin L (2006) Data exchange and incomplete information. In: Proceedings of the twenty-fifth ACM
SIGACT-SIGMOD-SIGART symposium on principles of database systems, June 26–28, 2006, Chicago,
Illinois, USA, pp 60–69

38. LibkinL (2015) Sql’s three-valued logic and certain answers. In: 18th international conference on database
theory, ICDT, Brussels, Belgium, pp 94–109

39. Link S (2002) Towards a tailored theory of consistency enforcement in databases. In: Proceedings of the
foundations of information and knowledge systems, second international symposium, FoIKS, Germany,
pp 160–177

40. Link S, Schewe K (2002) An arithmetic theory of consistency enforcement. Acta Cybern 15(3):379–416
41. Lipski Jr W (1984) On relational algebra with marked nulls. In: Proceedings of the third ACM SIGACT-

SIGMOD symposium on principles of database systems, Waterloo, Ontario, Canada, pp. 201–203
42. Lösch U, Rudolph S, Vrandecic D, Studer R (2009) Tempus fugit. In: Proceedings of the semantic web:

research and applications, 6th European semantic web conference, ESWC, Crete, Greece, , pp 278–292
43. Motik B, Horrocks I, Sattler U (2007) Bridging the gap between OWL and relational databases. In:

Proceedings of the 16th international conference on world wide web, WWW, Canada, pp 807–816
44. Nikolaou C, Koubarakis M (2016) Querying incomplete information in RDF with SPARQL. Artif Intell

237:138–171
45. Onet A (2013) The chase procedure and its applications in data exchange. In: Data exchange, integration,

and streams, pp 1–37
46. Patel-Schneider PF (2015) Using description logics for RDF constraint checking and closed-world recog-

nition. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, USA, pp 247–253
47. Pichler R, Skritek S (2011) The complexity of evaluating tuple generating dependencies. In: Proceedings

of the database theory—ICDT, 14th international conference, Sweden, pp 244–255
48. Rabinovitch J, Leitman J (1996) Urban planning in Curitiba. Sci Am 274(3):46–53
49. Reiter R (1986) A sound and sometimes complete query evaluation algorithm for relational databases

with null values. J ACM 33(2):349–370
50. Schewe K, Thalheim B (1998) Limitations of rule triggering systems for integrity maintenance in the

context of transition specifications. Acta Cybern 13(3):277–304
51. Schewe K, Thalheim B (1999) Towards a theory of consistency enforcement. Acta Inf 36(2):97–141.

https://doi.org/10.1007/s002360050155
52. Solbrig H, hommeaux EP (2014) Shape expressions 1.0 definition. W3C member submission. http://

www.w3.org/Submission/2014/SUBM-shex-defn-20140602. Accessed 3 Nov 2017
53. Stardog5 (2017) Enterprise knowledge graph. http://www.stardog.com/docs/
54. W3C-Working-Group (n.d.) Linked data patch format—pathological graph. https://www.w3.org/TR/

ldpatch/#pathological-graph. Accessed 3 Nov 2017

123

https://doi.org/10.1016/0012-365X(92)90282-K
https://doi.org/10.1016/0012-365X(92)90282-K
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222
http://www.w3.org/TR/2015/WD-shacl-20151008/
https://doi.org/10.1007/s002360050155
http://www.w3.org/Submission/2014/SUBM-shex-defn-20140602
http://www.w3.org/Submission/2014/SUBM-shex-defn-20140602
http://www.stardog.com/docs/
https://www.w3.org/TR/ldpatch/#pathological-graph
https://www.w3.org/TR/ldpatch/#pathological-graph

Consistent updating of databases with marked nulls 1609

55. Winslett M (1990) Updating logical databases. Cambridge University Press, New York
56. Zaniolo C (1984) Database relations with null values. J Comput Syst Sci 28(1):142–166

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Jacques Chabin is currently Associate Professor in Computer Sci-
ences, teaching at the University Institute of Technology of Orléans.
Since 1994, he is a member of PAMDA team in the Laboratoire
d’Informatique Fondamentale d’Orléans (LIFO) of the Université
d’Orléans and the INSA Centre Val de Loire. He is awarded a Bach-
elor of Science in Mathematics of Université d’Orléans, and he earned
master and PhD degrees in Computer Science from the same Univer-
sity. His research interests include term rewriting, proof and database
theory.

Mirian Halfeld-Ferrari is currently a Full Professor at Université
d’Orléans (France), member of LIFO research laboratory and co-
director of the ICVL research Federation, comprising two academic
research laboratories of the Région Centre Val de Loire in France. She
earned a PhD degree from Université Paris Sud (XI), LRI (Labora-
toire de Recherche en Informatique), in 1996 and an HDR (Habilita-
tion à Diriger des Recherches) from Université de Tours in 2007. She
has been an Associate Professor at UFPR (Universidade Federal do
Paraná), in Brazil (1996–1998), and at Université de Tours, in France,
from 1998 to 2009. Professor Halfeld-Ferrari has been involved in dif-
ferent international collaboration work. Her research interests include
theoretical aspects of databases, query languages, graph databases and
dynamic aspects of databases.

Dominique Laurent is currently Emeritus Professor in the University
of Paris-Seine (France) and a member of the research laboratory ETIS
(UMR CNRS). He graduated in 1978 in Mathematics, received his doc-
toral degree in Computer Science in 1987 and then his Habilitation in
1994, all from the Université d’Orléans (France). From 1987 to 1996,
he was Associate Professor in this same university, and in 1996, he
joined the Université de Tours (France) as a Full Professor. In 2003,
he was appointed as a Full Professor at Université de Cergy-Pontoise
(France), where he led first the Computer Science Department and
then the Graduate School Science et Ingénierie. His research interests
include database theory, data mining and data warehousing. Professor
Laurent has published numerous papers in these areas and has been
involved in many international programme committees and editorial
boards.

123

	Consistent updating of databases with marked nulls
	Abstract
	1 Introduction
	How to deal with marked nulls?
	How to avoid redundancies?
	How to preserve consistency while avoiding to generate too many nulls?
	How to keep update deterministic?

	2 Background: the core of a set of instantiated atoms
	3 Consistent database with marked nulls
	4 Constraint application
	4.1 Applying constraints forward
	4.2 Applying constraints backward

	5 Update processing
	5.1 Insertion processing
	5.2 Deletion semantics
	5.3 Deletion processing
	5.4 Complexity remarks

	6 Update properties
	7 Chasing versions and core computation
	7.1 Chasing: our choice of controlling null propagation
	7.2 Computing the core

	8 Experimental study
	8.1 Synthetic example
	8.2 URBS example
	8.3 Possible optimizations

	9 Related work
	10 Concluding remarks
	Acknowledgements
	A Proof of Proposition 6.1
	B Proof of Proposition 6.2
	References

