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Abstract
The emergence and proliferation of the internet of things (IoT) devices have resulted in the
generation of big and uncertain data due to the varied accuracy and decay of sensors and
their different sensitivity ranges. Since data uncertainty plays an important role in IoT data,
mining the useful information from uncertain dataset has become an important issue in recent
decades. Past works focus onmining the high sequential patterns from the uncertain database.
However, the utility of a derived sequence increases along with the size of the sequence,
which is an unfair measure to evaluate the utility of a sequence since any combination of
a high-utility sequence will also be the high-utility sequence, even though the utility of
a sequence is merely low. In this paper, we address the limitation of the previous potential
high-utility sequential patternmining and present a potentially high average-utility sequential
patternmining framework for discovering the set of potentially high average-utility sequential
patterns (PHAUSPs) from the uncertain dataset by considering the size of a sequence, which
can provide a fair measure of the patterns than the previous works. First, a baseline potentially
high average-utility sequential pattern algorithm and three pruning strategies are introduced
to completely mine the set of the desired PHAUSPs. To reduce the computational cost and
accelerate the mining process, a projection algorithm called PHAUP is then designed, which
leads to a reduction in the size of candidates of the desired patterns. Several experiments in
terms of runtime, number of candidates, memory overhead, number of discovered pattern,
and scalability are then evaluated on both real-life and artificial datasets, and the results
showed that the proposed algorithm achieves promising performance, especially the PHAUP
approach.
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HAUIs High average-utility itemsets
HTWUIs High transaction-weighted utilization itemsets
HUIM High-utility itemset mining
HUIs High-utility itemsets
HUSPs High-utility sequential patterns
HUSPM High-utility sequential pattern mining
PHAUSPM Potential high average-utility sequential pattern mining
PHAUSPs Potential high average-utility sequential patterns
PHAUB The designed baseline algorithm
PHAUP The designed projection-based algorithm
PHAUUBDC Potential high average-utility upper-bound downward closure
PHAUUBSPs Potential high average-utility upper-bound sequential patterns
PHUSPs Potential high-utility sequential patterns
SPM Sequential pattern mining
SWDC Sequential weighted downward closure
suub Sequence utility upper-bound value
TWU Transaction-weighted utility
TWDC Transaction-weighted down closure
UFIM Frequent itemset mining on uncertain databases
UFIs Frequent itemsets in uncertain databases
μ Minimum expected support threshold
δ Minimum high average-utility threshold

1 Introduction

With the proliferation of the internet of things (IoT) devices, such as sensors, mobile phone,
RFID tags, and actuators, among others, a huge amount of data is collected per second.
Depending on different domains and applications, several factors such as frequency, utility,
weight, and interestingness are, respectively, considered to mine the required information for
decision making. Traditional algorithms such as frequent pattern mining [2–4,14], sequential
patternmining [5,31,44], or high-utility itemsetmining [21,25–27,34,38,39] are, respectively,
presented to find the specific patterns in varied domains and applications. For example,
frequent itemset mining or association rule mining shows the frequency relationship among
the item/sets.However, the discoveredknowledgeonly contributes to a small percentageof the
total profit produced by the sale of all the items, while infrequent itemsets may actually make
larger contributions toward the profit (e.g., breads can be sold much more than diamonds
in a month but diamonds bring a much higher profit to the retailer than that of bread).
Moreover, sequential pattern mining provides the complete set of frequent subsequences that
reveals the relationships of the ordered events and elements. However, most existing works
focus on finding the relationships of the sequential patterns in the binary database; thus,
only the occurrence is considered in traditional sequential pattern mining. The high-utility
itemset mining focuses on discovering the set of high-utility itemsets, which provides more
information and insights for decision making. Considering both utility and sequential factors
in transaction data, the issue of high-utility sequential pattern mining has been studied, and
many existing works [6,7,17,40] focus on developing efficient algorithms to improve the
mining performance and reduce the candidate size. However, the above algorithms only
concern the binary dataset, where data is either present or absent in the transaction dataset.
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Uncertainty plays an important role in IoTdata [10,29] since the collected rawdata from the
IoT sensors or devices may be influenced by the environment, sensitivity, and their location.
For example, suppose that several thermometers are set in a room tomeasure the temperature,
and the degrees from those thermometers will not be the same due to some thermometers may
be close to the window, and some of them may be close to the heater. Considering the basket
market analysis, an itemset with high utility and high existence probability (uncertainty) is
useful to make efficient and effective decisions. For example, a customer buys milk in 100
quantities, and the profit for a milk is 2 dollars with a probability value as 0.91; he/she also
buys a PC, and the profit for a PC is 100 dollars with the probability value as 0.05. Based
on this situation, a retailer may introduce a large amount of milk into shops and reduce the
number of PC. The reason is that although the profit of milk is much smaller than that of a PC,
but the probability to purchase milk is much higher than that of a PC. Several existing works
consider uncertainty as an important factor into pattern mining works, such as uncertain
frequent itemset mining [11,19,36], uncertain sequential pattern mining [13], or high-utility
itemset mining over uncertain dataset [18,24]. Moreover, the high-utility sequential pattern
mining [42] concerns the IoT data and present the potential high-utility sequential pattern
mining framework to derive both the high-utility and high-probability patterns from the
sequential and uncertain dataset. Yet, it is observed that the utility of an item or set increases
alongwith its size, i.e., the length of the itemset. Such resultsmay result in improper decisions
or ill-designed sales strategies. To mitigate this problem, Hong et al. [15] presented a level-
wise average-utility algorithm to find the set of high average-utility itemsets. The set of high
average-utility itemsets is discovered by dividing the total utility of an itemset in a transaction
by its length (that is, the number of items in the transaction). This average concept provides a
fair measure to evaluate the importance of the derived patterns. Several extensions [16,20,22,
23,28] of high average-utility itemset mining were presented. The above works fail, however,
to consider the intrinsic sequential item ordering in the transactions. Thus, the motivation of
this paper aims at the following goals.

• Consider the uncertainty, especially the IoT data, with the high-utility sequential pattern
mining to retrieve the information for decision making.

• Consider the length of patterns and provide a fair measure of the discovered patterns, thus
the average-utility concept is adopted here to solve the limitations of increasing utility
along with the pattern size.

• Develop efficient algorithms and pruning strategies to speed up computation and reduce
the number of candidates for discovering the desired patterns.

Based on the above motivations, the potentially high average-utility sequential pattern
mining (PHAUSPM) framework is presented here to consider the uncertainty, utility, and
sequence ordering of the data, and average-utility concept to mine more meaningful and
useful patterns for decision making. As we know, the utility of itemset increases with its size
or length. Considering the total utility of the itemsets irrespective of their size may lead to an
unfair evaluation regarding whether an itemset is a profitable pattern or not. In addition, data
uncertainty should also be considered as the data collected from real-life applications, such
as sensor networks or experimental environments, are not (very) precise. For instance, the
sensors deployed in a wireless sensor network collect the data with a certain probability from
the real-world environment that measures, for example, temperature or humidity. Sequence
ordering also plays a critical role for decision making especially when analyzing user’s
purchase behaviors for recommender systems. Given the impact of the above factors, the
scientific contributions of the proposed approaches in this paper are organized as follow.

123



1202 J. C.-W. Lin et al.

• An innovative high average-utility sequential pattern mining framework is first proposed
to discover the potentially high average-utility sequential patterns (PHAUSPs) from
uncertain datasets. The average-utility of a sequence is used as a measure to evaluate
its usefulness or importance, which shows a fair measure than that of the traditional
utility approach.

• A baseline PHAUB algorithm is proposed to discover the set of PHAUSPs in a level-wise
manner. Three pruning strategies are also designed to reduce the number of unpromising
candidates in the mining process, which can also reduce the computational cost.

• A projection PHAUP algorithm is further developed to accelerate the mining speed by
reducing the size of the processed sequence dataset. Thus, the size of the projected
database decreases with the increase of the determined patterns.

• We have conducted comprehensive experiments on both real-life and artificial datasets
to demonstrate the promising efficiency and effectiveness performance of the proposed
algorithms under varying threshold settings (including different minimum high average-
utility thresholds and minimum expected supports) in terms of their execution time, the
number of candidates generated, the required space overhead, the number of discovered
patterns, and scalability with regard to large datasets.

2 Related work

Frequent itemset mining (FIM) or association rule mining (ARM) considers the frequency
of the itemsets, which can only detect interesting patterns in the binary database. High-
utility itemset mining (HUIM) was studied [26,38,39] to consider both the quantity and
unit profit of the items while mining the high-utility itemsets (HUIs). Because of the major
challenges in searching, the transaction-weighted utility (TWU) model [26] was proposed
to mine HUIs based on the generate-and-test mechanism. The TWU algorithm holds the
transaction-weighted downward closure (TWDC) property, which is used to maintain the
designed high transaction-weighted utilization itemsets (HTWUIs) to reduce the search space
when detecting HUIs. Several methods [21,27,34] were, respectively, proposed to mine the
interesting patterns based on the TWU model.

A major limitation of the existing HUIM lies in the fact that it only quantifies patterns
using their utilities, which is often unfair for short itemsets. To mine better patterns after
their lengths is considered, high average-utility itemset mining (HAUIM) [15,20,21,28] was
presented. It offers amore fairmeasure called the average utility to evaluate the interestingness
of the discovered patterns. An itemset is deemed to be a high average-utility itemset (HAUI)
if the division of its utility by its size exceeds a user-specifiedminimum average-utility count.
The two-phase TPAU algorithm [15] is the first algorithm of the HAUIM, which presents an
upper bound for the average utility (auub) to conduct an estimation of pattern utilities within
the search space. The auubmodel is able to effectively reduce the size of search space while
ensuring that the discovered patterns in HAUIM are complete and correct. As the TPAU
algorithm is a hierarchical method, it has similar limitations as the TWU algorithm does.
To improve the performance of mining HAUIs, the projection-based PAI algorithm [16] was
proposed which leverages an innovative pruning technique. The HAUP-tree structure and a
mining algorithm called HAUP-growth [20] were proposed to avoid multiple database scans.
Each node in a HAUP-tree keeps the purchase quantities of its prefix items; therefore, the
HAUIs canbe directly obtained from it.Despite its efficiency, thismethod incurs highmemory
overhead especially when the size of the transaction is very long. The HAUI-tree approach
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was proposed [28] to mine HAUIs using an indexing table structure. Thanks to this method,
the total number of candidates involved in mining HAUIs can be significantly reduced. In
addition, a new structure was proposed to accelerate the calculation of the values of itemsets
and minimize space overhead. An innovative, more efficient HAUI-Miner method [22] was
proposed with two pruning strategies to mine HAUIs based on a compressed average-utility
(AU) list structure. The AU list structure was created to store useful and relevant information
for the purpose of HAUI mining; thus, the mining performance can be greatly increased.
Lin et al. [23] then developed three pruning strategies to speed up the mining process of
the HAUIs. Thus, a tighter upper bound is then provided instead of the traditional auub
model, and the search space of the candidates can be greatly reduced. However, the above
approaches do not consider the realistic problems of the dataset such that the data may consist
of the uncertainty factor, especially for the data collected by the mobile devices. Thus, the
mined patterns somehow could not make a precise decision since all items/products are then
treated as the same importance with binary representation. Also, the sequence ordering of the
items/products is not considered, which shows better purchase behaviors of the customers.

High-utility sequential pattern mining (HUSPM) [6,7,17,40] was introduced to consider
sequential utilities and orderings of items in the database, which is used to discover the
set of high-utility sequential patterns (HUSPs). It combines the ideas of high-utility itemset
mining (HUIM) [21,26,27,34,38,39], as well as the sequential pattern mining (SPM) [5,31].
Ahmed et al. [6] first introduced two algorithms named UL and US to mine HUSPs; the
former used the level-wise approach to mine HUSPs and the latter was based on a pattern-
growth method to discover the HUSPs. Yin et al. [40] presented an efficient method to
discover HUSPs. A structure named lexicographic quantitative sequence tree (LQS-tree)
was proposed to discover the set of HUSPs. The necessary information of each node in LQS-
tree was stored in a matrix, which is used to avoid multiple unnecessary database scans. To
achieve a better space and speed performance, two heuristic pruning strategies based on the
property known as sequential weighted downward closure (SWDC) were proposed. Lan et
al. [17] presented the HUSPM algorithm using the projection mechanism and designed the
maximum utility measure and the sequence-utility upper-bound (suub) model for efficiently
mining the HUSPs. An innovative indexing technique and the sequence utility table, which
has the actual utilities and upper bound of candidate utilities, were leveraged to improve the
mining performance. Alkan et al. [7] proposed a HuspExt method using the idea of cumulate
rest of match (CRoM) to implement a tighter upper-bound for candidate utilities. Mining top-
k high-utility sequential patterns [35] was proposed, making it possible to extract the required
informationwithout the use of theminimum threshold.Aprojection-basedTKHUS-Span [41]
was designed to mine top-k HUSPs with two tight utility upper bounds to mine HUSPs.

Although the aforementioned methods consider the utility and sequence ordering of the
discovered patterns, they can only process the precise data. However, many of the real-life
datasets are uncertain. Frequent itemsetmining on uncertain databases (UFIM)was presented
by considering two different models, namely the expected support [11] and the probabilistic
frequentness [8]. Chui et al. [11] first proposed the support model and the UApriori algorithm
to discover the frequent itemsets in uncertain databases (UFIs). An itemset is deemed as the
UFI if its expected support is no less than the pre-defined minimum support threshold. The
UApriori algorithm discovers the UFIs using a level-wise Apriori-like algorithm. Wang et
al. [36] then developed a model-based approach, which can be used to reduce the size of
the discovered candidates while comparing to the UApriori algorithm. Leung et al. [19]
then proposed a pattern-growth UFP-growth algorithm that is based on the UF-tree structure
extended from the well-known frequent pattern (FP)-tree [14]. Aggarwal et al. [1] later
introduced the UH-mine algorithm [1], which applied the depth-first search and divide-
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and-conquer strategies to accelerate the mining process. Muzamml et al. [30] presented
three algorithms named BFS, DFS, and PGA under the expected support measure to mine
frequent sequential patterns from uncertain databases. The BFS and DFS algorithms use a
generate-and-test approach, while the PGA algorithm used a pattern-growth procedure to
mine UFSPs. Several extensions consider to mine the high-utility patterns from the uncertain
databases [9,37]. Zhang et al. [42] first considers the high-utility sequential pattern mining
from the uncertain database based on the expected support model. However, their algorithm
is still based on the TWUmodel, thus the utility of the sequence can be dramatically increased
along with the sequence size.

Considering the world semantics, Berbecker el al. [8] proposed the probabilistic frequent-
ness model. An itemset is treated as a frequent itemset in the probabilistic frequent model
if its frequentness probability exceeds a specified minimum probability threshold. Sun et
al. [32] presented two p-Apriori and TODIS [32] algorithms to discover UFIs based on top-
down/bottom-up manners with a designed probabilistic frequent pattern (p-FP) structure.
Tong et al. [33] then compared various algorithms based on the expected support/probabilistic
frequentness models. Zhao et al. [35] introduced two models for handling the problem of
uncertain sequential pattern mining using the U-PrefixSpan algorithm. It is the extensions of
the PrefixSpan [31] for revealing the set of high frequent itemsets in the uncertain databases.

In summary, we can observe that some works consider the utility and sequence ordering to
find the meaningful and useful high-utility sequential patterns; however, only one work [42]
addresses the problem of high-utility sequential pattern mining in the uncertain database.
Yet, the utility of the discovered patterns may increase along with the size of the pattern size,
which is an unfair measure to evaluate the discovered patterns. High average-utility itemset
mining can thus be used to solve such limitations but yet, none of the existing works aim at
combining those important factors together to provide a fair measure for detection of realistic
and meaningful patterns.

3 Preliminaries and problem statement

Suppose that the m identical items are contained in a set of I such as I = {i1, i2, . . . , im},
and an uncertain sequential database is denoted as D containing n sequences such as D =
{S1, S2, . . . , Sn}. Each sequence has a relationship such that Sq ∈ D (1 ≤ q ≤ n), in which
q is a unique number in the database and called as sequential identifier (SID). For each
sequence Sq in the database, it contains a number of itemsets as {I1, I2, . . . , Ik} and each Ir
is a set of distinct itemswith their purchase quantities as q(i j , Ir , Sq) and unique probabilities
p(i j , Ir , Sq). Moreover, an unit profit table is called utable, and it has the relationship such
that utable = {p(i1), p(i2), . . . , p(im)}. Two user-defined thresholds, respectively, named
minimum expected support threshold (= μ) and the minimum high average-utility threshold
(= δ) are then pre-defined to discover the set of HAUSPs, which is the high average-utility
sequential patterns.

Table 1 presents a simple uncertain sequential database. There are four sequences and six
distinct items in the database, such as (a), (b), (c), (d), (e), and (f ). The corresponding utable
is shown as utable = {a:2, b:1, c:3, d:4, e:1, f :2}. In this example, two thresholds μ (= 35%)
and δ (= 9.23%) are, respectively, set by users’ preference.

Definition 1 A sequence contains k items is defined as k-sequence.

For example, the S1 is a 5-sequence in the running example because 5 items are contained
in S1. The sequence 〈(a), (b)〉 is a 2-sequence because it has 2 items.
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Table 1 An uncertain sequential database

SID Sequence (item, quantity) Probability

S1 〈(a, 3), (b, 4), [(a, 1), (c, 1), (e, 2)]〉 0.6

S2 〈[(b, 1), (c, 1)], [(a, 1), (d, 1)], [(a, 2), (b, 2)]〉 0.8

S3 〈(f, 1), [(f, 1), (d, 1)], [(b, 4), (c, 1)]〉 0.5

S4 〈(b, 1), (c, 1), [(a, 1), (b, 2)], [(a, 4), (b, 1)]〉 0.9

Definition 2 Asequence Sx = 〈Ix1, Ix2, . . . , Ixn > is a subsequence of Sy =< Iy1, Iy2, . . . ,
Iym〉, denoted as Sx ⊆ Sy .

For example, 〈(b), (a)〉 is a subsequence of S4 in Table 1 since (a) ⊆ (a, b).

Definition 3 The internal utility of an item i j is denoted as iu(i j , Ik, Sq), we also can have
a relationship such that i j ∈ Ik ∈ Sq and can be defined as:

iu(i j , Ik, Sq) = q(i j , Ik, Sq) × p(i j ), (1)

where p(i j ) is the unit profit of the item i j in the database.

For example, S1 can be defined as three itemsets such that 〈I1, I2, I3〉, and I1 = [(a, 3)],
I2 = [(b, 4)], and I3 = [(a, 1), (c, 1), (e, 2)]. The internal utilities of an item (a) in S1 can
be calculated as iu(a, I1, S1)(= 6) and iu(a, I3, S1)(= 2), respectively.

Definition 4 Themaximum utility of the items within the sequence is concerned as the utility
of the item within the sequence, which is denoted as imu(i j , Sq) and defined as:

imu(i j , Sq) = max{iu(i j , Ik, Sq)|i j ∈ Ik ∧ Ik ∈ Sq}. (2)

For the item (a) in S1, iu(a, I1, S1) = 6 and iu(a, I3, S1) = 2; thus, the imu(a, S1) =
max{iu(a, I1, S1), iu(a, I3, S1)} = max{6, 2} = 6.

Definition 5 The average-utility of an item i j in a sequence Sq is denoted as iau(i j , Sq), and
defined as:

iau(i j , Sq) = imu(i j , Sq)

1
. (3)

For the item (a) in S1, the iau(a, S1) = 6
1 = 6.

Definition 6 The utility for a subsequence s in Sq is denoted as su(s, Sq), which is to obtain
the maximum utility of all combinational results of the items in Sq .

For example of sequence S4, a sequence s = 〈(b), (a)〉 is its one of the subsequences;
two combinations of s appeared in S4. The utilities of the two combinations are calculated
as (1× 1) + (1× 2) = 3 and (1× 1) + (4× 2) = 9. Thus, the utility of S in S4 can thus be
obtained as max{3, 9} = 9.

Definition 7 The average-utility of a subsequence s in a sequence Sq is defined as the utility
of s in Sq divided by the length of s, which is denoted as sau(s, Sq).

For example, the average-utility of the subsequence s = 〈(b), (a)〉 in S4 is calculated as
9
2 = 4.5.
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Definition 8 The probability of a sequence s within a sequence Sq is denoted as sp(Sq , s)
(s ⊆ Sq ), such that sp(Sq , s) = sp(Sq).

For example, because 〈(a)〉 ⊆ S1, 〈(b), (a)〉 ⊆ S4 and sp(S1) = 0.6, sp(S4)(= 0.9),
sp(〈(a)〉, S1)(= 0.6), and sp(〈(b), (a)〉, S1) (= 0.9).

Definition 9 The probability and average-utility of a sequence s in the uncertain sequential
database can be, respectively, defined as:

sau(s) =
∑

s⊆Sq∧Sq∈D
sau(s, Sq), (4)

sp(s) =
∑

s⊆Sq∧Sq∈D
sp(s, Sq) =

∑

s⊆Sq∧Sq∈D
sp(Sq). (5)

For example, two sequences S1, S2 and S4 contain a sequence s = 〈(b), (a)〉. We also
can have that sp(S1, s) = sp(S1) (= 0.6), sp(S2, s) = sp(S2) (= 0.8), sp(S4, s) = sp(S4)
(= 0.9) and sau(S1, s) (= 10), sau(S2, s) (= 4), sau(S4, s) (= 3).

Definition 10 The utility of a sequence Sq in an uncertain sequential database D is denoted
as SU (Sq), which can be defined as:

SU (Sq) =
∑

i j∈Ik∧Ik∈S
su(i j , Ik, Sq) (6)

For example, the utility of S1 is calculated as: SU (S1) (= 6 + 4 + 2 + 3 + 2)(= 17).

Definition 11 The total utility is denoted as T SU in an uncertain sequential database D,
which is to sum up the utilities of all sequences is D and defined as:

T SU =
∑

Sk∈D
SU (Sk). (7)

For example, the total utility of Table 1 is calculated as TSU (= 17+16+15+17)(= 65),
where SU (S1)(= 17), SU (S2)(= 16), SU (S3)(= 15), and SU (S4)(= 65).

Problem statement: The problem of potentially high average-utility sequential patterns
mining formulated as the discovery of the complete set of potentially high average-utility
sequential patterns (PHAUSPs) from uncertain sequential databases. In an uncertain sequen-
tial database, a sequence s is considered as a PHAUSP if it satisfies two conditions as follows:

PHAUSPs ← {s|sp(s) ≥ |D| × μ ∧ sau(s) ≥ T SU × δ}. (8)

Therefore, the discovered PHAUSPs demonstrate the average-utility value of a sequential
pattern with the probability. For example, suppose that a milk is purchased first then a caviar
is purchased afterward. Originally, the profit of a milk could be 2 dollars and the profit of
a caviar is about 1000 dollars. Thus, the average-utility of this sequential pattern such as
“buying a milk is followed by a caviar purchase” is (2+1000)/2 = 501 dollars. This purchase
behavior can have a purchase probability with 0.05. Another average-utility of a sequential
pattern such as “buying a PC is followed by purchasing a notebook” can be calculated as
(100+300)/2 = 200 dollars. This purchase behavior can have a purchase probability of 0.9.
In this situation, the retailer may consider to have more amounts of the latter pattern than the
first one. The reason is that the latter one brought lower average-utility value to the retailer,
but it has a higher purchase probability than the first sequential pattern.
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Table 2 The discovered PHAUSPs from the running example

Sequence Probability Average-utility Sequence Probability Average-utility

〈(a)〉 2.3 9 〈(b), (a)〉 2.3 11

〈(b)〉 2.8 6 〈(a), (a, b)〉 1.7 6

〈(c)〉 2.8 6 〈(b), (a, b)〉 1.7 6

〈(a), (a)〉 2.3 12 〈(b), (a), (a)〉 1.7 6

〈(a), (b)〉 2.3 8 〈(c), (a, b)〉 1.7 7

〈(a, b)〉 1.7 7 〈(c), (a), (a)〉 1.7 7

〈(c), (a)〉 1.7 9 〈(c), (a), (a, b)〉 1.7 6

From the example given in Table 1, the resulting set of PHAUSPs is given in Table 2 under
the minimum expected support thresholdμ being 35% and the minimum high average-utility
threshold δ being 9.23%.

To reduce the search space, the downward closure property should be maintained since
the correctness and completeness of the discovered PHAUSPs should be held. Thus, it is
necessary to over-estimate an upper-bound value of the PHAUSP. Definitions for maintaining
the downward closure property are given as follows.

Definition 12 The sequence-maximum utility of a sequence Sq is denoted as smu(Sq), which
is the maximum utility of items in a sequence Sq , and defined as:

smu(Sq) = max{u(i j , Sq)|i j ∈ Sq}. (9)

For instance, the sequence-maximum utility of S1 is quantified as max{6, 4, 2, 3, 2} = 6.

Definition 13 The sequence average-utility upper-bound of a sequence s in D is denoted as
suub(s), which is the sum of the sequence-maximum utility of all sequences containing s,
and defined as:

suub(s) =
∑

s⊆Sq∧Sq∈D
smu(Sq). (10)

For example, the suub of the sequence s = 〈(b), (a)〉 is calculated as (6 + 4 + 8) = 18
as s appears in S1, S2 and S4 and we have smu(S1) = 6, smu(S2) = 4, smu(S4) = 8.

4 Proposed potentially high average-utility sequential patternmining
framework

In the potentially high average-utility sequential pattern mining (PHAUSPM) framework,
we, respectively, design (1) a high probability average-utility upper-bound sequential pattern
(PHAUUBSP) to hold the downward closure property for level-wise mining process; (2) a
novel pattern called potential high average-utility sequential pattern (PHAUSP) is designed to
consider utility, uncertainty, sequence ordering and average concept to provide a fairmeasure-
ment; (3) a baseline algorithm called PHAUB to discover the potentially high average-utility
sequential patterns in a level-wisemanner; (4) three pruning strategies are developed to reduce
the size of the candidate and speed up computation in mining progress; (5) an improved
PHAUP algorithm is developed to speed up the PHAUB algorithm using the projection
method to reduce the processed database size. To handle the sequence data in the PHAUSPM
framework, the concepts of the sequence are first introduced and discussed below.
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Definition 14 (Matching sequence). Given two sequences Sx = 〈I1, I2, . . . , In〉 and Sy =
〈I ′

1, I
′
2, . . . , I

′
m〉 and items in the sequences are sorted in lexicographic order, Sx matches Sy

if the (Sx − first.item.I1) = (Sy − last.item.I ′
m).

For example, 〈(a), (b), (a, c)〉 matches two sequences 〈(b), (a, c), (e)〉 and 〈(b), (a, c, e)〉
but does not match 〈(a), (b), (a, e)〉.

Thus, based on the matching sequence, we can discover the frequency of the specific
patterns in the sequence dataset. Two ways can be performed for generating the sequence
patterns, which are the S-Concatenation and I-Concatenation. Details are given below.

Definition 15 (S-Concatenation). Given two k-sequences Sx and Sy and Sx matches Sy . If
the final I ′

m ∈ Sy has one item within it only, a sequence Sxy is then formed by appending
I ′
m into Sx , which is defined as Sx joins with Sy using S-Concatenation.

For example, 〈(a), (b), (a, c)〉 matches the sequences 〈(b), (a, c), (e)〉 and a sequence
〈(a), (b), (a, c), (e)〉 obtains the S-Concatenation relationship with the above sequences.

Definition 16 (I-Concatenation). Given two k-sequences Sx and Sy and Sx matches Sy . If
the final I ′

m ∈ Sy has more than one item within it, a sequence Sxy is obtained by appending
the last item in I ′

m into the last position in Sx , which is defined as Sx joins with Sy using
I-Concatenation.

For example, 〈(a), (b), (a, c)〉 matches the sequences 〈(b), (a, c, e)〉 and a sequence
〈(a), (b), (a, c, e)〉 has I-Concatenation relationship of those two sequences.

Thus, given a set of (k-1)-sequences, the k-sequences canbe formedusing I-Concatenation
and S-Concatenation. For example, if k is equal to 2, which is used to generate the 2-
sequence. Thus, each 1-sequence will be concatenated with itself by S-Concatenation,
and each 1-sequence joins all 1-sequences located after it by both I-Concatenation and
S-Concatenation (this process may be based on the sorting order of the sequence). In
addition, each sequence joins all 1-sequences located (in a sorted order) ahead of it using
S-Concatenation.

For instance, the 1-sequences are, respectively, defined as 〈(a)〉, 〈(b)〉 and 〈(c)〉. Take
〈(b)〉 as an example to illustrate the steps. For the 〈(b)〉, it generates four sequences such
as 〈(b), (b)〉, 〈(b, c)〉, 〈(b), (c)〉, and 〈(b), (a)〉. For each k-sequence (k ≥ 2) Sx in the set,
assume that Sy is a sequence located after or before Sx in the set, if Sx matches Sy and the
last element in Sy has only one item, Sx joins Sy by S-Concatenation. If Sx matches Sy
and the last element in Sy has more than one item, Sx joins Sy using I-Concatenation. For
instance, given a set of 2-sequences such that 〈(a, b)〉, 〈(a), (b)〉, 〈(b, c)〉, 〈(b), (c)〉. For the
2-sequence 〈(a), (b)〉, it can generate the sequences such that 〈(a), (b, c)〉, 〈(a), (b), (c)〉.

Based on the above definitions, we can obtain the lemma as follows to define and prove
the upper-bound value of a sequence pattern in a uncertain dataset.

Lemma 1 The suub of a sequence s in an uncertain sequential database is defined as suub(s),
and any of its supersets has less suub values than itself.

Proof Let Sk−1 be one of the subsets of Sk , in which Sk is defined as a k-sequence. We can
obtain that Sk−1 ⊆ Sk ; the sequence IDs of Sk−1 is the subset of Sk , thus:

suub(Sk) =
∑

Sk⊆Sq∧Sq∈D
smu(Sq) ≤

∑

Sk−1⊆Sq∧Sq∈D
smu(Sq) = suub(Sk−1).

⇒ suub(Sk) ≤ suub(Sk−1).

�
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To obtain the uncertainty factor of the sequence pattern, the following lemma is given to
ensure that the desired pattern holds downward closure property in the mining progress.

Lemma 2 The probability sp of a sequence s in an uncertain sequential database is defined
as sp(s), and any of its subsets have larger or equal sp values than itself.

Proof Let Sk−1 be one of the subsets of Sk , in which Sk is defined as a k-sequence. We can
obtain that Sk−1 ⊆ Sk , the sequence IDs of Sk−1 is the subset of Sk , thus:

sp(Sk) =
∑

Sk⊆Sq∧Sq∈D
sp(Sq) ≤

∑

Sk−1⊆Sq∧Sq∈D
sp(Sq) = sp(Sk−1).

⇒ sp(Sk) ≤ sp(Sk−1).

�
Based on the above lemmas, a theorem can be derived to ensure that the discovered patterns

possess the completeness and correctness properties.

Theorem 1 (High-probability DC property, HPDC property) If a sequential pattern is a high
probability sequential pattern in an uncertain sequential database, the HPDC property holds
for any of the high probability sequential pattern (HPSP).

Proof Let Sk−1 be one of the subsets of Sk , in which Sk is defined as a k-sequence. Since
sp(Sq , Sk) = sp(Sq). For any sequence Sq in an uncertain sequential database D, sp(Sq , Sk)
= sp(Sq , Sk−1). Since Sk−1 is a subset of Sk , the set of SI Ds of Sk−1 is as the subset of
Sk , according to Lemma 1, we can have that sp(Sk) ≤ sp(Sk−1). Thus, if Sk is a HPSP, its
probability is no less than the minimum expected support count, that is sp(Sk) ≥ |D| × μ;
sp(Sk−1) ≥ |D| × μ. �
Corollary 1 Let Sk sequence be a HPSP; thus, any of its subsets Sk−1 belong to HPSP.

Corollary 2 Let Sk sequence not be a HPSP; thus, non-superset Sk+1 will be a HPSP.

To ensure that the designed algorithms hold the completeness and correctness properties
of the discovered patterns, an upper-bound value of the pattern is defined below. Since
this upper-bound value holds the downward closure property, the required patterns can be
correctly and completely mined. Definition of the upper-bound pattern is presented below.

Definition 17 Asequence s in an uncertain sequential database is defined as a high probability
average-utility upper-bound sequential pattern (PHAUUBSP) if 1) sp(s) ≥ |D| × μ, and 2)
suub(s) ≥ T SU × δ.

For example, user defined the minimum expected support as μ (= 35%); we can have the
minimum expected count as δ = (4× 35%)(= 1.4). The minimum average-utility threshold
is set as 9.23%, and we can have the minimum average-utility count as δ = (65× 9.23%)(=
6). A sequence 〈(b), (a)〉 is called as a PHAUUBSP because its suub(< (b), (a) >) =
smu(S1) + smu(S2) + smu(S4) = 6 + 4 + 8 = 18 > 6), and its sp(< (b), (a) >)(=
0.6 + 0.8 + 0.9)(= 2.3 > 1.4).

Based on the above definitions, we can prove that the designed algorithm holds the
potentially high average-utility upper-bound downward closure (PHAUUBDC) property as
follows.
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Theorem 2 (Potentially high average-utility upper-bound downward closure property,
PHAUUBDC property). Let Sk−1 be one of the subsets of Sk , in which Sk is defined as
a k-sequence. If Sk−1 is a PHAUUBSP, based on the PHAUUBDC property, we can have
that 1) suub(Sk−1) ≥ suub(Sk) and 2)sp(Sk−1) ≥ sp(Sk).

Proof Since Sk−1 ⊆ Sk , the sequence IDs of Sk−1 is as subset of Sk . Thus:

suub(Sk) =
∑

Sk⊆Sq∧Sq∈D
smu(Sq) ≤

∑

Sk−1⊆Sq∧Sq∈D
smu(Sq) = suub(Sk−1).

⇒ suub(Sk) ≤ suub(Sk−1).

�
Thus, we can conclude that the actual PHAUSP is the subset of the PHAUUBSP since the

PHAUUBSP holds the upper-bound value of the PHAUSP. We then can derive the following
theorem.

Theorem 3 (PH AUSP ⊆ PH AUUBSP). The PHAUUBDC property of PHAUUBSP
ensures that PHAUSP⊆ PHAUUBSPs. It suggests that if a sequential pattern is not a PHAU-
UBSP, none of its supersets is either PHAUUBSP or PHAUSP.

Proof ∀Sk−1 ∈ D, and Sk−1 is defined as a (k-1)-sequence, we can obtain:
1) According to Theorem 2, if Sk−1 is not a PHAUUBSP, none of its supersets Sk is PHAU-
UBSP. Thus, suub(Sk) ≤ suub(Sk−1) < T SU × δ and sp(Sk) ≤ sp(Sk−1) < |D| × μ.
2)

sau(Sk−1) =
∑

Sk−1⊆Sq∧Sq∈D
su(Sq , S

k−1) ≤
∑

Sk−1⊆Sq∧Sq∈D
smu(Sq) = suub(Sk−1).

⇒ sau(Sk−1) ≤ suub(Sk−1).

�
Thus, if Sk−1 is not a PHAUUBSP, it suggests that Sk−1 does not satisfy the following

two conditions: sp(Sk−1) ≥ |D| × μ and suub(Sk−1) ≥ T SU × δ; Sk−1 would not be a
PHAUSP. Thus, any of its supersets Sk will not be either PHAUUBSP or PHAUSP.

4.1 Three pruning strategies

To accelerate the mining performance, an average-utility correlated structure (AUCS) is
designed to obtain the suub value of 2-itemsets. Since the suub value is the upper-bound
value of the sequential pattern, the AUCS is therefore used to remove those unpromising
candidates of 2-itemsets in advance.

Lemma 3 (Average-utility correlated structure, AUCS) If the suub of 2-sequence is not larger
than the minimum average-utility sequential count, any superset of this 2-sequence will not
be either a PHAUUBSP or a PHAUSP.

Proof Let S2 be a 2-sequence, and Sk be a k-sequence (k ≥ 3), which is a superset of S2.
Since suub(Sk) ≤ suub(Sk−1) and PHAUSP⊆ PHAUUBSP holds; if a 2-sequence S2 has
suub(S2) < T SU × μ, S2 is not a PHAUUBSP and any supersets of S2 w.r.t. a k-sequence
(k ≥ 3) is neither a PHAUUBSP nor PHAUSP. �
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Table 3 The built AUCS of the
running example

Sequence suub Sequence suub

〈(a), (a)〉 18 〈(b, c)〉 8

〈(a, b)〉 12 〈(b), (c)〉 14

〈(a), (b)〉 18 〈(c), (c)〉 0

〈(a, c)〉 6 〈(c), (b)〉 12

〈(a), (c)〉 6 〈(c), (a)〉 12

〈(b), (b)〉 12 〈(b), (a)〉 18

From the given example, the constructed AUCS are given in Table 3.
According to the above lemmas and theorems, three pruning strategies can be designed

to speed up the mining performance of the PHAUSPs by reducing of the search space for the
candidates.

Strategy 1 If the probability and the suub of a sequence Sk do not follow the two conditions
of: 1) sp(Sk) ≥ |D| × μ and 2) suub(Sk) ≥ T SU × δ, this sequence is ignored as none of
its supersets is a PHAUSP.

Rationale 1 According to Theorems 2 and 3, this strategy can be correctly held.

Strategy 2 Let Sk be a k-sequence, and if any (k-1)-subsequence of the Sk is not a HPSP, Sk

and all its supersets cannot be PHAUSP either.

Rationale 2 This pruning strategy holds according to Theorem 1.

Strategy 3 Let Sk be a k-sequence (k ≥ 3). If the suub of a 2-sequence s ⊆ Sk such that
suub(s) is minimum high average-utility sequential count based on the built AUCS, Sk is not
a PHAUUBSP and will not be a PHAUSP either. Moreover, none of its superset is a PHAUSP.

Rationale 3 Based on Lemmas 1 and 3, this pruning strategy can be correctly obtained.

4.2 Revised database

In the proposed algorithm framework, it is required that the database be revised to keep the
set of 1-PHAUUBSPs for future mining. Specifically, the original database is revised by
pruning the unpromising candidates if they do not meet the pre-defined thresholds (μ and δ).
The pseudo-code to obtain the satisfied 1-PHAUUBSPs is presented in Algorithm 1.

The input ofAlgorithm1 includes: (1) an uncertain database is defined asD; (2) a unit profit
table utable; (3) the minimum high average-utility threshold δ; (4) the minimum expected
support threshold μ. The revised procedure takes the steps as follows. The input database
is firstly scanned to find the sequence-maximum utility for each sequence in D (Lines 1 to
2). Then, the 1-items of high potential average-utility upper-bound sequential patterns are
kept in the set of PHAUUBSPs (Lines 3 to 6) and the unqualified items are deleted from the
database. When all the unpromising items have been removed from D (Lines 7 to 8), the
database itself becomes sanitized, which is called D′; the discovered set of PHAUUBSPs1

and D’ are finally returned (Line 9).
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Algorithm 1: RevisedDB(D, utable, μ, δ)
Input: D, an uncertain sequential database; utable, the profit table; μ, minimum expected support

threshold; δ, minimum high average-utility threshold.
Output: D’, the sanitized database; PHAUUBSPs, the set of potentially high average-utility

upper-bound sequential patterns.
1 for each sequence Sq in D do
2 scan D to find smu(Sq );

3 for each i j ∈ D do
4 calculate suub(i j ) and sp(i j );
5 if sp(i j ) ≥ |D| × μ and suub(i j ) ≥ T SU × δ then
6 PH AUUBSPs1 ← i j ∪ PH AUUBSPs1;

7 else
8 remove i j from D;

9 return PH AUUBSPs1, D’;

4.3 Proposed level-wise PHAUB algorithm

The baseline algorithm named PHAUB mines the PHAUSPs on a level-by-level basis. First,
a breadth-first search is performed in the algorithm to mine PHAUUBSPs. Using the PHAU-
UBDC property and pruning Strategy 1, the unsatisfied sequences are pruned in advance;
thereby the search space is significantly reduced. The revised database is then scanned again
to obtain the actual PHAUSPs for each sequence in the set of PHAUUBSPs. The pseudo-code
is given in Algorithm 2.

Algorithm 2: Proposed PHAUB Algorithm

Input: D′, a revised uncertain sequential database; utable, the profit table; μ, minimum expected
support threshold; δ, minimum high average-utility threshold; PH AUUBSPs1, the set of
1-PHAUUBSPs.

Output: PH AUSPs, the set of potentially high average-utility sequential patterns.
1 set k:=2;

2 while PH AUUBSPsk−1 �= null do
3 Ck := Apriori(PH AUUBSPsk−1);

4 for each Sk ∈ Ck do
5 if ∃s ⊆ Sk ∧ (s ⊆ AUCS ∧ suub(s) < T SU × δ) then
6 remove s from Ck ;

7 else
8 calculate sp(Sk ) and suub(Sk );

9 if sp(Sk ) ≥ |D′| × μ and suub(Sk ) ≥ T SU × δ then
10 PH AUUBSPsk ← PH AUUBSPsk ∪ Sk ;

11 cands_set ← PH AUUBSPsk ;
12 k := k + 1;

13 for each sequence s ∈ cands_set do
14 calculate sau(s);
15 if sau(s) ≥ T SU × δ then
16 PH AUSPs ← PH AUSPs ∪ s;

17 return PH AUSPs ;
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The inputs of the baseline PHAUB algorithm include: (1) a revised D, called D′; (2)
an unit profit table utable; (3) the minimum average-utility threshold, μ; (4) the minimum
expected support threshold, δ. The initial value of k is initially set as 2 (Line 1), and the set of
PHAUUBSPs is discovered in a level-wisemanner through a loop (Lines 2 to 12). In the (k-1)-
th iteration of the loop, the set of PHAUUBSPsk is retrieved as follows. The generate-and-test
procedure is firstly performed to generate the k-sequence by combining two (k-1)-sequence
(Line 3). For each candidate sequence Sk , the pruning Strategy 3 is applied to prune the
unpromising sequence in advance which cannot further be the PHAUUBSP (Lines 5 to 6).
The suub and sp values for Sk are then calculated to find the satisfied sequences and put
them into the set of PHAUUBSPsk (Lines 8 to 10). This procedure is performed in a recursive
fashion until the set of PHAUUBSPsk−1 becomes null (Line 2). Finally, the database is re-
scanned to obtain the PHAUSPs from the sequences in the set of PHAUUBSPs (Lines 13 to
16), which are returned as the final results (Line 17).

This algorithm is trivial but effectively discovers the PHAUSPs and the correctness and
completeness are maintained. To speed up the mining performance, an improved algorithm
named PHAUP is introduced as follows.

4.4 The proposed PHAUP algorithm

Because the PHAUB algorithm uses a level-wise approach to mine the PHAUSPs, high com-
putational and space overhead are required during the mining process. To solve this problem,
we present an improved PHAUP algorithm. The PHAUP algorithm uses the projection tech-
nique to project the smaller database of the processed sequence, whereby the computational
and space overhead can be considerably reduced. The related definitions are presented as
follows.

Definition 18 Let Sa and Sb be two sequences defined as Sa = 〈I1, I2, . . . , In〉 and
Sb = 〈I ′

1, I
′
2, . . . , I

′
m〉 (1 ≤ m ≤ n). Suppose that all items of each sequence are sorted

alphabetically. The sequence Sb is termed a prefix of Sa if 1) I ′
i = Ii (1 ≤ i ≤ m − 1); 2)

I ′
m ⊆ Im and all items in (Im − I ′

m) are sorted in their alphabetic order.

For example, 〈(b)〉, 〈(b), (c)〉, 〈(b), (c, d), (b)〉 are all the prefix of the sequence
〈(b), (c, d), (b, c)〉, but not the prefix of the sequence 〈(b), (d)〉, 〈(b), (c, d), (c)〉.
Definition 19 Let s and Sq be two sequences satisfying that s ⊆ Sq . A subsequence of
Sq is considered to be the projection of s if the following two conditions are satisfied: (1)
the sequence has prefix s and (2) no proper super-sequence of s satisfying that it is not
only a subsequence Sq but also has prefix S, represented by Sq |s. The projected database
of a sequence s in the revised uncertain sequential database D′ represents the collection
of all projected sequences of each sequence in the database with regard to the sequence s,
represented by D′|s.

As an example, the projected sequence of 〈(b)〉 for the sequence 〈(b), (c, d), (b, c)〉 is
〈−, (c, d), (b, c)〉. Also, the projected database of the sequence 〈(a)〉 in Table 1 is presented
in Table 4.

The pseudo-code description of the PHAUP algorithm is given in Algorithm 3.
The inputs of the PHAUP algorithm include: (1) D’, a revised uncertain sequential

database; (2) utable, a table containing the unit profit of each item; (3) δ, the average-
minimum utility threshold; (4) μ, the minimum expected support threshold; (5) the set
of PH AUUBSPs1, that is, the PHAUUBSPs of length 1. For each 1-sequence s in
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Table 4 The projected database
of the sequence 〈(a)〉 SID Sequence Probability

1 〈(a, 3), (b, 4), [(a, 1), (c, 1)]〉 0.6

2 〈[(a, 1)], [(a, 2), (b, 2)]〉 0.8

3 〈[(a, 1), (b, 2)], [(a, 4), (b, 1)]〉 0.9

Algorithm 3: Proposed PHAUP Algorithm

Input: D′, a revised uncertain sequential database; utable, the profit table; μ, minimum expected
support threshold; δ, minimum high average-utility threshold; PH AUUBSPs1, the set of
1-PHAUUBSPs.

Output: PH AUSPs, the set of potentially high average-utility sequential patterns.
1 for each sequence s ∈ PH AUUBSPs1 do
2 scan D’ to generate projected database D′|S of s;
3 set k := 1;
4 call Project(D′|S , utable, δ, μ, k);
5 for each sequence s ∈ PH AUUBSPs do
6 calculate sau(s);
7 if sau(s) ≥ T SU × δ then
8 PH AUSPs ← PH AUSPs ∪ s;

9 return PH AUSPs ;

PHAUUBSPs1, a scan of the input database is executed to generate the projected database
D′|s (Line 2). The initial k value is then set as 1 (Line 3), and the Project process is then
performed to obtain the projected database of S (Line 4). In the Project function (c.f. Algo-
rithm 4), each itemset X ′ with a prefix X is recursively assessed in order to generate the set
of PHAUUBSPs completely (Lines 1 to 10). First, it produces the (k+1)-itemset X ′ which
consists of the prefix itemset X and each S ∈ PH AUUBSPs1 (Line 1). Then, they are
added to the set of Ck+1 (Line 2). For the itemsets in Ck+1, they are processed and the db|X ′
is performed to obtain the projected sub-database for the db|X ′ of X ′ (Line 4), sp(X ′) and
suub(X ′) (Line 5). Two conditions are then assessed to check whether its supersets have to
be explored and checked for the subsequent projection search (Lines 6 to 9). If an itemset is
obtained in the set of PH AUUBSPs, the Project procedure will be continuously executed
(Line 8). After that, the Project procedure return PH AUUBSPs with a prefix X (Line 10).
The detailed description of the Project procedure is given as follows.

5 An illustrative example

In this section, we will present an example to better explain the ideas behind the proposed
algorithms. The uncertain sequential database in this example has been presented in Table
1. For the two algorithms we proposed, the database will be revised to remove unpromising
candidates. A scan of the database is conducted for the calculation of the expected support
and suub of each 1-sequence. In this example, all the resulting 1-sequences are presented in
Table 5.

After the above step, the 〈(a)〉, 〈(b)〉 and 〈(c)〉 are regarded as the PHAUUBSPs and added
into PHAUUBSPs1 (a set to keep 1-sequences). Then, an individual item in the database will
be removed from the database using Algorithm 1 if it is not in the set PHAUUBSPs1.
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Algorithm 4: Proposed Project(X , db|X , k) Algorithm
Input: X, a prefix itemset; db|X , the projected database in which each transaction containing an itemset

X; k, the length of an itemset X.
Output: PH AUUBSPs, the set of potentially high average-utility sequential patterns with a prefix X .

1 Produce the (k+1)-itemset X ′ consisting of the prefix itemset X and each S ∈ PH AUUBSPs1;

2 put X ′ into the set of (k+1) candidates Ck+1;

3 for each (k+1)-itemset X ′ ∈ Ck+1 do
4 scan db|X ′ to retrieve the projected sub-db db|X ′ of X ′;
5 calculate sp(X ′) and suub(X ′);
6 if sp(X ′) ≥ |D′| × μ and suub(X ′) ≥ T SU × δ then
7 PH AUUBSPsk+1 ← PH AUUBSPsk+1 ∪ X ′;
8 call Project(X ′, db|X ′ , k + 1);

9 PH AUUBSPs ← ⋃
PH AUUBSPsk+1;

10 return PH AUUBSPs with the prefix X ;

Table 5 An example of the
1-sequences

Sequence a b c d e f

suub 18 22 22 8 6 4

sp 2.3 2.8 0.8 1.3 0.6 0.5

For the PHAUB algorithm, the k value is set to 2 and the set of 2-sequences are produced
by the combinational procedure of the 1-sequences in the set of PHAUUBSPs1. The prun-
ing Strategy 3 is used to remove unpromising candidates from the set of PHAUUBSPsk+1.
The built AUCS was given in Table 3, which are used to produce the suub values of the
2-sequences. Therefore, many candidates extended from the 2-sequences are removed in
advance. For example, the sequence 〈(a), (c), (c)〉 does not have to be evaluated as its
suub value of 2-sequence 〈(c), (c)〉 fails to satisfy the condition. Recursively, this proce-
dure is performed until there are no more candidates generated. After that, the database is
required to be re-scanned to obtain the actual PHAUSPs, and the final results were given in
Table 2.

For the improved PHAUP algorithm, a scan on the database is performed to obtain all
PHAUUBSPs1 which will be put into the set of PHAUUBSPs1, i.e., 〈(a)〉, 〈(b)〉, and 〈(c)〉.
For each sequence Sk in the set of PHAUUBSPsk (k = 1), its projected database D′|Sk is
generated. Suppose that the sequence 〈(a)〉 is a PHAUUBSPs and its projected database is
what have been shown in Table 4. After that, the suub and sp values of the extended sequences
are then calculated. For example of the sequence 〈(a)〉, its extended sequences are 〈(a), (a)〉,
〈(a), (b)〉, 〈(a, b)〉, 〈(a), (c)〉, and 〈(a, c)〉. If their suub and sp values meet the conditions,
they are then put into the set of PHAUUBSPsk+1. The actual average-utility value of the
processed sequence is compared with the minimum average-utility count in order to obtain
the qualified PHAUSPs. This algorithm is recursively executed until no more candidates are
produced. The final results were given in Table 2.

6 Experimental evaluation

We have conducted substantial experiments to evaluate the performance of the proposed
algorithms.More specifically, we evaluated the execution time, the total number of candidates
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Table 6 Characteristics for the
conducted datasets

Dataset #|D| #|I| AvgLen MaxLen Type

SIGN 730 267 52 94 Sign language

FIFA 20,450 2990 36.2 100 Click-stream

BIBLE 36,369 13,905 21.6 100 Book

BMS 59,601 497 2.5 267 Click-stream
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Fig. 1 Runtime w.r.t fixed μ with various δ

generated, space overhead, the number of discovered patterns and scalability toward large
datasets on our algorithms. Note that there is currently a lack of existing works that are
focused on high average-utility sequential patternmining fromuncertain database.As a result,
only the two proposed approaches are reasonable compared in terms of speed performance,
number of candidates, and memory usage. The HUSPM algorithm [42] is compared with
the designed approaches in terms of number of discovered patterns and scalability to show
the effectiveness of the designed patterns. All algorithms were implemented using Java on
a Windows 7 desktop featuring an Intel i7-4790 CPU, clocked at 3.60GHz with 8GB of
RAM. Four real-life and one databases obtained from SPMF [12] were considered for the
experimental evaluation. The details of the parameters used for the datasets are: #|D| indicates
the number of sequences in the database; #|I| indicates the number of distinct items in the
database; AvgLen indicates the average length of transactions in the database; MaxLen
indicates the maximal length of transactions in the database; and Type indicates the dataset
type. The characteristics of the used datasets are given in Table 6.
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Fig. 2 Runtime w.r.t fixed δ with various μ

TheBIBLE ismoderately dense and containsmanymedium length sequences. This dataset
is a conversion of the Bible into a sequence database (eachword is an item). The SIGNdataset
is a dense dataset containing very long sequences. It is the sign language containing approx-
imately 730 sequences. The FIFA is moderately dense and contains many long sequences. It
shows the click stream data from the website of FIFA World Cup 98. For the BMS dataset,
it is a click-stream data from a webstore used in KDD-Cup 2000. For all datasets, external
utilities of items are generated between 0 and 1000 by using a log-normal distribution and
quantities of items are generated randomly between 1 and 5, which is similar to the existing
works [44]. Also, the uncertainty factor is randomly assigned to each sequence in a range of
(0, 1).

6.1 Speed performance

In this section, the speed performance for the proposed algorithms is then evaluated, which
involves measuring the CPU and disk I/O times. Figures 1 and 2 represent the execution time
of the proposed algorithms under different values of μ and δ, respectively.

From Figs. 1 and 2, we can see that the execution time of all the algorithms decreases
when the minimum expected support threshold or minimum high average-utility threshold
increases. Particularly, the PHAUP algorithm is much faster than the PHAUB algorithm in all
cases since the projection mechanism can easily reduce the size of the processed sequence,
thus the computational cost of PHAUP can be greatly reduced.
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Fig. 3 Number of candidates w.r.t fixed μ with various δ

Specifically, for the SIGN dataset shown in Fig. 1a when the δ is set as 1% and μ was
varied from 7 to 19%, the execution time of PHAUB decreases from 132 to 5 s, while that of
PHAUPdecreases from8 to 2 s. The result is understandable since the PHAUBalgorithmuses
the generate-and-test mechanism, which has to generate large amounts of candidates to mine
PHAUSPs. Also, performing multiple database scans while calculating the suub values of
the candidates at each level requires a longer execution time. The projection-based PHAUP
algorithm can gradually shrink the size of the database of the processed sequence, which
leads to a decrease in the total number of candidates. The mining process can be accelerated
by the increasing the size of sequences.

6.2 Number of candidates

Sequence candidates are generated by the proposed algorithms, and their sizes are analyzed
in this section. A sequence becomes a candidate if it requires one more database scan in
order to obtain its average-utility. The candidate number under different μ and δ values are
presented in Figs. 3 and 4.
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Fig. 4 Number of candidates w.r.t fixed δ with various μ

Figures 3 and 4 clearly illustrate that the PHAUP algorithm always has a lower number
of candidates against the baseline method. For example in Fig. 3a, when μ is 7% and δ is
1%, the total number of candidates of PHAUB and PHAUP are, respectively, 136,479 and
35,577. This can be explained by the fact that the PHAUP algorithm is developed based on the
projection strategy to reduce the size of the processed database, so the number of determined
candidates is far smaller than that of the candidates in the whole database. Furthermore, the
suub value of the candidate in the projected dataset is significantly smaller when compared
with the candidates in the original database, contributing to fewer candidates being generated.
Therefore, the projectionmechanismplays a very important role in performance improvement
by reducing the number of candidates for mining the PHAUSPs.

6.3 Memory overhead

Thememory overhead of the two proposed algorithms is analyzed. The results of thememory
usage under different μ and δ values are presented in Figs. 5 and 6, respectively.
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Fig. 5 Memory usage w.r.t fixed μ with various δ

We can see from Figs. 5 and 6 that the proposed PHAUP sometimes incurs a high memory
consumption than that of the PHAUB algorithm. In Fig. 5d, whenμ is 0.05% and δ is 0.04%,
the memory usage of PHAUB and PHAUP are 1137 MB and 1795 MB, respectively. This
is because the PHAUP algorithm needs to generate projection database iteratively, which
typically requires more memory space. Yet, when the threshold is set lower, for example in
Figs. 5a–c and 6b, c, the PHAUP requires lowermemory consumption than that of the PHAUB
because the PHAUB may generate a larger amount of candidates of PHAUSPs. Generally
speaking, the PHAUP has a better space performance under lower thresholds compared to
the PHAUB approach.

6.4 Number of discovered patterns

Although it is not reasonable to compare the designed algorithm with the HUSPM [42] in
terms of speed, number of candidates, and memory overhead, it is possible to compare the
numbers of discovered patterns ofHUSPMand the designed algorithms to show the effective-
ness of the designed pattern. The number of the discovered potential high-utility sequential
patterns (PHUSPs) in HUSPM [42] and the number of mined potential high average-utility
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Fig. 6 Memory usage w.r.t fixed δ with various μ

sequential patterns (PHAUSPs) of the designed PHAUB and PHAUP algorithms are then
evaluated and shown in Figs. 7 and 8. Note that the designed PHAUB and PHAUP generate
the same number of the desired PHAUSPs.

From Figs. 7 and 8, we can observe that the designed algorithms generate much fewer
patterns (PHAUSPs) than the HUSPM [42] (PHUSPs). This is reasonable since the average-
utility concept is adopted in the designed framework, thus providing a fair measurement than
that of the HUSPM because the utility of a discovered pattern will not increase along with
its size. Thus, less information and fewer patterns are then discovered and the effectiveness
for decision making can be achieved.

6.5 Scalability

In this section, we evaluated how well the two proposed algorithms scale under varying
number of sequences in the input database. Also, the number of the discovered patterns with
the HUSPM is then evaluated. Experiments were conducted on a series of artificial datasets
called S10I4N4K D|X |K . Experiments of runtime, number of candidates, and memory

123



1222 J. C.-W. Lin et al.

7 10 13 16 19
0

1

2

3
x 10

4

μ (%)

N
um

be
r o

f d
is

co
ve

re
d 

pa
tte

rn
s

(a) SIGN (δ=1%)

4 6 8 10 12
0

2

4

6

8
x 10

4

μ (%)

N
um

be
r o

f d
is

co
ve

re
d 

pa
tte

rn
s

(b) FIFA (δ=1.1%)

1.4 1.6 1.8 2.0 2.2
0

1

2

3

4
x 10

4

μ (%)

N
um

be
r o

f d
is

co
ve

re
d 

pa
tte

rn
s

(c) BIBLE (δ=0.2%)

0.048 0.050 0.052 0.054 0.056
0

0.5

1

1.5

2
x 10

4

μ (%)

N
um

be
r o

f d
is

co
ve

re
d 

pa
tte

rn
s

(d) BMS (δ=0.04%)

PHAUSPs PHUSPs

Fig. 7 Number of discovered patterns w.r.t fixed μ with various δ

usage are shown in Fig. 9. The minimum expected support threshold and the minimum high
average-utility threshold are both set as 0.1%.

Figure 9 shows that the PHAUP algorithm enjoys a better scalability than that of the
PHAUB algorithms in terms of the execution time and the size of the candidates. When the
size of dataset increases, the projection method may require a higher memory consumption
to project the sub-dataset of the processed sequence. Furthermore, when the size of dataset
increases, it needs more memory space to maintain the suub and probability values of the
candidates.

We can also see that, when the database size increases, the execution time and memory
consumption of the two algorithms increase at the same time, but the number of candi-
dates remain stable nevertheless. This is because the databases with different sizes are
generated by the same dataset generator, which processes the minimum expected support
value and the minimum high average-utility count with an increase in a right propor-
tion to the database size. As a result, a sequence not considered as a PHAUUBSP in
the small dataset may not be the PHAUUBSP in the large dataset. We also can observe
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Fig. 8 Number of discovered patterns w.r.t fixed δ with various μ

that the number of PHUSPs is much more than that of the number of PHAUSPs, thus
PHAUSPs hold the effectiveness for providing less but useful information for decision mak-
ing.

7 Conclusion

We first present a novel algorithm framework called potentially high average-utility sequen-
tial pattern mining (PHAUSPM). This framework mines potentially high average-utility
sequential patterns (PHAUSPs) from uncertain sequential databases. A new concept called
potentially high average-utility upper-bound sequential pattern (PHAUUBSP) was intro-
duced to ensure the correctness and completeness of the discovered PHAUSPs. The
PHAUB algorithm with three different pruning techniques is also proposed to accelerate
the mining process, which mines the PHAUSPs at different levels. The second PHAUP
algorithm is proposed based on the projection method to discover the PHAUSPs from
the projected dataset. Extensive experiments were conducted for performance evaluation
of the proposed algorithms from the perspectives of execution time, number of candi-
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Fig. 9 Scalability of the compared approaches

dates, memory consumption, number of discovered patterns, and scalability. The results
demonstrated that the proposed algorithms can efficiently and effectively mine the required
patterns.
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