
https://doi.org/10.1007/s10115-019-01376-9

REGULAR PAPER

Information-preserving abstractions of event data in process
mining

Sander J. J. Leemans
1

· Dirk Fahland
2

Received: 26 April 2018 / Revised: 18 June 2019 / Accepted: 23 June 2019/
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

Process mining aims at obtaining information about processes by analysing their past exe-

cutions in event logs, event streams, or databases. Discovering a process model from a

finite amount of event data thereby has to correctly infer infinitely many unseen behaviours.

Thereby, many process discovery techniques leverage abstractions on the finite event data to

infer and preserve behavioural information of the underlying process. However, the funda-

mental information-preserving properties of these abstractions are not well understood yet. In

this paper, we study the information-preserving properties of the “directly follows” abstrac-

tion and its limitations. We overcome these by proposing and studying two new abstractions

which preserve even more information in the form of finite graphs. We then show how and

characterize when process behaviour can be unambiguously recovered through characteris-

tic footprints in these abstractions. Our characterization defines large classes of practically

relevant processes covering various complex process patterns. We prove that the information

and the footprints preserved in the abstractions suffice to unambiguously rediscover the exact

process model from a finite event log. Furthermore, we show that all three abstractions are

relevant in practice to infer process models from event logs and outline the implications on

process mining techniques.

Keywords Process mining · Information preservation · Language abstraction · Model

abstraction · Rediscoverability · Directly follows · Minimum self-distance · Inclusive choice

1 Introduction

Process mining comprises methods and techniques for understanding possibly unknown

processes from recorded events. Input to process mining is usually an event log containing

sequences of events that describe activity occurrences observed in the past. An event log is

always a finite sample of the possibly infinite behaviour of the underlying process. Process

B Sander J. J. Leemans
s.leemans@qut.edu.au

1 Queensland University of Technology, Brisbane, Australia

2 Eindhoven University of Technology, Eindhoven, The Netherlands

123

Knowledge and Information Systems (2020) 62:1143–1197

Published online: 20July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01376-9&domain=pdf
http://orcid.org/0000-0002-5201-7125

S. J. J. Leemans, D. Fahland

discovery has the aim of learning a process model that can describe the behaviour of this

unknown process [1].

Process discovery is typically studied in terms of formal languages as illustrated in Fig. 1:

process S has unknown behaviour L(S) from which some process executions are recorded

in a log L ⊆ L(S)—a finite language over a set of activities. A process discovery algorithm

then shall infer from finite L the remaining, infinite, unobserved behaviour of S and encode

them in a model M , describing possible process executions as language L(M). Ideally, the

discovered model M describes precisely the behaviour of the underlying process S, that is,

L(M) = L(S). In practice, the underlying process S is unknown, so finding the “right” model

M is often seen as a pareto-optimization problem between fitness (maximize L ∩ L(M)),

precision (minimize L(M) \ L), generalization (maximize behaviour not seen in L but likely

to occur in the future), and simplicity of M [2].

1.1 Information preservation in process discovery

In many time-efficient discovery algorithms [3–6], a function α first abstracts the known

behaviour seen in L into abstract behavioural information B = α(L) on the activities recorded

in L , thereby generalizing from the sample L . Common abstractions are the “directly follows”

[3] and “eventually follows” [4] relations and their variants [7], and “behavioural profiles”

[8] that also include “conflict” and “concurrency”. The discovery algorithm then synthesizes

a model M = γ (B) from B using a concretization function γ , after optionally processing B

[4,9,10], thereby interpreting information in abstraction B.

This renders the abstraction central to information preservation and inference. If for two

logs (two different samples) Lx and L y , the abstraction yields α(Lx) = α(L y), then any

discovery algorithm using α will return the same model γ (α(Lx)) = γ (α(L y)), even if Lx

and L y come from different processes. For example, the two different processes in Fig. 2a, b

may yield logs L1 = {〈a, b, c〉, 〈a, c, b〉} and L2 = {〈a, b, c〉, 〈a, c, b〉, 〈a, b〉, 〈a, c〉} both

Fig. 1 Illustration of the context of process discovery with an abstraction function α

a

b

c

(a)

a

b

c

(b)

a

b

c

(c) Directly follows abstraction.

Fig. 2 Two process models in BPMN [11], (a, b), with a different language but the same directly follows
abstraction (c)

123

1044

Information-preserving abstractions of event data in process mining

having the same directly follows abstraction shown in Fig. 2c. The directly follows abstraction

is not preserving all information of Fig. 2a, b, and any discovery algorithm working with this

abstraction alone cannot distinguish these logs.

Beyond event logs, stream process discovery techniques require information-preserving

abstraction functions to retain information from event streams in a memory-efficient rep-

resentation [12], and event databases use indexes based on abstractions [13] to efficiently

discover models from very large event data sets [14]. This importance of α gives rise to two

questions:

– When does α extract the “right” behavioural information about the underlying process S

so that γ can use this information to obtain the “right” model, M , with L(S) = L(M)?

– What information from a log has to be used and stored in a finite abstraction α to allow

inferring the “right” model M?

1.2 State of the art

Although considerable progress has been made in recent years by using different abstraction

and concretization functions in process discovery, more complex behaviour can still not be

accurately discovered from event data [10,15]. At the same time, the inherent information-

preserving properties of the used abstractions have received considerable less attention. That

is, the class of models that can be (re-)discovered has been precisely characterized for specific

algorithms [3,16–22]; however, a systematic study into the information preserved by the

abstractions that these algorithms use has not been performed.

Information preservation and recovery for behavioural profiles independent of the alpha-

algorithm are only known for acyclic processes, while behavioural profiles cannot preserve

information of regular languages in general [8]. Information-preserving “footprints” of

directly follows abstraction have been studied [5,23] and used in multiple discovery algo-

rithms [5,6] for basic process operators. No existing study considers information preservation

in abstractions for practically relevant and frequent process patterns such as unobservable

skip paths, interleaving or the inclusive gateways of Fig. 2b.

1.3 Contribution

In this paper, we study how and under which circumstances event data abstractions preserve

behavioural information in a way that allows to unambiguously recover basic and complex

process patterns for process discovery. Specifically, we consider sequence, exclusive choice

(split/join), structured loops, concurrency (split/join), critical section and inclusive choice

(split/join), and unobservable paths for skipping [24]. The last three patterns have not been

studied before systematically in process mining.

In Sect. 2, we expose the problem in more detail against related work and we contribute

a framework to systematically investigate whether for a specific class C of languages (that

are generated by process models having a particular set of operators), we can define an

abstraction function α that can abstract any language to a finite representation and is injective:

α(L1) = α(L2) implies L1 = L2 (for languages L1 and L2), or α(L(M1)) = α(L(M2))

implies L(M1) = L(M2). In these cases, discovering γ (α(L1)) = γ (α(L2)) is correct.

Central to our proof is the definition of footprints that allow to precisely recover behavioural

information from an abstraction. As the problem has no general solution, even on regular

languages [8], we restrict ourselves to languages that can be described syntactically by the

123

1045

S. J. J. Leemans, D. Fahland

relevant subclass of block-structured process models in which each activity is represented at

most once (that is, no duplicate activities), which we explain in Sect. 3.

We then use our framework to consolidate previous results on the information-preserving

properties and to sharply characterize the limitations of the well-known directly follows

abstraction αdfg in Sect. 5. To overcome these limitations, we then propose and study two

new abstractions: the minimum self-distance abstraction and its footprints discussed in Sect. 6

preserve information about loops in the context of concurrency, and our results close a gap left

in earlier works [5]. The concurrent-optional-or abstraction discussed in Sect. 7 preserves

information about optional behaviour, and we are the first to show that unobservable paths for

skipping and inclusive choices are preserved and can be recovered from footprints in finite

abstractions of languages, and hence event logs. The operational nature of the footprints

allows applying them in process discovery algorithms. We report on experiments showing

the practical relevance and applicability of these information-preserving abstractions for

process discovery on real-life event logs in Sect. 8. Further, we discuss practical implications

of our results on process mining research, mining from streams, and index design for event

databases in Sect. 9.

2 Background, problem exposition, and research framework

We first discuss existing abstractions of processes and their applications. We then work out

the research problem of information preservation in behavioural abstractions and propose a

framework to research this problem systematically.

2.1 Background

Behavioural abstractions of process behaviour have been studied previously, generally with

the aim to obtain a finite representation structure for reasoning about and comparing process

behaviours. The directly follows graph (DFG) or Transition-adjacency relations [3,5,25] are

derived from behaviour (a language or log) and relate two activities ‘A’ and ‘B’ if and only

if ‘A’ can be directly followed by ‘B’; this relation can be enriched with arc weights (based

on frequency of observed behaviour) [9] or semantic information from external sources

[26]. Causal footprints [27] abstract model structures to graphs where multi-edges between

activities (visible process steps) represent ‘and’ (concurrent) and ‘xor’ (exclusive choice)

pre- and post-dependencies between activities. Behavioural profiles (BPs) [8] derived from

behaviour or models combine DFGs and causal footprints by providing binary relations for

directly-following, concurrent, and conflicting (mutually exclusive) activities. Further, binary

relations between activities can be defined to preserve more subtle aspects of concurrency

[28]. Principal transition sequences abstract behaviour as a truncated execution tree of the

model that contains all acyclic executions and truncates repetitions and unbounded behaviour

[29].

Most behavioural abstractions have been used to measure similarity between process mod-

els [30]; BPs [31] and abstraction in [26] preserve more information and allow to define a

metric space in order to perform searches in process model collections. In this context also

non-behaviour preserving abstractions have been studied, such as projections to “relevant”

subsequences [32] and isotactics for preserving concurrency of user-defined sets of activi-

ties in true-concurrency semantics [33]. BPs have also been used to propagate changes in

behaviour in process model collections to other related process models [34]. Various sets of

123

1046

Information-preserving abstractions of event data in process mining

binary relations in BPs give rise to implications between relations structured along a lattice,

allowing to reason within the abstractions [23,28]. Most process discovery techniques use

BPs or DFGs in several variations to abstract and generalize behavioural information from

event logs [3–6,35].

Information preservation for BPs has been studied in various ways. van der Aalst et al.

[3] characterize the rediscoverable models S where from a “complete” log L ⊆ L(S)

the discovered model M describes the same process executions: L(M) = L(S). Their

proof (1) sufficiently characterizes the rediscoverable model structures that remain distin-

guished under abstraction α into BPs, and (2) shows that the model synthesis γ step of

the alpha-algorithm reconstructs the original model. Badouel et al. [16] also provide neces-

sary conditions. While the alpha-algorithm preserves complex structures including non-free

choice constructs, behaviours such as unobservable steps, inclusive choices or interleaving

are not preserved, and information is only preserved under the absence of deviations or noise

[15]. Furthermore, the characterization and proofs are tied to the alpha-algorithm and cannot

be applied to other contexts and discovery algorithms. Independent of an algorithm, BPs are

not expressive enough to preserve even trace equivalence for any general class of behaviour

(within regular languages) [8]. BPs preserve behaviour for acyclic, unlabelled models, i.e.

where each activity in the model is observable and distinct from all other activities [8,36].

For cyclic models, only for unlabelled, free-choice workflow nets a variant of BPs including

the “up-to-k” successor relation preserves trace equivalence, though k is model specific [7];

for large enough k, this resembles the eventually follows relation.

Information preservation for DFGs has been studied as rediscoverability for the Inductive

Miner [5] and the alpha-algorithm [3,16] and its variants. For instance, several variants of

the alpha-algorithm have been introduced to include short loops (alpha+ [17]), to include

long-distance dependencies [18] (using the eventually follows relation, but only for acyclic

processes), to include non-free-choice constructs (alpha++ [19]) and to include certain types

of silent transitions (alpha# [20,21], alpha$ [22]). For these algorithms, it was shown that they

could obtain enough information from an event log to reliably rediscover certain constructs;

however, these characterizations and proofs are tied to the specific algorithms and cannot

be applied to other contexts and discovery algorithms. Information preservation in Inductive

Miner [5] was proven by showing that behavioural information can be completely retrieved

from the abstraction itself, in the form of footprints in the DFG, independent of a specific

model synthesis algorithm, and characterizing the block-structured models for which this

information is preserved in the DFG. However, these footprints allow reusing information

abstraction and recovery in other (non-block-structured) contexts such as the Split Miner [6],

which uses footprints from the DFG in a different way to synthesize a model, or Projected

Conformance Checking [37], which uses abstractions to provide guarantees in approximative

fast conformance checking measures. Other process discovery techniques might be able to

obtain enough information from event logs to reconstruct a model, such as (conjectured) the

ILP miner [35] and several genetic techniques [38,39], but no insights into guarantees and

limits of information preservation are available.

2.2 Problem exposition

This paper particularly addresses information-preserving capabilities of abstractions of lan-

guages in general, that hold in any application using these abstractions, rather than just a

single specific algorithm. To approach the problem in an algorithm-independent setting, we

generalize prior work on rediscoverability to the following sub-problems:

123

1047

S. J. J. Leemans, D. Fahland

RQ1 For which class C of languages is each language L uniquely defined by its syntactic

model M with L = L(M), i.e. L(M1) = L(M2) implies M1 = M2?

RQ2 For which class C of languages does an abstraction α distinguish languages on their

abstractions alone, that is, when does α(L1) = α(L2) imply L1 = L2 for L1, L2 ∈ C?

RQ3 For which class C of languages does α preserve the information about the entire model

syntax, i.e. when does α(L(M1)) = α(L(M2)) imply M1 = M2?

RQ4 For which classes C of languages and which abstractions α can syntactic constructs

of model M be recognized in α(L(M))?

The specific objective of RQ4 is to not only ensure that an abstraction α can distinguish

different types of behaviour, but that information about the behaviour can be recovered from

the abstraction, so the abstraction can be exploited by different process discovery algorithms.

2.3 Research framework

As discussed in Sect. 1, we will answer the above questions for three different abstractions:

directly follows αdfg, minimum self-distance αmsd, and concurrent-optional-or αcoo. Each

abstraction function αx returns a finite abstraction αx (L) for any language L in the form

of finite graphs over the alphabet 6 of L . As RQ2 has no general answer [8], we limit our

model class to a very general class of block-structured models CB defined in Sect. 3. We

then employ the following framework to answer RQ1–RQ4 for each abstraction:

– Using a system of sound rewriting rules on block-structured process models [40, p. 113]

explained in Sect. 4, we obtain a unique syntactic normal form NF(M) for each model

M ∈ CB.

– We show that each abstraction αx (L) of any language L of some model M ∈ CB, L =

L(M) preserves not only the behaviour but also syntax of M in an implicit form: we can

recover from αx (L) the top-level operator of the normal form NF(M) through specific

characteristic features in αx (L), called footprints, answering RQ4. Specifically, much of

the information preserved in BPs is already contained in the more basic αdfg from which

not only sequence, choice, loops and concurrency but also interleaving (Sect. 5) can

be recovered. The minimum self-distance abstraction αmsd preserves information about

loops in the context of concurrency (Sect. 6) allowing to preserve information from a

larger model class. The new concurrent-optional-or abstraction αcoo (Sect. 7) preserves

information about unobservable skipping and inclusive choices not considered before.

– We then characterize for each abstraction αx the class of models Cx ⊂ CB for which

the entire recursive structure of M ∈ Cx is uniquely preserved in the abstraction of its

language αx (L(M)); each Cx partially constrains the nesting of operators, most notably

concurrency.

– As our core result, we then show that the languages L(M1), L(M2) of any two models

M1, M2 ∈ Cx with different normal forms NF(M1) 6= NF(M2) can always be distin-

guished in their finite abstractions αx (L(M1)) 6= αx (L(M2)) based on the footprints in

αx . Our characterization is sharp in the sense that for any necessary condition, we provide

a counterexample, answering RQ3.

– As the normal form NF(M) is unique, we can then conclude RQ2: any two different lan-

guages L1 6= L2 of any two models L i = L(Mi), Mi ∈ Cx can always be distinguished

by their finite abstractions αx (L1) 6= αx (L2).

– We finally can answer RQ1: by RQ3 two different syntactic normal forms NF(M1) 6=

NF(M2) have different abstractions of their languages αx (L1) 6= αx (L2), L i =

123

1048

Information-preserving abstractions of event data in process mining

L(NF(Mi)) and have therefore different languages L1 6= L2 ∈ Cx (as αx is a deter-

ministic function).

3 Preliminaries

3.1 Traces, languages, partitions

A trace is a sequence of events, which are executions of activities (i.e. the process steps).

The empty trace is denoted with ǫ.

A language is a set of traces, and an event log is a finite set of traces. For instance, the

language L3 = {〈a, b, c〉, 〈a, c, b〉} consists of two traces. For the first trace, first activity a

was executed, followed by b and c. Traces can be concatenated using ·.

In this paper, we limit ourselves to regular languages, that is, languages that can be defined

using the regular expression patterns sequence, exclusive choice and Kleene star.

We refer to the activities that appear in a language or event log as the alphabet 6 of the

language or event log. A partition of an alphabet consists of several sets, such that each

activity of the alphabet appears in precisely one of the sets, and each activity in the sets

appears in the alphabet. For instance, the alphabet of L3 is {a, b, c} and a partition of this

alphabet is {{a, b}, {c}}.

3.2 Block-structuredmodels

A block-structured process model can be recursively broken up into smaller pieces. These

smaller pieces form a hierarchy of model constructs, that is, a tree [41].

A process tree is an abstract representation of a block-structured workflow net [1]. The

leaves are either unlabelled or labelled with activities, and all other nodes are labelled with

process tree operators. A process tree describes a language: the leaves describe singleton

or empty languages, and an operator describes how the languages of its subtrees are to be

combined. We formally define process trees recursively:

Definition 3.1 (process tree syntax) Let 6 be an alphabet of activities, then

– activity a ∈ 6 is a process tree;

– the silent activity τ (τ /∈ 6) is a process tree;

– let M1 . . . Mn with n > 0 be process trees and let ⊕ be a process tree operator; then, the

operator node ⊕(M1, . . . Mn) is a process tree. We also write this as

⊕

Mn. . .M1

.

Each process tree describes a language: an activity describes the execution of that activity,

a silent activity describes the empty trace, while an operator node describes a combination

of the languages of its children. Each operator combines the languages of its children in a

specific way.

123

1049

S. J. J. Leemans, D. Fahland

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Recursive Petri-net translations of process trees

In this paper, we consider six process tree operators:

1. exclusive choice ×,

2. sequence →,

3. interleaved (i.e. not overlapping in time) ↔,

4. concurrency (i.e. possibly overlapping in time) ∧,

5. inclusive choice ∨ and

6. structured loop 	 (i.e. the loop body M1 and alternative loop back paths M2 . . . Mn).

123

1050

Information-preserving abstractions of event data in process mining

For instance, the language of

×

	

ji

∨

hg

↔

→

fe

d

∧

→

cb

a

is {〈a, b, c〉, 〈b, a, c〉, 〈b, c, a〉, 〈d, e, f 〉, 〈e, f , d〉, 〈g〉, 〈h〉, 〈g, h〉, 〈h, g〉, 〈i〉, 〈i, j, i〉,

〈i, j, i, j, i〉 . . .}. A formal definition of these operators is given in “Appendix A”.

Each of the process tree operators can be translated to a sound block-structured workflow

net, and to, for instance, a BPMN model [11]. Figure 3 provides some intuition by giving the

translation of the process tree operators to (partial) Petri nets [42].

We refer to a process tree that is part of a larger process tree as a subtree of the larger tree.

4 A canonical normal form for process trees

Some process trees are structurally different but nevertheless express the same language. For

instance, the process trees

×

×

cb

a

and

×

cba

have a different structure but the same language, consisting of the choice between a, b and

c. Such trees are indistinguishable by their language, and thus also indistinguishable by any

language abstraction. To take such structural differences out of the equation, we use a set of

rules that, when applied, preserve the language of a tree while reducing the structural size

and complexity of the tree. It does not matter which rules or in which order the rules are

applied: applying the rules exhaustively always yields the same canonical normal form.

The set of rules consist of four types of rules: (1) a singularity rule, which removes

operators with only a single child: ⊕(M) ⇒ M for any process tree M and operator ⊕

(except); (2) associativity rules, which remove nested operators of the same type, such

as 	 ((M, . . .1), . . .2) ⇒ 	 (M, . . .1 , . . .2); (3) τ -reduction rules, which remove super-

fluous τ s, such as ∧(. . . , M, τ) ⇒ ∧(. . . , M); and (4) rules that establish the relation

between concurrency and other operators, such as ↔ (M1, . . . Mn) ⇒ ∧(M1, . . . Mn) with

∀16i6n,t∈L(Mi) |t | 6 1.

The set of rules is terminating, that is, to any process tree only a finite number of rules

can be applied sequentially; the set is locally confluent, that is, if two rules are applicable to

a single tree, yielding trees A and B, then it is possible to reduce A and B to a common tree

C ; and by extension, the set of rules is confluent and canonical. For more details, please refer

to [40, p. 118].

123

1051

S. J. J. Leemans, D. Fahland

As a result, the rules are canonical, so in the remainder of this paper, we only need to

consider process trees in canonical normal form, to which we refer as reduced process trees; a

reduced process tree is a process to which the reduction rules have been applied exhaustively.

This allows us to reason based on the structure of reduced trees, rather than on the behaviour

of arbitrarily structured trees.

5 Preservation and recovery with directly follows graphs

In order to study the information preserved in abstractions, in this section we study the first

abstraction: directly follows graphs. This abstraction has been well studied in context of

process discovery. For instance, in the context of the alpha-algorithm, the directly follows

abstraction has been shown to preserve information about a certain class of Petri nets. In this

section, we show that directly follows graphs preserve even more information than previously

known.

We first formally introduce the abstraction, after which we introduce characteristics of the

recursive process tree operators in the abstraction: footprints. Using these footprints, we show

that every two reduced process trees that are structurally different have different abstractions.

That is, we show that if two trees have the same directly follows abstraction, then there cannot

be a structural difference between the two trees. For subsequent abstractions in this paper,

which get more involved, we will use a similar proof strategy.

We first introduce the abstraction. Second, we introduce the footprints of the recursive

process tree operators in this abstraction. Third, we introduce a class of recursively defined

languages and show that this class is tight, that is, structurally different trees outside this class

might yield the same abstraction. Finally, we show that different normal forms within the

class have different abstractions (and hence languages), thereby using the research framework

of Sect. 2.

5.1 Directly follows graphs

A directly follows graph abstracts from a language by only expressing which activities (the

nodes of the graph) are followed directly by which activities in a trace in the language.

Furthermore, a directly follows graph expresses the activities with which traces start or end

in the language, and whether the language contains the empty trace.

Definition 5.1 (directly follows graph) Let 6 be an alphabet and let L be a language over 6

such that ǫ /∈ 6. Then, the directly follows graph αdfg of L consists of:

αdfg(a, b) ⇔ ∃t∈L t = 〈. . . a, b, . . .〉

a ∈ Start(αdfg) ⇔ ∃t∈L t = 〈a, . . .〉

a ∈ End(αdfg) ⇔ ∃t∈L t = 〈. . . , a〉

ǫ ∈ αdfg ⇔ ∃t∈L t = ǫ

For a directly follows graph αdfg, 6(αdfg) denotes the alphabet of activities, i.e. the nodes

of αdfg.

For instance, let L4 = {〈a, b, c〉, 〈a, c, b〉, ǫ} be a language. Then, the directly follows

graph of L4 consists of the edges αdfg(a, b), αdfg(b, c), αdfg(a, c), αdfg(c, b). The start activity

is a, the end activities are b and c and the directly follows graph contains ǫ. A graphic

representation of this directly follows graph is shown in Fig. 4.

123

1052

Information-preserving abstractions of event data in process mining

a

b

c

ǫ

Fig. 4 An example of a directly follows graph: αdfg(L4)

5.2 Footprints

Each process tree operator has a particular characteristic in a directly follows graph, a foot-

print. We will use footprints in our uniqueness proofs to show differences between trees:

if one tree contains a particular footprint and another one does not, the languages of these

trees must be different. Furthermore, process discovery algorithms can use footprints to infer

syntactic constructs that capture the abstracted behaviour.

In this section, we introduce these characteristics and show that process tree operators

exhibit them.

A cut is a tuple (⊕, 61, . . . 6m), such that ⊕ is a process tree operator and 61 . . . 6m are

sets of activities. A cut is non-trivial if m > 1 and no 6i is empty.

Definition 5.2 (directly follows footprints) Let αdfg be a directly follows relation and

let c = (⊕, 61, . . . 6n) be a cut, consisting of a process tree operator ⊕ ∈ {×,→,↔,∧,	}

and a partition of activities with parts 61 . . . 6n such that 6(αdfg) =
⋃

16i6n 6i and

∀16i< j6n 6i ∩ 6 j = ∅.

– Exclusive choice. c is an exclusive choice cut in αdfg if ⊕ = × and

x.1 No part is connected to any other part:

Σ1 Σ2
. . . Σn

– Sequential. c is a sequence cut in αdfg if ⊕ =→ and

s.1 Each node in a part is indirectly and only connected to all nodes in the parts “after” it:

Σ1 Σ2
. . . Σn

– Interleaved. c is an interleaved cut in αdfg if ⊕ =↔ and

i.1 Between parts, all and only connections exist from an end to a start activity:

Σ1 Σ2
. . . Σn

123

1053

S. J. J. Leemans, D. Fahland

– Concurrent. c is a concurrent cut in αdfg if ⊕ = ∧ and

c.1 Each part contains a start and an end activity.

c.2 All parts are fully interconnected.

Σ1

Σ2

. . . Σn

– Loop. c is a loop cut in αdfg if ⊕ =	 and

l.1 All start and end activities are in the body (i.e. the first) part.

l.2 Only start/end activities in the body part have connections from/to other parts.

l.3 Redo parts have no connections to other redo parts.

l.4 If an activity from a redo part has a connection to/from the body part, then it has

connections to/from all start/end activities.

Σ1

Σ2

. . .

Σn

A formal definition is included in “Appendix B.1”.

For instance, consider the directly follows graph of L4 shown in Fig. 4: in this graph, the

cut (→, {a}, {b, c}) is a →-cut.

Inspecting the semantics of the process tree operators (Definition A.1), it follows that in

the directly follows graphs of process trees, these footprints are indeed present:

Lemma 5.1 (Directly follows footprints) Let M = ⊕(M1, . . . Mm) be a process tree without

duplicate activities, with ⊕ ∈ {×,→,↔,∧,	}. Then, the cut (⊕, 6(M1), . . . 6(Mn)) is a

⊕-cut in αdfg(M) according to Definition 5.2.

5.3 A class of trees: Cdfg

Not all process trees can be distinguished using the introduced footprints. In this section,

we describe the class of trees that can be distinguished by directly follows graphs: Cdfg. To

123

1054

Information-preserving abstractions of event data in process mining

(a) (b)

Fig. 5 An example for the necessity of Requirement Cdfg.l.1

illustrate that this class is tight, we give counterexamples of pairs of trees outside of Cdfg and

show that these trees cannot be distinguished using their directly follows graphs.

Definition 5.3 (Class Cdfg) Let 6 be an alphabet of activities. Then, the following process

trees are in Cdfg:

– a with a ∈ 6 is in Cdfg

– Let M1 . . . Mn be reduced process trees in Cdfg without duplicate activities:

∀i∈[1...n],i 6= j∈[1...n] 6(Mi) ∩ 6(M j) = ∅. Then,

• ⊕(M1, . . . Mn) with ⊕ ∈ {×,→,∧} is in Cdfg;

• ↔ (M1, . . . Mn) is in Cdfg if all:

i.1 At least one child has disjoint start and end activities:

∃i∈[1...n] Start(Mi) ∩ End(Mi) = ∅;

i.2 No child is interleaved itself:

∀i∈[1...n] Mi 6=↔ (. . .);

i.3 Each concurrent child has at least one child with disjoint start and end activities:

∀i∈[1...n]∧Mi =∧(Mi1
,...Mim) ∃ j∈[1...m] Start(Mi j

) ∩ End(Mi j
) = ∅

• 	 (M1, . . . Mn) is in Cdfg if:

l.1 the first child has disjoint start and end activities:

Start(M1) ∩ End(M1) = ∅.

These requirements are tight as for each requirement there exists counterexamples of

the following form: two process trees whose syntax violates the requirement and who have

different languages but have identical directly follows graphs. Consequently, the two trees

cannot be distinguished by the directly follows abstraction.

Figure 5 illustrates the counterexample for Cdfg.l.1. This requirement has some similarity

with the so-called short loops of the α algorithm [1].

The counterexamples for Cdfg.i.1, Cdfg.i.2 and Cdfg.i.3 follow a similar reasoning and are

given in “Appendix C.1”.

Trees with τ and ∨ nodes are excluded from Cdfg entirely. The corresponding counterex-

amples for the directly follows abstraction and how to preserve information on τ and ∨ will

both be discussed in Sect. 7.

A weaker requirement one could consider to replace Cdfg.l.1is that at least one child

of the loop should have disjoint start and end activities: M ′ =	 (M ′
1, . . . M ′

n) :

∃16i6n Start(M ′
i) ∩ End(M ′

i) = ∅. This weaker requirement would allow both M7 and

M8 (see Fig. 6), i.e. c can be in the redo of the inner or outer 	-nodes. However, the coun-

terexample in Fig. 6 shows that this weaker constraint is not strong enough.

123

1055

S. J. J. Leemans, D. Fahland

(a) (b)

Fig. 6 A counterexample that a weaker constraint, which would state that at least one child of a 	 node should
have disjoint start and end activities, would not suffice to replace Requirement Cdfg.l.1

5.4 Uniqueness

Now that all concepts for abstraction and recovery have been introduced, what is left is to

prove for αdfg which behaviour can be preserved. Here, we provide the lemmas and theorems

according to the framework of Sect. 2 to establish the fundamental formal limits. This proof

structure will be reused on the more complex abstractions later.

That is, in this section, we prove that two structurally different reduced process trees of

Cdfg always have different directly follows graphs. To prove this, we exploit the recursive

structure of process trees: we first show that if the root operator of two process trees differs,

then their directly follows graphs differ. Second, we show that if the activity partition (that

is, the distribution of activities over the children of the root) of two trees differs, then their

directly follows graphs differ. These two results yield that any structural difference over the

entire tree will result in a different directly follows graph.

Lemma 5.2 (Operators are mutually exclusive) Take two reduced process trees of Cdfg K =

⊕(K1, . . . Kn) and M = ⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6= αdfg(M).

This lemma is proven by showing that for each pair of operators, there is always a difference

in their directly follows graphs. For instance, the directly follows graph of a × node is not

connected, while all other operators make the graph connected. For a detailed proof, please

refer to “Appendix D.1”.

Lemma 5.3 (Partitions are mutually exclusive) Take two reduced process trees of Cdfg

K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm) such that their activity partition is different:

∃16w6min(n,m) 6(Kw) 6= 6(Mw). Then, αdfg(K) 6= αdfg(M).

For this proof, we assume a fixed order of children for the non-commutative operators →

and 	. Then, we show, for each operator, that a difference in activity partitions leads to a

difference in directly follows graphs. For a detailed proof, please refer to “Appendix D.2”.

Lemma 5.4 (Abstraction uniqueness for Cdfg) Take two reduced process trees of Cdfg K and

M such that K 6= M. Then, αdfg(K) 6= αdfg(M).

Proof Towards contradiction, assume that there exist two reduced process trees K and M ,

both of Cdfg, such that αdfg(K) = αdfg(M), but K 6= M . Then, there exist topmost subtrees

K ′ in K and M ′ in M such that αdfg(K ′) = αdfg(M ′) and such that K ′, M ′ are structurally

different in their activity, operator or activity partition, i.e. either

123

1056

Information-preserving abstractions of event data in process mining

(a) (b) (c) (d) (e)

Fig. 7 Example of two process trees outside of Cdfg that have the same directly follows graph. In this section,
we introduce the new minimum self-distance abstraction (αmsd) and corresponding footprints that distinguish
these trees

– K ′ or M ′ is a τ , while the other is not. Then, obviously αdfg(K ′) 6= αdfg(M ′).

– K ′ or M ′ is a single activity while the other is not. Then, by the restrictions of Cdfg,

αdfg(K ′) 6= αdfg(M ′).

– K ′ = ⊗(K ′
1 . . . K ′

n) and M ′ = ⊕(M ′
1 . . . M ′

n) such that ⊕ 6= ⊗. By Lemma 5.2,

αdfg(K ′) 6= αdfg(M ′).

– K ′ = ⊕(K ′
1 . . . K ′

n) and M ′ = ⊕(M ′
1 . . . M ′

n) such that the activity partition is different,

i.e. there is an i such that 6(K ′
i) 6= 6(M ′

i). By Lemma 5.3, αdfg(K ′) 6= αdfg(M ′).

Hence, there cannot exist such K and M , and therefore, αdfg(K) 6= αdfg(M). ⊓⊔

As a language abstraction is solely derived from a language, different directly follows

graphs imply different languages (the reverse not necessarily holds), we immediately con-

clude uniqueness:

Corollary 5.1 (Language uniqueness for Cdfg) There are no two different reduced process

trees of Cdfg with equal languages. Hence, for trees of class Cdfg, the normal form of Sect. 4

is uniquely defined.

6 Preservation and recovery withminimum self-distance

A structure that is difficult to distinguish in directly follows graphs is the nesting of 	 and ∧

operators, resembling the so-called short loops of the α algorithm. For instance, Fig. 7 shows

an example of two process trees with such a nesting, having the same directly follows graph.

In Cdfg, such nestings were excluded.

In this section, we introduce a new abstraction, the minimum self-distance abstraction, that

distinguishes some of such nestings by considering which activities must be in between two

executions of the same activity. As illustrated in Fig. 7, the minimum self-distance abstraction

captures more information of process trees, enabling discovery and conformance checking

algorithms to distinguish the languages of these trees.

The remainder of this section follows a strategy similar to Sect. 5: first, we introduce

the language abstraction of minimum self-distance graphs. Second, we introduce adapted

footprints of the recursive process tree operators in minimum self-distance graphs. Third, we

characterize the extended class of recursively defined languages and show where this class is

tight (conditions cannot be dropped). Fourth, we show that different trees in normal form of

this class have different combinations of directly follows graphs and minimum self-distance

graphs (and hence languages), using the research framework of Sect. 2.

123

1057

S. J. J. Leemans, D. Fahland

a b

c

Fig. 8 Minimum self-distance graph of L11

6.1 Minimum self-distance

The minimum self-distance m of an activity is the minimum number of events in between

two executions of that activity:

Definition 6.1 (Minimum self-distance) Let L be a language, and let a, b ∈ 6(L). Then,

m(a) =

{

min〈...,a,...1,a,...〉∈L | . . .1 | if ∃〈...,a,...1,a,...〉∈L

∞ otherwise

A minimum self-distance graph αmsd is a directed graph whose nodes are the activities

of the alphabet 6. An edge αmsd(a, b) in a minimum self-distance graph denotes that b

is a witness of the minimum self-distance of a, i.e. activity b can appear in between two

minimum-distant executions of activity a:

Definition 6.2 (Minimum self-distance graph) Let L be a language, and let a, b ∈ 6(L).

Then,

αmsd(a, b) ≡ ∃〈...,a,...1,a,...〉∈L b ∈ . . .1 ∧ | . . .1 | = m(a)

For a minimum self-distance graph αmsd, 6(αmsd) denotes the alphabet of activities, i.e.

the nodes of αmsd.

For instance, consider the log L11 = {〈a, b〉, 〈b, a, c, a, b〉, 〈a, b, c, a, b, c, b, a〉}. In this

log, the minimum self-distances are m(a) = 1, m(b) = 1 and m(c) = 2, witnessed by the

subtraces 〈a, c, a〉 (for a), 〈b, c, b〉 (for b) and 〈c, a, b, c〉 (for c). Thus, the minimum self-

distance relations are αmsd(a, c), αmsd(b, c), αmsd(c, a) and αmsd(c, b). Figure 8 visualizes

this minimum self-distance relation as a graph.

6.2 Footprints

In this section, we introduce the characteristics that process tree operators leave in minimum

self-distance graphs.

Definition 6.3 (minimum self-distance footprints) Let αmsd be a minimum self-distance graph

and let c = (⊕, 61, . . . 6n) be a cut, consisting of a process tree operator ⊕ ∈ {×,→,↔,

∧,	} and a partition of activities with parts 61 . . . 6n such that 6(αmsd) =
⋃

16i6n 6i and

∀16i< j6n 6i ∩ 6 j = ∅.

– Concurrent and interleaved. If ⊕ = ∧ or ⊕ =↔, then in αmsd:

ci.1 There are no αmsd connections between parts:

Σ1 Σ2
. . . Σn

123

1058

Information-preserving abstractions of event data in process mining

– Loop. If ⊕ =	 then in αmsd:

l.1 Each activity has an outgoing edge.

l.2 All redo activities that have a connection to a body activity have connections to the

same body activities:

Σ1 Σ2
. . . Σn

l.3 All body activities that have a connection to a redo activity have connections to the

same redo activities:

Σ1 Σ2
. . . Σn

l.4 No two activities from different redo children have an αmsd-connection:

Σ1 Σ2
. . . Σn

A formal definition is included in “Appendix B.2”.

For instance, consider the example shown in Fig. 7: the two process trees M9 and M10

have the same directly follows graph (Fig. 7c). However, the minimum self-distance graphs

of these two trees differ (Fig. 7d, e). To exploit this difference, the footprints in both graphs

differ: in αmsd(M9), the only footprint is (, {a, b}, {c}), while in αmsd(M9) the only footprint

is (∧, {a, c}, {b}) footprint.

From the semantics of process trees, it follows that these footprints are present in minimum

self-distance graphs of process trees without duplicate activities:

Lemma 6.1 (Minimum self-distance footprints) Let M = ⊕(M1, . . . Mm) be a process

tree without duplicate activities, with ⊕ ∈ {×,→,↔,∧,	}. Then, the cut (⊕, 6(M1),

. . . 6(Mn)) is a ⊕-cut in αmsd(M) according to Definition 6.3.

6.3 A class of trees: Cmsd

Using the minimum self-distance graph, we can lift a restriction of Cdfg partially. In this

section, we introduce the extended class of process trees Cmsd, in which a 	-node can be a

direct child of a ∧-node.

Definition 6.4 (Class Cmsd) Let 6 be an alphabet of activities. Then, the following process

trees are in Cmsd:

– M ∈ Cdfg is in Cmsd;

– Let M1 . . . Mn be reduced process trees in Cmsd without duplicate activities:

∀i∈[1...n],i 6= j∈[1...n] 6(Mi) ∩ 6(M j) = ∅. Then, 	 (M1, . . . Mn) is in Cmsd if:

l.1 the body child is not concurrent:

M1 6= ∧(. . .)

We neither have a proof nor a counterexample for the necessity of Requirement Cmsd.l.1.

Figure 9 illustrates this: the two trees have a different language, an equivalent αdfg-graph

123

1059

S. J. J. Leemans, D. Fahland

(a) (b) (c) (d)

Fig. 9 A counterexample for uniqueness using αmsd footprints: M12 and M13 have a different language and
αmsd-graph, but this does not become apparent in the αmsd-footprint

(shown in Fig. 9b) but a different αmsd-graph (shown in Fig 9c, d). Thus, they could be dis-

tinguished using their αmsd-graph. However, the footprint (Definition 6.3) cannot distinguish

these trees: both cuts (, {a, b, c}, {d}) and (, {a, c, d}, {b}) are valid in both αmsd-graphs,

where (, {a, b, c}, {d}) corresponds to M12 and (, {a, c, d}, {b}) corresponds to M13. This

implies that a discovery algorithm that uses only the footprint cannot distinguish these two

trees. In “Appendix E.1”, we elaborate on this.

6.4 Uniqueness

To prove that the combination of directly follows and minimum self-distance graphs dis-

tinguishes all reduced process trees of Cmsd, we follow a strategy that is similar to the one

used in Sect. 5.4: we first show that, given two process trees, a difference in root operators

implies a difference in either the αdfg or αmsd-abstractions of the trees. Second, we show

that, given two process trees, a difference in root activity partitions implies a difference in the

abstractions. Third, using the first two results, we show that any structural difference between

two process trees implies that the trees have different abstractions. For the full proofs, please

refer to “Appendix E”. Consequently:

Corollary 6.1 (Language uniqueness for Cmsd) There are no two different reduced process

trees of Cmsd with equal languages. Hence, for trees of class Cmsd, the normal form of Sect. 4

is uniquely defined.

7 Preserving and recovering optionality and inclusive choice

The abstractions discussed in previous sections preserve information only if all behaviour is

always fully observable. The αdfg and αmsd abstractions cannot preserve information about

unobservable behaviour, or skips, caused by the inclusive choice operator ∨ or by an alter-

native silent τ step making behaviour optional.

The model M15 in Fig. 10b exhibits optionality of the sequence b, c due to a silent activity

τ under a choice ×. Although its αdfg-graph in Fig. 10c differs from the αdfg-graph of M14 in

Fig. 10a without optionality, the optionality of b, c cannot be recovered as both models have

the same →-footprint of Sect. 5.2. Model M17 in Fig. 11a exhibits skips due to the inclusive

choice operator ∨ and ×(τ, .) under ∧. Yet, its αdfg and αmsd abstractions are identical to the

αdfg and αmsd abstractions (Fig. 11c and d) of the model of Fig. 11b having no skips, making

their behaviour indistinguishable under these abstractions.

In this section, we introduce techniques to preserve and recover information about these

unobservable types of behaviour. We first discuss the influence of optionality on αdfg-

123

1060

Information-preserving abstractions of event data in process mining

(a) (b) (c)

Fig. 10 The process tree M15 is outside of Cmsd. Although they have different abstractions αdfg(M14) 6=

αdfg(M15), their →-footprints are indistinguishable: (→, {a}, {b}, {c}, {d})

(a) (b) (c) (d)

(e) (f) (g)

Fig. 11 The two models M16 ∈ Cmsd and M17 /∈ Cmsd have different behaviour but the same αdfg-graph (c)
and the same αmsd-graph (d). Information about τ and ∨ in M17 is preserved in the αcoo-graphs in (f) and (g)

footprints and exclude some cases, in particular some types of loops, from further discussion

in this paper (Sect. 7.1). We then follow our framework and provide abstractions and foot-

prints to preserve information about optionality and inclusive choices. We show that partial

cuts (that consider only a subset of the activities in a language) allow to localize skips.

For example, to recover the optionality in αdfg(M15) of Fig. 10c, we find the partial →-

cut footprint (→, {b}, {c}) as a subgraph that adheres to the →-cut of Sect. 5.2 and can

be tightly skipped by αdfg(M15)(a, d). We formalize this notion and show that it correctly

recovers skips in a sequence from αdfg in Sect. 7.2.

Preserving information about ∨ requires an entirely new abstraction as the αdfg-graph for

∨ and ∧ is identical. We introduce the concurrent-optional-or (coo, αcoo) abstraction which

preserves information on a family of graphs “bottom-up”. For instance, the traces of M17

such as 〈b〉, 〈a, b〉, 〈c, d, b〉, 〈c, b, d, a〉, 〈c, d〉 and 〈c, d, a〉 show that if {a} occurs there is a

similar trace in which {a} does not occur ({a} is optional), and that if any of the sets {b} and

{c, d} occur, then similar traces with any combination of {b} and {c, d} occur as well (are

interchangeable), which we encode in the coo-graph of Fig. 11f. A pattern for also relating

{a} emerges by grouping b, c and d: the presence of {a} in a trace implies the occurrence of

{b, c, d} in that trace (but not vice versa), which we encode in the coo-graph of Fig. 11g. Both

coo-graphs together are the αcoo-abstraction of M17. Similarly, Fig. 11e is the αcoo-abstraction

of 11a. In Sect. 7.3, we further explain and define αcoo for languages and we show that ∨, ∧,

and ×(τ, .) can be correctly recovered from αcoo through corresponding partial cut footprints.

123

1061

S. J. J. Leemans, D. Fahland

In Sect. 7.4, we characterize the class Ccoo of behaviour (in terms of process trees) and prove

that αdfg, αmsd, and αcoo abstractions and footprints together uniquely preserve behavioural

information in Ccoo, thereby using the research framework outlined in Sect. 2.

7.1 Optionality

Unobservable skips can be described syntactically by an ×(τ, .) construct and a 	 (τ, .) con-

struct, making one or more subtrees optional. We discuss the influence of optional behaviour

on abstractions for these two cases.

The effect of a ×(τ, .) construct is that its subtree is optional, that is, it can be skipped.

We call a process tree optional (?) if its language contains the empty trace:

Definition 7.1 (optionality)

?(M) ≡ ǫ ∈ L(M)

Optionality has surprisingly little direct influence on the directly follows graph: in a

directly follows graph, optionality shows up as an empty trace (by Definition 5.1).

Lemma 7.1 (×(τ, .) footprint) Let M be a process tree such that ?(M). Then, ǫ ∈ αdfg(M).

However, optionality may influence the footprints in the αdfg-graph of other behaviour

it is embedded in, that is, when an optional subtree is below another operator. The case of

×(τ, .) under × can be eliminated through syntactical normal forms; ×(τ, .) under ↔ does

not influence the footprints in the αdfg-graph [40, p. 150]. The case of ×(τ, .) under →

changes the αdfg-graph and requires a new →-footprint which we introduce in Sect. 7.2.

The cases of ×(τ, .) under 	 and of 	 (τ, .) also change the αdfg-graph but cannot be

recovered by existing 	-footprints. However, in contrast to →, we may find two syntactically

different models with ×(τ, .) under 	 and 	 (τ, .) which have identical languages, which

renders our proof strategy inapplicable as it relies on the assumption that each behaviour

(language) has a unique syntactic description, see [40, p. 150] for details. We exclude these

cases in the following.

Finally, the αdfg-graph cannot distinguish whether ×(τ, .) is present under ∧ or not. Like-

wise, ∨ and ∧ yield the same αdfg-graph. Preserving information requires a new abstraction

which we introduce in Sect. 7.3.

In [20], five types of silent Petri net transitions were identified: Initialize and Finalize,

which start or end a concurrency, are captured by the ∧-operator and considered in this

work. Skips, which bypass one or more transitions, are the transitions under study in this

section, that is, ×(τ, .)-constructs and ∨-constructs, see Fig. 3. Redo, which allows the model

to go back and redo transitions, are not studied in this paper, that is, 	 (., τ)-constructs.

Switch-transitions, which allow jumping between exclusive branches, have no equivalent in

block-structured models and are typically mimicked by duplicating activities.

7.2 Sequence

The example of Fig. 10 showed that optionality cannot be detected from αdfg when it is

contained in a sequence. The reason is, as shown in the proofs for αdfg, that the footprints of

Sect. 5.2 recover behaviour for all activities together, i.e. the →-cut at the root level, from

the αdfg abstraction. As shown, in the presence of ×(τ, .)-constructs, a new directly follows

footprint is necessary for →.

123

1062

Information-preserving abstractions of event data in process mining

To detect optionality for only a subset of activities, we use cuts that partition an alphabet

only partially, called partial cuts. Our proof strategy will be to show that if two trees differ

in the αdfg-abstraction, then they differ in at least one such partial cut showing a particular

→ relation that can be recovered from αdfg.

Definition 7.2 (partial cut) Let 6 be an alphabet of activities and let ⊕ be a process tree

operator. Then, (⊕, 61, . . . 6n) is a partial cut of 6 if 61, . . . 6n ⊆ 6 and ∀16i< j6n 6i ∩

6 j = ∅. A partial cut expresses an ⊕-relation between its parts 61 . . . 6n .

For the partial →-cut footprint, one set 6p of activities has a special role which we call

a pivot. Intuitively, occurrence of a ∈ 6p signals the occurrence of the optional behaviour:

if one of the activities in the partial cut appears in a trace, then the pivot must appear in the

trace as well.

Definition 7.3 (Partial→-cut footprint) Let 6 be an alphabet of activities, let αdfg be a

directly follows graph over 6 and let C = (→, S1, . . . Sm) be a →-cut of αdfg according to

Definition 5.2. Then, a partial cut (→, 61, . . . 6n) is a partial →-cut if there is a pivot 6p

such that in αdfg:

Ss 1 Σ1 Σi ΣnΣ1 Σp Σn Ss n

s.1 The partial cut is a consecutive part of C .

s.2 There are no end activities before the pivot in the partial cut.

s.3 There are no start activities after the pivot in the partial cut.

s.4 There are no directly follows edges bypassing the pivot in the partial cut.

s.5 The partial cut can be tightly avoided:

“Appendix B.3” provides the complete formal definition and proves information preser-

vation according to our framework: in a process tree each →-node has a pivot and adheres to

the footprint. The proof that the pivot, and hence the →-node, can be uniquely rediscovered

uses that by the reduction rules, at least one of the children of any →-node is not optional.

This child is the pivot, and by the reduction rules, a pivot cannot be a sequential node itself.

For instance, consider the process trees M14 and M15 shown in Fig. 10. Their directly

follows graphs shown in Fig. 10c are obviously different, and this becomes apparent in

the new directly follows footprint: in αdfg(M14), there is no pivot present, and therefore,

there is partial cut that satisfies Definition 7.3 (this allows the conclusion that there is no

nested →-behaviour). However, in αdfg(M15), both b and c are pivots, yielding the partial

→-cut (→, {b}, {c}). Intuitively, considering the structure of the directly follows graph, the

combination of b and c forms a partial cut because executing either implies executing the

other, but both together can be avoided.

7.3 Inclusive choice

7.3.1 Idea

Preserving and recovering inclusive choice require remembering more behaviour than what is

stored in αdfg as illustrated by Fig. 11. We show that this additional information can be stored

123

1063

S. J. J. Leemans, D. Fahland

and recovered in a new abstraction, called αcoo. The different nature of the αcoo-abstraction

requires a slightly different proof and reasoning strategy as we illustrate next on the example

tree M17 of Fig. 11 before providing the definitions.

While the directly follows graph does not suffice to distinguish M17 from other process

trees, it yields the concurrent cut C = (∧, {a}, {b}, {c, d}). From this concurrent cut, we

conclude that c and d are not of interest for distinguishing ∨- from ∧-behaviour; thus, we

group them together.

From this concurrent cut, we work our way upwards. That is, we consider the αcoo-graph

for our partition {{a}, {b}, {c, d}}, shown in Fig. 11f. In this αcoo-graph, we identify a footprint

that involves two or more sets of activities of the partition. In our example, we identify that

the sets {b} and {c, d} are related using ∨. Then, we merge b, c and d in our partition, which

becomes {{a}, {b, c, d}} and repeat the procedure.

Figure 11g shows the αcoo-graph belonging to {{a}, {b, c, d}}. In this graph, a footprint is

present linking {a} to {b, c, d} using ∧. Thus, we have shown that the αcoo-abstraction, that

is, the family of graphs αcoo(M17), can only belong to a process tree with root ∧ and activity

partition {a}, {b, c, d}.

The proof strategy of this section formalizes each of these steps and proves that at each

step, footprints can only hold in the relevant αcoo-graph if and only if they correspond to

nodes in the tree.

7.3.2 Coo-abstraction

A coo-abstraction αcoo is a family of coo-graphs, that is, a coo-abstraction contains a coo-

graph for each partition of the alphabet of the language. Intuitively, the coo-abstraction

indicates dependencies between the sets of activities that can occur in the language described

by the αcoo-abstraction. Therefore, we first introduce a helper function that expresses which

sets of activities occur together in a language. Second, we introduce coo-graphs and third,

the coo-abstraction.

Definition 7.4 (occurrence function fo) Let S = {61, . . . 6n} be a partition, let t be a trace

and let L be a language. Then, the occurrence function of t under S yields the sets of S that

occur in t or L:

fo(t, S) = {6i | 6i ∈ S ∧ 6i ∩ 6(t) 6= ∅}

fo(L, S) = { fo(t, S) | t ∈ L}

For instance:

L18 = {〈a, b〉, 〈d, c〉, 〈d, a, c, b〉,

〈a, b, e〉, 〈e, d, c〉, 〈e, a, d, b, c〉}

S18 = {{a, b}, {c}, {d}, {e}}

fo(L18, S18) = {{{a, b}}, {{c}, {d}}, {{a, b}, {c}, {d}},

{{a, b}, {e}}, {{c}, {d}, {e}}, {{a, b}, {c}, {d}, {e}}}

Using this occurrence function, we can define coo-graphs. A coo-graph expresses three

types of properties of and between sets:

– The unary optionality (?) expresses that if the set occurs in a trace, then there is a trace

without the set as well;

123

1064

Information-preserving abstractions of event data in process mining

(a) (b)

(c)

Fig. 12 Several examples of coo-graphs for the language L18 and several partitions. Groups of activities are
denoted by blue regions

– The binary implication (⇒) expresses that if one set occurs, then the other set occurs as

well;

– The binary interchangeability (∨) expresses that if one of the two sets occur, then either

or both can occur.

Notice that ⇒-edges are directed, while ∨-edges are undirected. Formally:

Definition 7.5 (coo-graph αcoo) Let L be a language, let S be a partition of 6(L) and let

A, B ∈ S. Then, a coo-graph αcoo(L, S) is a graph in which the nodes are the activities of

6(L) and the edges connect sets of activities of S:

?(A) ≡ ∀t∈ fo(L,S) A ∈ t ⇒ t\{A} ∈ fo(L, S)

A⇒B ≡ ∀t∈ fo(L,S) A ∈ t ⇒ B ∈ t

A ∨ B ≡ ∀t∈ fo(L,S) (A ∈ t ∨ B ∈ t) ⇒ (t ∪ {A, B} ∈ fo(L, S) ∧

(t ∪ {A})\{B} ∈ fo(L, S) ∧

(t ∪ {B})\{A} ∈ fo(L, S))

For instance, Fig. 12 shows several αcoo-graphs of our example log L18. Coo-graphs bear

some similarities with directed hypergraphs [43], however use two types of edges (⇒ and

∨) and a node annotation (?).

Finally, we combine all possible coo-graphs for a language into the coo-abstraction:

Definition 7.6 (coo-abstraction αcoo) Let L be a language. Then, the coo-abstraction αcoo(L)

is the family of coo-graphs consisting of one coo-graph αcoo(L, S) for each possible partition

S of 6(L).

In the remainder of this section, we might omit L: αcoo denotes a particular coo-abstraction

and αcoo(S) denotes one of its coo-graphs for a particular partition S. Next, we introduce

footprints that link the coo-relations to process tree operators.

7.3.3 Footprints

For inclusive choice and concurrency, we can now introduce the αcoo-abstraction footprints.

We first give the footprints, after which we illustrate them using an example.

123

1065

S. J. J. Leemans, D. Fahland

Definition 7.7 (partial ∨-cut) Let 6 be an alphabet of activities, S a partition of 6, let αcoo(S)

be a coo-graph, let αdfg be a directly follows graph, and let C = (∨, 61, . . . 6n) be a partial

cut such that ∀16i6n 6i ∈ S. Then, C is a partial ∨-cut if in αcoo(S) and αdfg:

o.1 C is a part of a αdfg-concurrent cut (Definition 5.2).

o.2 All parts are interchangeable (∨) in αcoo(S)::

Σ1

Σ2

. . . Σn

A formal definition is included in “Appendix B.4”.

Definition 7.8 (partial ∧-cut) Let 6 be an alphabet of activities, S a partition of 6, let αcoo(S)

be a coo-graph, let αdfg be a directly follows graph, and let C = (∧, 61, . . . 6n) be a partial

cut such that ∀16i6n 6i ∈ S. Then, C is a partial ∧-cut if in αcoo(S) and αdfg:

c.1 C is a part of an αdfg-concurrent cut (Definition 5.2).

Furthermore, in αcoo(S):

– EITHER –

c.2.1 All parts bi-imply (⇒) one another::

Σ1

Σ2

. . . Σn

– OR –

c.3.1 The first part is optional (?).

c.3.2 The first part implies all other parts.

c.3.3 All non-first parts bi-imply one another.

c.3.4 No non-first part 6i is implied by any part not in C ::

Σ1

Σ2

. . . Σn

123

1066

Information-preserving abstractions of event data in process mining

A formal definition and a proof that these footprints apply in process trees without duplicate

activities are included in “Appendix B.5”.

For instance, consider a process tree M19 without duplicate activities, and one of its

subtrees M20 = ∨(M1, M2), in which M1 and M2 are arbitrary subtrees. Furthermore,

consider a partition S of the activities of M20. In the language of M20, whenever in a trace

M1 is executed, there must be a similar trace in which both M1 and M2 are executed, and

there must be a trace in which M2 is executed but M1 is not. Then in αcoo(L(M19), S), the

coo-relation 6(M1)∨ 6(M2) holds, and hence, (∨, 6(M1),6(M2)) is a partial ∨-cut of

αcoo(L(M19), S).

7.4 A class of trees: Ccoo

In this section, we introduce the class of trees that we consider for the handling of ∨- and

×(τ, .)-constructs: Ccoo. This class of trees extends Cdfg by including ∨-nodes and some

τ -leaves.

Definition 7.9 (Class Ccoo) Let 6 be an alphabet of activities, then the following process

trees are in Ccoo:

– τ is in Ccoo;

– a with a ∈ 6 is in Ccoo;

– Let M1 . . . Mn be reduced process trees in Ccoo without duplicate activities:

∀i∈[1...n],i 6= j∈[1...n] 6(Mi) ∩ 6(M j) = ∅. Then,

• A node ⊕(M1, . . . Mn) with ⊕ ∈ {×,→,∧,∨} is in Ccoo

• An interleaved node ↔ (M1, . . . , Mn) is in Ccoo if all:

i.1 At least one child has disjoint start and end activities: ∃i∈[1...n] Start(Mi) ∩

End(Mi) = ∅

i.2 no child is interleaved itself: ∀i∈[1...n] Mi 6=↔ (. . .)

i.3 no child is optionally interleaved: ∀i∈[1...n] Mi 6= ×(τ,↔ (. . .))

i.4 each concurrent or inclusive choice child has at least one child with disjoint start and

end activities: ∀i∈[1...n] Mi = ⊕(M ′
1, . . . M ′

m) ⇒ ∃ j∈[1...m] Start(M ′
j)∩End(M ′

j) =

∅ with ⊕ ∈ {∧,∨}

• A loop node 	 (M1, . . . Mn) is in Ccoo if all:

l.1 the body child is not concurrent: M1 6= ∧(. . .)

l.2 no redo child can produce the empty trace: ∀i∈[2...n] ǫ /∈ L(Mi)

Notice that Cdfg ⊆ Cmsd ⊆ Ccoo. We illustrate the necessity of the newly added or relaxed

requirements:

– Requirement Ccoo.i.3: the child of an interleaved node cannot be an optional interleaved

node. Nested interleaved nodes cannot be distinguished using directly follows graphs, as

was shown in Sect. 5.3. As an optional nested interleaved has the same directly follows

graph as a nested interleaving, a similar argument applies here.

– Requirement Ccoo.l.2: redo children of loops cannot be optional. As shown in Sect. 7.1,

the reduction rules of Sect. 4 are not strong enough to distinguish trees with 	 (., τ) con-

structs. Furthermore, as shown in Sect. 7.1, optional children under a 	 might invalidate

directly follows footprints.

123

1067

S. J. J. Leemans, D. Fahland

From our discussion in Sect. 7.1, it follows that ×(τ, .) constructs preserve the footprints

of the process tree operators ×, →, ↔, ∧ and 	 for trees in Ccoo.

Corollary 7.1 (optionality preserves cuts) Take two reduced process trees M ∈ Cdfg, and

M ′ ∈ Ccoo, such that M = ⊕(M1, . . . Mm), M ′ = ⊕(M ′
1, . . . M ′

n) and each M ′
i is equal to

either Mi or ×(τ, Mi). Then, αdfg(M ′) contains a cut (⊕, 6(M1) . . . 6(Mm)), i.e. a footprint

according to Definition 5.2.

7.5 Uniqueness

In this section, we show that the coo-abstraction in combination with the directly follows

abstraction provides enough information to distinguish all languages of Ccoo. To prove this,

we follow a strategy similar to the proofs for directly follows graphs and minimum self-

distances: we first show that if the root operators of two process trees are different, then their

abstractions must be different.

First, we show that the introduced αdfg-footprints for nested →- and ×(τ, .)-structures

are correct (“Appendix F.1”). That is, that each two different process trees of Ccoo with top

parts consisting of such constructs have different directly follows graphs. Second, we show

that the introduced αcoo-footprints and the reasoning procedure illustrated in Sect. 7.3.1 are

correct. That is, that each two different process trees of Ccoo with top parts consisting of

nested ∨-, ∧- or ×(τ, .)-constructs have different αcoo-graphs (“Appendix F.2”). Third, we

show that if the partition of activities over the direct children of the root is different, then

their abstractions must be different, and that hence the abstractions are uniquely defined

(“Appendix F.3”).

Consequently, uniqueness holds:

Corollary 7.2 (Uniqueness for Ccoo) There are no two different reduced process trees of Ccoo

with equal languages: for all reduced K 6= M of Ccoo, L(K) 6= L(M).

8 Application and evaluation on real-life logs

In the previous sections, we showed under which circumstances behavioural information

captured in αdfg, αmsd and αcoo can be exactly recovered. In this section, we evaluate

the practical applicability, relevance and robustness of these abstractions and their foot-

prints for process discovery on 13 real-life event logs:1 BPIC11, BPIC12, BPIC13 (closed

problems, incident), BPIC14, BPIC15(1 − 5), BPIC17, Road Traffic Fine Management and

Sepsis.

We wanted to investigate (Q1) how much αdfg alone suffices for process discovery on

real-life event logs, and (Q2) whether and how much αmsd, optionality footprints, and αcoo

contribute to discovering processes on real-life event logs.

We used the Inductive Miner framework [40] to compare the effect of the different abstrac-

tions in algorithms that all follow the same principle. All these algorithms discover a process

model from an event log in a recursive way: they abstract the log and search for footprints.

If a footprint is found, then the log is split accordingly, the footprint is recorded as a process

tree node and recursion continues on the sublogs. If no footprint is found in a sublog, then a

generalization (fall through) is applied. In some cases, such a fall through allows the recursion

1 Available from https://data.4tu.nl/repository/collection:event_logs_real.

123

1068

https://data.4tu.nl/repository/collection:event_logs_real

Information-preserving abstractions of event data in process mining

to continue. However, as a last resort, a model representing all possible behaviour (a flower

model) is returned by that step of the recursion. In that case, the model will give no insights

and be highly imprecise for the subset of activities in the sublog. Thus, the more footprints

are identified by these algorithms, the more behavioural relations are captured by the syntax

of the discovered model giving more insights into the process. In this experiment, we used

the following four algorithms to compare the ability of the abstractions to identify footprints,

i.e. meaningful behavioural relations, for as many activities as possible:

– Inductive Miner∗ (IM∗), which is a version of Inductive Miner [40], tailor-made for

this experiment, that only uses the directly follows abstraction (αdfg) and the footprints

discussed in Sect. 5.

– Inductive Miner-all operators (IMa) [40] uses the αdfg, αmsd and αcoo abstractions and

all footprints mentioned in this paper.

– Inductive Miner-infrequent (IMf) [40] uses the αdfg and αmsd abstractions and footprints,

and discovers τ constructs (Definition 7.1) and nested →-constructs (Definition 7.3).

Furthermore, IMf filters the αdfg abstraction if necessary to handle infrequent behaviour

(please refer to [40] for more details).

– Inductive Miner-infrequent and all operators (IMfa) [40] combines IMa and IMf: it

uses all abstractions and footprints, and filters the αdfg abstraction to handle infrequent

behaviour if necessary.

We applied the miners to the 13 original logs, as well as to seven versions of the logs

provided by a recent process discovery benchmark [10] from which events were removed for

infrequent behaviour using the technique of [44].2

To answer Q1 and Q2, we measured (0) the number of activities that were included in the

model; (1) the number of footprints that were identified indicating how many meaningful

behavioural relations between activities could be found, (2) the number of activities for which

a footprint could be found, (3) the types of footprints that were identified. Furthermore, we

measured (4) the quality of the resulting model as precision and the recall of the model with

respect to the log. We used the Projected Conformance Checking (PCC) [37] framework to

measure precision and recall, which projects the behaviour of event log and model onto all

subsets of activities (in our experiments, of size k = 2) and computes precision and recall

using automata. The PCC framework with k = 2 was the only measure and parameter setting

for which values could be obtained for all models and logs. We report normalized precision

pn = (p − p f)/(1 − p f) against the precision p f of the flower model.3 The experiment’s

code is available [45].

The results are shown in Table 1 (all intermediate models are available from [46]). Com-

paring IM∗ and IMa for unfiltered logs, group (1) shows that αdfg alone leads to significantly

less discovered footprints (9 on average) than when αmsd and αcoo are also used (300 on aver-

age). Group (2) shows that using αdfg alone only discovers meaningful behavioural relations

for 2% of the activities, whereas also using αmsd and αcoo leads to meaningful behavioural

relations for 71% of the activities on average (93% on filtered logs). Group (3) shows that

in each log either optionality or αcoo footprints (or both) were discovered. Group (4) shows

that the discovery of more footprints (through αmsd and αcoo) increases precision for all logs

(except IMa on the 13.in-log). For the RF-log, the use of αmsd and αcoo alone (IMa) leads to a

highly precise and fully fitting model. Models with optionality footprints introduce invisible

skips which limits the gain in precision.

2 The filtered logs are available from http://doi.org/10.4121/uuid:adc42403-9a38-48dc-9f0a-a0a49bfb6371.
3 NB: if not all activities are present in a process model, PCC might report a negative pn .

123

1069

http://doi.org/10.4121/uuid:adc42403-9a38-48dc-9f0a-a0a49bfb6371

S. J. J. Leemans, D. Fahland

Table 1 the number of footprints identified by IM∗, IMa, IMf and IMfa on filtered and non-filtered real-life
event logs (colour figure online)

logs rec.

Lo
g

IM
f

IM
fa

IM
*

IM
a

IM
f

IM
fa

IM
*

IM
a

IM
f

IM
fa

IM
a

IM
f

IM
fa

IM
a

IM
f

IM
fa

IM
a

IM
fa

IM
*

IM
a

IM
f

IM
fa

IM
f

orig. 206 59% 58% 9 300 139 133 2% 71% 94% 95% 122 78 72 2 3 4 2 5 0.03 0.2 0.53 0.52 0.93

13.cp 4 100% 100% 3 8 3 3 0% 50% 100% 100% 1 1 1 0 0 0 0 0 0 0.19 0.62 0.62 0.88

13.in 4 75% 75% 3 6 5 5 0% 100% 67% 67% 1 0 0 0 0 0 1 0 0 -0.01 0.54 0.54 0.63

RF 11 100% 100% 4 17 13 13 9% 100% 100% 100% 8 8 7 0 1 1 1 1 0.16 0.78 0.87 0.86 0.99

Sep 16 88% 88% 3 23 10 9 0% 69% 100% 100% 6 5 4 0 0 0 0 0 0 0.36 0.76 0.76 0.86

12 24 96% 96% 4 39 30 29 8% 71% 87% 91% 8 4 4 1 0 0 2 1 0.14 0.26 0.36 0.36 0.97

17 26 92% 92% 6 43 25 26 4% 69% 83% 83% 6 8 8 0 0 0 2 1 0.1 0.28 0.35 0.19 0.84

14 39 100% 100% 3 24 25 24 0% 15% 100% 100% 2 11 10 0 1 1 0 1 0 0.02 0.05 0.05 1

15.4 356 65% 65% 19 528 268 257 0% 77% 100% 100% 233 163 148 7 5 7 3 8 0 0.08 0.51 0.51 0.99

15.3 383 75% 75% 18 579 354 339 0% 77% 100% 100% 264 209 187 4 10 13 3 22 0 0.13 0.39 0.39 0.99

15.5 389 57% 57% 3 592 235 227 0% 74% 100% 100% 244 134 125 3 8 9 3 11 0 0.13 0.59 0.59 0.99

15.1 398 61% 61% 17 541 263 252 0% 84% 100% 99% 285 149 138 7 8 9 5 8 0 0.14 0.59 0.58 0.99

15.2 410 54% 54% 25 560 242 239 1% 84% 100% 100% 287 131 126 9 3 4 4 5 0 0.17 0.45 0.45 0.99

11 624 41% 39% 3 937 333 311 0% 57% 91% 91% 235 186 175 0 9 10 2 2 0 0.04 0.84 0.84 0.98

filtered 54 99% 99% 26 79 60 59 12% 93% 95% 100% 40 32 30 4 4 4 1 1 0.01 0.14 0.42 0.39 0.97

14 9 100% 100% 19 13 11 11 11% 89% 67% 100% 2 2 2 0 0 0 1 2 0 0.02 0.05 0.05 1

17 18 100% 100% 18 21 18 18 50% 100% 100% 100% 6 6 6 2 2 2 0 0 0.1 0.28 0.35 0.19 0.84

15.3 62 100% 100% 4 103 70 63 5% 84% 100% 100% 43 38 31 1 0 0 3 4 0 0.13 0.39 0.39 0.99

15.4 65 100% 100% 21 102 79 77 5% 92% 100% 100% 52 38 37 6 6 6 2 1 0 0.08 0.51 0.51 0.99

15.1 70 100% 100% 77 88 71 73 7% 99% 100% 100% 52 40 39 7 6 7 0 0 0 0.14 0.59 0.58 0.99

15.5 74 96% 96% 23 100 75 77 4% 99% 100% 100% 62 43 42 5 7 7 1 1 0 0.13 0.59 0.59 0.99

15.2 82 98% 98% 17 125 95 91 4% 88% 100% 100% 63 55 51 6 5 5 2 2 0 0.17 0.45 0.45 0.99

scale 0% 33% 0 250 500 750 0% 50% 75% 100% 0 60 120 0 10 20 30 0 0.3 0.6 0.9

66% 100% 180 240 300

4) precisisonor0) act 1) footprints 2) % act in footpr. 3) op"onality seq.opt

The algorithms that filter the αdfg abstraction (IMf, IMfa) omit some activities from

the abstraction and ultimately from the model (group (0)). For large unfiltered logs,

39–75% of the activities remain in abstractions, for smaller or filtered logs 100%

remain. By group (2), using only αdfg, αmsd, and the optionality footprints (IMf)

leads to 94% of the remaining activities being in a meaningful behavioural relation;

also using αcoo (IMfa) increases this share further to 95% for the unfiltered and

100% for the filtered logs. Group (3) shows that filtering αdfg reduces the number of

optionality footprints (IMf, IMfa vs IMa) and may increase the αcoo footprint. Group

(4) confirms again that filtering αdfg significantly increases precision while reducing

recall (the last column reports recall for IMf, the value for IMfa differed by at most

0.01). In most cases, using αcoo and αdfg-filtering together has no impact on precision,

but in some cases precision may decrease. The lower number of optionality foot-

prints for the filtered logs can be explained by the filtering procedure of [44], which

seems to remove events that could be skipped in other traces and thus have a lower

frequency.

Altogether, we found that αdfg alone is insufficient to discover process models from real-

life event logs, answering Q1. Furthermore, αmsd, optionality footprints and αcoo lead to

significantly more behavioural relations discovered in all real-life logs. Yet, not all logs

benefit from αcoo, and thus, non-behaviour preserving steps such as filtering αdfg remain

necessary to obtain models of high precision and recall, which answers Q2.

The following examples illustrate the influence of the different abstractions on process

discovery when applying IM∗ (Fig. 13a), IMf (Fig. 13b) and IMfa (Fig. 13c) on BPIC12 [47]

filtered to only contain start and completion events, which was recorded from a loan applica-

tion process in a Dutch financial institution. All three models express that A_ACTIVATED,

O_ACCEPTED, A_APPROVED and A_REGISTERED are executed concurrently, which

holds in > 99% of the traces. However, only in Fig. 13b, c, execution of any activity shown

123

1070

Information-preserving abstractions of event data in process mining

(a)

(b)

(c)

Fig. 13 Excerpts from models discovered by IM∗, IMf and IMfa on the BPI Challenge 2012 log

implies the execution of W_Valideren aanvraag, which also holds in > 99% of the

traces. The model in Fig. 13b describes that W_Nabellen incomplete dossiers

is followed by either O_DECLINED or all four activities below it, but this dependency

is violated in 34% of the traces. In contrast, this dependency is absent in the model in

Fig. 13c due to the inclusive choice gateway. These examples together illustrate that the

use of more footprints and constructs might reveal information that would otherwise remain

123

1071

S. J. J. Leemans, D. Fahland

undiscovered and can increase the reliability of constraints that are recovered from event

logs.

9 Conclusion

In this paper, we studied capabilities of abstractions in process discovery for preserving

and inferring information from event logs. In particular, we formally studied the inherent

limitations of three concrete abstractions for encoding and recovering infinite behaviour from

a finite abstraction. As information cannot be fully preserved on finite abstractions even for

regular languages [8], we focused on block-structured process models. We defined a formal

research framework which we instantiated and applied for three different abstractions. We

tightly characterized the behaviour which can be preserved and recovered from the frequently

used directly follows abstraction αdfg. To overcome the limits of αdfg, we developed the

minimum self-distance αmsd and the concurrent-optional-or αcoo abstractions. We thereby

established for the first time precise boundaries for information preservation and recovery also

for interleaving, unobservable behaviour due to skipping and inclusive choices, demonstrating

the versatility of the research framework.

The principles and hard information-preservation limits identified in this paper have

implications on process mining applications. First, algorithms using any of the discussed

abstractions αdfg, αmsd, αcoo are limited to correctly recovering only models from the classes

these abstractions actually can distinguish; models outside this call will inevitably be misiden-

tified. Second, our results guarantee that on any finite log L ′ ⊆ L(M) of some unknown

process M where α(L ′) = α(L), an algorithm using α has sufficient information to redis-

cover γ (α(L ′)) = M = γ (α(L)). Algorithms such as Inductive Miner [5] use this principle

to obtain information about M from the abstraction α(L ′), but also leverage more infor-

mation from L ′ to handle deficiencies in smaller event logs. Third, the formal results and

our evaluation on 13 real-life logs show that αdfg alone is too limited to reliably preserve

and recover information of real-life processes; any discovery algorithm aiming to reliably

recover all behaviour a real-life process needs to use more information than αdfg, such as

provided by αmsd or αcoo. Fourth, when combining αdfg with αmsd and αcoo, significantly

more behaviour, in particular inclusive choices and unobservable behaviour due to skips,

not considered previously, can be correctly recovered from these abstractions also in the

presence of infrequent and noisy behaviour. Particularly, αmsd and αcoo are central to feasible

outcomes of process discovery on real-life logs. Ultimately, as our results are defined on the

abstractions and independent of any specific discovery algorithm, they can be used in any

process mining technique using abstractions. Information-preservation properties of αdfg are

already exploited in discovering process models from event streams [12] and in maintain-

ing database indexes for efficient discovery from large event data [13,14]. The results of

this work show that to fully preserve and recover behavioural information in these settings,

further abstractions and indices must be developed. The results of this work may provide

templates for the required data structures.

Limitations of our study are that our characterization for behaviour preserved under

abstraction states tight sufficient conditions but lacks necessary conditions. Further, although

the evaluation shows the applicability on real-life logs, we only prove information preserva-

tion and recovery results for block-structured processes with unique activities, leaving other

types of models as future work. The abstraction α determines when a log is complete to allow

discovering the correct model, that is, when α(L ′) = α(L(M)) for L ′ ⊂ L(M). As we have

123

1072

Information-preserving abstractions of event data in process mining

shown, for most processes more than one abstraction have to be considered to preserve all

information. The question when a log L ′ is large enough (also in presence of noise) to be

complete in all relevant abstractions (without knowing L(M)) is an open question to which

this paper may serve as input.

Finally, the results of this paper could inform further research in process mining. The

results obtained in this paper could support the development of better generalization mea-

sures to quantify the degree with which a model captures future, unseen behaviour [2]. The

information preservation by abstractions is also relevant for the management and analysis of

event data in distributed settings, where not all information can or shall be shared explicitly

between two different sources, but instead information-preserving abstractions or projections

of the data may be shared guaranteeing or preventing the reconstruction of certain information

from the source data.

Acknowledgements We thank Wil van der Aalst for his contribution to earlier versions of the directly follows
and minimum self-distance abstractions [5]. Furthermore, we thank Alifah Syamsiyah for her corrections in
the examples of the minimum self-distance abstraction.

A Semantics of process trees

Definition A.1 (process tree semantics) Let 6 be an alphabet of activities and let ⊕L be a

language-combination function, then

L(a) = {〈a〉} for a ∈ 6

L(τ) = {ǫ}

L(⊕(M1, . . . Mn)) = ⊕L (L(M1), . . . L(Mn))

Then, the semantics of process tree operators can be described by a specific language-

combination function ⊕L, depending on the operator ⊕:

Definition A.2 (process tree operator semantics) Let� be a language shuffle function shuf-

fling the events in traces t1 . . . tn , and languages L1 . . . Ln :

t ∈ t1 � . . .� tn ⇔ ∃function f

∀16i1<i26|t |∧ f (i1)=(t,k1)∧ f (i2)=(t j ,k2) k1 < k2 ∧

∀16i6n∧ f (i)=(t,k) t(i) = t j (k)

L1 � L2 � . . . Ln = {t | ∀16i6n ti ∈ L i ∧ t = t1 � t2 � . . . tn}

Furthermore, let p(n) denote the set of all permutations of the numbers 1 . . . n and let q(n)

denote the set of all subsets of the numbers 1 . . . n. Then,

×L(L1, . . . , Ln) = L1 ∪ L2 ∪ . . . ∪ Ln

→L (L1, . . . , Ln) = L1 · L2 · · · Ln

↔L (L1, . . . , Ln) =
⋃

(i1...in)∈p(n)

→L (L i1 , . . . , L in)

∧L(L1, . . . , Ln) = L1 � L2 � . . . Ln

∨L(L1, . . . , Ln) =
⋃

{i1...im }∈q(n)

∧L(L i1 , . . . , L im)

	L (L1, . . . , Ln) = L1 · (×L ·(L2, . . . , Ln) · L1)
∗ for 	, n > 2

123

1073

S. J. J. Leemans, D. Fahland

B Footprints

B.1 Directly follows (Definition 5.2)

Let αdfg be a directly follows relation and let c = (⊕, 61, . . . 6n) be a cut, consisting of a

process tree operator ⊕ ∈ {×,→,↔,∧,	} and a partition of activities with parts 61 . . . 6n

such that 6(αdfg) =
⋃

16i6n 6i and ∀16i< j6n 6i ∩ 6 j = ∅.

– Exclusive choice. c is an exclusive choice cut in αdfg if ⊕ = × and

x.1 No part is connected to any other part:

∀16i6n,16 j6n,i 6= j ∀a∈6i ,b∈6 j
¬αdfg(a, b) ∧ ¬αdfg(b, a):

Σ1 Σ2
. . . Σn

– Sequential. c is a sequence cut in αdfg if ⊕ =→ and

s.1 Each node in a part is indirectly and only connected to all nodes in the parts “after”

it:

∀16i< j6n ∀a∈6i ,b∈6 j
αdfg

+(a, b) ∧ ¬αdfg
+(b, a):

Σ1 Σ2
. . . Σn

– Interleaved. c is an interleaved cut in αdfg if ⊕ =↔ and

i.1 Between parts, all and only connections exist from an end to a start activity:

∀16i6n,16 j6n,i 6= j ∀a∈6i ,b∈6 j
αdfg(a, b) ⇔ (a ∈ End ∧b ∈ Start)):

Σ1 Σ2
. . . Σn

– Concurrent. c is a concurrent cut in αdfg if ⊕ = ∧ and

c.1 Each part contains a start and an end activity:

∀16i6n Start(αdfg) ∩ 6i 6= ∅ ∧ End(αdfg) ∩ 6i 6= ∅

c.2 All parts are fully interconnected:

∀16i<n,16 j6n,i 6= j ∀a∈6i ,b∈6 j
αdfg(a, b) ∧ αdfg(b, a)):

Σ1

Σ2

. . . Σn

123

1074

Information-preserving abstractions of event data in process mining

– Loop. c is a loop cut in αdfg if ⊕ =	 and

l.1 All start and end activities are in the body (i.e. the first) part:

Start(αdfg) ∪ End(αdfg) ⊆ 61

l.2 Only start/end activities in the body part have connections from/to other parts:

∀26 j6n ∀a∈61,b∈6 j
αdfg(a, b) ⇒ a ∈ End(αdfg)

∀26 j6n ∀a∈61,b∈6 j
αdfg(b, a) ⇒ a ∈ Start(αdfg)

l.3 Redo parts have no connections to other redo parts:

∀26i6n,26 j6n,i 6= j ∀a∈6i ,b∈6 j
¬αdfg(a, b) ∧ ¬αdfg(b, a)

l.4 If an activity from a redo part has a connection to/from the body part, then it has

connections to/from all start/end activities:

∀26i6n ∀a∈Start,b∈6i
αdfg(b, a) ⇔ ∀c∈Start(αdfg) αdfg(b, c)

∀26i6n ∀a∈End,b∈6i
αdfg(a, b) ⇔ ∀c∈End(αdfg) αdfg(c, b)):

Σ1

Σ2

. . .

Σn

B.2 Minimum self-distance (Definition 6.3)

Let αmsd be a minimum self-distance graph and let c = (⊕, 61, . . . 6n) be a cut, consisting

of a process tree operator ⊕ ∈ {×,→,↔,∧,	} and a partition of activities with parts

61 . . . 6n such that 6(αmsd) =
⋃

16i6n 6i and ∀16i< j6n 6i ∩ 6 j = ∅.

– Concurrent and interleaved. If ⊕ = ∧ or ⊕ =↔, then in αmsd:

ci.1 There are no αmsd connections between parts:

∀i∈[1...n],i 6= j∈[1...n] ∀a∈6i ,b∈6 j
¬αmsd(a, b)):

Σ1 Σ2
. . . Σn

– Loop. If ⊕ =	 then in αmsd:

l.1 Each activity has an outgoing edge:

∀a∈6(αmsd) ∃b∈6(αmsd),b 6=a αmsd(a, b)

123

1075

S. J. J. Leemans, D. Fahland

l.2 All redo activities that have a connection to a body activity have connections to the

same body activities:

∀26i6n,26 j6n ∀a∈6i ,b∈6 j
({c | αmsd(a, c)} ∩ 61 6= ∅ ∧

{c | αmsd(b, c)} ∩ 61 6= ∅) ⇒

{c | αmsd(a, c)} ∩ 61 = {c | αmsd(b, c)} ∩ 61

Σ1 Σ2
. . . Σn

l.3 All body activities that have a connection to a redo activity have connections to the

same redo activities:

∀a,b∈61 ({c | αmsd(a, c)} ∩ 6(αmsd) \ 61 6= ∅ ∧

{c | αmsd(b, c)} ∩ 6(αmsd)\61 6= ∅) ⇒

{c | αmsd(a, c)} ∩ 6(αmsd)\61 = {c | αmsd(b, c)} ∩ 6(αmsd)\61

Σ1 Σ2
. . . Σn

l.4 No two activities from different redo children have an αmsd-connection:

∀26i< j6n ∀a∈6i ,b∈6 j
¬αmsd(a, b) ∧ ¬αmsd(b, a)

Σ1 Σ2
. . . Σn

B.3 Sequence with×(�, .)-constructs: (Definition 7.3)

Let 6 be an alphabet of activities, let αdfg be a directly follows graph over 6 and let

C = (→, S1, . . . Sm) be a →-cut of αdfg according to Definition 5.2. Then, a partial cut

(→, 61, . . . 6n) is a partial →-cut if there is a pivot 6p such that:

s.1 The partial cut is a consecutive part of C :

∃16s6m ∀16 j6n Ss+ j−1 = 6 j

s.2 There are no end activities before the pivot in the partial cut:

∀x∈[1...p−1] 6x ∩ End(αdfg) = ∅

s.3 There are no start activities after the pivot in the partial cut:

∀x∈[p+1...n] 6x ∩ Start(αdfg) = ∅

s.4 There are no directly follows edges bypassing the pivot in the partial cut:

∀x∈[1...p−1] ∀a∈6x ∀αdfg(a,b) ∃y∈[1...p] b ∈ 6y

∀y∈[p+1...n] ∀b∈6y ∀αdfg(a,b) ∃x∈[p...n] a ∈ 6x

s.5 The partial cut can be tightly avoided:

∃16x<s,s+n6y6m ∃a∈Sx ,b∈Sy αdfg(a, b)

∨ ∃16x<s ∃a∈Sx a ∈ End(αdfg)

∨ ∃s+n6y6m ∃b∈Sy b ∈ Start(αdfg)

∨ ǫ ∈ αdfg

123

1076

Information-preserving abstractions of event data in process mining

Ss 1 Σ1 Σi ΣnΣ1 Σp Σn Ss n

end of definition

Partial cuts are considered only when close enough to the root of the process tree. We

formalize this in sequence-optional stems (so-stems). If we consider a process tree as a

graph, then the so-stem is the connected subgraph that starts at the root of the tree and that

consists of →- and ×-nodes. In addition, ×-nodes are only included if such nodes have two

children of which one is a τ :

Definition B.1 (sequence-optional tree and stem) A reduced process tree M = ⊕(M1, . . . Mn)

is a so-tree if and only if ⊕ =→, or if ⊕ = ×, n = 2 and Mi = τ for some i ∈ [1 . . . n].

The so-stem of a reduced process tree M is the smallest set so-stem(M) with:

– if M is a so-tree, then M ∈ so-stem(M);

– for each ⊕(M1, . . . Mn) ∈ so-stem(M) and each Mi , i ∈ [1 . . . n] holds: if Mi is a

so-tree, then Mi ∈ so-stem(M)

(For this set, we assume that subtrees can be distinguished.)

For instance, the following tree has an so-stem, and P1, P2 and P4 are non-optional

non-sequential subtrees:

×

→

×

→

. . .5P4

τ

×

→

. . .3P2

τ

P1

τ

All subtrees shown here are sequential. Some subtrees can be skipped, however dependencies

exist: if a subtree is executed, then each “P-sibling” at any higher level is executed as well. For

instance, if . . .3 is executed, then P2 is executed, as well as P1. The challenge in preserving

information in the abstraction is to not combine P1 with P2 in a partial cut without . . .3 and

not to combine . . .3 and P4 without P2.

Lemma B.1 (Partial →-cut for process trees) Let M be a reduced process tree without dupli-

cate activities and with an so-stem, and let M ′ = ×(τ,→ (M ′
1, . . . M ′

n)) ∈ so-stem(M). Let

S be a partition of 6(M) such that ∀i∈[1...n] 6(M ′
i) ∈ S . Then, (→, 6(M ′

1), . . . 6(M ′
n)) is

a partial →-cut of αdfg(M) over S.

By the reduction rules, at least one of the children is not optional: ∃i∈[1...n] ¬?(Mi). This

child is the pivot. By the reduction rules, a pivot cannot be a sequential node itself. Then,

this lemma follows from inspection of semantics of process trees.

123

1077

S. J. J. Leemans, D. Fahland

B.4 Concurrent-optional-Or:∨ (Definition 7.7)

Let 6 be an alphabet of activities, S a partition of 6, let αcoo(S) be a coo-graph, let αdfg be a

directly follows graph, and let C = (∨, 61, . . . 6n) be a partial cut such that ∀16i6n 6i ∈ S.

Then, C is a partial ∨-cut if in αcoo(S) and αdfg:

o.1 C is a part of a concurrent cut (∧, X1, . . . Xm) (Definition 5.2):

∀16i6n ∃16 j6m 6i = X j

o.2 all parts are interchangeable in αcoo(S):

∀16i< j6n 6i ∨ 6 j

Σ1

Σ2

. . . Σn

B.5 Concurrent-optional-Or:∧ (Definition 7.8)

Let 6 be an alphabet of activities, S a partition of 6, let αcoo(S) be a coo-graph, let αdfg be a

directly follows graph, and let C = (∧, 61, . . . 6n) be a partial cut such that ∀16i6n 6i ∈ S.

Then, C is a partial ∧-cut if in αcoo(S) and αdfg:

c.1 C is a part of a concurrent cut (∧, X1, . . . Xm) (Definition 5.2):

∀16i6n ∃16 j6m 6i = X j

Furthermore, in αcoo(S):

– EITHER –

c.2.1 all parts bi-imply one another:

∀16i< j6n 6i ⇒ 6 j ∧ 6 j ⇒ 6i

Σ1

Σ2

. . . Σn

– OR –

c.3.1 the first part is optional:

?61

c.3.2 The first part implies the other parts:

∀i∈[2...n] 61 ⇒ 6i

c.3.3 All non-first parts bi-imply one another:

∀i, j∈[2...n]∧i 6= j 6i ⇒ 6 j

123

1078

Information-preserving abstractions of event data in process mining

c.3.4 No non-first part 6i is implied by any part not in C :

¬∃i∈[2...n]∧6′∈S\{61,...6n} (6i 6⇒ 6′ ∧ 6′ ⇒ 6i)

Σ1

Σ2

. . . Σn

end of definition

Similar to so-stems, when considering a process tree M as a graph, the coo-stem of M

is the connected subgraph starting at the root of M consisting of ∧-, ∨-, and × nodes (the

latter ones only if they have two children of which one is a τ).

Definition B.2 (concurrent-optional-or tree and stem) A reduced process tree M =

⊕(M1, . . . Mn) is a coo-tree if and only if ⊕ ∈ {∧,∨}, or if ⊕ = ×, n = 2 and Mi = τ for

some i ∈ [1 . . . n]. The coo-stem of a reduced process tree M is the smallest set coo-stem(M)

with:

– if M is a coo-tree, then M ∈ coo-stem(M);

– for each ⊕(M1, . . . Mn) ∈ coo-stem(M) and each Mi , i ∈ [1 . . . n] holds: if Mi is a

coo-tree, then Mi ∈ coo-stem(M)

(For this set, we assume that subtrees can be distinguished.)

Lemma B.2 (partial ∧- and ∨-cuts for process trees) Let M be a reduced process tree with-

out duplicate activities and with an coo-stem, and let M ′ = ⊕(M ′
1, . . . M ′

n) ∈ coo-stem,

with ⊕ ∈ {∧,∨}. Let S be a partition of 6(M) such that ∀i∈[1...n] 6(M ′
i) ∈ S. Then,

(⊕, 6(M ′
1), . . . 6(M ′

n)) is a partial ⊕-cut of the coo-graph αcoo(L(M), S).

This lemma follows from inspection of the semantics of process trees.

C Class counterexamples

C.1 Cdfg

See Figs. 14, 15 and 16.

D Uniqueness for ˛dfg

D.1 Lemma 5.2

Lemma: Take two reduced process trees of Cdfg K = ⊕(K1, . . . Kn) and M =

⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6= αdfg(M).

Proof Towards contradiction, assume that αdfg(K) = αdfg(M). By the reduction rules of

Sect. 4, n > 2 and m > 2. Perform case distinction on ⊕ to prove that αdfg(K) 6= αdfg(M).

123

1079

S. J. J. Leemans, D. Fahland

(a) (b)

Fig. 14 An example for the necessity of Requirement Cdfg.i.1: the trees have different languages but equivalent
directly follows graphs. These trees differ in their root operator: activity e can be executed before and after all
other activities, making the difference between interleaved and concurrent invisible

(a) (b)

Fig. 15 An example for the necessity of Requirement Cdfg.i.2: four trees having different languages but
equivalent directly follows graphs. The difference between these trees is “semi-long-dependencies”, e.g. in
M23, a cannot be executed between b and c, and such dependencies cannot be captured by a directly follows
relation

(a) (b)

Fig. 16 An example for the necessity of Requirement Cdfg.i.3. Activity e witnesses ambiguity: e can be
concurrent to ×(c, d) (M27) or interleaved to all other activities (M28)

⊕ = × By semantics of the × operator and the reduction rules, there exist at least n

unconnected parts in αdfg(K) (see Lemma 5.1). As ⊗ 6= × and by the semantics of the

other operators, αdfg(M) is connected, so αdfg(K) 6= αdfg(M).

⊕ =→ By semantics of the → operator, αdfg(K) is a chain of at least n clusters (see

Lemma 5.1). As ⊗ 6=→ and by the semantics of the other operators, αdfg(M) is not a

chain (for ×, the graph is not connected while for ↔, ∧ and 	, the graph is a clique), so

αdfg(K) 6= αdfg(M).

⊕ = ∧ By semantics of the ∧ operator, αdfg(K) consists of at least n fully interconnected

clusters (see Lemma 5.1). Perform case distinction on the (due to symmetry) remaining

cases of ⊗:

123

1080

Information-preserving abstractions of event data in process mining

⊗ =	 We try to construct a concurrent cut (∧, 61, . . . 6p) for M . Take an activity

a ∈ Start(M1). By Requirement Cdfg.l.1, a /∈ End(M1). Take an activity b ∈ 6(M)\

6(M1). Then, by semantics of	,¬αdfg(a, b) and by Requirement c.2, a and b are part

of the same 6 in the cut we are constructing, e.g. 61. This holds for all a and b, thus

6(M) = 61. Hence, there is no non-trivial concurrent cut, and αdfg(K) 6= αdfg(M).

⊗ =↔ By Cdfg, ∃16i6n ∃a∈6(Mi) a /∈ Start(Mi) ∨ a /∈ End(Mi). Take such an

Mi and a. As either a /∈ Start(Mi) or a /∈ End(Mi), there is no connection to/from

a to any other subtree, i.e. ∀16 j6n, j 6=i ∀b∈6(M j) ¬αdfg(b, a) ∨ ¬αdfg(a, b). If we

would construct a concurrent cut (∧, 61 . . . 6p), then both a and all such b’s would

be in the same 6, e.g. {a} ∪ (6(K) \ 6(M j)}) ⊆ 61. This holds for all activities of

Start(Mi) and End(Mi). Hence, if we would construct a concurrent cut, all Start(K)

and End(K) activities would be part of the same 6. Therefore, there cannot be a

non-trivial concurrent cut for K , and hence, αdfg(K) 6= αdfg(M).

⊕ =	 Perform case distinction on the remaining case of ⊗:

⊗ =↔ We try to construct a loop cut (, 61, . . . 6n). Consider a child Mi , and

an activity s from the start activities of another child. Moreover, consider a path

αdfg(a1, a2) . . . αdfg(ap−1, ap) such that all activities on the path are in 6(Mi), and

a1 ∈ Start(Mi) and ap ∈ End(Mi). By Lemma 5.1, a1 ∈ 61 ∧ ap ∈ 61. Consider

activity a2. If a2 ∈ Start(Mi), then a2 ∈ 61. If a2 ∈ End(Mi), then a2 ∈ 61. If

a2 /∈ Start(Mi) ∧ a2 /∈ End(Mi), then by the semantics of ↔, ¬αdfg(s, a2). If a2

would be in 62, as it has a connection αdfg(a1, a2), by the semantics of 	 there

should be a connection αdfg(s, a2). Thus, a2 ∈ 61. This argument holds for the

entire path, and by construction of αdfg(M) each activity is on such a path; thus,

6(Mi) ⊆ 61. This holds for all children Mi , so there cannot be a non-trivial loop

cut. Hence, αdfg(K) 6= αdfg(M).

As these arguments are symmetric in ⊕ and ⊗, we conclude that αdfg(K) 6= αdfg(M). ⊓⊔

D.2 Lemma 5.3

Lemma: Take two reduced process trees of Cdfg K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm)

such that their activity partition is different: ∃16w6min(n,m) 6(Kw) 6= 6(Mw). Then,

αdfg(K) 6= αdfg(M).

Proof Without loss of generality, we assume that children of the non-commutative operators

(→,) have a fixed order. Towards contradiction, assume that αdfg(K) = αdfg(M). Perform

case distinction on ⊕ (the case for K and M swapped is symmetric):

⊕ = × Take a pair of activities a, b such that a ∈ 6(Kx), a ∈ 6(My), b ∈ 6(Kx) and

b /∈ 6(My) (choose x and y as desired). Obviously, if the activity partitions of K and M

are different such a pair exists. By the reduction rules, no child K1 . . . Kn is an exclusive-

choice subtree itself, and by semantics of the other operators there is an undirected path

in αdfg(K), i.e. a ! b in αdfg(K). However, as a ∈ 6(My) ∧ b /∈ 6(My), a 6! b in

αdfg(M). Hence, αdfg(K) 6= αdfg(M).

⊕ =→ Take a ∈ 6(Ki) and b ∈ 6(K j) such that i < j . Then by the →-cut,

αdfg
+(a, b)∧¬αdfg

+(b, a). By the reduction rules, all children of K and M are not →-nodes

themselves, thus, by the semantics of the other operators (× is unconnected, ∧ and 	 are

strongly connected), either ¬αdfg(a, b) or αdfg
+(b, a). Then, a ∈ 6(Mx) ∧ b ∈ 6(My)

123

1081

S. J. J. Leemans, D. Fahland

with x < y. This holds for all such a and b, hence ∀16i6n=m 6(Ki) = 6(Mi), which

contradicts the initial assumption.

⊕ = ∧ To prove the equality of the activity partitions, we consider two symmetrical

directions: a) if two activities are in the same 6i in K , then they are in the same 6i in

M . b) if two activities are in the same 6i in M , then they are in the same 6i in K .

Consider a child Mx . Perform case distinction on the structure of Mx :

Mx = a A single activity cannot be split. Thus, 6(Kx) ⊆ 6(Mx).

Mx = ×(Mx1 , . . . Mx p) Take two activities a ∈ 6(Mx1) and b ∈ 6(Mx2). By

semantics of ×, ¬αdfg(a, b). Thus, in a concurrent cut, a and b should be part of

the same 6. This holds for all such activities of all children of Mx ; thus, 6(Kx) ⊆

6(Mx).

Mx =→ (Mx1 , . . . Mx p) Similar, using that either ¬αdfg(a, b) or ¬αdfg(b, a).

Mx = ∧(Mx1 , . . . Mx p) Excluded by the reduction rules.

Mx =	 (Mx1 , . . . Mx p) By Cdfg, there is at least one child Mxi
such that Start(Mxi

)

∩ End(Mxi
) = ∅. Take such a Mxi

and an a from 6(Mxi
). Furthermore, take b from

any other child. There are three cases for a: a /∈ Start(Mxi
), a /∈ End(Mxi

) or both.

For all these three cases, ¬αdfg(a, b) ∨ ¬αdfg(b, a). Thus, by argumentation similar

to the × case, 6(Kx) ⊆ 6(Mx).

Mx =↔ (Mx1 , . . . Mx p) Similar to the 	 case.

Hence, 6(Kx) ⊆ 6(Mx). This holds for all 6(Mx) and by symmetry for all 6(Kx).

Hence, ∀16i6n 6(Ki) = 6(Mi), which contradicts the initial assumption.

⊕ =	 Consider 6(Ki) for some 2 6 i 6 n. By the reduction rules, Ki is of the

form ×(. . .). By semantics of the other operators, for all a, b ∈ 6(Ki), there exists

an undirected path a ! b in αdfg(K), such that all activities on this undirected path

are in Ki . Between all the activities on this path, there exists a connection in αdfg(Ki),

and none of the activities on this path is in Start(K) or End(K). By Lemma 5.1, in a

non-trivial loop cut, (without loss of generality) 6(Ki) ⊆ 6(Mi).

Let K1 = ⊗(K11 , . . . K1p). Perform case distinction on ⊗:

⊗ = × Take a child K1i
. By the reduction rules, this child is not an ×. For all

activities a ∈ Start(K1i
), b ∈ End(K1i

), there exist a directed path αdfg
+(a, b), such

that this path is completely in 6(K1i
). Furthermore, take an activity c ∈ End(K1 j 6=i

).

By semantics of ×, c has no directly follows connection to any node on the path.

Towards contradiction, assume there is a first node d on the path /∈ 6(M1). Then, by

semantics of 	, there should be a connection αdfg(c, d). This holds for all activities

d and children i , so 6(K1) ⊆ 6(M1).

⊗ =→ Similar to the ×-case.

⊗ = ∧ Start(K) ∪ End(K) ⊆ 6(M1), thus we only need to consider non-

start non-end activities. Take such an activity a in child K1i
, and take an activity

b ∈ End(K1 j 6=i
). By semantics of ∧, αdfg(a, b); by Cdfg, b /∈ Start(K1); thus by

Lemma 5.1, a ∈ 6(M1). This holds for all a, so 6(K1) ⊆ 6(M1).

⊗ =	 Excluded by the reduction rules.

⊗ =↔ Similar to the ×-case.

⊕ =↔ Take a w such that 6(Kw) 6= 6(Mw) and let Kw = ⊗(Kw1 . . . Kwp). Perform

case distinction on ⊗:

123

1082

Information-preserving abstractions of event data in process mining

⊗ = × By semantics of ×, no end activity of Kw1 has a connection to any start

activity of any other Kw j
. Thus, as M contains an interleaved activity partition,

6(Kw) ⊆ 6(Mw).

⊗ =→ Similar to the × case.

⊗ = ∧ By Cdfg, at least one child of Kw has disjoint start and end activities. Take

such a child Kwy , and consider two activities: a /∈ Start(Kwy) and b ∈ 6(Kw)\ Kwy .

By semantics of ∧, αdfg(b, a). Then, by Lemma 5.1, a ∈ 6(Mw) and b ∈ 6(Mw).

This holds for all b and by symmetry for Start(Kwy) ∪ End(Kwy). By semantics of

↔, non-start non-end activities only have connections with start/end activities of Kw.

Therefore, 6(Kw) \ (Start(Kw)∪ End(Kw)) ⊆ 6(Mw). Hence, 6(Kw) ⊆ 6(Mw).

⊗ =	 By semantics of ↔, non-start non-end activities only have connections with

start/end activities of Kw . Therefore, 6(Kw)\(Start(Kw)∪End(Kw)) ⊆ 6(Mw). All

activities ∈ Start(Kw)∪End(Kw) have connections from/to End(Kw2)∪Start(Kw2),

thus Start(Kw) ∪ End(Kw) ⊆ 6(Mw). Hence, 6(Kw) ⊆ 6(Mw).

⊗ =↔ Excluded by Cdfg.

By contradiction, we conclude αdfg K 6= αdfg M . ⊓⊔

E Uniqueness for Cmsd

Lemma E.1 (Operators are mutually exclusive) Take two reduced process trees of Cmsd K =

⊕(K1, . . . Kn) and M = ⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6= αdfg(M) or

αmsd(K) 6= αmsd(M).

This proof of this lemma is similar to the proof of Lemma 5.2: for each combination of ⊕ and

⊗, a difference in αmsd-graphs is shown. For a detailed proof, please refer to “Appendix E.2”.

Lemma E.2 (Partitions are mutually exclusive) Take two reduced process trees of Cdfg

K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm) such that their activity partition is different:

∃16w6min(n,m) 6(Kw) 6= 6(Mw). Then, αdfg(K) 6= αdfg(M) or αmsd(K) 6= αmsd(M).

This proof of this lemma is similar to the proof of Lemma 5.3: for each ⊕, it is shown that a

difference in partitions must lead to a difference in αmsd-graphs. For a detailed proof, please

refer to “Appendix E.3”.

Lemma E.3 (Abstraction uniqueness for Cmsd) Take two reduced process trees of class Cmsd:

K = ⊕(K1, . . . Kn) and M = ⊗(M1, . . . Mm). Then, K = M if and only if αdfg(K) =

αdfg(M) and αmsd(K) = αmsd(M).

The proof of this lemma is similar to the proof of Lemma 5.4, using Lemmas E.1 and E.2.

Corollary E.1 (Language uniqueness for Cmsd) There are no two different reduced process

trees of Cmsd with equal languages. Hence, for trees of class Cmsd, the normal form of Sect. 4

is uniquely defined.

E.1 LC-property

The minimum self-distance graph possesses more expressive power than the footprints of

Definition 6.3 utilize. That is, there exist pairs of process trees that have different normal

forms, languages and αmsd-graphs, but that the footprints do not distinguish.

123

1083

S. J. J. Leemans, D. Fahland

For instance, consider the trees

M12 = 	

d∧

c	

ba

and

M13 = 	

b∧

a	

dc

.

These trees have a different language, an equivalent αdfg-graph (shown in Fig. 9b) but a

different αmsd-graph (shown in Fig. 9c, d). Thus, they could be distinguished using their

αmsd-graph.

However, the footprint (Definition 6.3) cannot distinguish these trees: both cuts

(, {a, b, c}, {d}) and (, {a, c, d}, {b}) are valid in both αmsd-graphs, where (, {a, b, c},

{d}) corresponds to M12 and (, {a, c, d}, {b}) corresponds to M13. This implies that a

discovery algorithm that uses only the footprint cannot distinguish these two trees.

This problem occurs in certain nestings of loops and concurrent operators, as indicated

in the proof of Lemma E.2. We formalize this remaining problem as a loop-concurrency

property (LC-property). An LC-property could distinguish the specific nesting using only

the αmsd-graph.

Definition E.1 (LC-property) Let K , M ∈ Cmsd be process trees in normal form such that

K = 	

Kn. . .K2K1 = ∧

K1,p. . .K1,1

,

M = 	

Mn. . .M2M1 = ∧

M1,q. . .M1,1

,

and αdfg(K) = αdfg(M). Then, an LC-property LC is a function that distinguishes the cuts

of K and M in their minimum self-distance graphs, i.e. LC(αmsd(K)) ∧ LC(αmsd(M)) if

and only if the cut (, 6(K1), . . . 6(Kn)) conforms to both K and M .

Consider Cmsd
′ to be the class of trees Cmsd where arbitrary nestings of 	 and ∧ are

allowed, that is, Requirement Cmsd.l.1 is dropped. Then, if an LC-property exists, Lemma E.2

applies for Cmsd
′.

We did not find an LC-property, but we also did not prove that it cannot exist. A proof

that an LC-property cannot exist would, for instance, be the existence of an example of two

123

1084

Information-preserving abstractions of event data in process mining

process trees of Cmsd
′ in normal form with equivalent αmsd-graphs. We did not find such

examples in an extensive search, so we conjecture that an LC-property exists:

Conjecture E.1 (LC-property) There exists an LC-property (Definition E.1).

E.2 Lemma E.1

Lemma: Take two reduced process trees of Cmsd K = ⊕(K1, . . . Kn) and M =

⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6= αdfg(M) or αmsd(K) 6= αmsd(M).

Proof Towards contradiction, assume αdfg(K) = αdfg(M) and αmsd(K) = αmsd(M). We

only consider the cases that were not covered in the proof of Lemma 5.2.

⊕ = ∧ and ⊗ =	. We try to construct a concurrent cut 61 . . . 6q for M . By Require-

ment c.1, every such 6i must have a start and an end activity. Thus, we only need to

prove that Start(M1) ∪ End(M1) ⊆ 61. Perform case distinction on M1:

M1 = ×(M11 , . . . M1p) Each a ∈ 6(M1i
) has no αdfg-connection to any activity in

6(M j 6=i). Therefore, Start(M1) ∪ End(M1) ⊆ 61.

M1 =→ (M11 , . . . M1p) Each a ∈ 6(M1i
) has no αdfg-connection to any activity

in 6(M j<i). Therefore, Start(M1) ∪ End(M1) ⊆ 61.

M1 = ∧(. . .) Consider three cases:

– If any of the M26i6p contains a 	, consider an activity a in the redo of that 	.

By semantics of 	, there is no αdfg-connection between a and any activity in

6(M1). Therefore, Start(M1) ∪ End(M1) ⊆ 61.

– If none of the M26i6p contains a 	 and M1 does not contain a 	, then the

αmsd-graph is connected, and therefore, by Requirement ci.1, 6(M) ⊆ 61.

– If none of the M26i6p contains a 	 and M1 contains a 	, then consider an

activity a under a redo of any such 	, and any activity b ∈ 6(M26i6m). By

semantics of 	, ¬αdfg(a, b) and ¬αdfg(b, a), thus a and b must be in the same

61. All activities Start(M1)∪End(M1) have at least an αmsd-connection with at

least some activity in the redo of a 	. Thus, by Requirement ci.1, Start(M1) ∪

End(M1) ⊆ 61.

M1 =	 (. . .) Excluded by Cmsd.

M1 =↔ (. . .) By Cmsd, there exists a child M1i
such that Start(M1i

)∩End(M1i
) =

∅. Thus, all activities in End(M1 j 6=i
) have no αdfg-connection to End(M1i

), and

similarly for the activities of Start(M1 j
). Therefore, Start(M1) ∪ End(M1) ⊆ 61.

Hence, there is no concurrent cut in M , and therefore, αdfg(K) 6= αdfg(M).

⊕ =	 and ⊗ =↔. No change is necessary. ⊓⊔

E.3 Lemma E.2

Lemma: Take two reduced process trees of Cdfg K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm)

such that their activity partition is different: ∃16w6min(n,m) 6(Kw) 6= 6(Mw). Then,

αdfg(K) 6= αdfg(M) or αmsd(K) 6= αmsd(M).

Proof Towards contradiction, assume that ⊕ = ⊗, αdfg(K) = αdfg(M), αmsd(K) =

αmsd(M) and that there is a w such that 6(Kw) 6= 6(Mw). We only consider the cases

that were not covered in the proof of Lemma 5.2.

123

1085

S. J. J. Leemans, D. Fahland

⊕ = ∧ and Mx =	 (Mx1 , . . . Mx p). Try to construct a ∧-cut and prove that 6(Mx) ⊆

6x . Consider three cases:

– If any of the Mx26i6p
contains a 	, consider an activity a in the redo of that 	. By

semantics of 	, there is no αdfg-connection between a and any activity in 6(Mx1).

Therefore, 6(Mx1) ⊆ 6x . This holds for all such a, thus all such redo activities

are in 6x . Consider all remaining activities, i.e. b ∈ 6(Mx j 6=i
) such that b is in no

other 	-redo than Mx . For each of these activities b, there is a αmsd-relation with an

activity in 6x1 or an activity such as a. Thus, 6(Mx) ⊆ 6x .

– If none of the Mx26i6p
contains a 	 and Mx1 does not contain a 	, then the αmsd-

graph is connected, and therefore, 6(Mx) ⊆ 6x .

– If none of the Mx26i6p
contains a 	 and Mx1 contains a 	, then consider an activity

a under a redo of any such 	, and any activity b ∈ 6(Mx26i6m
). By semantics of

	, ¬αdfg(a, b) and ¬αdfg(b, a), thus a and b must be in the same 6x . All activities

in 6(Mx1) have at least an αmsd-connection with at least some activity in the redo of

a 	, Thus, 6(Mx) ⊆ 6x .

⊕ =	 and K1 = ∧(K1,1, . . . K1,p). Try to construct a 	-cut and prove that 6(K1) ⊆

61. By semantics of 	, Start(K1) ∪ End(K1) ⊆ 61. Take an activity a ∈ 6(K1),

such that a /∈ Start(K1) ∪ End(K1), and take another b ∈
⋃

16i6n 6(Ki) such that

b ∈ Start(K1) ∪ End(K1). Then, b ∈ 61. Perform case distinction on b:

b /∈ End(K1) Then, αdfg(b, a) and thus a ∈ 61.

b /∈ Start(K1) Then, αdfg(a, b) and thus a ∈ 61.

b ∈ Start(K1)∩End(K1) Excluded by Cmsd. (Here, the LC-property (Conjecture E.1)

would detect and guarantee a ∈ 61). ⊓⊔

F Uniqueness for ˛coo

Given a particular language, several partial cuts might apply. In this section, we prove that

each of these partial cuts is “correct”, that is, corresponds to the process tree from which

the language was derived. We first formalize this concept, after which we use it to prove

uniqueness for so- and coo-stems.

Definition F.1 (partition correspondence, M
6) Let M be a reduced process tree without

duplicate activities. Then, M
6(M) denotes the set of all partitions S that correspond to M .

That is, let S = {S1, . . . Sn} be a partition of 6(M), then S ∈ M
6(M) if and only if there

exists an M ′ such that M ′ reduces to M using only the associativity rules (A×, A→, A∧, A∨,

A	b, A	r); and for every Si ∈ S, there is a subtree M ′′ of M ′ such that Si = 6(M ′′).

Intuitively, a partition corresponds to a process tree if each set of activities in the partition

can be mapped to a node in the process tree (up to the associativity rules). For instance, let

M29 = ×

d∧

cba

.

123

1086

Information-preserving abstractions of event data in process mining

Then,

M
6(M29) = {{{a}, {b}, {c}, {d}}, {{a, b}, {c}, {d}}, {{a}, {b, c}, {d}},

{{a, c}, {b}, {d}}, {{a, b, c}, {d}}, {{a, b, c, d}}}

Each of these partitions corresponds to M29. For instance, consider the partition {{a, c}, {b},

{d}}. Each of the sets in this partition can be mapped on a node in the tree

×

d∧

b∧

ca

,

which reduces to M29 using the associativity rules. In this mapping, {d} is mapped on the

leaf d , {b} is mapped on the leaf b, and {a, c} is mapped on the node

∧

ca

.

In contrast, the partition {{a, b}, {c, d}} does not correspond to M29, as c and d cannot be

mapped together without a and b.

F.1 SO-stems

In Lemma B.1, we showed that a tree with an ×(τ,→ (. . .)) structure has a partial →-cut.

Now, we prove the opposite: there can only be a partial →-cut if the tree has such a structure.

Lemma F.1 (Partitions are mutually exclusive for so-stems) Let M =→ (M1, . . . Mm),

K =→ (K1, . . . Kn) be reduced trees of Ccoo such that their activity partition is differ-

ent, i.e. there is a w ∈ [1 . . . n] such that 6(Kw) 6= 6(Mw). Then, αdfg(M) 6= αdfg(K).

Proof Towards contradiction, assume that αdfg(K) = αdfg(M), and perform case distinction.

In case no child Ki has the ×(τ,→ (. . .)) structure, αdfg(K) is a chain of strongly

connected or unconnected clusters, which correspond to 6(Ki)’s. Notice that αdfg-edges can

skip clusters, hence αdfg(K) contains a maximal → cut. The same holds for αdfg(M), and

this holds for all such 6(Ki), so αdfg(M) 6= αdfg(K).

In case at least one child Ki has a structure ×(τ,→ (Ki1 , . . . Kik
)), the corresponding

cluster 6(Ki) is a chain itself. By Rule T×, at least one child of Ki (say Ki p) is a pivot

(Definition 7.3). By Lemma B.1, (→, 6(Ki1),6(Kik
)) is a partial →-cut. Due to Require-

ment s.5, for every pivot, there is one partial →-cut. The same holds for αdfg(M), and this

holds for all such 6(Ki), so αdfg(M) 6= αdfg(K).

Hence, αdfg(M) 6= αdfg(K). ⊓⊔

F.2 Coo-stems

In Lemma B.2, we showed that a tree with a coo-stem has partial ∧- and ∨-cuts. In this

section, we prove the opposite: there can only be a partial ∧- and ∨-cuts if the tree has such

a corresponding coo-stem.

123

1087

S. J. J. Leemans, D. Fahland

The main Lemmas, F.5 and F.6, consider partitions in a repetitive way: starting from

a particular partition, a partial cut is considered, after which the sets of activities of the

partial are merged in the partition, and a new, smaller, partition is obtained. For instance, the

partition {{a}, {b}, {c}} combined with the partial ∧-cut (∧, {a}, {b}) becomes {{a, b}, {c}}.

This reasoning procedure traverses the coo-stem of the process tree.

Invariant in the repetition is that every obtained partition corresponds to the process tree

(M6). To keep the invariant, we prove that for any partition in M
6 , partial ∧- and ∨-cuts

are always “correct” (Lemmas F.2 and F.3). Second, we prove that every obtained partition

using such a partial cut is in M
6 (Lemma F.4).

The repetition starts with the partition of the concurrent cut, which we formalize in

Definition F.2. The repetition ends when the partial cut partitions the entire alphabet, and a

contradiction is derived.

Definition F.2 (activity sets of non-coo-subtrees) Let M be a reduced process tree without

duplicate activities. Then, 6C(M) denotes the activity sets of the non-coo-subtrees of M :

6C(a) = {{a}}

6C(×(τ, . . .)) = 6C(×(. . .))

6C(×(M1, . . . Mm)) = {6(⊕(M1, . . . Mm))} with ∀i Mi 6= τ

6C(⊕(M1, . . . Mm)) = {6(⊕(M1, . . . Mm))} with ⊕ ∈ {→,↔,	}

6C(⊕(M1, . . . Mm)) =
⋃

16i6m

6C(Mi) with ⊕ ∈ {∨,∧}

Notice that 6C(M) corresponds to a concurrent cut of the directly follows graph (Defini-

tion 5.2).

Lemma F.2 (partial ∨-cut corresponds to ∨) Let M ∈ Ccoo be a reduced process tree with

a coo-stem, let M ′ = ∨(M ′
1, . . . M ′

m), M ′ ∈ coo-stem(M) be a coo-stem node, let M ′
i be

a child of M ′, let S ∈ M
6(M) be a partition such that 6(M ′

i) ∈ S, and let αcoo(S) be a

coo-graph. Take any A ∈ S such that A 6= 6(M ′
i). Then, (∨, 6(M ′

i), A) is a partial ∨-cut

of αcoo(S) if and only if ∃16 j6m A = 6(M ′
j).

The proof of this lemma considers both directions of the bi-implication separately. Towards

contradiction, it is assumed that such an A exists, after which semantics of sub-structures

of M are used to derive a contradiction. “Appendix F.4” shows the detailed proof.

Lemma F.3 (partial ∧-cut corresponds to ∧) Let M ∈ Ccoo be a reduced process tree with

a coo-stem, let M ′ = ∧(M ′
1, . . . M ′

m), M ′ ∈ coo-stem(M) be a coo-stem node, let M ′
i be a

child of M ′, let S ∈ M
6(M) a partition such that 6(M ′

i) ∈ S, and let αcoo(L(M), S) be a

coo-graph. Take any A ∈ S such that A 6= 6(M ′
i). Then, (∧, 6(M ′

i), A) or (∧, A, 6(M ′
i))

is a partial ∧-cut of αcoo(L(M), S) if and only if ∃16 j6m A = 6(M ′
j).

The proof of this lemma is similar to the proof of Lemma F.2: the two directions are proven

separately and semantics of sub-structures of M are used to derive a contradiction. For a

detailed proof, see “Appendix F.5”.

Lemma F.4 (merge sigmaset preservation) Let M be a reduced process tree of Ccoo with a

coo-stem. Let S ∈ M
6(M) and let C = (⊕, S1, . . . Sn) be a partial ⊕-cut of αcoo(L(M), S).

Let S′ = S\{S1, . . . Sn}∪{∪i∈[1...n]Si } be S collapsed with respect to C. Then, S′ ∈ M
6(M).

123

1088

Information-preserving abstractions of event data in process mining

Proof As S ∈ M
6(M), there must be a tree M ′ to which S can be structurally mapped

(Definition F.1). By Lemmas F.2 and F.3, for each Si there is a node M ′
i in M ′ such that

Si = 6(M ′
i). By the associativity rules, M ′ can be transformed into M ′′ such that M ′′ contains

a node ⊕(M ′
1, . . . M ′

n). Then, S′ can be structurally mapped to M ′′. Hence, S′ ∈ M
6(M). ⊓⊔

Lemma F.5 (Operators are mutually exclusive for coo-stems) Let M = ∧(M1, . . . Mm), K =

∨(K1, . . . Kn) be reduced trees of Ccoo. Then, αdfg(M) 6= αdfg(K) or αcoo(M) 6= αcoo(K).

Proof Towards contradiction, assume that αdfg(M) = αdfg(K) and αcoo(M) = αcoo(K).

Let S = 6C(M) be a partition of 6(M). As αdfg(M) = αdfg(K), S ∈ 6C(K). Then,

S ∈ M
6(M) and S ∈ M

6(K). (repeat from here) Take a partial cut C in αcoo(L(M), S).

As αcoo(M) = αcoo(K), C is a partial cut in αcoo(L(K), S) as well. Update S by collapsing

it using C . Then, by Lemma F.4, still S ∈ M
6(M) and S ∈ M

6(K). Repeat such that S =

{6(M1), . . . 6(Mm)}. As S ∈ M
6(K), ∀i∈[1...n] 6(Ki) ∈ S. By Lemmas F.3 and F.2, there is

a partial cut (∧, 6(M1), . . . 6(Mm)) and a partial cut (∨, 6(M1), . . . 6(Mm)), which cannot

happen by Definitions 7.7 and 7.8. Hence, αdfg(M) 6= αdfg(K) or αcoo(M) 6= αcoo(K). ⊓⊔

Lemma F.6 (Partitions are mutually exclusive for coo-stems) Let M = ⊕(M1, . . . Mm),

K = ⊕(K1, . . . Kn) be reduced trees of Ccoo such that their activity partition is different,

i.e. there is a w ∈ [1 . . . n] such that 6(Kw) 6= 6(Mw). Then, αdfg(M) 6= αdfg(K) or

αcoo(M) 6= αcoo(K).

Proof Towards contradiction, assume that there exists such a w. Similar to the proof of

Lemma F.5, obtain a partition S = {6(M1), . . . 6(Mm)} such that S ∈ M
6(M) and S ∈

M
6(K). By Lemmas F.3 and F.2, there is a node Kx in K that corresponds to 6(Mw). As

we assumed 6(Kw) 6= 6(Mw), this cannot happen, so αdfg(M) 6= αdfg(K) or αcoo(M) 6=

αcoo(K). ⊓⊔

F.3 Uniqueness

Lemma F.7 (Operators are mutually exclusive for Ccoo) Take two reduced process trees of

Ccoo K = ⊕(K1, . . . Kn) and M = ⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6=

αdfg(M) or αcoo(K) 6= αcoo(M).

We prove this lemma by showing a difference in abstraction for each pair of process tree

operators. For a detailed proof, please refer to “Appendix F.6”.

Lemma F.8 (Partitions are mutually exclusive for Ccoo) Take two reduced process trees of Ccoo

K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm) such that their activity partition is different,

i.e. there is a 1 6 w 6 n such that 6(Kw) 6= 6(Mw). Then, αdfg(K) 6= αdfg(M) or

αcoo(K) 6= αcoo(M).

This lemma is proven by case distinction on the process tree operators, while for each

operator showing a difference in abstraction if the root partition differs. For a detailed proof,

see “Appendix F.7”.

Lemma F.9 (Directly follows graph and coo-relation uniqueness for Ccoo) For trees of class

Ccoo, the abstractions of normal forms of Sect. 4 are uniquely defined: for any two reduced

process trees K 6= M of Ccoo, it holds that αdfg(K) 6= αdfg(M) or αcoo(K) 6= αcoo(M).

The proof for this lemma is similar to the proof of Lemma 5.4, using Lemmas F.7 and F.8.

123

1089

S. J. J. Leemans, D. Fahland

F.4 Lemma F.2

Lemma: Let M ∈ Ccoo be a reduced process tree with a coo-stem, let M ′ = ∨(M ′
1, . . . M ′

m),

M ′ ∈ coo-stem(M) be a coo-stem node, let M ′
i be a child of M ′, let S ∈ M

6(M) a partition

such that 6(M ′
i) ∈ S, and let αcoo(S) be a coo-graph. Take any A ∈ S such that A 6= 6(M ′

i).

Then, (∨, 6(M ′
i), A) is a partial ∨-cut of αcoo(S) if and only if ∃16 j6m A = 6(M ′

j).

Proof Prove both directions separately:

⇐ Take such an M ′
j . By Lemma B.2, (∨, 6(M ′

i), A) is a partial ∨-cut of αcoo(S).

⇒ Towards contradiction, assume that there exists a set of activities A such that

(∨, 6(M ′
i), A) is a partial ∨-cut of αcoo(S) and ∀16 j6m A 6= 6(M ′

j). By Definition F.1,

A corresponds to a node in M . Let MA be this node. Perform case distinction on whether

the lowest common parent of MA and M ′ is either M ′ itself or a parent of M ′:

– The lowest common parent is M ′. By the assumptions made, MA is not a direct child of

M ′, so there is a ∧-node between M ′ and MA. Without loss of generality, assume that

this ∧-node is a direct child of M ′. Then, M contains the following structure, for certain

nodes X and Y (wiggled edges denote possibly indirect children; MA may be equal to

Y):

M ′ = ∨

M ′
i∧

Y

MA

X. . .

. . .

.

By semantics of ∨, execution of M ′
i does not imply execution of either X or MA. If X is

not optional, then execution of MA implies execution of X , and therefore, MA and M ′
i

are not interchangeable (αcoo(S) 6|H A ∨ 6(M ′
i)).

If X is optional, then Y cannot be optional (reduction rule C∨) and execution of X implies

execution of Y . That is, a coo-graph αcoo(S)′ that contains 6(Y) and 6(X) would contain

the traces 〈6(X),6(Y))〉 and 〈6(X),6(M ′
i),6(Y)〉 but not 〈6(X),6(M ′

i)〉. Therefore,

αcoo(S)′ 6|H 6(Y)∨ 6(M ′
i). By definition of the occurrence function (“contains any

activity of”), αcoo(S) 6|H A ∨ 6(M ′
i).

– The lowest common parent is a parent of M ′. Then, M contains either of the following

structures, for certain nodes X and Y (wiggled edges denote possibly indirect children;

MA may be equivalent to Y):

⊕

MA∧

. . .X∨

. . .M ′
i

. . .

M ′ =

or ∧

∨

. . .M ′
i

Y

MA. . .

. . . = M ′

.

In the first case, X and M ′ cannot be both optional (reduction rule C∨). Then, by semantics

of ∧, execution of X implies execution of M ′ (if M ′ is not optional) and/or execution of M ′

implies execution of X (if X is not optional). By the reduction rules, there must be an ∨-node

123

1090

Information-preserving abstractions of event data in process mining

or an ×(τ, . . .) construct between ⊕ and M ′. Then, execution of neither M ′ nor X is implied

by execution of MA, so αcoo(S) 6|H A ∨ 6(M ′
i).

In the second case, a similar argument holds for Y and M ′.

Then, by Definition 7.7, (∨, A, 6(M ′
i)) is not a partial ∨-cut of αcoo(S).

Hence, (∨, 6(M ′
i), A) is a partial ∨-cut of αcoo(S) if and only if ∃16 j6m A = 6(M ′

j). ⊓⊔

F.5 Lemma F.3

Lemma: Let M ∈ Ccoo be a reduced process tree with a coo-stem, let M ′ = ∧(M ′
1, . . . M ′

m),

M ′ ∈ coo-stem(M) be a coo-stem node, let M ′
i be a child of M ′, let S ∈ M

6(M) a partition

such that 6(M ′
i) ∈ S, and let αcoo(L(M), S) be a coo-graph. Take any A ∈ S such that

A 6= 6(M ′
i). Then, (∧, 6(M ′

i), A) or (∧, A, 6(M ′
i)) is a partial ∧-cut of αcoo(L(M), S) if

and only if ∃16 j6m A = 6(M ′
j).

Proof Prove both directions separately:

⇐ Take such an M ′
j . By Lemma B.2, (∧, 6(M ′

i), A) is a partial ∧-cut of αcoo(S).

⇒ Towards contradiction, assume that there exists a set of activities A such that

(∧, 6(M ′
i), A) is a partial ∧-cut of αcoo(S) and ∀16 j6m A 6= 6(M ′

j). By Definition F.1,

A corresponds to a node in M . Let MA be this node. Perform case distinction on whether

the lowest common parent of MA and M ′ is either M ′ itself or a parent of M ′:

– The lowest common parent is M ′. By the assumptions made, MA is not a direct child of

M ′. Then, M contains either of the following structures, for a certain node X (wiggled

edges denote possibly indirect children):

M ′ = ∧

M ′
i∨

XMA. . .

. . .

or M ′ = ∧

M ′
i×

∨

XMA. . .

τ

. . .

or M ′ = ∧

M ′
i×

∧

XMA. . .

τ

. . .

.

In all cases, αcoo(S) 6|H 6(M ′
i)⇒A, so (∧, 6(M ′

i), A) is not a partial ∧-cut of αcoo(S)

and the partial cut (∧, A, 6(M ′
i)) must adhere to the second option of Definition 7.8.

In the first case, if M ′
i is not optional, then execution of X implies execution of M ′

i . Then,

for every Y ∈ M
6(X), αcoo(S) |H Y⇒6(M ′

i), and at least one such Y is in S, which

violates Requirement c.3.4. If M ′
i is optional, then αcoo(S) 6|H A⇒6(M ′

i), which violates

Requirement c.3.2. In the second and third cases, by reduction rule C∨, M ′
i cannot be

optional, and an argument similar to the first case applies. Hence, (∧, A, 6(M ′
i)) is not

a partial ∧-cut of αcoo(S).

123

1091

S. J. J. Leemans, D. Fahland

– The lowest common parent is a parent of M ′. Then, M contains either of the follow-

ing structures, for certain nodes X1, X2, X4 (wiggled edges denote possibly indirect

children):

⊕

MA∨

. . .∧

. . .X1M ′
i

. . .

⊕

MA∧

. . .×

∧

. . .X2M ′
i

τ

. . .

∨

MA∧

. . .M ′
i

. . .

∧

MA×

∧

. . .X4M ′
i

τ

. . .

In all these cases, αcoo(S) 6|H A⇒6(M ′
i), so (∧, A, 6(M ′

i)) is not a partial ∧-cut of

αcoo(S) and the partial cut (∧, 6(M ′
i), A) must adhere to the second option of Defini-

tion 7.8.

• In the first case, if αcoo(S) |H 6(M ′
i)⇒A then for every Y ∈ M

6(X1) it holds that

αcoo(S) |H Y⇒A, and at least one such Y is in S, which violates Requirement c.3.4.

• The second case is similar to the first.

• In the third case, αcoo(S) 6|H 6(M ′
i)⇒A, which violates Requirement c.3.2.

• In the fourth case, for every αcoo(S) |H Y ∈ M
6(X4), Y⇒A, and one such Y is in S,

which violates Requirement c.3.4.

Then, neither (∧, A, 6(M ′
i)) nor (∧, 6(M ′

i), A) is a partial ∧-cut of αcoo(S).

Hence, (∧, 6(M ′
i), A) or (∧, A, 6(M ′

i)) is a partial ∧-cut of αcoo(S) if and only if

∃16 j6m A = 6(M ′
j). ⊓⊔

F.6 Lemma F.7

Lemma: Take two reduced process trees of Ccoo K = ⊕(K1, . . . Kn) and M =

⊗(M1, . . . Mm) such that ⊕ 6= ⊗. Then, αdfg(K) 6= αdfg(M) or αcoo(K) 6= αcoo(M).

Proof Towards contradiction, assume that αdfg(K) = αdfg(M) and αcoo(K) = αcoo(M).

Perform case distinction on ⊕:

⊕ = × and one child Ki is a τ . As described before, the footprint of ×(τ, . . .) applies

whenever the root is optional. Thus, we need to consider the case in which M is optional,

but does not have the ×(τ, .) construct as root. Let K = ×(τ, (⊕′(K ′
1, . . . K ′

k)) (or

K = ×(K ′
1, . . . , K ′

k) if ⊕ = ×) and perform case distinction on ⊗:

⊗ = × By semantics of ×, αdfg(M) consists of unconnected clusters. As αdfg(M) =

αdfg(K), and by semantics of the operators, ⊕′ = ×. At least one child (say M j) is

optional, but does not have the ×(τ, .) construct as root. Let K ′
i be the corresponding

child in K . Then, L(K ′
i) ∪ {ǫ} = M j . M j cannot be a single activity (cannot be

123

1092

Information-preserving abstractions of event data in process mining

optional without the ×(τ, .) construct), or × (by Rule A×). For the other operators,

see the other cases (termination of the argument guaranteed as Ki and M j are strictly

smaller than M).

⊗ =→ By semantics of →, αdfg(M) consists of a chain of clusters. As αdfg(M) =

αdfg(K), and by semantics of the operators, ⊕′ =→. By semantics of →, all children

M j are optional. By Rule T×, at least one child (say Ki) is not optional. Therefore,

there is a non-empty trace in L(K) in which no activity of 6(Ki) occurs. There is

no such M j , thus L(K) 6= L(M).

⊗ = ∧ By semantics of ∧, all children M j must be optional. However, by Rule C∨,

this situation cannot occur.

⊗ = ∨ By semantics of ∨, at least one child M j is optional. Consider the options

for M j exhaustively: ×(τ, . . .) (would be reduced by Rule T∨,×), ∨(. . .) (would

be reduced by Rule A∨), ∧(. . .) with all children optional (would be reduced by

Rule C∨), a (cannot be optional without ×(τ, .) construct), or, hence, an optional

non-coo-subtree without ×(τ, .) as root. For the other operators, see the other cases

(termination of the argument guaranteed as Ki and M j are strictly smaller than M).

⊗ =↔ By semantics of the process tree operators, ⊕′ =↔. By reduction rule T×,

at least one child K ′
i is not optional. By Definition 7.9, all children Mi must be

optional.

Take a child K ′
j 6=i . Then, execution of some activity in K ′

j implies execution of some

activity in K ′
i , while there can be no child M j 6=i with such a dependency can exist in

Mi , as ↔ cannot be nested by Definition 7.9. Hence, αdfg(K) 6= αdfg(M).

⊗ =	 In this case, 	 is optional and this is excluded by Requirement Ccoo.l.2.

Hence, αdfg(K) 6= αdfg(M).

⊕ = × and no child is a τ . The graph αdfg(M) consists of several unconnected compo-

nents, while as ⊗ is either (→,∧,∨,↔,), αdfg(M) is connected. Thus, αdfg(K) 6=

αdfg(M).

⊕ =→ The graph αdfg(M) is a chain, while as ⊗ is either (×,∧,∨,↔,), αdfg(M) is

either unconnected or strongly connected. Thus, αdfg(K) 6= αdfg(M).

⊕ = ∧ We consider the remaining cases of ⊗:

⊗ = ∨ By Lemma F.5, αdfg(M) 6= αdfg(K) or αcoo(M) 6= αcoo(K).

⊗ =↔ As shown in Sect. 7.1, optionality does not influence the footprint of ∧ or

↔. Therefore, Lemma 5.2 applies. Hence, αdfg(M) 6= αdfg(K).

⊗ =	 By Definition 7.9, children of 	 are not allowed to be optional. Therefore,

Lemma 5.2 applies. Hence, αdfg(M) 6= αdfg(K).

⊕ = ∨ ∨ has the same directly follows footprint as ∧. Therefore, the arguments given

at ⊕ = ∧,⊗ =↔ and ⊗ =	 apply.

⊕ =↔ We consider the remaining case of ⊗, being ⊗ =	.

By Definition 7.9, children of 	 are not allowed to be optional. Therefore, Lemma 5.2

applies. Hence, αdfg(M) 6= αdfg(K).

We conclude that αdfg(K) 6= αdfg(M) or αcoo(K) 6= αcoo(M). ⊓⊔

123

1093

S. J. J. Leemans, D. Fahland

F.7 Lemma F.8

Lemma: take two reduced process trees of Ccoo K = ⊕(K1 . . . Kn) and M = ⊕(M1 . . . Mm)

such that their activity partition is different, i.e. there is a 1 6 w 6 n such that 6(Kw) 6=

6(Mw). Then, αdfg(K) 6= αdfg(M) or αcoo(K) 6= αcoo(M).

Proof Without loss of generality, we assume a fixed order of subtrees for all operators.

Towards contradiction, assume that αdfg(K) = αdfg(M) and αcoo(K) = αcoo(M). Perform

case distinction on ⊕ (the case for K and M swapped is symmetric).

⊕ = × If a child Ki is τ , see the proof of Lemma F.7.

As K is reduced, αdfg(K) contains n unconnected clusters, corresponding to 6(Ki)’s.

These clusters themselves are connected (by Rule A× and semantics of the other oper-

ators); hence, αdfg(K) contains a maximal × cut. The same holds for αdfg(M), hence

6(Kw) = 6(Mw).

⊕ =→ By Lemma F.1, 6(Kw) = 6(Mw).

⊕ = ∧ By Lemma F.6, 6(Kw) = 6(Mw).

⊕ =↔ Let Kw = ⊗(Kw1 . . . Kwp). Perform case distinction on ⊗:

⊗ = × and a child Mi is τ . The ↔ operator has a distinct directly follows graph

footprint, on which ×(τ, .) has no influence. Therefore, refer to the other cases as if

⊗ is the child of ×(τ, .), using the requirements of Ccoo.

⊗ = × and no child Mi is τ . By semantics of ×, no end activity of Kw1 has a

connection to any start activity of any other Kw j
. Thus, as M contains an interleaved

activity partition, 6(Kw) ⊆ 6(Mw).

⊗ =→ Similar to the × case.

⊗ = ∧ and ⊗ = ∨. By Definition 7.9, at least one child of Kw has dis-

joint start and end activities. Take such a child Kwy , and consider two activities:

a /∈ Start(Kwy) and b ∈ 6(Kw)\Kwy . By semantics of ∧ and ∨, αdfg(b, a).

Then, by Lemma 5.1, a ∈ 6(Mw) and b ∈ 6(Mw). This holds for all b and

by symmetry for Start(Kwy) ∪ End(Kwy). By semantics of ↔, non-start non-end

activities only have connections with start/end activities of Kw . Therefore, 6(Kw)\

(Start(Kw) ∪ End(Kw)) ⊆ 6(Mw). Hence, 6(Kw) ⊆ 6(Mw).

⊗ =↔ Excluded by Definition 7.9.

⊗ =	 By semantics of ↔, non-start non-end activities only have connections with

start/end activities of Kw . Therefore, 6(Kw)\(Start(Kw)∪End(Kw)) ⊆ 6(Mw). All

activities ∈ Start(Kw)∪End(Kw) have connections from/to End(Kw2)∪Start(Kw2),

thus Start(Kw) ∪ End(Kw) ⊆ 6(Mw). Hence, 6(Kw) ⊆ 6(Mw).

By symmetry, 6(Kw) = 6(Mw).

⊕ = ∨ In K , 6(Kw)∨ 6(Kv 6=w). By Lemma F.2 and as αdfg(K) = αdfg(M) and

αcoo(K) = αcoo(M), it holds that 6(Mw)∨ 6(Mv 6=w). Hence, 6(Kw) = 6(Mw).

⊕ =	 By Definition 7.9, children of 	 are not allowed to be optional. Therefore,

Lemma 5.3 applies.

By contradiction, we conclude that αdfg(K) 6= αdfg(M) or αcoo(K) 6= αcoo(M). ⊓⊔

References

1. van der Aalst WMP (2016) Process mining–data science in action, 2nd edn. Springer, Berlin. https://doi.
org/10.1007/978-3-662-49851-4

123

1094

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4

Information-preserving abstractions of event data in process mining

2. Buijs JCAM, van Dongen BF, van der Aalst WMP (2014) Quality dimensions in process discovery: the
importance of fitness, precision, generalization and simplicity. Int J Cooperative Inf Syst. https://doi.org/
10.1142/S0218843014400012

3. van der Aalst WMP, Weijters AJMM, Maruster L (2004) Workflow mining: discovering process models
from event logs. IEEE Trans Knowl Data Eng 16:1128–1142

4. vanden Broucke SKLM, Weerdt JD (2017) Fodina: a robust and flexible heuristic process discovery
technique. Decis Support Syst 100:109–118

5. Leemans SJJ, Fahland D, van der Aalst WMP (2013) Discovering block-structured process models from
event logs—a constructive approach. In: PETRI NETS 2013. Lecture notes in computer science, vol 7927.
Springer, pp 311–329. https://doi.org/10.1007/978-3-642-38697-8_17

6. Augusto A, Conforti R, Dumas M, Rosa ML (2017) Split miner: discovering accurate and simple business
process models from event logs. In: ICDM 2017. IEEE Computer Society, pp 1–10. https://doi.org/10.
1109/ICDM.2017.9

7. Weidlich M, van der Werf JMEM (2012) On profiles and footprints—relational semantics for petri nets.
In: Petri Nets

8. Polyvyanyy A, Armas-Cervantes A, Dumas M, García-Bañuelos L (2016) On the expressive power of
behavioral profiles. Form Asp Comput 28:597–613

9. Leemans SJJ, Fahland D, van der Aalst WMP (2014) Discovering block-structured process models from
event logs containing infrequent behaviour. In: Lohmann N, Song M, Wohed P (eds) Business process
management workshops. Lecture notes in business information processing, vol 171. Springer, pp 66–78

10. Augusto A, Conforti R, Dumas M, Rosa ML, Maggi FM, Marrella A, Mecella M, Soo A (2018) Automated
discovery of process models from event logs: review and benchmark. IEEE Trans Knowl Data Eng.
arXiv:1705.02288

11. OMG (2011) Business Process Model and Notation (BPMN), Version 2.0. http://www.omg.org/spec/
BPMN/2.0. Accessed 8 July 2019

12. van Zelst SJ, van Dongen BF, van der Aalst WMP (2018) Event stream-based process discovery using
abstract representations. Knowl Inf Syst 54(2):407–435. https://doi.org/10.1007/s10115-017-1060-2

13. Syamsiyah A, van Dongen BF, van der Aalst WMP (2016) DB-XES: enabling process discovery in the
large. In: SIMPDA 2016. LNBIP, vol 307. Springer, pp 53–77. https://doi.org/10.1007/978-3-319-74161-
1_4

14. Syamsiyah A, van Dongen BF, van der Aalst WMP (2017) Recurrent process mining with live event data.
In: BPM Workshops 2017. LNBIP, vol 308. Springer, pp 178–190

15. Weerdt JD, Backer MD, Vanthienen J, Baesens B (2012) A multi-dimensional quality assessment of
state-of-the-art process discovery algorithms using real-life event logs. Inf Syst 37:654–676

16. Badouel E, Bernardinello L, Darondeau P (2015) Petri net synthesis. Springer, Berlin
17. de Medeiros, AKA, van Dongen BF, van der Aalst WMP, Weijters AJMM (2004) Process mining for

ubiquitous mobile systems: an overview and a concrete algorithm. In: Baresi L, Dustdar S, Gall HC,
Matera M (eds) Ubiquitous mobile information and collaboration systems, second CAiSE workshop,
UMICS 2004, Riga, Latvia, 7–8 June 2004, Revised selected papers. Lecture notes in computer science,
vol 3272. Springer, pp 151–165. https://doi.org/10.1007/978-3-540-30188-2_12

18. Wen L, Wang J, Sun J (2006) Detecting implicit dependencies between tasks from event logs. In: Zhou X,
Li J, Shen HT, Kitsuregawa M, Zhang Y (eds) Frontiers of WWW Research and Development—APWeb
2006, 8th Asia-Pacific Web Conference, Harbin, China, 16–18 January 2006, Proceedings. Lecture notes
in computer science, vol 3841. Springer, pp 591–603. https://doi.org/10.1007/11610113_52

19. Wen L, van der Aalst WMP, Wang J, Sun J (2007) Mining process models with non-free-choice constructs.
Data Min Knowl Discov 15(2):145–180. https://doi.org/10.1007/s10618-007-0065-y

20. Wen L, Wang J, van der Aalst WMP, Huang B, Sun J (2010) Mining process models with prime invisible
tasks. Data Knowl Eng 69(10):999–1021. https://doi.org/10.1016/j.datak.2010.06.001

21. Wen L, Wang J, Sun J (2007) Mining invisible tasks from event logs. In: Dong G, Lin X, Wang W, Yang
Y, Yu JX (eds) Advances in data and web management, Joint 9th Asia-Pacific Web Conference, APWeb
2007, and 8th international conference, on web-age information management, WAIM 2007, Huang Shan,
China, 16–18 June 2007, Proceedings. Lecture notes in computer science, vol 4505. Springer, pp 358–365.
https://doi.org/10.1007/978-3-540-72524-4_38

22. Guo Q, Wen L, Wang J, Yan Z, Yu PS (2015) Mining invisible tasks in non-free-choice constructs. In:
Motahari-Nezhad HR, Recker J, Weidlich M (eds) Business process management—13th international
conference, BPM 2015, Innsbruck, Austria, August 31–September 3 2015, Proceedings. Lecture notes in
computer science, vol 9253. Springer, pp 109–125. https://doi.org/10.1007/978-3-319-23063-4_7

23. Leemans SJJ, Fahland D, van der Aalst WMP (2014) Discovering block-structured process models
from incomplete event logs. In: Ciardo G, Kindler E (eds) Application and theory of petri nets and
concurrency—35th international conference, PETRI NETS 2014, Tunis, Tunisia, 23–27 June 2014. Pro-

123

1095

https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1109/ICDM.2017.9
https://doi.org/10.1109/ICDM.2017.9
http://arxiv.org/abs/1705.02288
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1007/s10115-017-1060-2
https://doi.org/10.1007/978-3-319-74161-1_4
https://doi.org/10.1007/978-3-319-74161-1_4
https://doi.org/10.1007/978-3-540-30188-2_12
https://doi.org/10.1007/11610113_52
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1016/j.datak.2010.06.001
https://doi.org/10.1007/978-3-540-72524-4_38
https://doi.org/10.1007/978-3-319-23063-4_7

S. J. J. Leemans, D. Fahland

ceedings. Lecture notes in computer science, vol 8489. Springer, pp 91–110. https://doi.org/10.1007/978-
3-319-07734-5_6

24. Russell N, van der Aalst WMP, ter Hofstede AHM (2016) Workflow patterns: the definitive guide. MIT
Press, Cambridge

25. Zha H, Wang J, Wen L, Wang C, Sun JG (2010) A workflow net similarity measure based on transition
adjacency relations. Comput Ind 61:463–471

26. Sun J, Gu T, Qian J (2017) A behavioral similarity metric for semantic workflows based on semantic task
adjacency relations with importance. IEEE Access 5:15609–15618

27. van Dongen BF, Dijkman RM, Mendling J (2008) Measuring similarity between business process models.
In: CAiSE 2008. Lecture notes in computer science, vol 5074. Springer, pp 450–464. https://doi.org/10.
1007/978-3-540-69534-9_34

28. Polyvyanyy A, Weidlich M Conforti R, Rosa ML, ter Hofstede AHM (2014) The 4c spectrum of funda-
mental behavioral relations for concurrent systems. In: Petri Nets

29. Wang J, He T, Wen L, Wu N, ter Hofstede AHM, Su J (2010) A behavioral similarity measure between
labeled petri nets based on principal transition sequences—(short paper). In: OTM 2010. Lecture notes
in computer science, vol 6426. Springer, pp 394–401

30. Becker M, Laue R (2012) A comparative survey of business process similarity measures. Comput Ind
63(2):148–167

31. Kunze M, Weidlich M, Weske M (2011) Behavioral similarity—a proper metric. In: Business process
management 2011. Lecture Notes in Computer Science, vol 6896. Springer, pp 166–181

32. Kunze M, Weidlich M, Weske M (2015) Querying process models by behavior inclusion. Softw Syst
Model 14(3):1105–1125. https://doi.org/10.1007/s10270-013-0389-6

33. Polyvyanyy A, Weidlich M, Weske M (2012) Isotactics as a foundation for alignment and abstraction of
behavioral models. In: BPM

34. Weidlich M, Mendling J, Weske M (2012) Propagating changes between aligned process models. J Syst
Softw 85:1885–1898

35. van der Werf JMEM, van Dongen BF, Hurkens CAJ, Serebrenik A (2009) Process discovery using integer
linear programming. Fundam Inf 94(3–4):387–412. https://doi.org/10.3233/FI-2009-136

36. Schunselaar DMM, Verbeek E, van der Aalst WMP, Reijers HA (2013) A framework for efficiently
deciding language inclusion for sound unlabelled wf-nets. In: Joint proceedings of the international
workshop on petri nets and software engineering (PNSE’13) and the international workshop on modeling
and business environments (ModBE’13), Milano, Italy, 24–25 June 2013. CEUR Workshop Proceedings,
vol 989. CEUR-WS.org, pp 135–154

37. Leemans SJJ, Fahland D, van der Aalst WMP (2018) Scalable process discovery and conformance check-
ing. Softw Syst Model 17(2):599–631. https://doi.org/10.1007/s10270-016-0545-x

38. Buijs JCAM, van Dongen BF, van der Aalst WMP (2012) A genetic algorithm for discovering process
trees. In: Proceedings of the IEEE congress on evolutionary computation, CEC 2012, Brisbane, Australia,
10–15 June. IEEE, pp 1–8. https://doi.org/10.1109/CEC.2012.6256458

39. Molka T, Redlich D, Gilani W, Zeng X, Drobek M (2015) Evolutionary computation based discovery
of hierarchical business process models. In: Abramowicz W (ed) Business information systems—18th
international conference, BIS 2015, Poznań, Poland, 24–26 June 2015, Proceedings. Lecture notes in
business information processing, vol 208. Springer, pp 191–204. https://doi.org/10.1007/978-3-319-
19027-3_16

40. Leemans SJJ (2017) Robust process mining with guarantees. Ph.D. thesis, Eindhoven University of
Technology

41. Polyvyanyy A, Vanhatalo J, Völzer H (2010) Simplified computation and generalization of the refined
process structure tree. In: Bravetti M, Bultan T (eds) Web services and formal methods—7th international
workshop, WS-FM 2010, Hoboken, NJ, USA, 16–17 September 2010. Revised Selected Papers. Lecture
notes in computer science, vol 6551. Springer, pp 25–41. https://doi.org/10.1007/978-3-642-19589-1_2

42. Reisig W (1985) Petri nets: an introduction. Springer, New York
43. Gallo G, Longo G, Pallottino S (1993) Directed hypergraphs and applications. Discrete Appl Math

42(2):177–201. https://doi.org/10.1016/0166-218X(93)90045-P
44. Conforti R, Rosa ML, ter Hofstede AHM (2017) Filtering out infrequent behavior from business process

event logs. IEEE Trans Knowl Data Eng 29(2):300–314. https://doi.org/10.1109/TKDE.2016.2614680
45. Leemans SJ, Fahland, D (2019) dfahland/exp-abstractions-in-pm-KAIS: original experiment. https://doi.

org/10.5281/zenodo.3243981
46. Leemans SJJ, Fahland D (2019) Process models obtained from event logs with different information-

preserving abstractions. https://doi.org/10.5281/zenodo.3243988

123

1096

https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-540-69534-9_34
https://doi.org/10.1007/978-3-540-69534-9_34
https://doi.org/10.1007/s10270-013-0389-6
https://doi.org/10.3233/FI-2009-136
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1007/978-3-319-19027-3_16
https://doi.org/10.1007/978-3-319-19027-3_16
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1109/TKDE.2016.2614680
https://doi.org/10.5281/zenodo.3243981
https://doi.org/10.5281/zenodo.3243981
https://doi.org/10.5281/zenodo.3243988

Information-preserving abstractions of event data in process mining

47. van Dongen B (2012) BPI challenge 2012 dataset. https://doi.org/10.4121/uuid:3926db30-f712-4394-
aebc-75976070e91f

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Sander J. J. Leemans is an Assistant Professor (Lecturer) in Pro-
cess Mining in the Business Process Management discipline of the
School of Information Systems at Queensland University of Technol-
ogy (QUT). He has research interests in both theoretical and practical
aspects of process mining. He is researching the theoretical founda-
tions of process mining, how to bring advanced academic techniques
to end users in easy to use tools, how to help organizations to apply
process mining, and how to increase the transparency of process min-
ing using stochastic methods.

Dirk Fahland is an Associate Professor in Process Analytics on Multi-
Dimensional Event Data of the Analytics for Information Systems
group at Eindhoven University of Technology (TU/e). His research
interests are in describing and analysing complex and distributed sys-
tems and processes driven by an interplay of multiple components,
data objects, and entities in complex relations. He is researching foun-
dational concepts and techniques for processing and analysing the
multi-dimensional event data produced by such systems, including
querying and pre-processing event data as well as discovering and
querying models, and predicting future behaviour.

123

1097

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

	Information-preserving abstractions of event data in process mining
	Abstract
	1 Introduction
	1.1 Information preservation in process discovery
	1.2 State of the art
	1.3 Contribution

	2 Background, problem exposition, and research framework
	2.1 Background
	2.2 Problem exposition
	2.3 Research framework
	3 Preliminaries
	3.1 Traces, languages, partitions
	3.2 Block-structured models
	4 A canonical normal form for process trees
	5 Preservation and recovery with directly follows graphs
	5.1 Directly follows graphs
	5.2 Footprints
	5.3 A class of trees: Cdfg
	5.4 Uniqueness
	6 Preservation and recovery with minimum self-distance
	6.1 Minimum self-distance
	6.2 Footprints
	6.3 A class of trees: Cmsd
	6.4 Uniqueness
	7 Preserving and recovering optionality and inclusive choice
	7.1 Optionality
	7.2 Sequence
	7.3 Inclusive choice
	7.3.1 Idea
	7.3.2 Coo-abstraction
	7.3.3 Footprints

	7.4 A class of trees: Ccoo
	7.5 Uniqueness

	8 Application and evaluation on real-life logs
	9 Conclusion
	Acknowledgements
	A Semantics of process trees
	B Footprints
	B.1 Directly follows (Definition 5.2)
	B.2 Minimum self-distance (Definition 6.3)
	B.3 Sequence with `3́9`42`"̇613A``45`47`"603Atimes(τ,.)-constructs: (Definition 7.3)
	B.4 Concurrent-optional-Or: `3́9`42`"̇613A``45`47`"603A (Definition 7.7)
	B.5 Concurrent-optional-Or: (Definition 7.8)
	C Class counterexamples
	C.1 Cdfg
	D Uniqueness for αdfg
	D.1 Lemma 5.2
	D.2 Lemma 5.3

	E Uniqueness for Cmsd
	E.1 LC-property
	E.2 Lemma E.1
	E.3 Lemma E.2
	F Uniqueness for αcoo
	F.1 SO-stems
	F.2 Coo-stems
	F.3 Uniqueness
	F.4 Lemma F.2
	F.5 Lemma F.3
	F.6 Lemma F.7
	F.7 Lemma F.8
	References

