
Knowledge and Information Systems (2020) 62:1313–1340
https://doi.org/10.1007/s10115-019-01393-8

REGULAR PAPER

ProSecCo: progressive sequence mining with convergence
guarantees

Sacha Servan-Schreiber1 ·Matteo Riondato2 · Emanuel Zgraggen1

Received: 3 January 2019 / Revised: 23 July 2019 / Accepted: 5 August 2019 / Published online: 20 August 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
We present ProSecCo, an algorithm for the progressive mining of frequent sequences from
large transactional datasets: It processes the dataset in blocks and it outputs, after having
analyzed each block, a high-quality approximation of the collection of frequent sequences.
ProSecCo can be used for interactive data exploration, as the intermediate results enable the
user tomake informed decisions as the computation proceeds. These intermediate results have
strong probabilistic approximation guarantees and the final output is the exact collection of
frequent sequences.Our correctness analysis uses theVapnik–Chervonenkis (VC) dimension,
a key concept from statistical learning theory. The results of our experimental evaluation of
ProSecCo on real and artificial datasets show that it produces fast-converging high-quality
results almost immediately. Its practical performance is even better than what is guaranteed
by the theoretical analysis, and ProSecCo can even be faster than existing state-of-the-art
non-progressive algorithms. Additionally, our experimental results show that ProSecCo
uses a constant amount of memory, and orders of magnitude less than other standard, non-
progressive, sequential pattern mining algorithms.

“Here growes the wine Pucinum, now called Prosecho, much celebrated by Pliny.”
–Fynes Moryson, An Itinerary, 1617

Keywords Approximation algorithms · Interactive data analysis · Pattern mining ·
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1 Introduction

Data exploration is one of the first steps of data analysis: The user performs a preliminary
study of the dataset to get acquainted with it prior to performing deeper analysis. To be useful,
systems for data explorations must be interactive: Small (500ms [16]) and large (6–12s [37])
delays between query and response decrease the rate at which users discover insights.

Data exploration tools, such as Vizdom [7], achieve interactivity by displaying interme-
diate results as soon as possible after the query has been submitted and frequently update
them as more data are processed, using online aggregation [10].

The intermediate results must be trustworthy, i.e., not mislead the user, otherwise she will
not be able tomake informed decisions. To be trustworthy, intermediate results must have two
important properties: (1) they must be, with high probability, high-quality approximations of
the exact results; and (2) they must quickly converge to the exact results, and correspond to
them once all data has been processed.

Online aggregation produces trustworthy intermediate results for relatively simple SQL
queries, but does not currently support more complex knowledge discovery tasks that are a
key part of data exploration.

Existing data mining algorithms are poor candidates for this phase of data analysis since
most such algorithms are resource intensive, incurring delays between queries and results.
“Batch” algorithms that analyze the whole dataset in one shot can take many minutes to
complete, thereby disrupting fluid user experiences. Streaming algorithms often do not offer
sufficient guarantees on the quality of intermediate results for them to be trustworthy, and
are thus poor candidates for exploratory tasks.

In this work we focus on the important task of frequent sequence mining [3,21], which
requires finding ordered lists of itemsets appearing in a large fraction of a dataset of transac-
tions. Applications include web log analysis, finance modeling, and market basket analysis.
Our approach can be easily generalized to other pattern extraction tasks such as frequent
itemset mining, which is an often simpler task compared to sequential pattern mining.

The bottom part of Fig. 1 shows the lack of interactivity of existing frequent sequence
mining algorithms. After having selected a dataset and a minimum frequency threshold to
deem a sequence frequent, the user launches a non-progressive frequent sequence mining
algorithm, such as PrefixSpan [21]. No response is given to the user until the algorithm has
terminated, which may take many tens of seconds. Such a delay destroys the productivity of
the data exploration session. New algorithms are needed to ensure that the human is involved
in the loopof data analysis by providing themactionable information as frequently as possible.

Contributions We describe ProSecCo, a progressive frequent sequence mining algorithm
with trustworthy intermediate results, suitable for interactive data exploration.

– ProSecCo periodically returns to the user high-quality approximations of the collection
of interest (see the top part of Fig. 1). This progressive behavior is achieved by analyzing
the dataset incrementally in blocks of user-specified size. ProSecCo extracts a set of
candidate frequent sequences from the first block by mining it at a lowered frequency
threshold that depends on properties of the block. ProSecCo often returns the first
set of results after less than a second, therefore keeping the user engaged in the data
exploration process. The set of candidates is probabilistically guaranteed to be a superset
of the exact collection of frequent sequences. It is progressively refined as more blocks
are processed, with each refinement output as an intermediate result. Once the last block
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ProSecCo: progressive sequence mining with convergence guarantees 1315

Fig. 1 Illustration of an interactive data analysis tool where users can gesturally invoke a frequent sequences
mining operation (left) by selecting a dataset and a minimum frequency threshold. The feedback displayed by
the tool to the user varies greatly depending on whether a progressive or a non-progressive algorithm is used
to compute the answer to such a query. In the case of a non-progressive algorithm (bottom) the tool shows
a loading animation until the exact answer is computed after 40 s. With ProSecCo, the tool can show (top)
progressively refined results to the user immediately and at various points in time. Data and times for this
example are taken from actual experiments

has been analyzed, the candidate sets corresponds, with high probability, to the exact
collection of frequent sequences. We also present a variant ProSeK for extracting the
top-k most frequent sequences.

– All the returned sets of candidate sequences come with strong explicit probabilistic
guarantees on their quality.
Such guarantees enable the user to decide whether to continue or stop the processing
of additional blocks. Our analysis uses VC-dimension [33] and fundamental sample-
complexity results from statistical learning theory [15,32]. We show that the empirical
VC-dimension of the task of frequent sequence mining is tightly bounded above by a
characteristic quantity of the dataset, which we call the s-index (Definition 2), that can be
computed in a streaming fashion as the blocks are read (Algorithm 2). A key ingredient
of our analysis, that we deem of independent interest, is a method to efficiently compute
an upper bound to the capacity of a sequence, i.e., to the number of distinct subsequences
it contains. Obtaining this bound is sufficient for our purposes and faster than computing
the exact capacity of a sequence [8].

– We conducted an extensive experimental evaluation of ProSecCo on real and artificial
datasets. Our results show that ProSecCo produces approximations of the actual set of
frequent sequences almost immediately, with even higher quality than our theoretical
analysis guarantees: for example, all the temporary results it produced had the required
quality guarantees every time, not just with probability 1−δ. We conclude, therefore, that
our theoretical analysis provides a generous upper bound on the worst-case performance
which is not likely to be seen in real-world scenarios. Furthermore, ProSecCo uses a
near-constant amount of memory and is, in almost all cases, up to two times faster when
compared to the current state-of-the-art sequent mining algorithms PrefixSpan [21] and
SPAM [5].

Outline In the next section, we discuss the relationship of ProSecCo with related work.
We then present preliminary concepts for frequent sequences mining and VC-dimension
in Sect. 3, introduce ProSecCo (Sect. 4.2) and show the guarantees it offers (Sect. 4.3).
After that, we discuss the variant for mining the top-k frequent sequences, the extension to
other kind of patterns, and additional aspect of ProSecCo. The results of our experimental
evaluation are presented in Sect. 5.
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1316 S. Servan-Schreiber et al.

2 Related work

Online aggregation [10] is a paradigm in DBMS operations where the user is presented with
on-the-fly and constantly updated results for aggregation queries. A number of systems [1,2,6,
11–13,20,35,36] have been proposed over the years, with increasing levels of sophistications
and different trade-offs. One major limitations of most of these systems is their focus on SQL
queries, and they do not cover knowledge discovery tasks that are a major component of data
exploration. We focus on online aggregation for one knowledge discovery task: frequent
sequences mining.

Frequent sequences mining was introduced by Agrawal and Srikant [3]. A number of
exact algorithms for this task have been proposed, ranging from multi-pass algorithms using
the anti-monotonicity property of the frequency function [30], to prefix-based approaches
[21], to works focusing on the closed frequent sequences [34]. In this work, we consider
these algorithms as black boxes, and we run them on blocks of the dataset without any
modification. None of them can work in a progressive, interactive setting like the one we
envision (see Fig. 1) and in which ProSecCo shines. Additionally, they use a very large
amount of memory, while ProSecCo uses an essentially constant amount of memory.

Streaming algorithms for frequent sequences mining [17] process the dataset in blocks,
similarly to ProSecCo. The intermediate results they output are not trustworthy as they
may miss many of the “true” frequent sequences. This limitation is due to the fact that the
algorithms employ a fixed, user-specified lower frequency threshold to mine the blocks.
This quantity is hard for the user to fix, and may not be small enough to ensure that all
“true” frequent sequences are included in each intermediate result. ProSecCo solves this
issue by using a variable, data-dependent lowered frequency threshold, which offers strong
guarantees on the quality of the intermediate and final results.

The use of sampling to speed up the mining phase has been successful in sequence mining
[23] and in other variants of pattern discovery, such as frequent itemsets mining [24,25,31], to
obtainapproximations of the collection of interesting patterns.Wedonot use sampling, butwe
use techniques based on empirical VC-dimension to derive the lowered frequency threshold
at which tomine the frequent sequences. Our bound to the empirical VC-dimension is specific
to this task, and differs from bounds to the VC-dimension used to obtain approximations of
other collection of patterns [24,26]. Also, we analyze the whole dataset, although in blocks
of transactions in random order, to obtain the exact collection of frequent sequences.

This version of our work differs in many ways from the preliminary one that appeared
in the proceedings of IEEE ICDM’18 [28]. The major changes are the following, listed
approximately in order of importance:

– we present a new variant ProSeK, for the interactive mining of the top-k most frequent
sequences (Sect. 4.5);

– we optimize the implementation of ProSecCo, and compare its performance, in addition
to that of PrefixSpan [21], to that of SPAM [5], using existing optimized implementations.
At the same time, we also use more datasets in the experimental evaluation.

– We show formally that the upper bound to the empirical VC-dimension that we present
is tight, in the sense that there are datasets attaining the bound (Lemma 4);

– We discuss how to extend the general approach taken by ProSecCo to other kinds of
patterns, specifically itemsets [4] and subgroups [14] (Sect. 4.6);

– We added running examples for all the concepts that we define, in order to make it easier
for the reader to follow our reasoning.

123
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Table 1 Main notation used in
this work

Symbol Notes

I Finite set of items

S Generic itemset, subset of I
s Generic sequence, ordered list of itemsets

|s| Number of itemsets in s

‖s‖ Item length of s

c(s) Capacity of s

c̃(s) Upper bound to the capacity of s

a � b a is a subsequence of b

D Dataset

fD(s) Frequency of s on D
FS(D, θ) Frequent sequences in D w.r.t. θ

H A finite domain

R A collection of subsets from H
W A subset ofH
EVC(H,R,W) Empirical VC-dimension of (H,R) onW
Bi Block of transactions from D
TOPK(D, k) Top-k frequent sequences in D

3 Preliminaries

In this section, we introduce the concepts and results used throughout the paper. Table 1
reports the main notation for reference.

3.1 Sequencemining

Let I = {i1, . . . , in} be a finite set. The elements of I are called items and non-empty subsets
of I are known as itemsets. A sequence s = 〈S1, S2, . . . , S�〉 is a finite ordered list of itemsets,
with Si ⊆ I, 1 ≤ i ≤ �.

The length |s| of s is the number of itemsets in it, i.e., |s| = �. The item length ‖s‖ of s is
the sum of the sizes of the itemsets in it, i.e.,

‖s‖ =
|s|∑

i=1

|Si |,

where the size |Si | of an itemset Si is the number of items in it (e.g., |{a, b, c}| = 3). For
example, ‖〈{a, b}, {a}, {c, d}〉‖ = 5.

A sequence a = 〈A1, A2, . . . , A�〉 is a subsequence of another sequence b =
〈B1, B2, . . . , Bm〉, if and only if there exist integers 1 ≤ j1 < j2 < · · · < j� ≤ m such that
A1 ⊆ B j1 , A2 ⊆ B j2 , . . . , A� ⊆ B j� . We denote that a is a subsequence of b as a � b. As
an example,

〈{a, b}, {a}, {c, d}〉 � 〈{a, b}, {b}, {a, e}, {a, c, d}〉
The capacity c(s) of s is the number of distinct subsequences of s:

c(s) = | {a � s} |. (1)
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1318 S. Servan-Schreiber et al.

Egho et al. [8, Sect. 5] present an ingeniousmethod to compute the capacity of a sequence, that
is nevertheless quite expensive. The quantity 2‖s‖ − 1 is an upper bound to c(s). ProSecCo
uses a stronger upper bound which we introduce in Sect. 4.2.

A dataset D is a finite bag of sequences.When referring to them asmembers of the dataset,
the elements of D are known as transactions. A sequence s belongs to a transaction τ ∈ D
iff s is a subsequence of τ .

For any sequence s, the frequency of s in D is the fraction of transactions of D to which s
belongs:

fD(s) = |{τ ∈ D : s � τ }|
|D| . (2)

For example, the following dataset D has five transactions:

〈{a}, {b, c}, {c, d, e}〉
〈{a}, {d, e}, {c, d}〉
〈{b, d, e}, {a, b}〉 (3)

〈{b}, {c}, {d, e}〉
〈{a}, {a, c}, {b}〉.

The last transaction τ is a sequence with length |τ | = 3. Its item length ‖τ‖ is 4. Its capacity
c(τ ) is 13 (not 24 − 1 = 15 because there are two ways to get 〈{a}〉 and 〈{a}, {b}〉). While
the sequence 〈{a}〉 occurs twice as a subsequence of τ , τ is only counted once to compute
the frequency of 〈{a}〉 in D, which is fD(〈{a}〉) = 4/5. The sequence 〈{a}, {b}, {c}〉 is not a
subsequence of τ because the order of the itemsets in the sequence matters.

Frequent sequences mining Let S denote the set of all sequences built with itemsets
containing items from I. Given a minimum frequency threshold θ ∈ (0, 1], the collection
FS(D, θ)of frequent sequences inDw.r.t. θ contains all and only the sequenceswith frequency
at least θ in D:

FS(D, θ) = {s ∈ S : fD(s) ≥ θ}.

ProSecCo computes ε-approximations of FS(D, θ), for ε ∈ (0, 1). Formally, they are
defined as follows.

Definition 1 Let ε ∈ (0, 1). An ε-approximation to FS(D, θ) is a set B of pairs (s, fs), where
s ∈ S and fs ∈ [0, 1], with the following properties:

1. B contains a pair (s, fs) for every s ∈ FS(D, θ);
2. B contains no pair (s, fs) such that fD(s) < θ − ε;
3. Every (s, fs) ∈ B is such that | fs − fD(s)| ≤ ε/2.

An ε-approximation B is a superset of FS(D, θ) (Property 1) and the “false positives”
it contains, i.e., the sequences appearing in a pair of B but not appearing in FS(D, θ), are
“almost” frequent, in the sense that their frequency inD cannot be lower than θ −ε (Property
2). Additionally, the estimations of the frequencies for the sequences in B are all simultane-
ously up to ε/2 far from their exact values (Property 3). We focus on the absolute error in
the frequency estimation but an extension to relative error is possible.
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ProSecCo: progressive sequence mining with convergence guarantees 1319

3.2 VC-dimension and sampling

The (empirical) Vapnik–Chervonenkis (VC) dimension [33] is a fundamental concept from
statistical learning theory [32]. We give here the most basic definitions and results, tailored
to our settings, and refer the reader to the textbook by Shalev-Shwartz and Ben-David [29]
for a detailed presentation.

Let H be a finite discrete domain and R ⊆ 2H be a set of subsets of H. We call the
elements of R ranges, and call (H,R) a rangeset. Given W ⊆ H, we say that A ⊆ W is
shattered by R if and only if, for every subset B ⊆ A of A, there is a range RB ∈ R such
that A ∩ RB = B, i.e., if and only if

{R ∩ A : R ∈ R} = 2A,

where 2A denotes the powerset of A.
The empirical VC-dimension EVC(H,R,W) of (H,R) on W is the size of the largest

subset of W shattered by R.
For example, letH be the integers from 0 to 100, and letR be the collection of all sets of

consecutive integers from 0 to 100, i.e.,

R = {{a, a + 1, . . . , b} : a, b ∈ H s.t. a ≤ b} .

Let W be the set of integers from 10 to 25. The empirical VC-dimension EVC(H,R,W) of
(H,R) on W is 2. Indeed consider any set A = {a, b, c} of three distinct integers in W ,
and assume, w.l.o.g., that a < b < c. It is impossible to find a range R ∈ R such that
R ∩ A = {a, c}, thus no such set of size three is shattered by R, while it is trivial to shatter
a set of size two.

An important application of empirical VC-dimension is estimating the relative sizes of
the ranges, which are in practice unknown. Specifically, one is interest in estimating all the
quantities

{ |R|
|H| : R ∈ R

}

simultaneously and with guaranteed accuracy, from a subsetW of � elements of the domain
H. A setW that allows to estimate all these quantities to within an additive error φ is called
a φ-sample. Formally, let φ ∈ (0, 1). The set W is a φ-sample if and only if

∣∣∣∣
|R ∩ W|

|W| − |R|
|H|

∣∣∣∣ < φ for every R ∈ R. (4)

The use of the term φ-sample to denote such a set is motivated by the fact that if

1. W is a uniform random sample of � elements from H; and
2. we can compute an upper bound to the empirical VC-dimension of (H,R) on W ,

then we can obtain a value φ such that, with high probability over the choice of W , W is a
φ-sample. It is important to remark that φ is a sample-dependent quantity, i.e., it is a property
of W , and it is not fixed beforehand by the user.

Theorem 1 [15] Let W be a uniform random sample of � elements from H, and let d ≥
EVC(H,R,W). Let η ∈ (0, 1) and

φ =
√

d + ln(1/η)

2�
.

Then with probability at least 1 − η (over the choice of W), W is a φ-sample.
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We use this theorem in the analysis of ProSecCo (see Sect. 4.3) to ensure that the
intermediate results it outputs have strong quality guarantees and converge to FS(D, θ).

4 Algorithms

We now present ProSecCo, our progressive algorithm for computing the set of frequent
sequences in a dataset, and some variants for related problems.

4.1 Intuition andmotivation

ProSecCo processes the dataset in blocks B1, . . . , B�|D|/b� of b transactions each,1 for a
user-specified b. After having analyzed the i th block Bi , it outputs an intermediate result,
which is an εi -approximation for an εi computed by ProSecCo.

It is the combination of frequently updated intermediate results and their trustworthiness
that enables interactive data exploration: Each intermediate result must be a high-quality
approximation of the collection of frequent sequences; otherwise, the user is not able to decide
whether to continue or interrupt the processing of the data because the intermediate results
have already shown what they were interested in. Achieving this goal is not straightforward.

For example, onemay think that a successful strategy could involve returning the collection
of frequent sequences w.r.t. the original user-specified minimum frequency threshold θ in the
first block as the first intermediate result and then augmenting or refining this collection using
the frequent sequences in each of the successive blocks. This strategy would not achieve the
desired property of trustworthiness for two reasons:

1. there is no guarantee that a sequence that is frequent w.r.t. θ in a single block or even in a
small number of blocks would actually be frequent w.r.t. θ within the whole dataset, and

2. while the “true” frequent sequences will definitively be frequent w.r.t. θ in some of the
blocks, they may have frequency strictly less than θ in other blocks, and therefore they
may be missing from the intermediate (and final) results.

A strategy like the one just described may output intermediate results that include a high
number of false positives and also may be missing a large number of the “true” frequent
sequences, thereby misleading the user, who might make a decision on further steps in the
analysis (or stop the current computation) on the basis of wrong information.

Streaming algorithms for frequent sequence mining [17] use a fixed, user-specified, low-
ered frequency threshold ξ < θ to mine all the blocks (the same ξ is used for all blocks).
This strategy is not sufficient to guarantee trustworthy intermediate results, as they may not
containmany of the sequences that are frequent in the whole dataset, because these sequences
may have frequency in a block lower than ξ and therefore be missing from the intermediate
result for that block. Such results would mislead the user.

ProSecCo avoids these pitfalls by carefullymining the initial block at a lowered frequency
threshold ξ < θ computedusing information obtained from the block.2 Bydoing so, themined
collection F of “candidate” frequent sequences is a superset of FS(D, θ) (more specifically,
it is an ε-approximation, for an ε computed by ProSecCo). ProSecCo then refines the
candidate setF using the additional information obtained frommining each of the successive
blocks at adata-dependent, block-specific lowered frequency threshold, improving the quality

1 The last block may have fewer than b transactions.
2 Some additional care is needed when handling the initial block. See Sect. 4.4.
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ProSecCo: progressive sequence mining with convergence guarantees 1321

of the candidate set (i.e., decreasing ε progressively and including fewer false positives), and
eventually converging exactly to FS(D, θ). Making the lowered threshold ξ dynamic and
dependent on block-specific information computed by the algorithm enables ProSecCo to
output trustworthy intermediate results.

Algorithm 1: getCapBound: Compute c̃(τ ) ≥ c(τ ).
input : transaction τ = 〈A1, . . . , A�〉, with the Ai ’s labeled as described in the text.
output: upper bound c̃(τ ) to c(τ ).

1 c ← 2‖τ‖ − 1
2 L ← τ // Linked list
3 while |L| > 1 do
4 A ← popFrontElement(L)
5 foreach B ∈ L and s.t. B ⊆ A do
6 c ← c − (2|B| − 1)
7 erase B from L
8 return c

4.2 Algorithm description

We first need some preliminary definitions and results.

4.2.1 Upper bound to the capacity of a sequence

ProSecCo relies on a descriptive property of sets of transactions which is a function of the
distribution of the capacities (see (1)) of the transactions in the sets. Obtaining the exact
capacity c(τ ) of a transaction τ is possible thanks to an ingenious formula by Egho et al.
[8, Sect. 5], but expensive. ProSecCo instead computes an upper bound c̃(τ ) ≥ c(τ ). The
intuition behind our upper capacity bound is the following. Consider the quantity 2‖τ‖ −1 ≥
c(τ ). This quantity may be a loose upper bound because it is obtained by considering all
subsets of the bag-union ∪A∈τ A of the itemsets in τ as distinct subsequences, but that
may not be the case. For example, when τ contains (among others) two itemsets A and B
s.t. A ⊆ B, sequences of the form s = 〈C〉 with C ⊆ A are considered twice when obtaining
2‖τ‖ − 1, once as “generated” from A and once from B. For example, the subsequence 〈{a}〉
can be “generated” by both the first and the second itemset in the last transaction from (3),
but it should not be counted twice.

Our goal in developing a better upper bound to c(τ ) is to avoid over-counting the 2|A| − 1
sub-sequences of τ in the form of s above. At an intuitive level, this goal can be achieved by
ensuring that such subsequences are only counted once, i.e., as “generated” by the longest
itemset that can generate them.

Formally, let τ = 〈Z1, . . . , Z�〉 be a transaction and assume to relabel the itemsets in τ

by decreasing size, ties broken arbitrarily, as A1, . . . , A�, so that |Ai | ≥ |Ai+1|. We compute
the capacity upper bound c̃(τ ) as follows (pseudocode in Algorithm 1). First, a variable c
is set to 2‖τ‖ − 1, then we insert the Ai ’s in a list L in the order of labeling. As long as the
list L contains more than one itemset, we pop the first itemset A from the list, and look for
any itemset B still in L such that B ⊆ A. For each such B, we decrease c by 2|B| − 1 and
remove B from L . We define the capacity upper bound c̃(τ ) for τ as the value c returned
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1322 S. Servan-Schreiber et al.

by getCapBound (Algorithm 1) with input τ . The following result is then straightforward
from this description of getCapBound and the intuition given above.

Lemma 1 For any sequence τ , it holds that c̃(τ ) ≥ c(τ ).

There aremany other types of sub-sequences of τ that may be over-counted, but we have to
strike the right trade-off between the time it takes to identify the over-counted subsequences
and the gain in the upper bound to the capacity. Investigating better bounds to the capacity of
a transaction that can still be computed efficiently is an interesting direction for future work.

4.2.2 The s-index of a set of transactions

Given a set W of transactions, we use the capacity upper bounds of the transactions in W
to define a characteristic quantity of W , which we call the s-index of W . This concept is of
crucial importance for ProSecCo.

Definition 2 Given a set W of transactions, the s-index of W is the largest integer d such
that W contains at least d transactions with capacity upper bounds at least 2d − 1, and such
that for any two distinct such transactions, neither is a subsequence (proper or improper) of
the other.

Consider, for example, the set of five transactions from (3). It has s-index equal to 4
because the first four transactions have capacity upper bounds at least 24 − 1 = 15 (each τ

of the first four has c̃(τ ) = 2‖τ‖ − 1), while the last transaction τ has c̃(τ ) = 14.
Because it uses the capacity upper bounds, the s-index is tailored for the task of frequent

sequence mining. It is in particular different from the d-index of a transactional dataset used
for mining approximations of the frequent itemsets through sampling [24].

Given W , an upper bound to its s-index d can be computed in a streaming fashion as
follows (pseudocode in Algorithm 2). We maintain a min-priority queue T of transactions
where the priority of an element τ is its capacity upper bound c̃(τ ). The priority queue is
initially empty. At any point during the execution of the algorithm, the priority queue contains

– all � (for some � ≤ |T |) transactions seen so far with capacity upper bound strictly
greater than 2|T | − 1; and

– |T | − � of the transactions seen so far with capacity upper bound exactly 2|T | − 1.

This property of T is the invariant maintained by the algorithm. The transactions in W are
processed one by one. For each transaction τ , its capacity upper bound c̃(τ ) is computed. If it
is larger than 2|T | −1 and if T does not contain any transaction of which τ is a subsequence,
then τ is inserted in T with priority c̃(τ ). We then peek at the top element in T , and pop it if its
capacity upper bound is less than 2|T | − 1. Once all transactions ofW have been processed,
the number |T | of elements in the priority queue T is an upper bound to the s-index of W .

4.2.3 PROSECCO, the algorithm

We are now ready to describe ProSecCo. Its pseudocode is presented in Algorithm 3. Pro-
SecCo takes in input the following parameters: a dataset D, a block size b ∈ N, a minimum
frequency threshold θ ∈ (0, 1], and a failure probability δ ∈ (0, 1).

The algorithm processes the dataset D in blocks B1, . . . , Bβ where β = �|D|/b�, of b
transactions each,3 analyzing one block at a time. We assume to form the blocks by reading

3 The last block B�|D|/b� may contain fewer than b transactions. For ease of presentation, we assume that all
blocks have size b.
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Algorithm 2: getSIndexBound
input : transaction set W
output: upper bound to the s-index ofW .

1 T ← empty min-priority queue
2 foreach τ ∈ W do
3 c̃(τ ) ← getCapBound(τ) // See Algorithm 1

4 if c̃(τ ) > 2|T | − 1 and ¬∃ρ ∈ T s.t. τ � ρ then
5 T .insertWithPriority(τ, c̃(τ ))

6 if T .peek().priority() < 2|T | − 1 then
7 T .pop()
8 return |T |

the transactions in the dataset in an order chosen uniformly at random, which can be achieved,
e.g., using randomized index traversal [19]. This requirement is crucial for the correctness
of the algorithm.

ProSecCo keeps two running quantities:

1. a descriptive quantity d which is an upper bound to the s-index (see Definition 2) of the
set of transactions seen by the algorithm until now;

2. a set F of pairs (s, fs) where s is a sequence and fs ∈ (0, 1].
The quantity d is initializedwith an upper bound to the s-index of B1, computed in a streaming
fashion using getSIndexBound (Algorithm 2) as B1 is read (line 2 of Algorithm 3). The
second quantity F is populated with the frequent sequences in B1 w.r.t. a lowered minimum
frequency threshold ξ = θ − ε

2 and their corresponding frequencies in Bi (lines 4 and 5 of
Algorithm 3). Any frequent sequence mining algorithm, e.g., PrefixSpan [21], can be used
to obtain this set. We explain the expression for ε (line 3) in Sect. 4.3.

After having analyzed B1, ProSecCo processes the remaining blocks B2, . . . , Bβ . While
reading each block Bi , the algorithm updates d appropriately so that d is an upper bound to
the s-index of the collection

Wi =
i⋃

j=1

B j

of transactions in the blocks B1, . . . , Bi . The updating of d is straightforward thanks to
the fact that getSIndexBound (Algorithm 2) is a streaming algorithm, so by keeping in
memory the priority queue T (line 1 of Algorithm 2), it is possible to update d as more
transactions are read. At this point, ProSecCo updates F in two steps (both implemented in
the function updateRunningSet, line 11 of Algorithm 3) as follows:

1. for each pair (s, fs) ∈ F , ProSecCo updates fs as

fs ← fs · (i − 1) · b + |{τ ∈ Bi : s � τ }|
i · b

, (5)

so that it is equal to the frequency of s in Wi .
2. it removes from F all pairs (s, fs) s.t. fs < θ − ε

2 , where ε is computed using d as
explained in Sect. 4.3. When processing the last block Bβ , ProSecCo uses ε = 0.

No pairs are ever added to F after the initial block B1 has been processed. The intu-
ition behind removing some pairs from F is that the corresponding sequences cannot have
frequency in D at least θ . We formalize this intuition in the analysis in Sect. 4.3.
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After each block is processed, ProSecCo outputs an intermediate result composed by
the set F together with ε (line 12 of Algorithm 3).

Algorithm 3: ProSecCo
input : dataset D, block size b, minimum frequency threshold θ , failure probability δ.
output: a set F which, with probability at least 1 − δ, equals FS(D, θ).

1 β ← �|D|/b� // Number of blocks
2 (B1, d) ← readBlockAndUpdateSIndex(b, 1)

3 ε ← 2
√

d−ln(δ)+ln(β−1)
2b

4 ξ ← θ − ε
2 // Computes lowered threshold

5 F ← getFS(B1, ξ) // Computes FS(Bi , ξ)

6 returnIntermediateResult (F , ε)

7 foreach i ← 2, . . . , β − 1 do
8 (Bi , d) ← readBlockAndUpdateSIndex(b, i)

9 ε ← 2
√

d−ln(δ)+ln(β−1)
2i ·b

10 ξ ← θ − ε
2

11 F ← updateRunningSet(F , Bi , ξ)
12 returnIntermediateResult (F , ε)

13 (Bβ , d) ← readBlockAndUpdateSIndex(b, β)
14 F ← updateRunningSet(F , Bβ , θ)
15 return (F , 0)

4.3 Correctness analysis

We show the following property of ProSecCo’s outputs.

Theorem 2 Let (Fi , εi ) be the i th pair produced in output by ProSecCo,4 1 ≤ i ≤ β. It
holds that

Pr(∃i, 1 ≤ i ≤ β, s.t. Fi is not an εi -approximation) < δ.

The theorem says that, with probability at least 1− δ (over the runs of the algorithm), for
every 1 ≤ i ≤ β, each intermediate result Fi is an εi -approximation, and since εβ = 0, the
last result corresponds to the exact collection FS(D, θ).

Before proving the theorem, we need some definitions and preliminary results. Consider
the range set (D,R), where R contains, for each sequence s ∈ S, one set Rs defined as the
set of transactions of D that s belongs to:

Rs = {τ ∈ D : s � τ } . (6)

From (2) it is easy to see that for any sequence s ∈ S, the relative size of the range Rs
equals the frequency of s in D:

|Rs|
|D| = fD(s). (7)

Also, given a subset W of D, it holds that

|Rs ∩ W|
|W| = fW (s). (8)

4 I.e., the i th intermediate result.
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The following results connects the concepts of φ-sample and ε-approximation.

Lemma 2 Let W be a subset of D that is a φ-sample of (D,R) for some φ ∈ (0, 1). Then
the set

B = {(s, fW (s)) : s ∈ FS(W, θ − φ)}
is a 2φ-approximation for FS(D, θ).

Proof Property 3 from Definition 1 follows immediately from the definition of φ-sample
(see (4)) and from (7) and (8), as for every sequence s in S (not just those in the first
components of the pairs in B) it holds that

|fW (s) − fD(s)| ≤ φ.

Property 1 from Definition 1 follows from the fact that any sequence s ∈ FS(D, θ) has
frequency in W greater than θ − φ, so the pair (s, fW (s)) is in B.

Finally, Property 2 from Definition 1 follows from the fact that any sequence s with
frequency in D strictly smaller than θ − 2φ has frequency inW strictly smaller than θ − φ,
so the pair (s, fW (s)) is not in B. ��

The following lemma connects the task of frequent sequence mining with the concepts
from statistical learning theory.

Lemma 3 For any subset W ⊆ D of transactions of D, the s-index d of W is an upper bound
to the empirical VC-dimension of (D,R) on W: d ≤ textsfEVC(D,R,W).

Proof Assume that there is a subset S ⊆ W of z > d transactions shattered by R. From
the definition of d , S must contain a transaction τ of with c̃(τ ) ≤ 2d − 1. The transaction τ

belongs to 2z−1 subsets of S. We label these subsets arbitrarily as Ai , 1 ≤ i ≤ 2z−1. Since
S is shattered by R, for each Ai there must be a range Ri ∈ R such that

Ai = S ∩ Ri , for each 1 ≤ i ≤ 2z−1.

Since all the Ai ’s are different, so must be the Ri ’s. The transaction τ belongs to every Ai ,
so it must belong to every Ri as well. From the definition of R, there must be, for every
1 ≤ i ≤ 2z−i , a sequence si such that Ri = Rsi (see (6)). Thus, all the si ’s must be different.
From (6) it holds that τ belongs to all and only the ranges Rq such that q � τ . Since
c̃(τ ) ≤ 2d − 1, it follows from Lemma 1, that there are at most 2d − 1 distinct non-empty
sequences that are subsequences of τ . But from the definition of z, it holds that 2z−1 > 2d −1,
so τ cannot belong to all the ranges Rsi , thus we reach a contradiction, and it is impossible
that S is shattered. ��

We can now prove Theorem 2.

Proof for Theorem 2 Recall thatWi = ⋃i
j=1 Bi is the set of transactions seen by ProSecCo

up to the pointwhen (Fi , εi ) is sent in output. The number of transactions inWi is |Wi | = b·i .
For any i , 1 ≤ i ≤ β and for any pair (s, fs) ∈ Fi , it holds that

fs = fWi (s) (9)

by definition of fs (see (5)). Consider the event

E = “EveryWi , 1 ≤ i < β is an εi/2 − sample”
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and let Ē be its complementary event. Using the union bound [18, Lemma 1.2], we can write

Pr
(
Ē
) ≤

β−1∑

i=1

Pr(Wi is not a εi/2 − sample). (10)

By construction, eachWi is an uniform random sample ofD of size b · i , 1 ≤ i < β. The fact
that Wi ⊂ Wz for z > i is irrelevant, because of the definition of uniform random sample.
Using Lemma 3, Theorem 1 and the definition of εi (from lines 3 and 9 of Algorithm 3), it
holds that

Pr(Wi is not a εi/2 − sample) ≤ δ

β − 1
, for 1 ≤ i < β.

Plugging the above in (10), it follows that the event E then happens with probability at least
1− δ. When E happens, the thesis follows from Lemma 2 for all 1 ≤ i < β and from (9) for
i = β. ��

Tightness of the bound The bound to the empirical VC-dimension shown in Lemma 3 is
tight, as shown in the following Lemma, whose proof is similar to the one for [24, Theo-
rem 4.6].

Lemma 4 Let d be a positive integer. There is a dataset D and a set W ⊆ D with s-index d
such that EVC(D,R,W) = d.

Proof For d = 1, letD be any dataset containing at least two distinct transactions t1 = 〈{a}〉
and t2 = 〈{b}〉, for a �= b ∈ I. LetW = {t1, t2}. It holds c̃(t1) = c̃(t2) = 1, so the s-index of
W is 1. It is straightforward to shatter the subset {t1} ⊆ W , so the empirical VC-dimension
is at least 1, and the thesis follows from Lemma 3.

Without loss of generality let I = N. For d > 1, let D be any dataset containing the set
W defined as follows. The set W contains:

– The set K = {t1, . . . , td} where
ti = 〈{0, 1, 2, . . . , i − 1, i + 1, . . . , d}〉, 1 ≤ i ≤ d;

– Any number of arbitrary transactions with capacity upper bound less than 2d − 1.

It holds c̃(ti ) = c(ti ) = 2d − 1 and for no pair ti , t j with i �= j it holds either ti � t j or
t j � ti , so the s-index of W is d .

We now show that K is shattered byR. For eachA ∈ 2K\{K,∅}, let YA be the sequence

YA = 〈{1, . . . , d}\{i : ti ∈ A}〉.
Let YK = 〈{0}〉 and Y∅ = 〈{d + 1}〉. It holds by construction that

RYA ∩ K = A, for each A ⊆ K.

Thus, it holds

A ∈ {R ∩ K, R ∈ R} for each A ⊆ K,

which is equivalent to say that

{R ∩ K, R ∈ R} = 2K,

i.e., that K is shattered. Since |K| = d , it follows that EVC(D,R,W) ≥ d . We obtain the
thesis by combining this fact with Lemma 3. ��
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4.4 Handling the initial block

A major goal for ProSecCo is to be interactive. Interactivity requires to present the first
intermediate results to the user as soon as possible. As described above, ProSecCo uses
an exact, non-progressive algorithm such as PrefixSpan [21] to mine the first block with a
frequency threshold ξ (line 4 of Algorithm 3). Because of the way ξ is computed, it could
be very small, depending on the (upper bound to the) s-index of the first block and on the
user-specified block size b. Mining the first block at a very low frequency threshold has two
undesirable effects:

1. the mining may take a long time due to the very large number of patterns that are deemed
frequent w.r.t. a very low threshold (pattern explosion);

2. all these patterns would be shown to the user, effectively flooding them with too much
information with diminishing return.

To counteract these drawbacks, the algorithm can hold before mining the first block if the
frequency threshold ξ is too low and, instead, continue on to read the second block (without
discarding thefirst) andpotentially additional blocks until the frequency threshold ξ computed
using the upper bound to the s-index and the size of the set of all read transactions is large
enough for this set of transactions to be mined quickly by PrefixSpan at this threshold. Doing
so has no effect on the correctness of the algorithm: The proof of Theorem 2 can be amended
to take this change into consideration. A good starting point for how large ξ should be before
mining is to wait until it is approximately θ/2. Other heuristics are possible, and we are
investigating a cost-model-based optimizer for the mining step to determine when ξ is large
enough.

4.5 Top-k sequences mining

A variant of the frequent sequence mining task requires to find the top-k most frequent
sequences: instead of specifying the minimum frequency threshold θ , the user specifies a
desired output size k. The collection of sequence to return is defined as follows. Assume to
sort the sequences in S in decreasing order according to their frequency in D, ties broken
arbitrarily. Let f(k)

D be the frequency in D of the kth sequence in this order. The set of top-k
frequent sequences is the set

TOPK(D, k) =
{
s ∈ S : fD(s) ≥ f(k)

D

}
.

This collection may contain more than k sequences. The parameter k is more intuitive for the
user thant the minimum frequency threshold θ , and more appropriate for interactive visual-
ization tools, where the human user can only handle a limited number of output sequences.

Since

TOPK(D, k) = FS
(
D, f(k)

D

)
,

the concept of ε-approximation (Definition 1) is valid also for this collection.
ProSecCo can be modified as follows to return progressive results for the top-k frequent

sequences. We denote this modified algorithm as ProSeK and, in the following, describe
how it differs from ProSecCo by referencing the pseudocode in Algorithm 3.

First of all, ProSeK takes k as input parameter instead of θ . A major difference is in the
definition of ε on lines 3 and 9 of Algorithm 3. ProSeK uses a factor 4 (instead of 2) before
the square root to compute the values for this variable:
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ε ← 4

√
d − ln(δ) + ln(β − 1)

2i · b
.

Another difference is in the initialization of ξ (line 4): instead of θ , ProSeK uses f(k)
B1
, the

frequency in B1 of the kth most frequent sequence in B1:

ξ ← f(k)
B1

− ε

2
.

The quantity f(k)
B1

can be computed using a straightforward variant of PrefixSpan for top-
k frequent sequence mining. The last difference between ProSecCo and ProSeK is in
the function updateRunningSet: While the second component of the pairs in F is still
updated using (5), ProSeK removes fromF all pairs with updated second component strictly
less than f(k)

Wi
− ε

2 , the frequency of the kth most frequent sequence in Wi .
The output of ProSeK has the following properties.

Theorem 3 Let (Fi , εi ) be the i th pair sent in output by ProSeK, 1 ≤ i ≤ β. With probability
at least 1 − δ, it holds that, for all i , Fi is an εi -approximation to TOPK(D, k).

The proof follows essentially the same steps as the one for Theorem 2.

4.6 Extension to other patterns

Our presentation of ProSecCo has been focused on sequences, but a similar approach can be
used to enable the interactive mining of other kinds of patterns, provided that it is possible,
given a random sample S of transactions from the dataset and a failure probability λ, to
determine a φ ∈ (0, 1) such that S is a φ-sample, with probability at least 1 − λ (over the
choice of S).

We are aware of two kinds of patterns for which methods to compute φ have been devel-
oped: itemsets [4] and subgroups [14]. For itemsets, Riondato andVandin [26] showed how to
use an upper bound to the empirical VC-dimension of the task of itemsets mining to compute
φ. The same authors used pseudodimension [22], a different concept from statistical learning
theory, to compute φ for subgroups [27].

Developing methods to compute φ for other kinds of patterns is an interesting direction
for future research.

4.7 Memory considerations

Many current real-world datasets contain hundreds of millions of transactions. As a result,
such datasets are impractical to store, let alone mine, locally on a single machine. Most
existing algorithms are ill-suited for mining large datasets as they require enormous amounts
of memory (usually ranging in the GigaBytes, see also Sect. 5.3), even with relatively small
datasets by today’s standards. Existing workarounds involve expensive disk I/O operations
to store and fetch from disk what does not fit into memory, leading to extreme runtime
inefficiencies far beyond what can be tolerated in an interactive setting.

Thanks to the fact that ProSecCo only mines one block at a time, it incurs in minimal
memory overhead, making it an ideal candidate for mining very large datasets (see also the
results of our experimental evaluation in Sect. 5.3). Furthermore, this small resource footprint
means thatProSecCo can be used in low-memory settingswithout the need for expensive I/O
swapping operations effectively bypassing the runtime increase faced by existing algorithms.
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Table 2 Summary of experimental comparisons to existing algorithms in terms of average runtime, memory
usage, and correctness, over all tested parameter values and datasets

Algorithm Avg. runtime Avg. memory Intermediate results Correctness (%)

ProSecCo 32 s 743 MB Yes ≥ 95∗
PrefixSpan [21] 46 s 10 GB No 100

SPAM [5] 3 min 72 GB No 100

∗As guaranteed by theoretical analysis; 100% in experimental evaluation

We believe this small memory usage is amajor benefit of ProSecCo, given the impracticality
of using existing sequence mining algorithms on huge datasets.

5 Experimental evaluation

In this section, we report the results of our experimental evaluation of ProSecCo onmultiple
datasets. The goals of the evaluation are the following:
– Assess the accuracy of ProSecCo in terms of:

1. the precision and the recall of the intermediate results, and how these quantities
change over time as more blocks are processed;

2. the error in the estimations of the frequencies of the output sequences, and its behavior
over time. Additionally, we compare the actual maximum frequency error obtained
with its theoretical upper bound εi that is output after having processed the i th block.

– Measure the running time of ProSecCo both in terms of the time needed to produce the
first intermediate result, the successive ones, and the last one. We also compare the latter
with the running time of PrefixSpan [21] and SPAM [5].

– Evaluate the memory usage of ProSecCo over time and compare it with that of PrefixS-
pan and SPAM, especially as function of the size of the dataset and frequency threshold
parameter.

Summary Our experimental results show that ProSecCo is faster than PrefixSpan and
SPAM while simultaneously capable of producing within a few milliseconds high-quality
results that are updated quickly and rapidly converge to the exact collection of frequent
sequences. ProSecCo uses a constant amount of memory (at most 2 GigaBytes in our
experiments) which was consistently far less than the amount of memory used by PrefixSpan
and SPAM, which often required over 10 GigaBytes of memory (SPAM even requiring over
400 GigaBytes at times). Table 2 shows an high-level summary of the comparison, reporting
average runtime and memory usage over all the datasets and parameter values that we tested.
More than for the actual values, the summary highlights the superiority of ProSecCo and
its added flexibility thanks to the fact that it produces intermediate results. All of these
advantages come with a very low price in terms of correctness: While theoretically there is a
small probability that some of ProSecCo’s intermediate outputs are not ε-approximations,
this event never happened in the thousands of runs that we performed.

Implementation and environment We implement ProSecCo in Java 11.0.1. Our imple-
mentation of ProSecCo uses PrefixSpan as the black-box non-progressive algorithm tomine
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Table 3 Dataset characteristics

Dataset Size (|D|) Repl. factor |I| Avg. trans. size

Accidents 3401830 10× 481 34.8

Bible 7273800 200× 14442 22.6

BMS-WebView1 17880001 300× 938 3.5

FIFA 2045000 100× 4153 37.2

Kosarak 6999801 100× 16428 9.0

MSNBC 3179000 100× 17.0 13.33

the first set F from the initial block (line 5 of Algorithm 3) and for updating this set when
processing the successive blocks (line 11). We use the PrefixSpan and SPAM implementa-
tions from the SPMF [9] repository, which we adapt and optimize for use in ProSecCo. Our
open-source implementation is included in the SPMF package.

All experiments are conducted on amachinewith IntelXeonE5v3@2.30GHzprocessors,
with 128GB of RAM in total, running Ubuntu 18.04 LTS. Unless otherwise stated, each
reported result is the average over five trial runs (for each combination of parameters). In
most cases, the variance across runs was minimal, but we also report 95%-confidence regions
(under a normal approximation assumption). These regions are shown in the figures as a
shaded areas around the curves.

Datasets We used six sequence mining datasets from the SPMF Data Mining Repository
[9].

– Accidents Dataset of (anonymized) traffic accidents;
– Bible Sequence of sentences in the Bible. Each word is an item;
– BMSWebView1 Click-stream dataset from the Gazelle e-commerce website. Each web-

page is an item;
– FIFAClick-stream sequences of the FIFAWorldCup ‘98website. Each item in a sequence

represents a web page;
– Kosarak Click-stream dataset from a Hungarian online news portal;
– MSNBCDataset of click-stream data consisting of user browsing patterns on theMSNBC

website. Each item represents a web page.

The characteristics of the datasets are reported in Table 3. To make the datasets more rep-
resentative of the very large datasets that are frequently available in company environments
(and sadly not publicly available), we replicate each dataset a number of times (between
5 and 100). The replication preserves the original distribution of sequence frequencies and
transaction lengths, so it does not advantage ProSecCo in any way, nor disadvantages any
other sequence mining algorithm.

Parameters We test ProSecCo using a number of different minimum frequency thresholds
on each dataset. We report, for each dataset, the results for two to three selected frequency
thresholds. We vary the frequency thresholds across the datasets due to the unique character-
istics of each dataset, using thresholds which produce an amount of frequent sequences likely
to be of interest in an interactive setting. While some datasets have only a few sequences
which are common to the majority of transactions, other datasets have sequences common to
almost all transactions leading to pattern explosionwhenmining at low thresholds. For exam-

123



ProSecCo: progressive sequence mining with convergence guarantees 1331

ple, the Kosarak dataset mined at θ = 0.05 yields 33 frequent sequences, while the Accidents
dataset mined at θ = 0.85 produces 71 frequent sequences. This stark variation led us to
experiment with frequency thresholds which produce an amount of frequent sequences likely
to be of interest in an interactive setting (less than 500 sequences in the final output).

We set δ = 0.05 and do not vary the value of this parameter because the algorithm has only
a limited logarithmic (and under square root) dependency on it. We also use a constant block
size b = 10, 000 transactions unless stated otherwise. This value was found to guarantee the
best interactivity (see also Sect. 5.2 for a comparison of different blocks sizes).

5.1 Accuracy

We measure the accuracy of ProSecCo in terms of recall, precision and frequency error of
the collection of sequences output in each intermediate result. Figure 2 shows the results for
recall and precision, while Figs. 3 and 4 show the ones for the frequency errors.

Recall The first result, which is common to all the experiments conducted, is that the final
output of ProSecCo always contains the exact collection of frequent sequences, not just
with probability 1 − δ which is what our theoretical analysis guarantees. In other words,
the recall of our algorithm at the final iteration is always 1.0 in practice. Furthermore, in all
our experiments, the recall of each intermediate result is also 1.0. In summary, we can say
that ProSecCo always produces intermediate results that are supersets of FS(D, θ). This
improvement over the theoretical results can be explained by the inevitable looseness in the
sample complexity bounds.

Precision ProSecCo does not offer guarantees in terms of the precision: it only guarantees
that any sequence much less frequent than the user-specified minimum threshold θ would
never be included in any intermediate result (see Property 2 of Definition 1). This property is
very strong but does not prevent false positives from occurring. We can see from the results
in Fig. 2 that the precision after having processed the first block is around 0.20 for some
datasets, but it can be much higher (0.6–0.8) or even perfect. It rapidly increases in all cases
as more blocks are analyzed. Due to the randomized nature of the algorithm, different runs
of ProSecCo may perform slightly differently but the absence of a visible shaded region
around the precision curve implies that the difference is insignificant. The precision tends to
plateau after a few blocks: This effect is due to the fact that, before having process the whole
dataset, it is hard for the algorithm to discard from the set F the sequences with a frequency
inD just slightly lower than θ . Only after the last block has been analyzed it becomes evident
that these sequences do not belong to FS(D, θ) and they can be safely expunged from F .
Indeed the final output is always exactly FS(D, θ), i.e., the precision of the final output is 1.0.

Frequency error Wemeasure the error in the estimation of the frequencies in each progres-
sive output in two ways:

– absolute error: the absolute value of the difference between the estimation and the true
frequency in D.

– relative percentage error (RPE): we divide the absolute error by the true frequency inD,
and multiply the result by 100 to obtain a percentage.

Results for the absolute error are reported in Fig. 3, and those for the relative percentage error
are in Fig. 4.

123



1332 S. Servan-Schreiber et al.

(a) (b) (c)

(d) (e) (f)

(h) (i)(g)

(k) (l)(j)

Fig. 2 Precision and recall evolution as more blocks are processed

Beginning with the absolute error, we can see from the plots that on average over the
sequences in the intermediate results for each block, the error is very small (never more than
0.01) and quickly converges to zero. The error goes to exactly zero after the algorithm has
processed the last block. The results are very stable across runs (extremely small or absent
shaded region). Even the maximum error is only slightly larger than the mean.We also report
the theoretical upper bound to the maximum error, i.e., the quantity εi that is output by
ProSecCo after each block has been processed. This quantity is zero after having processed
the last block (the single point is not clearly visible in some of the figures). We can see that
this bound is larger than the actual maximum error observed, which confirms our theoretical
analysis. The fact that at times the bound is significantly larger than the observed error is
due to the looseness of the large-deviation bounds used (Theorem 1) and that ProSecCo
computes an upper bound to the s-index which in turn is an upper bound to the empirical VC-
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(d)

(c)(b)(a)

(e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 Absolute error in the frequency estimation and its evolution as more blocks are processed

dimension, itself a worst-case quantity. A good research direction is to explore better bounds
for the empirical VC-dimension and the use of improved results from statistical learning
theory to study the large deviations.

In terms of the RPE, ProSecCo does not give any guarantees on this quantity (although
extensions of ProSecCo that offer guarantees on the RPE are possible). Nevertheless, Fig. 4
shows that the RPE is generally small, and it converges rapidly to zero. The fact that Pro-
SecCo behaves well even with respect to a measure which it was not designed to take into
consideration testifies to its great practical usefulness.

5.2 Runtime

Wemeasure the time it takes for ProSecCo to produce each intermediate result, and compare
its completion time with that of PrefixSpan and SPAM. Our experiments show (Figs. 5 and
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(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

(l)(k)(j)

Fig. 4 Relative percentage error in the frequency estimation and its evolution as more blocks are processed

6) that ProSecCo provides a progressive output every few milliseconds, producing many
incrementally converging and useful results before PrefixSpan and SPAM completes The
variability in the processing time of a block is due to the slightly different thresholds used to
mine different blocks. Processing the last block tends to take much less time than analyzing
the others because this block usually contains many fewer than b transactions.

We experimented with four different block sizes to analyze the overall effect that block
size has on ProSecCo’s performance. We stress that the block size only has an effect on the
runtime required to produce an incremental output but does not impact the correctness of
ProSecCo. Figure 5 displays the variation in the time required to produce an incremental
output as a function of θ and the block size b. As expected, our experiments show that larger
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(d) (e)

(i)

(f)

(c)(b)(a)

(h)(g)

Fig. 5 Per-block runtime for different choices of block size b and different frequency thresholds θ . Results
were common across datasets; we select a set of representative results from four datasets

values of b increase the time required per progressive output since each block contains more
transactions which need to be processed.

The results suggest that using a “small” block size has the advantage of producing more
incremental results, however, using too small a value for b can lead to higher values of ε when
mining the blocks, which may slow down overall performance due to the pattern-explosion
phenomena at lowered frequency thresholds. A block size of b = 10, 000 seems to be a good
choice for interactive settings and large datasets.

The overall runtime of ProSecCo is almost always smaller than the runtimes of Pre-
fixSpan and SPAM (Fig. 6, where we omit plotting the SPAM runtime for clarity, as this
algorithm was consistently 2-10x slower than PrefixSpan). On the Bible dataset, ProSec-
Co is slightly slower than PrefixSpan, but we stress that ProSecCo has been producing
high-quality trustworthy results every few milliseconds, regardless of the overall size of the
dataset, while PrefixSpan and SPAM may require several minutes or more to produce any
output. The reason why ProSecCo is slower than PrefixSpan on the Bible dataset is that each
transaction in this dataset consists of words in sentences and hence contains many repeated
items) has a capacity bound c̃(τ ) > 2|T | − 1, which causes the bound to be recomputed for
each transaction (see line 4 of Algorithm 2).
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Fig. 6 Total runtime comparison for all experiments between PrefixSpan and ProSecCo including 95%
confidence intervals. Numbers on top of bars represent ProSecCo’s average runtime as a factor of PrefixSpan’s
average runtime

We break down the total runtime into fractions for the major steps of the algorithm. We
report the average percentage of time (relative to the total) for each step across all six datasets.

– Roughly 20–30% of the overall runtime is spent reading and parsing the blocks. This
step is so expensive because the algorithm must parse each row of the sequence dataset
and convert it into an instance of a sequence object in our implementation. This step is
not specific to ProSecCo and was equally slow in the PrefixSpan implementation.

– 1–10%of the runtimewas dedicated to updating the s-index aswell as sorting and pruning
the parsed sequences. After the initial block is processed, the algorithm sorts and prunes
each sequence based on the items in the running set F . Doing so allows for a more
efficient frequent sequence extraction (see the next step) since the pruned sequences are
guaranteed to only contain items which are part of a frequent sequence, and it avoids
computing the item frequencies from scratch.

– 50–80% of the total runtime involved obtaining the frequent sequences using PrefixSpan.
We note that without the previous pruning step, this process would incur a much more
significant overhead since the individual item frequencies would need to be computed
and the sequences pruned and sorted accordingly.

– 0–30% of the runtime was dedicated to subsequence matching, i.e., computing the fre-
quency of the sequences which did not appear frequent in the current block. This step
is computationally expensive but onlrequires y a relatively small percentage of the total
runtime since the majority of the truly frequent sequences are likely to be frequent in the
i th block and therefore found in the previous step.

5.3 Memory usage

Wemeasure the memory usage over time for ProSecCo, PrefixSpan, and SPAM. Our results
(Fig. 7) show that ProSecCo uses a constant amount of memory, 700MegaBytes on average,
regardless of the size of the dataset, while PrefixSpan and SPAM require a linear amount of
memory (in the size of the dataset) which, in some experiments, exceeded 30 GigaBytes for
PrefixSpan and 400 GigaBytes for SPAM. In fact, we were unable to accurately compare
performance for several huge datasets due to memory constraints. For this reason, we omit
SPAM from several figures in order to provide a clearer comparison to ProSecCo. Such
difference of many orders of magnitude clearly shows the advantage of using ProSec-
Co over classical sequence mining algorithms, especially as datasets get larger and more
complex.
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(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

(l)(k)(j)

Fig. 7 Comparison of memory usage between ProSecCo and PrefixSpan

Although measuring memory usage in Java is not straightforward due to the JVM and
the automatic garbage collection mechanisms involved, the SPMF code that we use for
both PrefixSpan and SPAM, and indirectly for ProSecCo (which uses PrefixSpan at its
core), is smart in explicitly invoking the garbage collector at key moments in the algorithms’
execution to ensure accuratememory analysis. TheSPMF implementation of these algorithms
is considered to be of state-of-the-art quality, and it is widely used in testing pattern mining
algorithms (see, e.g., the Citations page on the SPMF webpage). In the preliminary version
of this work [28] we used home-grown C# implementations of PrefixSpan and ProSecCo,
and the memory usage patterns of the two algorithms were almost identical to those that we
report here.
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6 Conclusions

We present ProSecCo, an algorithm for progressive mining of frequent sequences from
large transactional datasets. ProSecCo periodically outputs intermediate results that are
approximations of the collection FS(D, θ) of frequent sequences, with increasingly high
quality. Once all the dataset has been processed, the last result is exactly FS(D, θ).

Each returned approximation comes with strong probabilistic guarantees. The analysis
uses VC-dimension, a key concept from statistical learning theory: We show an upper bound
to the empirical VC-dimension of the task at hand,which can be easily obtained in a streaming
fashion. The bounds allows ProSecCo to compute the quality of the approximations it
produces.

Our experimental results show that ProSecCo outputs a high-quality approximation to the
collection of frequent sequences after less than a second, while non-progressive algorithms
would take tens of seconds. This first approximation is refined as more blocks of the dataset
are processed, and the error quickly decreases. The estimations of the frequencies of the
sequences in output is even better that what is guaranteed by the theoretical analysis.

Among interesting directions for future work, we highlight the need for progressive algo-
rithms for many other knowledge discovery problems, with the goal of making interactive
data exploration a reality for more and more complex tasks.
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