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Abstract
The class imbalance problem is a pervasive issue in many real-world domains. Oversampling
methods that inflate the rare class by generating synthetic data are amongst the most popular
techniques for resolving class imbalance. However, they concentrate on the characteristics
of the minority class and use them to guide the oversampling process. By completely over-
looking the majority class, they lose a global view on the classification problem and, while
alleviating the class imbalance, may negatively impact learnability by generating border-
line or overlapping instances. This becomes even more critical when facing extreme class
imbalance, where the minority class is strongly underrepresented and on its own does not
contain enough information to conduct the oversampling process. We propose a framework
for synthetic oversampling that, unlike existing resampling methods, is robust on cases of
extreme imbalance. The key feature of the framework is that it uses the density of the well-
sampled majority class to guide the generation process. We demonstrate implementations
of the framework using the Mahalanobis distance and a radial basis function. We evalu-
ate over 25 benchmark datasets and show that the framework offers a distinct performance
improvement over the existing state-of-the-art in oversampling techniques.
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1 Introduction

In this paper,we address classificationproblems involving extremeclass imbalance.Wedefine
extreme imbalances as having both an exceptional imbalanced ratio between the classes (over
1:1000), as well as a very low absolute number of minority class instances in the training set
(often fewer than 20). These challenging properties appear in many important classification
domains, such as gamma-ray spectral classification [17], fraud detection [21] and failure pre-
diction [18]. In general, synthetic oversampling has shown to be very effective for managing
class imbalance, and as a result, has received a large portion of the research focus in recent
years [4,6,7]. These algorithms, however, fail on domains involving extreme imbalance. In
spite of the importance of domains involving extreme imbalance, there remains a dearth
of research into means of ameliorating performance on extremely imbalanced classification
problems.

In our previous work, we postulated that in cases of extreme imbalance, there is insuffi-
cient information encoded in the minority class to employ standard techniques for synthetic
oversampling. Under these circumstances, we demonstrated that superior performance
improvements are achieved by employing a majority-focused strategy for generating syn-
thetic minority training examples. We denote this majority-focused strategy by the moniker
SWIM: Sampling WIth the Majority [16].1 In particular, we proposed an algorithm that gen-
erates synthetic minority training examples that are (1) near to their minority seed and (2)
have the same Mahalanobis distance to the mean of the majority class as their seed. This
ensures that the synthetic instances do not spread into denser regions of the majority class
where there is no statistical evidence that they should be.

The intuition behind SWIM is that (1) the syntheticminority instances should be generated
in regions of the data-space that have similar densities with respect to the majority class as
the real minority instances, and (2) that they should be generated in regions that neighbour
the real minority instances. Specifically, instead of asking: given the minority class data,
where should the new minority class instances be generated, we ask: given the majority class
data and the relative position of the minority class instances, where should new minority
class instances be generated. In this work, we generalize SWIM by offering a nonparametric
alternative to the Mahalanobis distance, which uses radial basis functions. Moreover, we
discuss how SWIM and SMOTE can be formed into a pipeline to combine their relative
strengths.

The SWIM framework is presented on the left in Fig. 1 and contrasted with SMOTE on the
right. SMOTE is the standard approach to synthetic oversampling. It generates new minority
instances by interpolating points at random distances between nearest neighbours in the
minority class [6]. In this sense, SMOTE is a minority-focused approach, which we contrast
with our majority-focused approach. The minority-focused approach ignores the majority
class, thereby rendering it susceptible to generating samples far from the local neighbourhood
of the minority class seeds, and in high-density regions deep inside the majority class. This
risk increases with the severity of the imbalance. Post hoc cleaning by removing Tomek links
and the edit-nearest-neighbour rule have been proposed to deal with this [19,22]. In practice,
their effectiveness can be limited and hard to predict. This is exacerbated in cases of extreme
imbalance.

Alternatively, the image on the right in Fig. 1 demonstrates that the instances generated
by SWIM (red squares) are in the same neighbourhood as their minority class seeds (grey
circles), and that they are in regions of the data-space with the same density with respect to

1 The SWIM code is available here: https://github.com/cbellinger27/SWIM.
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Fig. 1 Illustration of the SMOTE procedure generating synthetic minority instances (red squares) inside the
majority class (blue circles) on the left, and the SWIM framework using the relative density of the minority
class instances (grey circles) to guide the generation process and avoid erroneous regions of the majority class
(right) (colour figure online)

the majority class as their minority class seeds ( p̂+(GENERATED) = p̂+(SEED)).2 The
density contours are shown as black rings in the image.

We evaluate SWIM and five other state-of-the-art methods for resampling on 24 bench-
mark datasets of extreme imbalance. Our performance analysis shows that SWIM provides
greater performance enhancements, in terms of the geometric mean (g-mean), than the exist-
ing state-of-the-art in oversampling techniques on extremely imbalanced domains.

2 Related work

In this work, we focus on supervised binary classification problems over highly imbalanced
domains. The process of binary classification utilizes a training set Xn×m ∈ R and corre-
sponding labels Yn ∈ {0, 1}. The objective is to induce a function, f (xi ) → yi , that maps
the training instances xi ∈ X to their corresponding class labels yi ∈ Y . This problem is
made more challenging in imbalanced domains where there are far fewer examples of the
minority class Xmin, y = 1 than of the majority class, Xmaj y = 0. This has been shown to
cause the induced classifier f (·) to become biased towards the larger class, thus leading to
poor performance [11].

Twoparadigms exist for dealingwith imbalanced classificationproblems.When theminor-
ity class is rare or unavailable, one-class classification is applied. However, binary learning
quickly becomes advantageous as the number of instances increases [5]. This has moti-
vated research into extending the usefulness of binary classifiers to increasingly imbalanced
domains. This is done via resampling the training data, cost-adjustment and/or algorithm
modification [8,20]. Resampling is the most commonly applied of these techniques; it is
often favoured because it has been shown to produce robust performance gains, and can be
applied with any classifier. In this paper, we focus on resampling approaches.

Themost basic resampling strategies are random undersampling (RUS), and random over-
sampling (ROS). These balance class distributions in the training set by randomly discarding
instances of the majority class, and/or by randomly replicating instances of the minority
class. These strategies, however, suffer from the loss of information and the risk of overfit-
ting, respectively.

2 In practice, we soften the equality to be less than or equal to.

123



844 C. Bellinger et al.

To avoid these shortcomings, and to expand the regions of the data-space occupied by
the minority training instances, the Synthetic Minority Oversampling TEchnique was pro-
posed (SMOTE) [6]. It produces a balanced training set by interpolating synthetic instances
between nearest neighbours in the set of minority class instances in the training set. This
procedure relies entirely on the minority class training instances; the outcome is that the
resulting synthetic data is situated within the convex-hull formed by the minority class.
Because themajority class is disregarded, the convex-hull may overlapmajority class. In such
circumstances, applying SMOTE can actually degrade performance. This outcome becomes
increasingly likely with greater class imbalance.

In order to address this weakness in SMOTE, more recent methods have incorporated the
majority class into the resampling process, or used it to clean the re-sampled training data
after SMOTE is applied. Cleaning techniques include the removal of Tomek links and the
edit-nearest-neighbour rule [19]. The resampling process has been altered to account for the
class density around the minority class instances. This is the case with adaptive synthetic
oversampling (ADASYN), borderline SMOTE and majority weighted minority oversam-
pling technique [3,9,10]; the only majority class information used is that which is present
within the local neighbourhood of the generated sample. In these methods, the distribution
of the minority class remains the key component of the generative process. Consequently, an
insufficient number of minority samples will negatively impact the generative process.

In addition to the SMOTE-based methods that rely on the Euclidean distance to the k-
nearest neighbours, Abdi and Hashemi [1] proposed the use of the Mahalanobis distance
(MD) for synthetic minority oversampling. The fundamental distinction with our method is
that they do not utilize themajority class information. Rather, they generate synthetic samples
using theMD calculated on the small, and potentially error prone, minority class training set;
new samples are generated at the same MD as a reference minority point from the minority
class mean. Therefore, this method is susceptible to failure due to the limitations of the dearth
of minority class data in the training set, as the estimated mean and covariance matrix would
be unrepresentative of the latent minority distribution. Radial basis functions have previously
been demonstrated to work well for oversampling in case of moderate class imbalance [12].
This approach utilizes the difference between the density in the minority andmajority classes
to identify safe locations from which to generate samples. As with the previously discussed
methods, this method limited due to its reliance on the minority class.

At their core, all current state-of-the-art oversampling methods still rely on the represen-
tativeness of the minority class instances to produce a beneficial synthetic set. Alternatively,
our method does not make any assumptions regarding what the minority class represents,
except where existing samples are positioned with respect to the majority class. The informa-
tion for generating synthetic samples comes from the populous majority class, and thus our
method is effective for classification problems in which the minority class is rare, a situation
that is both common and of great importance [13].

3 SWIM framework

Instead of relying on the position and distance between minority class instances, the SWIM
framework utilizes the density of each minority class instance with respect to the distribution
of the majority class in order to determine where to generate synthetic instances. This is
abstractly described in Algorithm 1. The key components of SWIM are the density estimation
and the shift procedures. Any appropriate method for density estimation can be applied. In
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the subsequent sections, we present the use of the Mahalanobis distance and the radial basis
function for this purpose. The shift function takes a minority seed and serves to generate a
synthetic instances that is close to the seed and has approximately the same density.

Algorithm 1 SWIM_Framework(A,B,n)
Input:
A, Majority class instances.
B, Minority class instances.
n, Number of minority samples to generate.
Output:
B′, n synthetic minority samples.
Method:
1: p̂d fA ← A: Estimate a density function from A.
2: d ← p̂d fA(B): Record the minority class densities.
3: while more samples do
4: b ← Bi : select a random minority instance.
5: d ← di : get its density w.r .t . A.
6: b′ ← shi f t(b, d): shift b to a neighbouring region with density d.
7: B′ ← [B′, b′]: add b′ to B′

return B‘

3.1 Mahalanobis oversampling

The Mahalanobis distance (MD) provides a fast and efficient means of implementing the
SWIM framework. The MD calculates the distance between the mean of the majority class
distribution, and a minority class seed point. The calculation accounts for the density along
the path between the mean and seed points. Thus, two points have the same MD from the
mean if they lie on the same hyperelliptical density contour. This is contrasted with Euclidean
distance in Fig. 2. Given a minority seed, according to the SWIM framework, any point in the
nearby regions of the data-space with the same MD can be sampled as a synthetic minority
training instance.

The calculation of the MD involves knowing the mean μ and the covariance matrix Σ of
the distribution. In practice, however, the parameters are estimated as μ and Σ on a sample
population. Larger, more representative sets, such as is typical in the majority class training
data, produce better estimates of these parameters.

Fig. 2 Illustration of the Mahalanobis distance between two points A and B from the mean. Both points have
the same Mahalanobis distance, but different Euclidean distances from the mean
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Line 1 of Algorithm 1 for SWIMMD involves applying some preprocessing steps to sim-
plify the data generation procedure and the estimation of μ and Σ from the majority class
instances. The steps are as follows:

Step 1 Centre the majority and minority classes Centring the data simplifies the calculation
of the distances; this will be evident in the first step of the generation process. Let
μa be the feature mean vector of the majority class A. We centre the majority class
to have 0 mean, and then centre the minority class with mean vector of the majority
class:

Ac = A − μa

Bc = B − μa
(1)

Step 2 Whiten the minority class: Let � denote the estimated covariance matrix of Ac,

and �−1 denote its inverse. �− 1
2 is the square root of �−1. We whiten the centred

minority class as:

Bw = Bc�
− 1

2 (2)

TheMD is equivalent to theEuclidean distance in thewhitened space of a distribution.
Thus, by whitening, we simplify the calculations for generating synthetic data. This
simplifies the shift procedure.

Step 3 Find feature bounds These are used to bound the spread of the synthetic samples.
For each feature f in Bw, we find its mean μ f and standard deviation σ f . We then
calculate an upper and lower bound on its value, u f and l f , as follows:

u f = μ f + ασ f

l f = μ f − ασ f
(3)

α ∈ R controls the number of standard deviations we want the bounds to be. There-
fore, largerα values cause a greater amount of spread along the corresponding density
contour.

Lines 3–7 of Algorithm 1 are repeated until a user-specified number of synthetic samples
are generated. In practice, we repeat this until the classes are balanced. Within the loop, we
select a minority staple bi at random and apply the shift procedure which returns a synthetic
instances. The shift procedure for SWIMMD is carried out as follows:

Step 1 Generate new samples For each feature f , we generate a random number between u f

and l f . Thus, we obtain a sample point, b′
i in the whitened space, where each feature

b′
i, f is l f ≤ b′

i, f ≤ u f . We generate a sample that is at the same Euclidean distance

from the mean of the majority class.3 Since we centred the data, this implies that the
new sample will have the same Euclidean norm as the minority seed bi . Therefore,
we transform b′

i as:

bnormi = s
‖bi‖2
‖b′

i‖2
(4)

Step 2 Scale sample back to original space bnormi exists in thewhitened space of theminority
class, with the same Euclidean distance from the mean vector 0 as bi in the whitened

3 This takes advantage of the whitening done in the preprocessing, as instead of dealing with the MD, we can
use the Euclidean distance.
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space. We now have to transform the point back into the original space. This is done
as:

b′′
i = (�− 1

2 )−1bnormi , (5)

where the synthetic sample b′′
i will be in the same density contour as its minority seed

instances bi .
As the method involves the computation of matrix inverses, if there are linearly dependent

columns, the calculations will fail. To handle this case, we check the rank r of the majority
class A. If r < d , where d is the dimensionality of A, thenwe calculate theQR-decomposition
of A. The nonzero values of the resulting upper-triangular matrix correspond to the linearly
independent columns of A. Using the steps outlined above, we can then oversample and
classify the data in the sub-space defined by the features represented by these columns.

3.2 Radial basis oversampling

To implement a nonparametric form of SWIM, we propose the use of a radial basis function
(RBF) with a Gaussian kernel to estimate the local density of the minority class samples
with respect to the majority class. The Gaussian kernel takes a distance r and a smoothing
parameter ε and is computed as:

φ(r) = exp−(εr)2 (6)

For ε values closer to zero, the result is a flatter, wider basis function, whereas as ε → ∞ all
of the weight is placed at the sample points. The latter results in a distribution with density
spikes at each majority class point. Typically, the optimal choice of ε is a value close to zero.

As a reasonable default, we set the shape parameter, ε to be ε = ασd , where d and σ are
the mean and standard deviation of the distance between points in A, and α = −0.5. This
keeps the parameter relatively small and ensures it to be increasingly small for increasingly
sparse data. This causes the function to be smoothing, leading to better generalization in
practice.

To estimate a score for minority instance b ∈ B with respect to the majority class A that
is analogous to a density, we sum over the RBFs between b and each ai ∈ A instance in the
majority class:

rb f _score(b) =
|A|∑

i=1

φ(||ai − b||2) (7)

For sample generation, the rb f _score can be used to find regions of the data-space that
neighbour the minority seed b and have similar estimated densities. In practice, we consider
any region of the data-space with an equal or lower rb f _score as being a candidate location
for a synthetic minority instances.

The regions of the data-space that are shaded white in Fig. 3 have the same density as the
seed, and the areas shaded red have lower densities. The white and red regions form the set
of potential points from which to generate synthetic minority samples. We constrain this by
dictating that the samples be drawn from close to the seed.

The SWIMRBF implementation of Algorithm 1 does not require learning a model of the
majority class instances A in line 1. However, we do apply some initial processing that is
worth noting. In particular, we standardize the data to have mean zero and unit standard
deviation, and calculate the mean and standard deviation of the distances between majority
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Fig. 3 Example of potential regions from which to draw synthetic minority samples (colour figure online)

class instances. These are utilized in setting the ε parameter and the step size in the Gaussian
jitter used in the shift function. At this point, a ball or KD Tree can also be construct to
improve the efficiency of estimating the density.

The values of the vector d in line 2 of Algorithm 1 are calculated with the RBF approach
by applying the rb f _score to each minority instance bi ∈ B. Given a minority seed bi , the
shift procedure for the RBF implementation of SWIM is shown in Algorithm 2. The process
involves sampling the data-space around the seed to find points with approximately the same
density as the seed. In particular, for a given seed, bi , a synthetic sample b′

i is produced by
applying Gaussian jitter to the seed in line 2, and calculating the RBF density at the candidate
sample point in line 3. This is repeated until a candidate sample with b′

score ≤ bscore is found.
However, we limit the number of attempts to a fixed size. If after max Attempt = 5 tries no
point is sampled from in the neighbourhood of the seed with equal or lower density than the
seed, then the seed itself is replicated. In practice, however, the max will not be reached if
the step size is small and ε is sufficiently small.

The generation process is repeated by randomly selecting minority instances and generat-
ing a new synthetic instance until classes are balanced or a user-specified number of instances
are produced.

Algorithm 2 shiftRBF (b, bscore A, σ )
Input:
A, Majority class instances.
σ , Standard deviation for Gaussian jitter.
b, Minority seed instance.
bscore , Estimated density of the seed, b, w.r.t. A.
Output:
b′, A synthetic minority sample.
Method:
1: repeat
2: b′ ← b + N (0, σ ): Apply random jitter to b.
3: b′

score ← rb f _scoreA(b′): Estimated density of b′ w.r .t . A
4: until b′

score ≤ bscore & attempts ≤ max Attempts
5: if attempts ≤ max Attempts then
6: b′ ← b
7:

return b′
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Fig. 4 This figure demonstrates how the increase in the epsilon parameter affects the smoothness of the density
function on a toy dataset

3.3 SWIM demonstration

3.3.1 RBF density estimation

As previously discussed, the ε parameter of radial basis function controls the smoothness of
the density distribution. As a result, ε is the parameter that impacts where SWIMRBF draws its
set of penitential synthetic samples from. Although we find that setting the ε value based on
the Euclidean distance between majority class instances works well in practice, it is possible
to optimize this using cross-validation.

We provide Fig. 4 in order to assist readers in understanding the impact of setting the ε

parameter. This figure shows the resulting density distributions estimated from the majority
class samples (red squares) for ε values {1, 1.25, 1.5, 1.75, 2}. The effect is that the density
distribution is smoother and less moon-shaped for ε = 1, whereas ε = 2 has more variation
in the density and a more exaggerated moon-shape.

By qualitatively examining these plots, it appears that a good ε value is likely between
1.5 and 1.75.4 The density distribution for this range of ε matches the moon-shape well,
while the density drops off a moderate rate away from dense regions of the majority class.
Alternatively, with the smaller ε values the shape is not well matched, and with a larger ε

density scores quickly drop away from the majority class samples.

3.3.2 Resampling and classification

Figure 5 presents a comparison of the decision surfaces produced by SVM classifiers on the
moon-shaped imbalanced dataset without resampling (top left), with SMOTE (top right),
with SWIMMD (bottom right) and with SWIMRBF (bottom left). This figure depicts both
the training, testing and synthetic instances. This is done in order to paint a clear picture of
whether each resamplingmethod generates synthetic instances in regions that are reflective of
the underlying distribution. In addition, this enables the reader to see if the synthetic samples

4 Using our default setting based on the mean distance between majority class samples, ε is set to 1.68.
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(a) SVM decision surface without re-
sampling.This produced a test geomet-
ric mean of 0.47.

(b) SVM decision surface with SMOTE
resampling.This produced a test geo-
metric mean of 0.66.

(c) SVM decision surface with
SWIMMD resampling.This produced
a test geometric mean of 0.72.

(d) SVM decision surface with
SWIMRBF resampling.This produced
a test geometric mean of 0.82.

Fig. 5 This figure demonstrates how the decision surface (shown as the red-blue gradient) of an SVM classifier
changes as a result of resamplingwithSMOTE,SWIMMD andSWIMRBF on a toy dataset (colour figure online)

have a positive impact on the induced decision surface (i.e. is the decision surface learned
on the training data a good match to the test data?) The minority instances are blue and the
majority instances are red in each plot. The training instances are plotted as squares, and the
testing instances are plotted as circles. The score in the bottom right corner of each figure
shows the geometric mean on a test set.

This overlay provides evidence regarding the merit of each resampling method. The plots
highlight how the differentmeans of generating synthetic samples impact the learned decision
surfaces. In particular, they demonstrate that SWIM produces a smoother synthetic minority
distribution than SMOTE and that the distribution spreads in directions that have a more
beneficial impact on the learned decision boundary.

4 Experiments

4.1 Set-up

We compare the SWIMMD and SWIMRBF implementations of the SWIM framework to the
state-of-the-art resamplingmethods for class imbalance.The latter includesSMOTE,SMOTE
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with the removal of Tomek links (SMOTE+TL), SMOTE with edit nearest neighbours
(SMOTE+ENN), borderline SMOTE (Bord), adaptive synthetic sampling (ADASYN) and
no resampling (None). For each of the SMOTE-based methods, K = 5 and K = 7 were
used.

We set α = 0.5 and test ε = {0.5, 1, 3, 5} for SWIMRBF. SWIMMD has a single parameter
α ∈ R, which controls the potential step size from the seed. We tested α = {0.25, 0.5, 1}.

In each experiment, we test the following base classifiers: naïve Bayes, k-nearest neigh-
bours, decision trees, support vector machines and multi-layer perceptron classifiers. For
each classifier, the default settings from the Python Scikit-learn [15] are used. From the set
of base classifiers, we select the best coupling in classifier with each of resampling method
for each domain and perform our analysis is performed using these sets ups.

The evaluation is performed on 24 benchmark datasets (see Table 1) from the KEEL
repository [2]. From each KEEL dataset, D, we created six sub-problems in which the
minority class size is artificially down-sampled to 3, 5, 10, 15, 20, 30. Therefore, we ran
experiments on 24 × 6 = 156 imbalanced classification problems. This down-sampling
strategy enables us to study the behaviour of each resampling algorithm on increasingly
extreme levels of absolute and relative imbalance. We randomly repeat each sub-problem 30
times and record the average performance in terms of the g-mean.

The g-mean provides a combined assessment of accuracy on the target and the outlier
class in a single value [14]. Given the accuracy on the target class a+ and the accuracy on
the outlier class a−, the g-mean for a classification model f on test set X is calculated as:
g-mean f (X) = √

a+ × a−.

4.2 Results

4.3 Rank analysis

Table 2 shows the number of times each resampling method led to the best performing
classifier for experiments with increasingly extreme levels of imbalance. The resampling
methods are listed in the first column. Each of the remaining columns correspond to the sub-
problems of training on 3, 5, 10, 15, 20, and 30 minority instances for each of the 24 datasets.
The table shows that the SWIM framework (particularly SWIMRBF) dominates on the more
extreme levels of imbalance. For minority training sizes 20 and 30, the SWIM framework
remains competitive, but the results are more mixed.

Figure 6 presents box plots of the ranks of each resampling method on the six imbalanced
sub-problems. These plots provide additional evidence of the superiority of the SWIM frame-
work on highly imbalanced problems. In particular, they show that SWIMRBF and SWIMMD

have the best average ranks, and that low variances in their ranks relative to the othermethods.
This is most notably the cases for up to minority training sizes of 15.

We employed the Friedman test to asses the statistical significance of the rankings for
each sub-problem and found that the null hypothesis can be rejected at an α value of 0.05 for
minority training sizes of 3, 5, 10, 15. TheNemenyi post hoc test finds a statistical significance
between SWIMRBF and all methods except SWIMMD for minority training sizes 3, 5, 10.

4.4 Relative performance analysis

The bar plot in Fig. 7 shows the relative difference in g-mean produced by the best SWIM
system versus the best alternative for each data set with minority training sizes 3, 5, 10 and
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Table 1 This table lists the dimensionality of each dataset used in the evaluation, along with the number
average number of majority class training instances, and the imbalance ratio for training sets with 5, 15 and
30 minority class instances

Dataset Dimensions |Maj| 5/|Maj| 15/|Maj| 30/|Maj|
abalone9-18 8 342 0.015 0.043 0.058

bands 19 114 0.044 0.133 0.263

coil2000 85 4621 0.001 0.003 0.006

ecoli1 7 131 0.038 0.114 0.236

ecoli3 7 142 0.035 0.098 0.113

glass1 9 68 0.074 0.234 0.405

heart 13 82 0.061 0.190 0.380

ionosphere 33 116 0.043 0.134 0.283

mammographic 5 207 0.024 0.068 0.141

new-thyroid1 5 90 0.056 0.165 0.163

poker 8, 9 vs 6 10 733 0.007 0.019 0.021

ring 20 1860 0.003 0.008 0.016

segment0 19 987 0.005 0.015 0.031

sonar 60 55 0.091 0.288 0.517

spambase 57 1383 0.004 0.011 0.021

spectfheart 44 102 0.049 0.138 0.267

vehicle0 18 322 0.016 0.047 0.091

vehicle1 18 316 0.016 0.047 0.092

vehicle3 18 315 0.016 0.047 0.094

vowel0 13 446 0.011 0.033 0.067

wdbc 30 180 0.028 0.088 0.164

wisconsin 9 214 0.023 0.070 0.134

yeast3 8 660 0.008 0.023 0.044

yeast4 8 660 0.008 0.023 0.044

Table 2 Number of times each
resampling method was best
across all datasets on each
minority training set size

Method Minority training size

3 5 10 15 20 30

SWIMRBF 12 13 12 12 6 7

SWIMMD 7 3 1 1 5 5

ADASYN 3 2 3 3 4 2

Bord 0 0 1 1 2 1

SMOTE 1 2 2 2 4 1

SMOTE+TL 1 3 2 2 3 6

SMOTE+ENN 1 1 2 2 0 2

None 0 1 2 2 1 1

20.We have left out sizes 15 and 30 to ensure the presentation remains clear. Nonetheless, the
trend is consistent across the omitted sizes. The dataset names are stated on the y-axis, and
the difference g-mean(SWIM)–g-mean(Alt) is plotted against the x-axis. Bars to the right
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Fig. 6 Boxplots showing rank of each resampling method over all of the datasets in each sub-problem of
minority training sizes 3, 5, 10, 15, 20 and 30. In these figures, SW indicates SWIM and SM indicates
SMOTE. The y-axis shows the ranks over which each method is distributed and the x-axis specifies the
resampling method

show better performance for SWIM, and those to the left indicate better performance for the
alternative resampling method. In order to clarify the performance trends, the datasets are
sorted according to the relative differences over minority training sets of size 3.

These results once again demonstrate that SWIM performs well on all training sizes, but
has a stronger advantage over more extreme imbalance. In addition to the number of wins,
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Fig. 7 Bar plots highlighting the difference in g-mean for the best SWIM system versus the best alternative
resampling system (Alt best) on each dataset with minority training sizes 3, 5, 10 and 20. The differences are
calculated as g-mean(SWIM)–g-mean(Alt) and displayed on the x-axis. Each dataset is specified on the y-axis,
and the colours of the bars indicate the minority training size. Positive values indicate better performance by
SWIM, whereas negative values indicate better performance by the alternative method

it also wins by a larger margin on these datasets. The tables showing the g-mean scores for
each method are included in the “Appendix”.

In the comparison between the use of MD versus RBF implementations of SWIM, the
trend is that RBF has an advantage over MD on the more extreme cases of imbalance. This is
demonstrated in Fig. 7. It shows the performance of the best classification systems involving
SWIMRBF, SWIMMD and none on the sub-problems with minority training sizes 20 and 3.
In general, preprocessing with either SWIM beats the baseline on all cases for size 3 and all
but one cases for size 20. With respect to the SWIM implementations, SWIMRBF is best on
17 out of 25 datasets for minority training size 3, and 13 out of 25 times for minority training
size 5.

4.5 Performance curves

Figure 8 displays the performance curves for each resampling method on the monk-2 and
vowel0 datasets. The plots show the minority training size on the x-axis and the average
g-mean on the y-axis. These represent typical examples of how the relative performances
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Fig. 8 Performance curves showing the relationship between g-mean and the number of minority training
instances on the monk-2 (left) and vowel0 (right) datasets for each resampling method

Fig. 9 PCA plots for the Band and Sonar datasets

of the resampling method evolve with the changing level of imbalance. In particular, we
see that SWIM generally has a strong advantage on the extreme levels of imbalance, and
the performances of the resampling methods begin to converge around 20 or 30 minority
samples.

5 Discussion

Using PCA analysis, we are able to identify categories of datasets where SWIM works best,
and others where the SMOTE-based alternatives are strong. Figure 7 reveals that the SMOTE-
based alternative is better on the Bands and Sonar datasets at all levels of imbalance. The
PCA plots for these datasets are presented in Fig. 9.

Through our empirical analysis, we have found that the SMOTE-based strategy (partic-
ularly with some cleaning) has an advantage over datasets in which the minority class has
a single cluster of points that are close together. In these cases, linear interpolation is an
effective sampling bias. Heavy overlap of the single minority cluster with the majority class
is also a property that appears in the datasets where SMOTE is generally strong. In these
cases, generating in dense regions of the majority space that neighbour the minority seeds
is essential to improving the classification performance. Alternatively, the SWIM methods
avoid higher density areas of the majority class space. Therefore, on domains with these
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Fig. 10 PCA plots for the ionosphere and heart datasets

Fig. 11 Comparison of using RBF versusMahalanobis implementations of SWIM. The plot shows the g-mean
for datasets with minority training sizes of 20, and the right plot is for minority training sizes of 3

properties, classifiers induced on data from SWIM undergeneralize. It is possible to relax
this property of the SWIM algorithm, but we expect that this would often be harmful.

SWIM produces good results on most datasets that do not have the aforementioned
properties. These represent a large majority of the datasets in our study, and in real-world
applications. During our analysis, we have identified, however, that SWIM is particularly
strong on datasets in which the minority class data is spread out, and potentially has many
clusters. We also note that SWIM performs well when the majority class density is non-
uniform between the minority class instances. This is the case in the ionosphere and heart
datasets. The PCA plots of these are presented in Fig. 10.

We compare the performance of SWIMMD to SWIMRBF in Fig. 11. These show that on cer-
tain cases, SWIMMD has a strong advantage of SWIMRBF. In conjunction with these results,
we preformed the same empirical analysis using PCA plots to examine the properties of the
datasets where SWIMMD works better that SWIMRBF. This confirmed our hypothesis that
SWIMRBF would have a strategic advantage on datasets with more complex, non-Gaussian
majority classes, such as Segment0 and spambase. Alternatively, SWIMMD performs very
will on datasets, such as Coil2000 and Monk-2 and Glass, where the distribution is closer to
a Gaussian. We present an example of PCA plot for each of these in Fig. 12.
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Fig. 12 PCA plots for the coil2000 and spambase datasets

5.1 Resampling parameter

Theparameters inmany resamplingmethods can have a significant impact on the performance
of the induced classifiers. SMOTE, SWIMMD and SWIMRBF each have parameters (K, α,
σ ) that impact the spread of the synthetic instance through the data-space. With respect to
SMOTE, K is an integer in the range of 1 and one minus the size of the minority class
(K ∈ {1, |B| − 1}). Increasing value of K allows synthetic samples to be generated between
minority class seed and more of its distant minority class neighbours. Larger K -values cause
the induced classifier to generalize a larger area of the data-space for the minority class.
Setting K too large, however, can lead to synthetic instances being generated deep inside the
majority class space (as we previously demonstrated in Fig. 1).

Similarly to the K value in SMOTE, increasing α parameters in SWIMMD and the σ value
in SWIMRBF increases the spread of the synthetic samples, and therefore the generalization
of the induced classifier. The key difference is that the SWIM algorithm will only generate
synthetic instances in regions of the data-space with similar densities as the minority seeds.
Therefore, unlike SMOTE, there is no risk of spreading synthetic samples deep inside the
majority class. Because the SWIM algorithm will not generate samples in harmful regions,
using a naive setting of it is less likely to have a negative impact on classifier performance
than the K parameter in SMOTE.

Another advantage of the real-valued spread parameter in SWIM in comparison with
SMOTE is that small adjustments in the parameters of SWIM cause smooth, small changes
in the distribution of the synthetic samples. Alternatively, increasing or decreasing the K vale
of SMOTEby one can have a drastic impact on the distribution of the synthetic instances. This
is particularly the case in domains with extreme imbalance. As a result, the performance of
classifiers inducedondata including synthetic instances fromSWIMis consistent across small
changes in the spread parameters,whereas classifier performancemay change drasticallywith
the value of K .

5.2 Run-time complexity

An advantage of the SMOTE algorithm is that it has a relatively low run-time complexity.
For the basic algorithm, it requires finding the k-nearest minority class neighbours of each
minority class instance. For a single minority class instance, its k-nearest neighbours can be
found in O(kn), where n is the number of sample, and k is the number of neighbours. This
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Table 3 Number of times each
resampling method was best
across all datasets on each
minority training set size

Method Minority training size

3 5 10 15 20 30

SWIM 13 10 10 10 8 8

SMOTE 3 4 5 5 6 6

SWIM+SMOTE 9 11 10 10 11 11

is repeated n times (once for each minority class seed), and then synthetic samples can be
generated a between the seed and a random neighbour in constant time.

In comparison, the SWIM algorithms are composed of two algorithms: the modelling step
(Algorithm 1) and the shift step (Algorithm 2), which generates a sample from a minority
seed.

To efficiently implement SWIMRBF, the first step involves constructing a ball tree from
the majority class instances. This can be done in O(n log n). Conversely to SMOTE, the n
in this case represents the number of instances in the majority class, which is much larger.
Once the tree is constructed, each rb fscore of each candidate synthetic sample is calculated
in O(n log n) time. In the worst case, this is repeat for m × max Attempts times, where m
is the number of synthetic samples needed, and max Attempts is the maximum number of
times we can attempt to satisfy the condition b′

score ≤ bscore in line 4 of Algorithm 2.
The run-time complexity of SWIMMD is dictated by the matrix inversion and multiplica-

tion operations. Let a be the number of instances in the majority class, and b be the number
of instances in the minority class. Let d be the dimensionality of the data, and n = a + b
be the total number of instances available for training. The complexities of the computation
of the mean vector, covariance matrix and the inverse of the covariance matrix are O(ad),
O(ad2) and O(d2.37) respectively. The centring step has a complexity of O(n), whereas the
computation of the square root and the whitening operation have O(d3) and O(bd2) time
complexity. Finding the feature bounds has O(d) complexity, and sample generation has
O(btd) complexity, where t is the number of samples to generate for each minority class
sample. Finally, scaling back the generated samples to the original space involves matrix
multiplication with the square root of the inverse, and thus the operation has a complexity of
O(btd2).

Although the run-time complexities of the SWIM algorithms are slightly greater than
SMOTE, they come with the benefit of better results on case of extreme imbalance. We
argue that it is a necessary trade-off to achieve good result on highly imbalanced problems.
Moreover, it is only performed once during the preprocessing stage, and thus has a relatively
minor impact on the overall learning cost.

5.3 SWIM-SMOTE cascade ensemble

Given that SWIM has an advantage on the more extreme cases of imbalance, and SMOTE
is strong on the less extreme imbalance, a natural question is whether they can be applied
as a cascade ensemble to produce better overall results. We are specifically interested in
if we can achieve performance gains by applying SWIM to address the extreme imbal-
ance, and then applying SMOTE to the combined set of real and synthetic minority training
examples. The bottom row of Table 3 shows the number of times the ensemble cascade of
SWIMMD +SMOTE was superior to just applying SWIMMD or SMOTE.
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The combination leads to improved performance on approximately 10 of the 25 datasets.
Interestingly, these results appear to be independent of the minority class training size. This
is counter to our hypothesis that the combination would be most helpful on cases of more
extreme imbalance.However,more research is required on exactly how to optimize ensembles
of resampling systems. We set this out as a future direction for research in class imbal-
ance.

6 Conclusion

Extreme class imbalance occurs in a wide variety of important domains. Research related
to it, however, has largely failed to design synthetic oversampling methods that are effective
on such domains. To address this, we introduce a framework for synthetic oversampling,
SWIM (Sampling WIth the Majority). The key advantage of SWIM versus existing meth-
ods on extreme imbalance is that SWIM utilizes the information offered by the majority
class data to generate synthetic minority class instances. This enables SWIM to generate
synthetic data in a manner that leads to a more general decision boundary without encroach-
ing too deeply into the majority class. Alternatively, traditional methods, such as SMOTE,
apply a minority-focused resampling strategy. This causes them to be heavily impacted
by extreme imbalance and often leads to harmful encroachments into the majority class
space.

We evaluate our proposed parametric and nonparametric implementations of SWIM
(SWIMMD and SWIMRBF) against the state-of-the-art resampling methods on 24 bench-
mark datasets of extreme imbalance. Our results, based on the g-mean evaluation metric,
show that classifiers trained on datasets preprocessed with SWIM generally rank better
than those trained with any other method in cases of extreme imbalance, i.e. when datasets
have fewer than 20 minority samples. In comparison between SWIMMD and SWIMRBF,
our results suggest that SWIMRBF robust on each of the evaluated minority class sizes
(3–50). However, SWIMMD is comparable or better on the larger minority class sizes (30–
50).

Future work will explore other methods and aim to derive insights into the relationships
between their efficacy for generating samples and the properties of the dataset. Furthermore,
the integration of both SWIM and SMOTE is an exciting avenue for future work, as it har-
nesses the powers of bothmethods, with SWIMgenerating enough data to rectify the extreme
imbalance, and then SMOTE generating more instances over a less extremely imbalanced
dataset.

Appendix: Tabulated results

See Tables 4, 5, 6, 7, 8 and 9.
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Table 4 G-means for minority training size 3

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.274 0.619 0.606 0.515 0.288 0.637 0.497 0.495

bands 0.247 0.407 0.322 0.449 0.166 0.275 0.409 0.351

coil2000 0.143 0.174 0.422 0.385 0.155 0.135 0.110 0.095

ecoli1 0.609 0.862 0.808 0.852 0.764 0.815 0.879 0.805

ecoli3 0.706 0.881 0.800 0.868 0.811 0.861 0.877 0.872

glass1 0.320 0.491 0.590 0.528 0.403 0.458 0.424 0.526

heart 0.362 0.715 0.678 0.560 0.610 0.705 0.693 0.579

ionosphere 0.603 0.602 0.636 0.528 0.447 0.449 0.513 0.436

mammographic 0.519 0.794 0.807 0.712 0.667 0.690 0.745 0.668

monk-2 0.758 0.847 0.875 0.714 0.815 0.711 0.744 0.725

new-thyroid1 0.734 0.919 0.925 0.953 0.817 0.875 0.880 0.820

poker-8-9_vs_6 0.208 0.715 0.648 0.497 0.246 0.598 0.602 0.690

ring 0.154 0.513 0.482 0.541 0.228 0.170 0.219 0.131

segment0 0.648 0.929 0.686 0.913 0.721 0.909 0.878 0.889

sonar 0.278 0.530 0.376 0.427 0.458 0.570 0.543 0.593

spambase 0.293 0.692 0.556 0.441 0.266 0.437 0.503 0.482

spectfheart 0.132 0.732 0.744 0.643 0.506 0.674 0.668 0.678

vehicle0 0.330 0.776 0.686 0.644 0.382 0.657 0.765 0.666

vehicle1 0.198 0.545 0.530 0.440 0.188 0.527 0.483 0.490

vehicle3 0.201 0.538 0.550 0.459 0.099 0.441 0.396 0.530

vowel0 0.573 0.772 0.731 0.603 0.582 0.713 0.515 0.643

wdbc 0.721 0.909 0.895 0.875 0.835 0.821 0.844 0.832

wisconsin 0.758 0.960 0.917 0.955 0.896 0.883 0.837 0.923

yeast3 0.557 0.871 0.832 0.840 0.568 0.779 0.825 0.860

yeast4 0.628 0.819 0.801 0.692 0.466 0.713 0.714 0.645

Table 5 G-means for minority training size 5

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.459 0.690 0.664 0.621 0.543 0.665 0.613 0.713

bands 0.458 0.485 0.447 0.422 0.376 0.531 0.447 0.466

coil2000 0.508 0.476 0.503 0.389 0.430 0.412 0.418 0.394

ecoli1 0.784 0.893 0.806 0.856 0.841 0.874 0.875 0.863

ecoli3 0.757 0.881 0.827 0.875 0.867 0.875 0.872 0.860

glass1 0.523 0.568 0.578 0.632 0.612 0.631 0.584 0.592

heart 0.655 0.769 0.763 0.744 0.749 0.756 0.724 0.741

ionosphere 0.695 0.808 0.757 0.695 0.626 0.681 0.654 0.622

mammographic 0.696 0.828 0.833 0.804 0.749 0.776 0.820 0.809

monk-2 0.882 0.922 0.917 0.840 0.817 0.844 0.874 0.896

new-thyroid1 0.942 0.976 0.948 0.977 0.906 0.879 0.917 0.949

poker-8-9_vs_6 0.254 0.822 0.768 0.683 0.760 0.844 0.854 0.847

ring 0.612 0.896 0.887 0.853 0.655 0.410 0.483 0.474
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Table 5 continued

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

segment0 0.797 0.947 0.833 0.917 0.908 0.944 0.918 0.950

sonar 0.384 0.648 0.417 0.499 0.552 0.683 0.676 0.656

spambase 0.522 0.724 0.630 0.620 0.431 0.576 0.670 0.693

spectfheart 0.527 0.710 0.786 0.729 0.712 0.684 0.681 0.704

vehicle0 0.543 0.815 0.812 0.788 0.639 0.785 0.747 0.827

vehicle1 0.424 0.651 0.653 0.602 0.400 0.570 0.579 0.612

vehicle3 0.352 0.656 0.631 0.563 0.416 0.547 0.557 0.544

vowel0 0.751 0.883 0.811 0.789 0.593 0.775 0.742 0.805

wdbc 0.924 0.938 0.933 0.928 0.922 0.912 0.885 0.904

wisconsin 0.910 0.967 0.955 0.961 0.923 0.950 0.942 0.951

yeast3 0.630 0.901 0.891 0.815 0.793 0.885 0.859 0.837

yeast4 0.545 0.828 0.805 0.721 0.602 0.808 0.813 0.787

Table 6 G-means for minority training size 10

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.611 0.718 0.709 0.698 0.635 0.703 0.705 0.686

bands 0.412 0.541 0.507 0.438 0.549 0.587 0.538 0.563

coil2000 0.413 0.452 0.468 0.433 0.483 0.440 0.426 0.419

ecoli1 0.726 0.892 0.843 0.864 0.879 0.877 0.877 0.884

ecoli3 0.802 0.887 0.857 0.863 0.873 0.882 0.875 0.876

glass1 0.551 0.605 0.686 0.662 0.682 0.696 0.689 0.681

heart 0.684 0.814 0.787 0.783 0.778 0.785 0.775 0.793

ionosphere 0.782 0.837 0.827 0.792 0.777 0.797 0.808 0.822

mammographic 0.645 0.831 0.816 0.822 0.784 0.779 0.773 0.801

monk-2 0.921 0.960 0.947 0.929 0.911 0.939 0.953 0.928

new-thyroid1 0.988 0.974 0.975 0.976 0.964 0.973 0.970 0.981

poker-8-9_vs_6 0.339 0.867 0.865 0.844 0.918 0.920 0.950 0.930

ring 0.886 0.968 0.960 0.950 0.755 0.865 0.883 0.877

segment0 0.880 0.962 0.885 0.969 0.958 0.957 0.953 0.958

sonar 0.626 0.677 0.660 0.641 0.686 0.722 0.744 0.705

spambase 0.659 0.776 0.726 0.692 0.643 0.727 0.748 0.767

spectfheart 0.766 0.763 0.763 0.742 0.685 0.708 0.718 0.704

vehicle0 0.709 0.837 0.863 0.870 0.823 0.827 0.840 0.840

vehicle1 0.546 0.645 0.676 0.650 0.574 0.665 0.630 0.676

vehicle3 0.555 0.641 0.641 0.665 0.572 0.631 0.609 0.630

vowel0 0.791 0.924 0.914 0.881 0.845 0.887 0.899 0.877

wdbc 0.922 0.945 0.935 0.946 0.941 0.922 0.929 0.951

wisconsin 0.958 0.972 0.961 0.966 0.951 0.961 0.958 0.969

yeast3 0.529 0.904 0.895 0.892 0.855 0.893 0.891 0.908

yeast4 0.440 0.831 0.820 0.825 0.806 0.819 0.817 0.816
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Table 7 G-means for minority training size 15

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.611 0.718 0.709 0.698 0.635 0.703 0.705 0.686

bands 0.412 0.541 0.507 0.438 0.549 0.587 0.538 0.563

coil2000 0.413 0.452 0.468 0.433 0.483 0.440 0.426 0.419

ecoli1 0.726 0.892 0.843 0.864 0.879 0.877 0.877 0.884

ecoli3 0.802 0.887 0.857 0.863 0.873 0.882 0.875 0.876

glass1 0.551 0.605 0.686 0.662 0.682 0.696 0.689 0.681

heart 0.684 0.814 0.787 0.783 0.778 0.785 0.775 0.793

ionosphere 0.782 0.837 0.827 0.792 0.777 0.797 0.808 0.822

mammographic 0.645 0.831 0.816 0.822 0.784 0.779 0.773 0.801

monk-2 0.921 0.960 0.947 0.929 0.911 0.939 0.953 0.928

new-thyroid1 0.988 0.974 0.975 0.976 0.964 0.973 0.970 0.981

poker-8-9_vs_6 0.339 0.867 0.865 0.844 0.918 0.920 0.950 0.930

ring 0.886 0.968 0.960 0.950 0.755 0.865 0.883 0.877

segment0 0.880 0.962 0.885 0.969 0.958 0.957 0.953 0.958

sonar 0.626 0.677 0.660 0.641 0.686 0.722 0.744 0.705

spambase 0.659 0.776 0.726 0.692 0.643 0.727 0.748 0.767

spectfheart 0.766 0.763 0.763 0.742 0.685 0.708 0.718 0.704

vehicle0 0.709 0.837 0.863 0.870 0.823 0.827 0.840 0.840

vehicle1 0.546 0.645 0.676 0.650 0.574 0.665 0.630 0.676

vehicle3 0.555 0.641 0.641 0.665 0.572 0.631 0.609 0.630

vowel0 0.791 0.924 0.914 0.881 0.845 0.887 0.899 0.877

wdbc 0.922 0.945 0.935 0.946 0.941 0.922 0.929 0.951

wisconsin 0.958 0.972 0.961 0.966 0.951 0.961 0.958 0.969

yeast3 0.529 0.904 0.895 0.892 0.855 0.893 0.891 0.908

yeast4 0.440 0.831 0.820 0.825 0.806 0.819 0.817 0.816

Table 8 G-means for minority training size 20

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.728 0.737 0.650 0.738 0.688 0.751 0.743 0.728

bands 0.557 0.522 0.456 0.539 0.580 0.589 0.584 0.589

coil2000 0.539 0.422 0.368 0.531 0.429 0.558 0.522 0.536

ecoli1 0.885 0.841 0.772 0.887 0.877 0.878 0.874 0.876

ecoli3 0.876 0.860 0.811 0.861 0.869 0.878 0.871 0.875

glass1 0.664 0.692 0.651 0.706 0.732 0.729 0.688 0.703

heart 0.842 0.827 0.805 0.809 0.805 0.806 0.805 0.797

ionosphere 0.869 0.849 0.829 0.821 0.841 0.840 0.824 0.854

mammographic 0.823 0.810 0.763 0.804 0.806 0.798 0.817 0.803

monk-2 0.988 0.982 0.979 0.974 0.976 0.972 0.957 0.973

new-thyroid1 0.974 0.975 0.984 0.973 0.968 0.975 0.982 0.980

poker-8-9_vs_6 0.876 0.880 0.476 0.856 0.933 0.943 0.940 0.960
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Table 8 continued

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

ring 0.974 0.985 0.945 0.953 0.634 0.954 0.958 0.957

segment0 0.985 0.920 0.922 0.972 0.981 0.967 0.983 0.967

sonar 0.693 0.681 0.680 0.709 0.751 0.740 0.729 0.760

spambase 0.802 0.770 0.746 0.774 0.762 0.814 0.815 0.837

spectfheart 0.745 0.753 0.762 0.715 0.766 0.750 0.764 0.752

vehicle0 0.836 0.875 0.724 0.890 0.860 0.857 0.852 0.867

vehicle1 0.662 0.663 0.639 0.658 0.662 0.663 0.654 0.652

vehicle3 0.663 0.664 0.597 0.665 0.647 0.663 0.655 0.663

vowel0 0.950 0.957 0.891 0.939 0.915 0.934 0.932 0.924

wdbc 0.946 0.944 0.930 0.956 0.948 0.939 0.943 0.950

wisconsin 0.971 0.965 0.963 0.969 0.969 0.968 0.964 0.963

yeast3 0.905 0.905 0.661 0.901 0.891 0.881 0.904 0.901

yeast4 0.841 0.849 0.498 0.821 0.821 0.820 0.818 0.820

Table 9 G-means for minority training size 30

Dataset None SWRBF SWMD ADSN Bord SM SMENN SMTL

abalone9-18 0.731 0.727 0.643 0.737 0.694 0.736 0.750 0.727

bands 0.573 0.545 0.526 0.558 0.599 0.590 0.606 0.608

coil2000 0.545 0.504 0.318 0.542 0.426 0.610 0.620 0.582

ecoli1 0.890 0.838 0.817 0.886 0.877 0.873 0.873 0.876

ecoli3 0.883 0.858 0.797 0.866 0.868 0.866 0.869 0.876

glass1 0.704 0.723 0.670 0.734 0.725 0.726 0.700 0.716

heart 0.838 0.822 0.821 0.819 0.800 0.818 0.809 0.815

ionosphere 0.881 0.884 0.859 0.805 0.855 0.864 0.851 0.875

mammographic 0.817 0.809 0.791 0.808 0.787 0.795 0.804 0.811

monk-2 0.997 0.993 0.989 0.996 0.980 0.986 0.968 0.981

new-thyroid1 0.977 0.979 0.986 0.976 0.968 0.978 0.977 0.973

poker-8-9_vs_6 0.882 0.890 0.490 0.846 0.935 0.955 0.934 0.965

ring 0.967 0.980 0.955 0.952 0.610 0.969 0.970 0.967

segment0 0.987 0.945 0.950 0.976 0.984 0.982 0.982 0.980

sonar 0.715 0.695 0.693 0.710 0.763 0.767 0.722 0.752

spambase 0.813 0.801 0.774 0.787 0.794 0.814 0.817 0.825

spectfheart 0.736 0.774 0.752 0.723 0.763 0.764 0.766 0.764

vehicle0 0.862 0.891 0.785 0.877 0.896 0.875 0.879 0.874

vehicle1 0.657 0.676 0.642 0.662 0.659 0.665 0.664 0.683

vehicle3 0.671 0.671 0.660 0.663 0.657 0.658 0.663 0.669

vowel0 0.960 0.969 0.915 0.961 0.957 0.965 0.969 0.976

wdbc 0.943 0.947 0.916 0.962 0.953 0.951 0.948 0.950

wisconsin 0.970 0.969 0.964 0.970 0.967 0.969 0.964 0.964

yeast3 0.906 0.909 0.715 0.894 0.899 0.895 0.904 0.909

yeast4 0.834 0.842 0.493 0.838 0.820 0.832 0.833 0.810
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