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Abstract
Subsequences-based time series classification algorithms provide interpretable and generally
more accurate classification models compared to the nearest neighbor approach, albeit at a
considerably higher computational cost.Anumber of discretized time series-based algorithms
have been proposed to reduce the computational complexity of these algorithms; however,
the asymptotic time complexity of the proposed algorithms is also cubic or higher-order
polynomial. We present a remarkably fast and resource-efficient time series classification
approach which employs a linear time and space string mining algorithm for extracting
frequent patterns fromdiscretized time series data. Compared to other subsequence or pattern-
based classification algorithms, the proposed approach only requires a few parameters, which
can be chosen arbitrarily and do not require any fine-tuning for different datasets. The time
series data are discretized using symbolic aggregate approximation, and frequent patterns
are extracted using a string mining algorithm. An independence test is used to select the
most discriminative frequent patterns, which are subsequently used to create a transformed
version of the time series data. Finally, a classificationmodel can be trained using any off-the-
shelf algorithm. Extensive empirical evaluations demonstrate the competitive classification
accuracy of our approach compared to other state-of-the-art approaches. The experiments
also show that our approach is at least one to two orders of magnitude faster than the existing
pattern-basedmethods due to the extremely fast frequent pattern extraction, which is themost
computationally intensive process in pattern-based time series classification approaches.

Keywords Time series · Classification · String mining · Linear time and space

1 Introduction

Time series data mining has evolved into a significant research avenue over the last couple
of decades. The continued interest in this field stems from the growing need to extract useful
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bits of information from the vast data stores filling up with the ever-increasing generation
and storage of time series data from diverse fields including natural processes, scientific
research, business, finance, activity and/or interaction logs, etc. Time series data comprise
sequences of real-valued measurements recorded over time. The inherent temporal order of
these measurements characterizes the varying behavior of the recorded process and allows to
find the patterns which can identify similar or anomalous behavior over time; therefore, it is
vital to keep this order intact so as to infer information about time-dependent features, e.g.,
seasonality, trend, etc. Time series data mining algorithms are used primarily for extracting
knowledge from datawith a temporal order; however, the same algorithms can also be applied
to datawith any formof logical ordering, e.g., images converted to series using shape outlines,
chemical composition data obtained from spectral analyses, etc. This effectively increases
the scope and impact of time series data mining research and its applications.

Classification has been an important research topic in the time series data mining domain.
Generally, time series classification problems can be divided into two categories. The first
category encompasses those problems where each class of instances has a basic underly-
ing shape spanning the entire length of the time series. The shape can be time shifted,
stretched/compressed, or distorted due to noise. For these problems, the best known approach
is to use the Nearest Neighbor (1-NN) algorithm coupled with a suitable distance measure.
For datasets having a small number of instances, the 1-NN algorithm coupled with an elastic
distance measure, e.g., Dynamic TimeWarping (DTW), performs best; however, for datasets
with a large number of instances, the accuracy of 1-NN with an elastic distance measure
converges to that of 1-NN with Euclidean distance (ED) [4]. The second category covers
those problems for whom the entire shape of the time series instances is irrelevant and only
small subsequences are indicative of the class. These subsequences are (i) much smaller than
the overall length of the time series, (ii) phase independent, and (iii) can occur at any point
in the time series. In such problems, identifying whether the particular subsequences are
present or absent in the time series instances is a better suited classification approach. The
Shapelets-based time series classification algorithm was proposed to handle problems from
this category [17].

Effectively, shapelets are subsequences occurring frequently in a specific class of time
series instances while being absent or infrequent in instances of the other classes. The dis-
tance between a shapelet and a time series is defined as the minimum observed distance
between the shapelet and all shapelet-length subsequences of the time series instance. The
presence or absence of a shapelet in a time series is determined based on whether the min-
imum distance between the shapelet and the time series is within a given threshold. Once
the presence of a specific shapelet in a given time series is confirmed, the time series is
classified as belonging to the class being represented by the particular shapelet. The original
shapelets-based algorithm creates a classification model by embedding shapelets and their
corresponding distance thresholds in the internal nodes of a decision tree. The classification
of a given time series instance starts at the root node where the distance between the time
series and the shapelet specific to the root node is calculated. The subsequent branch to be
taken is determined based on whether the calculated distance is above or below the thresh-
old for the root node. Subsequent nodes are traversed similarly until a leaf node is reached,
at which point the classification decision is taken based on the leaf node’s class label. For
complex and/or multi-class problems, the induction of the classification model may lead to
the identification of a number of shapelets, whose presence ultimately determines a specific
class of instances. This also indicates that a class of instances can have more than one rep-
resentative shapelet and the order of the discovered shapelets heavily depends on the initial
conditions used to initiate the shapelet discovery process.
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Shapelets-based classification is much faster compared to the 1-NN approach because,
for a given time series instance, shapelet-based classification only needs to calculate a few
distance values for the time series instance and the shapelets encountered in the nodes of
the tree, whereas the 1-NN approach needs to compare the said time series instance with
all available reference time series instances before finalizing the classification decision. In
contrast, shapelet-based model induction can become untenable for larger datasets because
shapelet discovery is an exhaustive process of evaluating all possible candidate subsequences
in the time series dataset to determine the best shapelet (and its corresponding distance
threshold) at each node of the shapelet-based model. At any node, the time required for
shapelet discovery is on the order of O(N 2n4), where N represents the number of time series
instances reaching the particular node,whilen is the length of the time series instances.Hence,
the overall time required for shapelet-based model induction can become unreasonably high.

The Shapelet Transform (ST) algorithm dissociates the shapelet discovery and model
induction processes [9]. It reduces the computational requirements of the training process,
because a single call to the O(N 2n4) shapelet discovery process is required, unlike the orig-
inal shapelets-based algorithm. For ST, a single invocation of the shapelet discovery process
extracts the k best shapelets, which are then used to transform the time series classification
problem into a feature-based classification problem. The transformed dataset consists of N
rows and k + 1 columns, where each row is associated with a specific time series instance,
while each column is associated with a specific shapelet from among the k best shapelets
and the last column is used for the class label. The cell corresponding to the i th row and j th
column holds the minimum distance between the i th training instance and the j th shapelet.
The transformed dataset provides a feature-based view of the time series classification prob-
lem; therefore, any off-the-shelf classification algorithm can be used for model induction.
Although ST is faster than the original shapelet algorithm, its asymptotic time complexity
can still make it extremely computation intensive.

To scale up pattern-based time series classification to massive amounts of data, however,
the algorithmic complexity has to be reduced to linear time at most. One way of addressing
the complexity issue of pattern-based time series classification is by transforming the time
series to symbolic (i.e., string) representations. Although the time series community has
recognized and acknowledged the benefits of transforming time series data to strings by
discretization and quantization for some time [11–15], the approaches are still suffering
from high computational complexity: the complexity of the Fast Shapelets [12] approach is
O(Nn2), the one of BoP (Bag of Patterns) [11] is O(Nn3), the one of SAX-VSM (Symbolic
Aggregate approXimation–Vector Space Model) [15] is O(Nn3), the one of BOSS (Bag of
SFA Symbols) [13] is O(N 2n2), and the complexity of BOSS VS (Bag of SFA Symbols in

Vector Space) [14] is O(Nn
3
2 ). Overall, it appears that the opportunities arising from the

positive results from the string mining literature have not yet been fully realized. Notably,
string mining was the first and still remains, the only area of pattern mining, where, in terms
of time complexity, optimal results can be guaranteed. In other words, modern string mining
algorithms can extract almost arbitrary frequency-related string patterns in linear time. The
first algorithms in this line of research were proposed by Fischer et al. [5,6]. Further research
has optimized their practical running times and theoretical properties [3].

Transforming numeric time series to symbolic sequences can, of course, lead to a loss of
information, and it is evident that using one such transformation might lead to incorrect or
suboptimal results due to badly chosen or just nearly missed interval boundaries. However,
we argue that the advantage in terms of time complexity (linear vs. higher-order polynomials)
enables exploring the space of transformations much more efficiently and effectively than
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with any other more costly transformation: It becomes feasible to explore a multitude of
parameterizations, for instance multiple alphabet sizes and discretization schemes, given
that the basic underlying algorithm has linear time complexity. Also, as classification is
statistical and not a “precise science” anyway, the imperfection of any well-chosen string
transformation does not harm andmay even improve the results in noisy application domains.

The main contributions of this paper are as follows: first, we propose to build time series
classification on the basis of a linear time string mining algorithm which enables pattern-
based time series classification to scale up to massive datasets.1 Whereas discretized time
series have been used before, explicitly basing time series classification on string mining
algorithms has not been considered yet. Second, the complexity advantage can be used to
explore different parameterizations and still be much more time efficient than any super-
linear time series classification scheme. Third and more specifically, we present a highly
efficient pattern extraction method for time series which does not require any user provided
limits for minimum/maximum pattern lengths. Fourth, the resulting classification scheme
provides competitive accuracy compared to state-of-the-art symbolic representation-based
approaches, and last, we show how the overall scheme can lead to extremely fast parameter
optimization. In the following, our proposed approach will be referred to asMiSTiCl (Mining
Strings for Time Series Classification).

The rest of the paper is organized as follows: Sect. 2 provides some background about
SAX and the string mining algorithm. Section 3 presents the proposed algorithm. Sections4
and 5 present the implementation details, experimental protocol, and results. Finally, Sect. 6
presents the conclusions.

2 Background

An ordered, real-valued sequence of n observations is called a time series and is denoted as
T = (t1, t2, . . . , tn). A time series belonging to a specific class is assigned a label y ∈ C ,
where C is the set of all possible class labels. A set of N labeled time series instances
{(T1, y1), (T2, y2), . . . , (TN , yN )} forms a time series dataset D. Figure 1 shows an illus-
tration of a time series dataset, where the instances belonging to the same class are plotted
together.

Time series data are inherently high-dimensional, which makes it difficult to design
efficient algorithms for time series mining. It is also highly susceptible to noise, which
can adversely affect the accuracy of an algorithm. Therefore, time series discretization is
often used to (i) reduce the dimensionality and cardinality of the data, which enables to
employ/develop efficient algorithms, and (ii) reduce the effects of noise present in the raw
data. Symbolic aggregate approximation (SAX) is a widely used time series discretization
approach [10]. SAX combines multiple time series observations into single averaged values
to reduce the dimensionality and then maps these averaged values to characters from an
alphabet to reduce the cardinality. A time series T of length n can be converted to a symbolic
string ̂T = (̂t1, t̂2, . . . , t̂ p) of length p = � n

w
� such that p � n, where w ∈ Z≥1 represents

the dimensionality reduction factor (or, the averaging window size).2 First, T is converted to
a reduced dimensionality version T = (t1, t2, . . . , t p) of length p such that each nonover-

1 Throughout the text, we refer to real-valued time series segments as “subsequences” and the dis-
cretized/symbolic segments as “patterns.”
2 The presented mathematical notation is for the simple case of integer values of p; later SAX refinements
enable handling non-integer window sizes as well.
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Fig. 1 Illustration of a real-valued binary class time series dataset. Each instance is 286 time points long.
Instances of the same class are shown together (color figure online)

Fig. 2 Illustration of the PAA version of time series instances superimposed on their real-valued counterparts.
The 286 time points long time series have been reduced to 40 time points based on a dimensionality reduction
factor w = 7. The PAA versions have been stretched (along the x-axis) to emphasize the retention of the
overall shape of time series instances (color figure online)

lapping sequence of w observations of T is averaged to provide one observation. T is also
referred to as a Piecewise Aggregate Approximation (PAA).Mathematically, we can get each
t i using the equation:

t i = w

n

n
w
i

∑

j= n
w

(i−1)+1

t j

Figure 2 shows the reduced dimensionality version of time series instances superimposed on
their real-valued counterparts.

For cardinality reduction, each observation t i ∈ T is mapped to a character from an
alphabet of size α ∈ Z≥2. A small value ofα leads to large quantization blocks and vice versa.
The quantization blocks for each character in the alphabet are chosen based on breakpoints
B = (β0, β1, . . . , βα), where β0 and βα are defined as −∞ and ∞, respectively, while the
remaining breakpoints are chosen such that area under the N (μ = 0, σ = 1) Gaussian
curve from βi to βi+1 equals 1

α
. This ensures an equiprobable selection of every alphabet. A

Gaussian curvewithμ = 0 andσ = 1 is used because z-normalized time series instances have
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Table 1 Breakpoints lookup table
for dividing the N (μ = 0, σ = 1)
Gaussian curve into equiprobable
regions for α = 3 to 8. β0 and βα

are −∞ and ∞, respectively

Cardinality level, α

3 4 5 6 7 8

β1 − 0.43 − 0.67 − 0.84 − 0.97 − 1.07 − 1.15

β2 0.43 0 − 0.25 − 0.43 − 0.57 − 0.67

β3 0.67 0.25 0 − 0.18 − 0.32

β4 0.84 0.43 0.18 0

β5 0.97 0.57 0.32

β6 1.07 0.67

β7 1.15

Table 2 Symbolic representation of time series instances obtained after mapping each time point of the PAA
versions to the corresponding characters in an alphabet based on a cardinality reduction factor α = 6

b b a a a b b c e e e e e e d d e e d d e f e e c c c e f f f f f c a a a a a a

b b b a a b b c d e e e e e d d e e d d e f e e c c c e f f f f f c a a a a a a

· · ·
b b a a a b b c e e e e e e d e e e d d e e e d c c c e f f f f f c a a a a a a

b a a a a b b c e e e e e e d d e e d d e e e d c c c e f f f f f c a a a a a a

the same mean and standard deviation, and they also tend to follow a Gaussian distribution.3

Table1 shows the breakpoints for different values of α. All observations t i ∈ T , which have
their values in the range [β0, β1), are mapped to the first character in the alphabet. Similarly,
all observations t i ∈ T with values in the range [β1, β2) are mapped to the second character
in the alphabet, and so on. Mathematically, we get each t̂i as follows:

t̂i = alpha j , iff β j−1 ≤ t i < β j

Illustrations of real-valued time series instances and their PAA versions are shown in Figs. 1
and2, respectively. The symbolic representations of these example time series instances are
shown in Table2. For a detailed analysis of the SAX algorithm and a review of its diverse
applications, we refer the reader to the corresponding article [10].

String mining is concerned with the discovery of patterns (substrings) which are charac-
teristic of a string dataset. Given a pair of symbolic datasetsD+ andD−, each representing a
positive and a negative class, respectively, extracting patternswhich can discriminate between
the two datasets is referred to as the emerging substrings mining problem. Formally, the
problem of emerging substrings mining is to report all patterns inD+ andD− such that each
reported pattern occurs in at least f + different strings inD+, but does not occur in more than
f − different strings in D−, where f + and f − are the relative support values of the pattern
in the respective datasets.

During the last couple of decades, concerted research efforts in the fields of bioinformat-
ics and natural language processing have lead to the development of several string mining
algorithms for extracting frequent patterns from symbolic datasets. The first time-optimal
algorithms for string mining were proposed by Fischer, Heun, and Kramer [5,6] and required

3 Research suggests that a large number of time series datasets follow the Gaussian distribution. For the
minority of datasets which do not follow this assumption, selecting the breakpoints using the Gaussian curve
can deteriorate the efficiency of SAX; however, the “correctness of the algorithm is unaffected” [10].
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O(m) time and O(m log m) bits of space for extracting frequent patterns from symbolic
datasets, where m = ∑|M|

i=1 |si | is the total length of all strings in the dataset concatenated.
The authors showed how suffix arrays and longest common prefix (lcp) tables could be used
to efficiently solve string mining problems under frequency constraints. Later, an improved
version of the algorithm was proposed which constructs the internal data structures in fixed
size blocks instead of constructing them all at once, which allows to reuse memory and
reduce the overall space requirements to only O(m log α) bits, while increasing the worst-
case computational complexity to only O(m log2 m), where α is the size of the alphabet used
[3].

For completeness, a brief summary of the string mining algorithm is presented below.
Let D+ = {aaba, abaaab} and D− = {bbabb, abba} be two string datasets. Let x denote
a string of length q consisting of all the strings in D+ and D− concatenated, i.e., x =
aaba#11abaaab#

1
|D+|bbabb#

2
1abba#

2
|D−|, where each #

m
l is a unique symbol not occurring in

any dataset and is used formarking the end of strings.A substring of x starting at position i and
ending at position j is denoted by x[i, j], which is a concatenation of the symbols x[i]x[i +
1] . . . x[ j]. A suffix array is an array of integers which is used to describe the lexicographic
order of all suffixes of x , s.t. x[SA[k], q] < x[SA[k+1], q] for all 1 ≤ k < q . The lcp array
contains the lengths of the longest common prefixes of x’s suffixes that are consecutive in
lexicographic order, and is defined as LCP[i] = lcp(x[SA[i], q], x[SA[i − 1], q]) for all
1 < i ≤ q , and LCP[1] = 0. The algorithm starts with the construction of the suffix array
(SA) and the lcp array (LCP). Both of these data structures can be constructed in time linear
in the length of x . Once the suffix array and the lcp array have been created, the string mining
algorithm processes the lcp array to answer any range minimum queries (RMQs) in constant
time. Formally, for any two indices i and j the query RMCLCP (i, j) asks for the position of
the minimum element in LCP[i, j], i.e., RMQLCP (i, j) := argmink∈{i,..., j}{LCP[k]}. If
the minimum value is not unique, then the smallest index is returned. Table3 shows the string
x , the suffix array SA, and the lcp array LCP . Finally, the algorithm calculates so-called
correction terms for establishing the occurrence frequency of the different substrings based
on the lcp array values. For further details of the algorithm, we refer the interested reader to
the respective papers [3,5,6].

3 Mining Strings for Time Series Classification

MiSTiCl is a subsequences-based time series classification algorithm which employs string
mining for efficient extraction of discriminative subsequences from the time series data. The
subsequences are used as features to create a transformed dataset similar to the shapelet
transform approach. The main steps involved are: (i) time series discretization, (ii) frequent
pattern extraction, (iii) determining independent and highly discriminative frequent patterns,
(iv) creating a transformed dataset using the best K frequent patterns, and finally (v) model
induction. Looking at steps (ii) and (iii) in a bit more detail, we aim for patterns that are
frequent enough in the positive class and not too frequent in the negative class. From the
patterns that pass this filter, we choose the most discriminative ones, and from those with the
same discriminative power, we choose the most general ones. Step (ii) makes sure that the
patterns are statisticallymeaningful in the first place. Step (iii) picks from the remaining those
that are predictive individually. To reduce their number, the most general ones are actually
used in case of equal discriminative power, to obtain high coverage on unseen cases.
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Algorithms based on discretized time series data are faced with a significant challenge
regarding the information and feature loss due to discretization; therefore, we would like
to address a very important design aspect before going into the details of our proposed
algorithm. Although SAX can preserve the overall shape of the time series instances, using
a predefined window size to reduce the dimensionality of data can still lead to undesired
feature loss due to inadvertent splitting of important features. A possible approach to counter
this problem is to use those values of the parameters α and w which result in minimum
information loss. Usually, a brute force parameter tuning approach is used to come up with
such parameters. This can incur a significant upfront computational cost depending on the
number of evaluated parameter combinations and the size of the dataset split used to perform
the search; still, the research community has generally opted for this approach. There is,
however, another approach, which can be beneficial in two ways, specifically (i) improved
model accuracy and (ii) reduced wasted computation. Instead of using a single discretized
version of the data created with optimized parameters, creating multiple discretized versions
of the data using a number of arbitrary α and w parameters allows to extract discriminative
patterns from some form of multi-view perspective and helps to capture different features at
each view.4 Using this approach, a feature-based dataset can be createdwithmulti-cardinality
and multi-dimensionality properties, which allows to incorporate a diverse set of features in a
single feature set that can be exploited by complex classification algorithms to provide better
generalization and improved classification accuracy. Moreover, using a linear time string
mining algorithm for feature extraction from multiple discretized versions of the data only
increases the computational complexity by a constant factor. Therefore, we have opted for
the latter approach to tackle the challenge mentioned at the beginning of this paragraph.

3.1 Main algorithm

MiSTiCl is a powerful yet extremely efficient time series classification algorithmwhich brings
together a number of highly effective approaches from the time series and string mining
domains. This subsection provides a general overview of the algorithm, while the following
subsections provide details of the individual steps. Algorithm 1 lists the steps involved in the
creation of feature-based dataset splits using MiSTiCl. Transforming the real-valued time
series training and testing data into a feature-based representation requires a set of values for
the alphabet (A) and window sizes (W ) each, the minimum and maximum frequency values
for frequent pattern extraction, and a parameter K limiting the number of used frequent
patterns. The first step is the initialization of map data structures for single-view feature
sets (Line 1). The next step is the extraction of class labels which are subsequently used for
frequent pattern extraction (Line 2). Next, single-view feature sets are created corresponding
to each (α,w) ∈ A×W parameter combination (Lines 3–7). The real-valued time series splits
are discretized to create symbolic splits corresponding to the current α and w parameters
(Line 4). Next, frequent patterns are extracted from the symbolic training split (Line 5). Now,
single-view training and testing feature sets are created using the top K frequent patterns
(Lines 6). Finally, the single-view feature sets are combined to create multi-view feature sets
(Line 8). The multi-view feature sets can be used for model induction using any off-the-shelf
algorithm.

4 Usually, multi-view learning refers to learning with different sets of features of vectorial data; however, here
we use the term for multiple representations of a time series data originating from different parameterizations.
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Algorithm 1MiSTiCl (Dtrain , Dtest , A, W , f +, f −, K )
Parameters: Dtrain , Dtest : real-valued training and testing splits, A: set of alphabet sizes, W : set of win-

dow sizes, f +: minimum occurrence frequency of a pattern in positive class, f −: maximum occurrence
frequency of a pattern in negative class, K : number of patterns to be used per class for feature set creation

Returns: FStrain , FStest : training and testing feature sets
1: SVtrain ← {}, SVtest ← {} 
 Initialize associative arrays for single-view feature sets
2: C ←ExtractClassLabels(Dtrain )
3: for all (α, w) ∈ A × W do
4: ̂Dtrain , ̂Dtest ←Discretize(Dtrain , Dtest , α, w)
5: FP ←GetDiscriminativeFrequentPatterns(̂Dtrain , f

+, f −, C)
6: SV α,w

train , SV α,w
test ←CreateFeatureSets(Dtrain , Dtest , ̂Dtrain , FP , C , K )

7: end for
8: FStrain , FStest ← CombineFeatureSets(SVtrain , SVtest , A, W , |Dtrain |)
9: return FStrain , FStest

Algorithm 2 GetDiscriminativeFrequentPatterns (̂D, f +, f −, C)

Parameters: ̂D: symbolic dataset, f +: minimum frequency of the pattern in positive class, f −: maximum
frequency of the pattern in negative class, C : set of class labels

Returns: FP: an associative array containing the most discriminative frequent patterns for each class
1: FP ← {} 
 Initialize an associative array for filtered frequent patterns
2: for all c ∈ C do
3: ̂P ← {̂T | ∀ ̂T ∈ ̂D, ̂T .y = c}
4: ̂N ← {̂T | ∀ ̂T ∈ ̂D, ̂T .y �= c}
5: Z ←ExtractAllFrequentPatterns(̂P , ̂N , f +, f −)
6: FP[c] ← SelectDiscriminativePatterns(Z , |̂P|, |̂N |)
7: end for
8: return FP

3.2 Extracting frequent patterns

Algorithm 2 lists the steps involved in extracting frequent patterns from a symbolic dataset.
The string mining algorithm extracts frequent patterns from binary problems; therefore, a
multi-class problem is transformed intomultiple binary problemsusing a one-vs-all approach.
For each class c ∈ C , a pair of datasets is created such that all instances with class label c
are assigned to the positive class dataset ̂P , while all remaining instances are assigned to the
negative class dataset ̂N (Lines 3 and 4). The string mining algorithm extracts all the patterns
from ̂P and ̂N which satisfy the f + and f − frequency constraints, and provides a list of
frequent patterns along with actual occurrence frequencies of each pattern in the positive
and negative class datasets (Line 5). Next, the most discriminative frequent patterns for the
current class c are selected from the extracted frequent patterns and placed on the map FP
(Line 6). Finally, the map containing discriminative frequent patterns for all the classes is
returned.

3.3 Selecting discriminative patterns

The discriminative power of a given frequent pattern regarding correctly identifying a specific
class of instances can be assessed using different measures, e.g., the χ2 independence test,
informationgain, etc. Theoccurrence frequencies of a pattern in the positive andnegative class
datasets can be used to create a confusion matrix for calculating either the χ2 independence
test or the information gain value. The χ2 test assesses whether the observations, expressed
as a contingency table, are statistically independent of each other. A higher value of the test
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Table 4 A few examples of base
and variant patterns

Pattern Base (b)/Variant (v)

dccb b

dccbb v

adccb v

abdcdcc b

statistic indicates greater level of independence and vice versa. Information gain measures
the difference between two probability distributions and can be used to assess the association
between features. For a binary problem, the information gain value of one indicates perfect
class purity, while a value of zero indicates the opposite.

Setting the frequency constraints such that 0 � f − < f + ≤ 1 allows to extract frequent
patterns which are maximally representative of the positive class. The strictness of frequency
constraints directly affects the number of frequent patterns extracted by the string mining
algorithm. A very small value for the f + constraint can result in the extraction of a huge
number of frequent patterns, whereas a large value can result in no frequent patterns being
extracted at all. The huge number of frequent patterns extracted with a lower f + constraint
is attributed to the presence of various prefix- and/or suffix-based variants of base patterns
(see Table4 for examples). The occurrence frequency of a base pattern is always greater than
or equal to the occurrence frequency of its variants. In case a variant pattern has the same
occurrence frequency as its base pattern, the independence tests rank the two patterns equally;
however, duplicate detection can be used to discard the variant pattern. Hence, using reason-
ably lenient frequency constraints and ranking the extracted patterns using an independence
test followed by filtering for duplicates can provide independent, highly discriminative, and
diverse frequent patterns.5 Algorithm 3 lists the pseudo-code for selecting such frequent pat-
terns. The procedure receives a list of all the frequent patterns along with their corresponding
occurrence frequencies, and the instance counts for the positive and negative datasets. The
filtered frequent patterns are returned in an ordered associative array of lists, where each slot
in the associative array holds all the frequent patterns with the same test statistic and the array
is sorted in decreasing order of the independence test statistic. After initializing the array,
the procedure iterates over all the patterns provided as input (Lines 2–8). An independence
test is used to obtain a value for the test statistic for the current pattern (Line 3).6 Next,
the list of patterns corresponding to the current test statistic is retrieved from the array OL ,
and if no such list exists, one is initialized and placed in the location pointed to by the test
statistic (Line 5). Next, the current pattern f is compared against all the patterns in f pList
to see whether the list already contains its base pattern (Lines 6). If a base pattern is found,
f is discarded, otherwise it is inserted in the list (Line 7). Once all the patterns have been
evaluated, the ordered array of lists containing the filtered frequent patterns is returned.

5 1. This criterion and procedure are not to be confused with closed or open/free patterns [16]. 2. Note that
there can be two patterns p and q, with one pattern p being more general than the other, p ≺ q, both having
the same value of χ2 (χ2(p) = χ2(q)), but yet occurring in different sets of positive and negative examples.
However, this should be expected to be a rather infrequent case. The overall filtering procedure of patterns just
makes sure that the patterns are frequent enough in the positives, infrequent enough in the negatives, highly
discriminative and, given the same discriminative power, as general as possible.
6 A discussion about calculation of the χ2 test statistic and the information gain is provided in “Appendix.”
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Algorithm 3 SelectDiscriminativePatterns (Z , N
̂P , N̂N )

Parameters: Z : list of all extracted frequent patterns with their respective occurrence frequencies, N
̂P , N̂N :

number of instances in the positive and negative class splits
Returns: OL: an ordered associative array of lists containing frequent patterns; sorted in decreasing order of

independence value
1: Initialize OL ← {} 
 Initialize an ordered associative array
2: for all z ∈ Z do
3: indVal ←GetIndependenceValue(z, N

̂P , N̂N )
4: f ← z.pattern 
 z contains the frequent pattern z.pattern, along with its occurrence frequencies

z. f req
̂P and z. f req

̂N in ̂P and ̂N .
5: Retrieve f pList corresponding to indVal, if none exists, add a new list to OL

at location indVal
6: for all p in f pList , check if p is a sub-string of f
7: if f is a unique pattern, add to f pList
8: end for
9: return OL

3.4 Creating feature sets

Once the discriminative frequent patterns have been identified, the next step is the creation
of feature-based datasets. One approach is to create real-valued datasets, such that real-
valued subsequences corresponding to the symbolic frequent patterns are used as features
in the transformed datasets, while the distance values between said subsequences and the
real-valued time series instances are used as feature values. Alternatively, binary-valued
datasets can be created using the frequent patterns as features and zeros/ones as feature
values representing the absence/presence of a feature in the discretized instances. The latter
approach is straightforward and highly efficient because the discretized time series data
are already at hand and searching for the presence of frequent patterns in discretized time
series instances also requires very little overhead. On the downside, preliminary experiments
showed that classification models based on the binary-valued transformation almost always
performed inferior to their real-valued counterparts. Algorithm 4 lists the pseudo-code for
creating real-valued feature-based datasets. After initializing the training and testing feature-
based splits (Line 1), the procedure iterates over all class labels c ∈ C to add the top K
features for each class (Lines 2–13). The loops in Lines 5 and 6 iterate over the frequent
patterns for the current class c (in order of their independence test ranks). For each frequent
pattern f , a reverse lookup is performed to extract the best corresponding subsequence from
the real-valued training split (Line 7). Next, the procedure iterates over all instances of the
training and testing splits to populate the respective feature set columns. Once the top K
features have been added for the current class, the procedure breaks out of the feature adding
loop and the process repeats itself for the next class.

3.5 Creating themulti-view feature sets

MiSTiCl aims to mitigate the problem of feature loss by combining multiple single-view
feature sets, each created with its own α and w parameter, thus creating a multi-view feature
set. A candidate multi-view feature set is created by simply joining multiple single-view
feature sets and requires zero computational overhead. Finding the best multi-view feature
set, however, involves (i) creating all possible multi-view feature sets, (ii) model induc-
tion, and finally (iii) performance testing for each candidate feature set, all of which can
incur a significant computational cost. A naïve approach would be to combine all available
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Algorithm 4 CreateFeatureSets (Dtrain , Dtest , ̂Dtrain , FP , C , K )

Parameters: Dtrain , Dtest : real-valued time series splits, ̂Dtrain : discretized time series training split, FP:
ordered associative array of lists containing frequent patterns; sorted in decreasing order of independence,
C : set of class labels, K : number of patterns to be used per class

Returns: SVtrain , SVtest : single-view transformed training and testing splits
1: SVtrain ← MAT RI X(|Dtrain |, K × |C |), SVtest ← MAT RI X(|Dtest |, K × |C |)
2: for all c ∈ C do
3: k ← 0 
 feature count variable, incremented after adding each feature
4: FPCurrClass ← FP[c]
5: for all f pList ← FPCurrClass do 
 Outer loop
6: for all f ← f pList do 
 Inner loop
7: s ←PerformReverseLookup(Dtrain , ̂Dtrain , f )
8: For each T ∈ Dtrain

populate the respective row and column of SVtrain
with the distance value between T and s

9: For each T ∈ Dtest
populate the respective row and column of SVtest
with the distance value between T and s

10: Increment k and if k equals K break Outer loop
11: end for
12: end for
13: end for
14: return SVtrain , SVtest

single-view feature sets; however, this could potentially introduce redundant features in the
multi-view feature set. This presents an optimization problem where a minimum number of
single-view feature sets should be used to create a multi-view feature set which provides
maximum classification accuracy. For a cardinality reduction factor set A and a dimension-
ality reduction factor setW , the total number of single-view feature sets created by MiSTiCl
equals |A|×|W |. Using the brute force approach to find the best multi-view feature set would
require creating and evaluating 2|A|×|W | − 1 candidate feature sets and is obviously the most
computation intensive option. The set cover problem is a classical question in combinatorics
which aims to identify the smallest subset of a collection Swhose union equals the universeU .
Finding an exact solution to the set cover problem can also be computationally very demand-
ing; however, using a heuristic approach can significantly reduce the computational impact.
Algorithm 5 lists the steps involved in creating the best multi-view feature set splits using a
heuristic set cover approach. First, the procedure initializes a descending order associative
array Map-Covered Insts-Params, and a table (dual-key associative array) S. Next, the set
{1, . . . , N } is randomly split into twodisjoint sets, All-Train-I ndices and All-Val-I ndices
(Line 2). Each element of the set {1, . . . , N } corresponds to an instance in the original train-
ing set split, while the two disjoint sets, All-Train-I ndices and All-Val-I ndices, are used
to create subsets of the single-view training feature sets for model training and validation,
respectively. The procedure iterates over all the (α,w) ∈ A × W parameter combinations
(Lines 3–8) and performs the following steps for each single-view training feature set SV α,w

train .

– Train a classification model CM using only those instances from SV α,w
train whose indices

occur in the All-Train-I ndices set
– Test the classification model CM using only those instances of SV α,w

train whose indices
occur in the All-Valid-I ndices set and save the indices of correctly classified instances
in the table S using α and w as index values.

– Add the current (α,w) pair in the associative array using the size of correctly classified
validation instances as key
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Algorithm 5 CombineFeatureSets (SVtrain, SVtest , A,W , N )
Parameters: SVtrain , SVtest : single-view feature sets for training and testing splits, A: set of alphabet sizes,

W : set of window sizes, N : number of training set instances, MaxNumber Params: maximum number
of selected parameters (default: 5)

Returns: MVtrain , MVtest : multi-view training and testing feature set splits
1: Initialize S as a table, Map-Covered Insts-Params as a descending order associative array
2: (All-Train-I ndices, All-Val-I ndices) ←RandomSplit({1, 2, . . . , N })
3: for all (α, w) ∈ A × W do
4: Train model CM using {I nsti |i ∈ All-Train-I ndices ∧ I nsti ∈ SV α,w

train}
5: Test model CM using {I nsti |i ∈ All-Val-I ndices ∧ I nsti ∈ SV α,w

train}
6: Save indices of validation instances correctly classified by CM in Sα,w

7: Add (|Sα,w |, (α, w)) to Map-Covered Insts-Params
8: end for
9: Best Params ← {}
10: Covered-Val-I ndices ← {}
11: for all (|Sα,w |, (α, w)) ∈ Map-Covered Insts-Params do
12: if (Sα,w\Covered-Val-I ndices) �= ∅ then
13: Best Params ← Best Params ∪ {(α, w)}
14: Covered-Val-I ndices ← Covered-Val-I ndices ∪ Sα,w

15: if (All-Val-I ndices\Covered-Val-I ndices) = ∅ or
|Best Params| ≥ MaxNumber Params then

16: break
17: end if
18: end if
19: end for
20: Initialize MVtrain , MVtest
21: for all (α, w) ∈ Best Params do
22: MVtrain ← Join MVtrain and SV α,w

train
23: MVtest ← Join MVtest and SV α,w

test
24: end for
25: return MVtrain , MVtest

Next, two empty sets are initialized, one for keeping track of all the covered validation set
instances Covered-Val-I ndices and the other for the best found parameters Best Params.
Next, the procedure iterates over the associative array containing the (α,w) pairs (Lines 11–
19). If the difference between the set Sα,w and all covered instances Covered-Val-I ndices
is not empty, then (i) the current (α,w) pair is added to the set of best parameters, and (ii) the
set of covered indices is updated with the union of Sα,w and Covered-Val-I ndices. If the
difference between the sets All-Val-I ndices and Covered-Val-I ndices is empty, i.e., all
validation instances have been covered, or the number of parameter pairs in the Best Params
set is equal to the maximum allowed parameter pairs, then the loop is terminated. Finally, the
single-view training and testing feature sets corresponding to each (α,w) pair in the set of
best parameters Best Params are joined together to form the multi-view training and testing
feature sets, respectively (Lines 21–24).

3.6 Complexity analysis

The asymptotic time complexity of the MiSTiCl algorithm can be calculated by aggregating
the time complexities of the individual steps. MiSTiCl creates multiple single-view feature
sets, and the creation of each feature set contributes equally toward the overall complexity;
therefore, we shall first consider a single iteration for an arbitrary combination of α and w.
The time taken by SAX to discretize a dataset is on the order of O(Nn). The time taken by
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the string mining algorithm for frequent pattern extraction is on the order of O(m). Rewriting
m in terms of N and n gives m = N n

w
; therefore, the time complexity of string mining is on

the order of O(N n
w

). To calculate the time complexity of filtering the frequent patterns for
obtaining highly independent patterns, we first need to approximate the number of extracted
frequent patterns. For a given α and w, the number of all possible frequent patterns of all
lengths is approximately equal to α2 + α3 + · · · + α p , which can be simplified using a

geometric progression as 1−α(p+1)

1−α
, where p = � n

w
�. Since all the terms in this expression

are constant, we can approximate the time complexity of filtering the frequent patterns to
be constant. Creating a feature set requires adding K features for each class c ∈ C . For
each feature, N feature values have to be calculated, where each feature value calculation
takes O(ns) time, where s is the length of a subsequence and s � n. Since K and |C | are
constant and much smaller than N and n, the time required for creating a feature set is on
the order of O(Nns). Aggregating the time complexities of the individual steps, the overall
time complexity of creating a feature set for a given α and w parameter combination is on
the order of O(Nn) + O(N n

w
) + O(1) + O(Nns) ≈ O(Nns). Creating |A| × |W | many

feature sets increases the complexity by a factor of |A| × |W |; therefore, the asymptotic
time complexity of the MiSTiCl algorithm is on the order of O(Nns). Comparing the time
complexity of MiSTiCl with the time complexity of some other state-of-the-art algorithms
indicates that MiSTiCl is the fastest symbolic representation-based time series classification
algorithm. The reported time complexity for the BoP, SAX-VSM, BOSS, and BOSS VS

algorithms is on the order of O(Nn3), O(Nn3), O(N 2n2), and O(Nn
3
2 ), respectively [14].

4 Experiments

We have carried out an extensive set of experiments to compare different symbolic
representation-based time series classification algorithms namely BoP, SAX-VSM, BOSS,
and MiSTiCl. The main goal of our experimental evaluation is twofold. First, we want to
ascertain whether the classification accuracy ofMiSTiCl is on par with that of state-of-the-art
symbolic representation-based approaches for time series classification, and second, whether
the theoretical computational gains can be achieved in practice as well and the algorithm can
perform at speeds which allows to handle very large scale time series classification problems.

The UEA Time Series Repository provides Weka-based implementations of a number of
time series algorithms including BoP, SAX-VSM, and BOSS.7 We have also implemented
the MiSTiCl algorithm using the framework provided by the UEA Time Series Repository
so that any platform or implementation bias can be minimized.8 The different algorithms
were evaluated using 85 real-world and synthetic time series datasets provided by the UCR
Time Series Archive.9 For each dataset, 100 random shuffles were created such that the
class distribution and total number of instances in the training/testing splits of each shuffle
were kept the same as in the original splits. The random number seeds used to create the
different shuffles were kept the same when creating the shuffles for different algorithms.
Each classification algorithm was then used to evaluate all 100 shuffles of each dataset to
obtain a comprehensive set of measurements regarding classification accuracy and runtime
requirements.

7 http://www.timeseriesclassification.com/.
8 Our implementation is available from https://github.com/atifraza/MiSTiCl.
9 http://www.cs.ucr.edu/~eamonn/time_series_data/.
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Parameter settings play a critical role in getting optimal results for almost all machine
learning algorithms. Therefore, each algorithm was provided a predefined set of starting
parameters and the algorithms performed parameter optimization to choose the best parame-
ters for each run, i.e., each shuffle of each dataset was evaluated with optimized parameters.
This also allows to account for the time required for parameter optimization. We have also
taken great care toward using a consistent set of parameters, wherever possible. In this regard,
the SAX-based MiSTiCl, BoP, and SAX-VSM algorithms were provided default cardinal-
ity levels of {2, 3, . . . , 8} and dimensionality reduction levels of {2, 3, . . . , 6}.10 MiSTiCl
also requires a minimum positive frequency f +, a maximum negative frequency f −, and a
parameter K for limiting the per class frequent pattern count. In all theMiSTiCl experiments,
both f + and f − were kept fixed at 0.2 and 0.1, respectively, while the parameter K was
set using optimization from {1, 2, 4}. The BoP and SAX-VSM implementations provided by
the UEA Repository require an interval count per window in addition to the cardinality and
dimensionality level parameters, which was also determined during parameter optimization.
The BOSS algorithm is based on a different discretization technique called Symbolic Fourier
Approximation (SFA). We used the parameters already specified in the UEA implementation
assuming the best set of possible parameters is provided. The alphabet size (or cardinal-
ity level) is fixed at four characters, while the word lengths are selected using parameter
optimization from the possible values of {8, 10, 12, 14, 16}. Compared to the 35 parameter
combinations evaluated for BoP, SAX-VSM, andMiSTiCl, the BOSS algorithm is only eval-
uated using five combinations; therefore, it already has an advantage in terms of the required
runtime.

MiSTiCl transforms a time series dataset into a feature-based representation which creates
a generic classification problem and allows to utilize any off-the-shelf classification algo-
rithm. Since the transformed dataset incorporates a number of diverse features, ensemble
techniques can be extremely effective for creating accurate classification models. There-
fore, we employed random forests (RF) [1], extremely randomized trees (ET) [8], and
AdaBoost.M1 (AB) [7] for creating classification models using a maximum of 1000 trees
per ensemble, while keeping all other parameters unchanged.

5 Results

This section provides an empirical analysis of the classification accuracy and runtime per-
formance of MiSTiCl, BoP, SAX-VSM, and BOSS based on averaged values of the statistics
collected for each dataset. We have also included the classification accuracy results for ST to
establish a baseline comparison with a real-valued shapelet-based classification algorithm.11

For statistical comparison of different algorithms, we employ the Friedman test followed by
Nemenyi post hoc test based on average ranks attained by the different algorithms and show
the comparisons as critical difference (CD) diagrams [2].

MiSTiCl can employ either the χ2 independence test or the information gain for selecting
independent and discriminative frequent patterns; therefore, we carried out all the MiSTiCl
experiments using both these methods. Figure3a, b shows the critical difference diagrams for
the differentMiSTiCl variants based on classification accuracy and total runtime, respectively.
We can see that using the χ2 test to determine pattern independence yields better overall

10 Following the parameter settings provided by the UEA Time Series Repository.
11 The results for ST have been taken from the UEA Time Series Repository.
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Fig. 3 Average ranks for different MiSTiCl variants based on a classification accuracy and b runtime. CS
and IG represent χ2 independence test and information gain-based pattern selection, respectively, while ET,
AB, and RF represent the three ensemble classifiers. MiSTiCl variants which are not significantly different
(at p = 0.05) are connected. The critical difference (CD) for significantly different algorithms is 0.81

results in terms of both classification accuracy and runtime; therefore, the following analysis
will be based on the results obtained using the χ2 independence test.

Figure4 presents a comparison ofMiSTiCl against BoP, SAX-VSM, andBOSS, regarding
classification accuracy and runtime. The x- and y-axes show the total time required for training
and testing a classification model using MiSTiCl and the compared algorithm, respectively.
Each evaluated dataset is represented by a marker. Green markers indicate that MiSTiCl pro-
vides better accuracy, whereas red markers indicate otherwise. The marker size corresponds
to the absolute difference between classification accuracies of the compared algorithms, i.e.,
larger markers indicate a greater difference between the accuracy of the two algorithms.
For each dataset, we also performed Wilcoxon’s signed-ranks test to establish whether one
algorithm performs significantly better or worse compared to the other. In this regard, an
upward-facing triangle indicates that MiSTiCl is significantly better, a downward-facing tri-
angle indicates that the other algorithm is significantly better while a circle indicates that the
difference was not significant. We can see that MiSTiCl consistently provides an improve-
ment of at least an order of magnitude with respect to runtime, while it is on par with BOSS
and dominates BoP and SAX-VSM regarding classification accuracy.

Figure5a, b shows the average ranks of the different algorithms based on classification
accuracy and runtime, respectively. For classification accuracy,MiSTiCl is placed on par with
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Fig. 4 ComparingMiSTiCl against BoP, SAX-VSM, and BOSS regarding runtime and classification accuracy.
Eachmarker represents one dataset. The x- and y-axes show the runtime (training + testing) in seconds.Markers
below the dotted line indicate that MiSTiCl is slower than the other algorithm. A green marker indicates
that MiSTiCl provides better classification accuracy while red indicates otherwise. Marker sizes correspond
to the absolute difference between the mean classification accuracy provided by the competing algorithms
for a particular dataset, i.e., larger markers indicate greater difference in classification accuracy of the two
algorithms. An upward-facing triangle indicates that a significant difference was found in favor of MiSTiCl,
while a downward-facing triangle shows a significant difference in favor of the other algorithm. Bubbles
indicate there was no significance determined (color figure online)

ST and BOSS with average ranks of 2.92, 3.25, and 3.68 for the ET-, AB-, and RF-based
variants, respectively, while SAX-VSM and BoP are significantly different compared to the
other algorithms. For the runtime, MiSTiCl easily achieves the top three spots with average
ranks of 1.33, 2.13, and 3.09 for ET-, RF-, and AB-based variants, respectively, making it
significantly faster than any of its competitors.

A pairwise win/tie/loss analysis was also performed for a head-to-head comparison
between MiSTiCl and the other algorithms. A win was registered if the difference between
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Fig. 5 Average ranks for different algorithms based on a classification accuracy, and b runtime. Algorithms
which are not significantly different (at p = 0.05) are connected

Table 5 Pairwise win/tie/loss
comparison of different
algorithms using 85 datasets

ST BOSS BoP SAX-VSM

MiSTiCl-ET 30/29/26 29/22/34 69/4/12 67/10/8

MiSTiCl-RF 28/36/21 28/32/25 64/6/15 63/11/11

MiSTiCl-AB 28/32/25 30/28/27 65/6/14 65/10/10

The margin for wins/ties/losses was set to 2%

the classification accuracy achieved by MiSTiCl and the competing algorithm was greater
than +2%, while a loss was registered if the difference was less than −2%, while a tie was
registered otherwise. The numbers of wins/ties/losses are reported in Table5. When compar-
ing the different MiSTiCl variants with each other, we see that MiSTiCl-ET provides better
classification accuracy for most of the datasets.

A breakdown of the time required for training and testing a classification model using
MiSTiCl-ET is provided in Fig. 6. This includes the time required for (i) discretizing the
training and testing sets, (ii) extracting frequent patterns from the discretized training data,
(iii) creating transformed datasets, (iv) parameter optimization, and (v) model training and
testing. The time required for each phase of the algorithm is converted to a percentage of the
total time required, and box plots are created using the data for all evaluated datasets. We
can see that the median time required for data discretization and transformation, parameter
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Fig. 6 A breakdown of the time spent for individual phases as a percentage of total runtime. The box plots
show the aggregated data for all the evaluated datasets when using MiSTiCl (CS + ET)

optimization, and model training/testing is less than 10% of the total time required to process
a given dataset.

All the above observations regarding classification accuracy and runtime confirm that
MiSTiCl is a faster algorithm for providing classification accuracy which is on par with
existing algorithms, while incorporating extremely fast parameter optimization. Tables6
and7 provide the results used for the analysis performed for the classification accuracy
and runtime, respectively.

5.1 Results using a conservative parameter set

We also carried out experiments for evaluating the classification and runtime performance
of MiSTiCl algorithm using a conservative parameter set. In these experiments, we pro-
vided MiSTiCl with cardinality and dimensionality reduction levels of only {3, 4, 5, 6} and
{2, 3, 4, 5}, respectively. This reduces the number of evaluated parameter combinations to
only 16 as compared to the 35 parameter combinations evaluated in the full set of experiments.
This results in a further reduction in the total runtime for MiSTiCl with a slight reduction in
the classification accuracy as well; however, the overall performance is generally the same.
Figure7 shows the average ranks of the different algorithms based on classification accuracy
when using a conservative set of parameters for the MiSTiCl algorithm.

6 Conclusion

In this paper, we proposed MiSTiCl, a time series classification approach using a linear
time string mining algorithm for feature extraction. Using the string mining algorithm for
feature extraction allowed us to drastically reduce the runtime of the whole classification task
compared to many other state-of-the-art approaches. On average, MiSTiCl achieved an order
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Table 6 Average classification accuracy obtained for 100 runs using shuffled splits

ST ET RF AB BOSS BoP SAX-VSM

Adiac 76.84 75.86 75.15 75.41 74.96 59.41 32.65

ArrowHead 85.11 85.93 82.43 83.10 87.51 77.12 75.85

Beef 73.57 78.27 74.64 71.77 61.47 49.70 47.50

BeetleFly 87.45 95.79 95.91 96.01 94.85 84.25 88.35

BirdChicken 92.70 97.00 96.68 96.47 98.40 85.10 85.05

CBF 90.18 98.45 97.53 96.49 99.81 96.28 93.74

Car 98.56 92.14 90.08 91.45 85.47 81.93 80.02

ChlorineConcentration 68.21 64.87 62.84 64.09 65.95 63.38 62.63

CinCECGtorso 91.83 71.34 69.15 68.29 90.11 71.84 71.18

Coffee 99.50 99.04 98.84 98.90 98.86 94.29 93.43

Computers 78.46 77.62 76.43 76.84 79.47 69.21 59.50

CricketX 77.71 65.67 63.82 65.77 76.35 57.42 71.33

CricketY 76.22 63.58 62.94 64.35 74.93 61.42 67.14

CricketZ 79.78 66.10 64.13 65.55 77.57 58.75 71.63

DiatomSizeReduction 91.12 96.65 93.17 93.05 93.94 85.13 83.32

DistalPhalanxOutlineAgeGroup 82.93 85.99 85.95 86.54 81.48 73.68 76.84

DistalPhalanxOutlineCorrect 81.94 85.71 85.71 86.03 81.58 72.49 68.42

DistalPhalanxTW 69.04 72.72 74.04 75.35 67.31 60.50 63.05

ECG200 73.73 90.80 91.59 90.73 89.04 78.27 82.07

ECG5000 84.02 93.82 93.90 93.91 94.05 91.02 90.78

ECGFiveDays 94.34 96.23 94.97 94.31 98.33 91.09 91.34

Earthquakes 95.50 77.05 76.29 77.54 74.60 72.91 73.80

ElectricDevices 89.54 83.06 84.69 83.06 80.11 77.29 DNF

FaceAll 96.76 92.15 90.79 91.76 97.42 93.91 96.07

FaceFour 79.40 94.74 95.90 92.07 99.56 94.75 91.86

FacesUCR 90.93 85.98 84.62 85.46 95.06 89.10 92.22

FiftyWords 71.30 70.57 67.28 70.11 70.22 54.96 45.07

Fish 97.42 92.13 92.08 93.78 96.87 89.39 90.38

FordA 96.54 80.14 79.80 80.02 91.95 79.43 83.50

FordB 91.51 76.02 76.61 77.68 91.11 76.33 80.90

GunPoint 99.87 99.14 97.09 98.35 99.41 96.97 95.16

Ham 80.84 78.65 77.49 79.34 83.59 77.14 77.74

HandOutlines 92.39 89.67 89.36 90.16 90.41 86.59 83.98

Haptics 51.19 52.48 51.45 53.54 45.90 38.20 40.67

Herring 65.34 72.24 73.81 72.69 60.55 54.92 58.25

InlineSkate 39.30 49.22 44.92 46.57 50.29 38.50 36.26

InsectWingbeatSound 61.65 53.56 54.35 53.69 51.02 48.41 53.19

ItalyPowerDemand 95.31 93.79 93.21 92.58 86.61 87.81 81.94

LargeKitchenAppliances 93.25 92.74 93.54 93.47 84.10 68.17 76.08

Lightning2 65.89 85.71 83.99 83.93 80.97 69.20 70.47

Lightning7 72.44 80.51 77.94 78.80 65.87 53.63 59.57

Mallat 97.23 98.88 98.40 97.57 94.86 85.52 85.99
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Table 6 continued

ST ET RF AB BOSS BoP SAX-VSM

Meat 96.57 98.78 98.84 98.48 98.03 96.17 93.47

MedicalImages 69.11 75.59 73.47 75.97 71.48 50.78 47.98

MiddlePhalanxOutlineAgeGroup 81.51 75.25 75.85 73.98 66.18 56.54 60.65

MiddlePhalanxOutlineCorrect 69.39 82.41 82.44 84.70 81.05 70.81 63.43

MiddlePhalanxTW 57.93 63.21 63.77 62.63 53.44 48.58 53.32

MoteStrain 88.23 87.20 87.17 87.60 84.39 82.57 79.61

NonInvasiveFetalECGThorax1 94.68 88.61 87.47 89.18 84.09 68.19 55.76

NonInvasiveFetalECGThorax2 73.86 90.84 89.49 90.50 90.36 74.57 64.65

OSULeaf 88.07 74.57 72.35 79.13 96.73 69.71 82.30

OliveOil 93.41 97.34 97.10 97.10 87.00 84.67 84.93

PhalangesOutlinesCorrect 79.45 82.60 81.68 82.34 82.09 71.59 62.16

Phoneme 32.91 29.82 29.42 29.63 25.61 15.13 9.42

Plane 99.96 99.64 99.64 99.54 99.79 98.72 98.14

ProximalPhalanxOutlineAgeGroup 88.09 89.19 89.68 88.29 81.90 75.95 79.44

ProximalPhalanxOutlineCorrect 84.09 86.83 86.88 87.41 86.64 76.84 75.93

ProximalPhalanxTW 80.28 82.18 83.70 83.10 76.97 67.52 59.72

RefrigerationDevices 76.08 77.34 74.81 77.92 78.86 65.55 60.95

ScreenType 67.61 57.24 59.17 59.82 58.62 44.01 43.94

ShapeletSim 93.36 99.87 99.96 100.00 100.00 82.35 91.19

ShapesAll 85.42 89.30 86.98 85.53 90.87 75.65 65.86

SmallKitchenAppliances 80.25 79.07 80.37 79.26 76.45 70.77 48.38

SonyAIBORobotSurface1 88.76 85.94 81.85 81.20 89.78 76.41 72.44

SonyAIBORobotSurface2 92.44 80.39 80.33 80.16 88.66 84.15 85.98

StarlightCurves 97.74 94.30 93.50 93.87 97.75 94.35 83.03

Strawberry 96.84 97.95 97.61 98.09 97.03 96.39 95.95

SwedishLeaf 93.85 90.11 89.75 91.58 91.77 78.68 71.15

Symbols 86.16 96.16 96.25 92.10 96.10 93.26 87.11

SyntheticControl 98.69 99.67 99.58 99.44 96.79 92.74 94.68

ToeSegmentation1 95.40 94.72 93.23 91.64 92.88 92.55 92.54

ToeSegmentation2 94.72 93.88 91.57 91.58 95.98 91.30 91.22

Trace 99.99 99.81 99.70 99.93 99.99 97.65 99.39

TwoLeadECG 98.44 96.25 95.92 94.32 98.45 90.11 90.08

TwoPatterns 95.17 94.77 93.82 94.00 99.12 94.47 89.27

UWaveGestureLibraryAll 80.59 77.22 75.86 78.11 94.45 81.48 79.99

UWaveGestureLibraryX 73.70 75.72 74.66 75.22 75.32 59.00 53.28

UWaveGestureLibraryY 74.68 65.71 65.11 65.84 66.10 51.24 44.34

UWaveGestureLibraryZ 94.21 69.86 69.62 71.23 69.50 56.61 47.54

Wafer 99.98 99.19 99.03 99.27 99.90 99.62 99.61

Wine 92.61 96.02 96.51 94.71 91.17 89.00 82.09

WordSynonyms 58.24 59.68 56.40 58.58 65.88 52.24 46.69

Worms 71.95 78.85 77.69 80.24 73.51 61.16 58.95
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Table 6 continued

ST ET RF AB BOSS BoP SAX-VSM

WormsTwoClass 77.87 82.97 85.62 84.12 80.97 74.49 73.07

Yoga 82.25 83.39 81.57 84.75 91.00 85.92 78.91

Average ranks 3.05 2.92 3.68 3.25 3.04 5.82 6.06

The best average accuracy for each dataset is represented in bold

Table 7 Average runtime (in seconds) for each algorithm obtained over 100 runs

ET RF AB BOSS BoP SAX-VSM

Adiac 138 156 300 109 56.5 389

ArrowHead 2.56 2.64 3.82 7.65 7.21 15.4

Beef 3.73 3.86 3.75 16.3 17 28.5

BeetleFly 2.17 2.17 2.3 12.3 12.4 19.3

BirdChicken 2.44 2.44 2.48 12.4 10.5 15.1

CBF 1.86 1.89 1.78 5.44 3.77 12.8

Car 6.9 7.16 9.16 59.8 37.8 55.3

ChlorineConcentration 15.4 17.5 128 372 214 4.33e+03

CinCECGtorso 221 221 221 339 193 203

Coffee 1.79 1.83 1.94 8.41 6.74 12.5

Computers 25.1 26.8 52.3 713 513 1.14e+03

CricketX 48.5 58.2 159 484 610 9.31e+03

CricketY 49.4 58.5 160 509 602 9.59e+03

CricketZ 47.8 57.6 158 485 588 9.32e+03

DiatomSizeReduction 5.07 5.13 4.98 15 5.03 7.04

DistalPhalanxOutlineAgeGroup 6.03 8.63 42.4 38 38.1 976

DistalPhalanxOutlineCorrect 6.42 10.8 69.3 81.2 86.3 3.29e+03

DistalPhalanxTW 10.7 14.5 57.4 39.5 36.2 1.03e+03

ECG200 1.52 1.85 7.15 5.57 6.28 83.1

ECG5000 18.2 21.7 109 494 195 6.07e+03

ECGFiveDays 1.71 1.76 1.73 5.01 3.75 6.94

Earthquakes 14.2 16.4 42.9 1.15e+03 1.25e+03 1.58e+03

ElectricDevices 729 979 796 2.64e+04 1.29e+04 DNF

FaceAll 33.1 49.1 189 307 381 2.21e+04

FaceFour 6.2 6.25 6.18 11.4 8.98 17.6

FacesUCR 13.3 17 69.9 71.5 60.2 1.64e+03

FiftyWords 227 256 490 424 484 8.31e+03

Fish 25.5 27.5 46.8 222 126 292

FordA 572 632 1.41e+03 1.56e+05 1.63e+05 7.38e+05

FordB 571 632 1.38e+03 1.67e+05 1.72e+05 7.31e+05

GunPoint 1.6 1.68 2.22 6.06 4.4 15.5

Ham 4.1 4.56 12.6 110 96.5 397
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Table 7 continued

ET RF AB BOSS BoP SAX-VSM

HandOutlines 1.51e+03 1.52e+03 1.64e+03 1.07e+05 7.78e+04 3.54e+04

Haptics 52.9 54.8 77.3 692 628 720

Herring 3.84 4.03 7.07 54.2 40.4 60.2

InlineSkate 139 140 159 1.01e+03 765 623

InsectWingbeatSound 25.8 28.7 102 135 97.9 1.03e+03

ItalyPowerDemand 0.908 0.697 1.22 0.66 0.451 1.95

LargeKitchenAppliances 77.4 80.1 113 1.47e+03 684 1.19e+03

Lightning2 4.3 4.44 7.5 78.7 64.9 105

Lightning7 7.06 7.61 13.1 27.3 28.8 104

Mallat 77.4 77.3 76.9 424 116 136

Meat 8.28 8.41 8.95 44.5 24.7 43.8

MedicalImages 12.9 19.3 93.9 53.5 46.9 2.29e+03

MiddlePhalanxOutlineAgeGroup 6.57 9.2 47.9 36.5 32.8 726

MiddlePhalanxOutlineCorrect 6.54 10.8 62.9 73.7 70.5 2.1e+03

MiddlePhalanxTW 11.4 16.2 73.9 35.8 33.8 730

MoteStrain 1.23 1.01 0.848 1.43 1.92 5.55

NonInvasiveFetalECGThorax1 8.35e+03 8.47e+03 9.41e+03 4.53e+04 3.21e+04 1.15e+05

NonInvasiveFetalECGThorax2 8.59e+03 8.71e+03 9.54e+03 4.55e+04 2.79e+04 8.79e+04

OSULeaf 16.9 19.1 46 268 297 1.91e+03

OliveOil 9.26 9.32 9.37 23.9 14.7 21.1

PhalangesOutlinesCorrect 24.4 41.3 248 600 582 3.59e+04

Phoneme 1.09e+03 1.1e+03 1.24e+03 1.51e+03 1.86e+03 2.64e+03

Plane 4.14 4.77 4.26 15.1 12.1 109

ProximalPhalanxOutlineAgeGroup 6.68 9.03 39.1 37.7 34.1 584

ProximalPhalanxOutlineCorrect 7.39 11.9 69.6 72.5 69.1 1.55e+03

ProximalPhalanxTW 11.9 15.3 51.2 37.3 34.3 585

RefrigerationDevices 44.3 47.6 95.2 1.84e+03 2.33e+03 4.01e+03

ScreenType 55.1 58.9 97.8 1.49e+03 1.08e+03 3.35e+03

ShapeletSim 2.55 2.54 2.59 14.9 12.3 15

ShapesAll 1.01e+03 1.05e+03 1.28e+03 2.56e+03 2.21e+03 1.58e+04

SmallKitchenAppliances 87.4 90.3 134 1.51e+03 695 653

SonyAIBORobotSurface1 0.472 0.382 0.302 1.1 1.52 4.72

SonyAIBORobotSurface2 0.839 0.604 0.802 1.35 1.89 7.3

StarlightCurves 579 580 794 2.79e+04 1.49e+04 4.94e+04

Strawberry 20.3 24.3 64.9 619 550 8.38e+03

SwedishLeaf 31.4 44.1 133 147 138 5.24e+03

Symbols 13.6 13.7 13.3 30.7 8.36 13.4

SyntheticControl 4.61 7.17 17.5 12.7 20.5 1.87e+03

ToeSegmentation1 2.04 2.07 2.53 11.5 11.6 31.2

ToeSegmentation2 1.96 2 2.72 13.3 11.7 25.8

Trace 5.22 5.48 5.73 39 28.4 118
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Table 7 continued

ET RF AB BOSS BoP SAX-VSM

TwoLeadECG 1.77 1.54 1.53 3.11 1.65 4.87

TwoPatterns 27.7 38.7 248 680 879 5e+04

UWaveGestureLibraryAll 714 737 1.03e+03 2.3e+04 1.94e+04 9.98e+04

UWaveGestureLibraryX 136 156 437 2.47e+03 2.53e+03 4.25e+04

UWaveGestureLibraryY 138 156 428 2.44e+03 2.46e+03 4.09e+04

UWaveGestureLibraryZ 133 154 433 2.37e+03 2.39e+03 3.89e+04

Wafer 20.4 24.9 81.2 1.25e+03 530 2.92e+04

Wine 2.96 3.08 4.35 10.8 9.89 18.3

WordSynonyms 65.5 73.6 172 171 178 2.07e+03

Worms 36.4 38 57.4 782 793 2.33e+03

WormsTwoClass 17.1 18.1 32.5 782 823 2.18e+03

Yoga 22.2 23.1 90 848 323 1.37e+03

Average ranks 1.329 2.129 3.094 4.576 4.047 5.774

The time for the fastest algorithm is represented in bold

Fig. 7 Average ranks of the different algorithms based on classification accuracy. The critical difference (CD)
for significantly different algorithms is 0.97. Algorithms which are not significantly different (at p = 0.05)
are connected

of magnitude speedup over the most accurate state-of-the-art algorithm, BOSS, while still
being robust enough to provide a classification accuracy that is statistically not discernible
from it. We used a multi-cardinality and multi-dimensionality approach to incorporate a
multi-view aspect to the discretized time series classification algorithm. One alternative to
using this multi-cardinality and multi-dimensionality approach is to use a form of stacking
(or meta-ensemble approach) such that an ensemble of base models is created where each
single-view feature set is used to create the base models. However, stacking usually leads to
a more complex classification model.

MiSTiCl can also be extended in a couple of ways: Instead of creating the feature-based
dataset using only the SAX-based frequent patterns, we can incorporate features extracted
from different time series discretization algorithms. One such algorithm is the Symbolic
Fourier Approximation (SFA) used in BOSS and BOSS VS. Incorporating a frequency-
based symbolic representation could potentially provide a dual feature-based dataset. The
local shape-based features can be extracted from SAX representations, while frequency com-
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ponents dominating the whole shape of the time series can be obtained from a frequency
decomposition-based representation. This could provide a local and global view to a single
classification algorithm, and the efficiency of the string mining-based feature extraction pro-
cess ensures that the approach would scale very well for a variety of problems with large
and complex data. In the future, we intend to adapt our algorithm for multi-variate time
series problems. Another avenue to explore would be the application to online or streaming
time series problems. A multi-variate streaming time series classification algorithm based on
string mining could potentially have a huge impact on time series classification for sensor
data from the Internet of things (IoT).

Acknowledgements We are grateful to the reviewers for their comments and suggestions which helped in
improving the quality of this paper. The first author was supported by a scholarship from the Higher Education
Commission (HEC), Pakistan, and the German Academic Exchange Service (DAAD), Germany.

Appendix: Calculating independence test statistics

Section3.3 provides the algorithmic details for selecting frequent patterns based on their dis-
criminative power. χ2 independence test or information gain values can be used to determine
the discriminative power of a given pattern and find out how effectively it can identify the
instances of a given class. This section explains the procedure of calculating these statistics
based on the occurrence frequency of a pattern in the positive and negative class dataset
splits. In this regard, the notation used for the following discussion is given below.

Symbol Representation

̂P Positive class dataset
̂N Negative class dataset
N

̂P Number of instances in ̂P
N

̂N Number of instances in ̂N
p Frequent pattern
f
̂P Occurrence frequency of p in ̂P
f
̂N Occurrence frequency of p in ̂N

Calculating the �2 test statistic

The χ2 test statistic is calculated based on observed (Oi j ) and expected (Ei j ) values for the
given categorical variables. The formula for calculating the χ2 statistic is given below.

χ2 =
∑ (Oi j − Ei j )

2

Ei j

Observed values (Oi j ) correspond to the number of instances observed as belonging to a
certain categorical variable. In our case, it is the number of instances labeled as belonging to
the positive or negative class given a particular frequent pattern. This can be determined using
the instance counts of the positive and negative class datasets and occurrence frequency values
of the given pattern in the respective dataset splits. Based on these values, a contingency table
can be created as follows.
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Dataset splits

Positive, ̂P Negative, ̂N

With(p) O11 = � f
̂P × N

̂P � O12 = � f
̂N × N

̂N � RSum1. = O11 + O12
WithOut(p) O21 = N

̂P − O11 O22 = N
̂N − O12 RSum2. = O21 + O22

CSum.1 = O11 + O21 CSum.2 = O12 + O22 n = ∑

i, j Oi j

The rows of this contingency table correspond to the number of instances containing or not
containing the given pattern p, while the columns correspond to the positive and negative
dataset splits, respectively. The combined total of row and column sums equals the total
number of instances in the positive and negative dataset splits. Finally, the expected values
(Ei j ) are calculated using the following formula.

Ei j = RSumi . × CSum. j

n

The χ2 test statistic determines whether any relationship between the positive and negative
dataset splits exists given the frequent pattern. If the pattern occurs in both datasets, then the
χ2 value will be close to zero which signifies a relationship exists between the two dataset
splits. We can order the frequent patterns based on their χ2 statistic and select the ones for
which the dataset splits do not exhibit any mutual relationship.

Calculating the information gain value

Entropy (H ) is a measure for establishing whether a dataset has a uniform or varying distri-
bution in terms of the different classes of instances. Given a dataset with positive and negative
class instances, the entropy of the dataset can be calculated using the following formula.

H = −
(

N
̂P

N
̂P + N

̂N
× log2

N
̂P

N
̂P + N

̂N

)

−
(

N
̂N

N
̂P + N

̂N
× log2

N
̂N

N
̂P + N

̂N

)

If a pattern p occurs frequently in either class of instances in the dataset, we can create
positive and negative class subsets based on the presence or absence of this pattern in each
of the instances. The entropy of these subsets can then be calculated using the following
equations.

H
̂P = −

(

f
̂P × N

̂P

f
̂P × N

̂P + f
̂N × N

̂N
× log2

f
̂P × N

̂P

f
̂P × N

̂P + f
̂N × N

̂N

)

−
(

f
̂N × N

̂N

f
̂P × N

̂P + f
̂N × N

̂N
× log2

f
̂N × N

̂N

f
̂P × N

̂P + f
̂N × N

̂N

)

H
̂N = −

(

(1 − f
̂P ) × N

̂P

(1 − f
̂P ) × N

̂P + (1 − f
̂N ) × N

̂N
× log2

(1 − f
̂P ) × N

̂P

(1 − f
̂P ) × N

̂P + (1 − f
̂N ) × N

̂N

)

−
(

(1 − f
̂N ) × N

̂N

(1 − f
̂P ) × N

̂P + (1 − f
̂N ) × N

̂N
× log2

(1 − f
̂N ) × N

̂N

(1 − f p̂) × N
̂P + (1 − f

̂N ) × N
̂N

)
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Using the entropy values of the source dataset and the positive and negative subsets, we can
calculate the information gain value using the following formula.

IG = H −
(

f
̂P × N

̂P + f
̂N × N

̂N

N
̂P + N

̂N
× H

̂P + (1 − f
̂P ) × N

̂P + (1 − f
̂N ) × N

̂N

N
̂P + N

̂N
× H

̂N

)

If the frequent pattern effectively distinguishes between the two classes, the positive and
negative class subsets will have very few or no instances of the other class resulting in a
smaller value of entropy for the two subsets. This in turn will cause a higher information
gain value indicating that the pattern is a good candidate for distinguishing between the two
classes of instances. If, however, the converse is true, then the pattern is not a good candidate.
This way the candidates can be selected on the basis of their discriminative power.
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