
Knowledge and Information Systems (2020) 62:813–839
https://doi.org/10.1007/s10115-019-01372-z

REGULAR PAPER

Generating synthetic positive and negative business process
traces through abduction

Daniela Loreti1 · Federico Chesani2 · Anna Ciampolini2 · Paola Mello2

Received: 20 September 2018 / Revised: 31 May 2019 / Accepted: 10 June 2019 / Published online: 20 June 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
As recent years have seen the rise of a new discipline commonly addressed as process
mining, focused on the management of business processes, two tasks have gained increasing
attention in research: process discovery and compliance monitoring. In both these fields,
the demand for event log benchmarks with predefined characteristics has determined the
design of various methodologies and tools for synthetic log generation. However, artificially
created as well as real-life logs often contain positive examples only (i.e. process instances
deemed as compliant w.r.t. the model), while the presence of negative process instances (i.e.
non-compliant traces) can be crucial to correctly evaluate the performance and robustness of
a novel process discovery or conformance checking technique. In this work, we investigate
positive and negative trace generation in case of both declarative and procedural model
specifications and we present our abduction-based approach to log synthesis. The theoretical
study is concretely applied in a software prototype for log generation, which takes as input
a declarative or structured workflow model and emits logs containing positive and negative
traces. The approach provides both a highly expressive notation for the description of the
business model and the ability to generate logs with various customizable features. The final
comparative study of other existing log generators reveals several advantages of the proposed
approach and draws the direction of future improvements.

Keywords Synthetic log generation · Declarative and procedural business model ·
Artificially positive and negative events · Abductive reasoning

B Daniela Loreti
daniela.loreti@unibo.it

Federico Chesani
federico.chesani@unibo.it

Anna Ciampolini
anna.ciampolini@unibo.it

Paola Mello
paola.mello@unibo.it

1 CIRI - Health Sciences and Technologies, Via Tolara di Sopra, 41/E, Ozzano dell’Emilia, BO, Italy

2 DISI - Department of Computer Science and Engineering, University of Bologna,
Viale del Risorgimento 2, Bologna, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01372-z&domain=pdf
http://orcid.org/0000-0002-6507-7565


814 D. Loreti et al.

1 Introduction

Over the last years, we have assisted to the rising of a novel research field called process
mining [45], dealing with the analysis of business processes starting from a log. The increas-
ing interest in process mining drops into the wide-ranging framework of Business Process
Management (BPM), a discipline dealing with the study and control of process execution.
In particular, the tasks of learning a model from a log (commonly addressed as process dis-
covery) and verifying the conformance of a log w.r.t. a model (i.e. compliance monitoring
or conformance checking) have brought significant advantages to business processes, thus
gaining increasing attention in industrial and academic research.

For both process discovery and compliance monitoring, the availability of the input log
is a fundamental requirement. Unfortunately, in a number of real contexts such log might
not be present; for example, a newly designed process might have a model, but it might lack
the execution logs (due to its novelty). Even when the log is available, its quality might be a
major concern, as incompleteness or noise can heavily affect both mining and conformance
checking results. Furthermore, in order to accurately compare novel process discovery and
conformance checking approaches with existing techniques, it is extremely important to
relay on a solid benchmark suite composed of logs with specific, known characteristics. For
these reasons, a common approach to evaluate process mining techniques is based on the
use of synthetic logs created via process simulation. Log generators are software tools that
take as input a model and a set of desired features and emit artificial logs. The generators
differ in the supported model language and in the log features that can be requested. A small
number of these software [25,51,52] can also produce negative examples, i.e. sequences
of activities representing process instances that diverge from the expected behaviour, for
example, executions that are not compliant with specific time or resource constraints or lack
some events in a sequence. Indeed, the availability of negative examples in the log is very
important when evaluating the performance of different process mining techniques and their
robustness to noise. Real-life logs might contain also negative examples, but the information
about which among all the instances are positive/negative is often unavailable. Obviously,
manually annotating logs is viable only for small data sets.

The cited approaches [25,51,52] to log generation with the ability to produce negative
examples are intrinsically procedural and therefore not suitable for the evaluation of pro-
cess discovery techniques based on declarative process models. As pointed out in [37,49],
differently from procedural models (which work in a closed world assumption where all
the allowed behaviours need to be explicitly specified), declarative models are open, thus
enjoying a flexibility that makes them more suitable to describe highly variable behaviours
in a compact way.

In previous works [14,16], we adopted an artificial intelligence technique, namely abduc-
tion, to complete partial logs, and introduced a (novel) notion of weak compliance of
incomplete process instances w.r.t. a procedural model. The focus was on determining
whether incomplete logs (i.e. reporting process instances with missing or partially specified
events)might be considered compliant with amodel, and underwhich conditions/hypotheses.
To that end, we exploited Social Constrained IFF (SCIFF) [6], an abductive logic pro-
gramming (ALP) framework, and in particular the hypotheses-making reasoning capabilities
typical of abduction.

In this work, we investigate the link between abduction and process mining by exploiting
the SCIFF framework for a different purpose: the generation of synthetic logs according to
predefined custom-selectable properties. Thanks to its highly expressive notation, SCIFF is

123



Generating synthetic positive and negative business process… 815

able to operate with both procedural and declarative formalisms to express the behavioural
model. The resulting tool provides logs with several interesting features. In particular, syn-
thetic negative examples can be generated, which are not compliant with the original input
model according to user-defined properties, such as the absence of some events, the presence
of events in non-compliant sequences, with wrong timing, duration or resource values, etc.
While the previous paper [13] contains some preliminary ideas about the design of a synthetic
log generator for positive examples only, the contributions of this work are manifold:

– a study of the theoretical aspects of positive and negative log generation in both open
declarative and closed procedural environments;

– a detailed description of our log generation methodology as well as underlying founda-
tions of the proposed technique;

– a standalone log generation prototype available for download together with an evaluation
of its performance on an average hardware architecture;

– a study of the existing approaches to log generation and a discussion on the advantages
and shortcoming of each one when compared with the proposed methodology.

2 Preliminaries

A key concept in the field of BPM is that of event log: a collection of observed (i.e. logged)
executions of a business process, in terms of all the occurred events. Each event in the log
refers to an activity, i.e. a well-defined step in the business process, and is related to a specific
process instance. The logged description of a process instance in terms of all its constituent
activities is addressed as trace or case. In this regard, a storing standard has also been
developed to clearly define a common way to exchange and analyse event logs: eXtensible
Event Stream (XES) [55]. In order to reason upon the business execution, a model of the
process is often employed. It is intended as the set of relevant activities that may occur in the
observed environment and the constraints on them. This model must be specified through
some shared language in order to be understood bydifferent experts from the business domain.
The languages to express the businessmodel are often classified according to their procedural
or declarative nature. Petri nets [54], for instance, are a widely used example of a procedural
modelling language. As such, they tend to represent the model as a flow of activities that can
be executed sequentially, alternatively or in parallel from a beginning to an end. Declarative
languages, on the other hand, specify the constraints that should be satisfied by all the traces,
without focusing on the exact paths to be followed. One of the most famous examples of
declarative languages is Declare [40,48]. In the following, we use the terms positive trace to
address a logged process instance that fulfil the requirements of the business model, whereas
negative traces diverge from the expected behaviour, thus being non-compliant w.r.t. the
model.

Our approach to log generation involves the concept of abduction [30]: a general, logic-
based technique for making hypotheses, originally thought as a mechanism for providing
explanations given some observations and some rules/constraints (which capture the domain
knowledge). The set of hypotheses that explain the observations is usually called abductive
explanation. This form of reasoning is the basis of the SCIFF framework [6] employed here.
SCIFF provides a language based on ALP for expressing the domain knowledge, together
with a proof procedure supporting the abductive reasoning process. It was initially developed
with the goal of run-time checking the compliance of the observed system behaviour w.r.t.
a given model. To this end, SCIFF extends the abductive reasoning with a few fundamen-

123



816 D. Loreti et al.

tal compliance-related concepts, such as observed events, expected behaviour (in terms of
expected events) and prohibitions, and the formal notions of compliance and violation of
traces against expectations.

A relevant point for this work is the SCIFF’s ability to deal with both ground traces and
templates (or non-ground traces). A trace is indeed a container for various information. For
example, consider an activity addressing the measurement of the temperature D in a room.
The trace containing such event is likely to report the observed value for D and the timestamp
T of the measurement. These data can be seen as variables assuming different values. A trace
is said to be ground if all the data in it are bounded to a value. A template is instead a trace
containing some variables, e.g. generic indications of D and T instead of their effective
values. Templates can possibly contain constraints restricting the variable domains. As such,
they are a powerful abstraction to represent sets of traces in a compact way.

3 Motivations for positive and negative log generation

The availability of an event log and the presence of positive and negative examples in it is
very important for the validation of conformance checking and process discovery techniques.
Indeed, as conformance checking algorithms aim to identify the traces that are not compliant
with a predefined model, the availability of a log containing both positive and negative exam-
ples allows the developer to evaluate the performance of a certain technique, for example,
in terms of the number of false positive and false negative results obtained or required time
for computation. Since in real-life logs the information about which traces diverge from the
expected behaviour is usually unavailable, the main process discovery techniques are limited
to the harder setting of unsupervised learning with positive examples only. The generation
of artificial logs with both compliant and non-compliant traces could foster the adoption of
more effective supervised techniques. For example, some machine learning schemes based
on inductive logic programming (ILP) [39] relay on a set of negative as well as positive
examples in order to extract a formal description of the business process model from an
event log.

Furthermore, in the field of process discovery, the presence of negative events allows
the developer to verify the robustness of its approach. For example, suppose to have a log
generator able to take a process model as input and produce a log with a mixed compo-
sition, reporting both positive and negative traces in predefined percentages, according to
configurable parameters. The emitted event log can be used as input to the process discovery
algorithm to test its performance by comparing the extracted process model with the original
one. Varying the percentage of negative examples in the log can give an evaluation of the
robustness of the process discovery algorithm to noise and incompleteness.

In the field of business process, a strong concern is related to the accuracy of the model,
i.e. its ability to capture allowed behaviours and to highlight unwanted actions. For this pur-
pose, a domain expert is often involved but, when the model is composed of several actions,
constraints, and possibly concurrent paths, the analysis of accuracy is far from straightfor-
ward. For this reason, when the process model is given, the generation of synthetic traces can
be useful to provide domain experts with a collection of examples to clearly explain which
process instances are allowed or not allowed by the input model. Thus, to obtain a quicker
feedback about accuracy.

Synthetic logs can be employed also for the conversion of models from a declarative to a
procedural formalization (and vice versa). For example, if the business model of a process

123



Generating synthetic positive and negative business process… 817

is provided by means of declarative constraints—e.g. through a Declare formalization—the
synthetic traces produced through log generation can be used as input to a process miner, for
example, the α-algorithm [50], to extract a procedural version of the original model (in the
mentioned miner, a Petri net model).

Another interesting application is related to the planning problem. Indeed, when themodel
is understood, the generated positive traces are examples of process executions compliantwith
a certain set of constraints and can therefore be used for production purposes. For example,
consider a line of production that must complete its job in 10 minutes. If the execution model
is known, positive trace generation can suggest which are the execution path of the production
line that can fulfil the requirement on the total production time. Furthermore, being able to
emit both ground and non-ground traces, abduction is a perfect candidate to suggest which are
the sets of cases that fulfil the constraints, thus to tackle the planning problem. It is interesting
to note that abduction has been investigated in the past for supporting the planning task [42]
and that in turn planning itself has been recently proposed for generation of trace templates
and instances [36].

Finally, when the business model is complex, involving several different actions, and
including constraints on time and resources, even the evaluation of model consistency (i.e.
determine whether at least one trace can satisfy all the constraints), which may appear a
simple operation in general, can be very difficult for a human being. Log generation allows
to suddenly identify situations in which no trace can be compliant with the model. In that
cases indeed, as the intersection of the sets of traces satisfying each constraint is empty, the
generation would not produce any output.

4 On different modelling approaches and how they affect log
generation

Within the BPM research field, a number of different formalisms and languages have been
proposed for the definition of business processes. Different aspects of the business process
itself have been researched, thus leading to the emergence of several proposals, each one with
merits and limits. Providing a complete and detailed view of all these approaches is out of
the scope of this work. However, in the following we introduce the few aspects that we deem
fundamental to comprehend the issues related to positive and negative trace generation.

4.1 Procedural versus declarative and open versus closedmodelling approaches

A first important aspect of log generation is how to define the flow-related aspects of a busi-
ness process. On the one end of the spectrum, there are the procedural approaches, where
the process flow is defined as a number of steps from a beginning to an end. Usually, two
artificial activities, the start and the stop, are employed. They are not meant to address real
events, but just to support the concepts of beginning and conclusion of a process instance.
Typical constructs of procedural languages provide notions such as sequence of activi-
ties, or–split/join (alternative, non-exclusive choices of different flow paths), xor–split/join,
and and–split/join (parallel execution of different flow paths). Figure 1 shows a simple exam-
ple of a procedural workflow defined using the YAWL graphical language [47], where after
the start, activity a should be executed, then b or {c, d} should be executed (exclusive choice
between the two paths), and finally activity e should be executed.

123



818 D. Loreti et al.

Fig. 1 A simple business process defined through the procedural language YAWL

Fig. 2 Two simple examples of Declare constraints

On the other end of the spectrum, there are declarative approaches, which focus more on
the constraints that should be satisfied by all the process executions, rather than fixing exact
flows/paths. In Fig. 2a, a Declare [40] constraint is placed over the two activities of having a
coffee and paying a coffee: the intended meaning is that it does not matter the order (notice
the absence of arrows) of execution, but if you have a coffee then you must pay for it, and
vice versa, if you pay for a coffee you must have it. In Fig. 2b, another constraint is shown:
after the check-out of a shopping cart, the user is not allowed to add more items. The two
small vertical lines in the connection between the two activities stand for a prohibition, while
the presence of an arrow sets also a temporal ordering.

Another important aspect regards the degree of openness allowed by the modelling
approach. Closed models are characterized by the fact that only the specified activities,
at the specified time instant can be executed. For example, let us consider again the model
depicted in Fig. 1: a closedmodelling approachwould imply that only the envisaged activities
(namely, {a,b,c,d,e}) are allowed to be executed, and any other activity is prohibited. Such
approaches are typical of a number of applicative domains, for example, security communi-
cation protocols or bank protocols for financial transactions, where even the smallest bit of
information that is not envisaged should trigger alarms and invalidate the interaction.

At the opposite side, open approaches are characterized by the fact that they specify both
activities that should be executed and activities that should not be executed (i.e. prohibitions).
When nothing is specified about an activity, the usual intendedmeaning is that the appearance
of such activity in a case does not influence the trace compliance (or non-compliance) w.r.t.
the model. As an example, let us consider the process depicted in Fig. 2a: within having a
coffee and paying a coffee, any other activity such as chat with the barman is allowed as
well. Theoretically, open approaches allow for the execution of any activity for which no
prohibition has been expressed. However, for practical reasons, many approaches allow for
the execution of any (non-forbidden) activity within a specified set: in other words, the set
of allowed activities is defined a priori and finite. This paper adopts the same view: we will
generate only traces whose activities belong to a user-defined finite set A.

123



Generating synthetic positive and negative business process… 819

4.1.1 Relation between two orthogonal dimensions

A noteworthy consideration regards the relation between these orthogonal dimensions: pro-
cedural vs. declarative models and open vs. closed approaches. A number of works have
identified procedural models as closed and declarative models as open. This association is by
no means mandatory. Indeed, a declarative approach can be used to model a closed process
if we provide a set of additional constraints to ensure that only the specified activities are
allowed, and any other is prohibited. Aswell as a procedural formalism can be used to express
an open model by relaxing some constraints.

Although our approach remains general and can be applied to all the cases, for conve-
nience’s sake, in this paper we focus on the most popular combination of the orthogonal
dimensions, i.e. procedural closed models and declarative open ones. The interested reader
can refer to [37] for an in-depth discussion on closed vs. open models.

4.2 Positive and negative traces w.r.t. declarative open process models

The open/closed nature of the model affects the reasoning on positive and negative traces. In
an open model, if nothing is said about a certain activity X, this means, for example, that any
positive trace, containing or not containing X is compliant anyway with the process model.
This observation leads to two further considerations:

1. one might be tempted to ignore traces containing activities like X. However, if X is not in
the model (i.e. it does not appear in any constraint), but a process designer addresses it as
an activity that could happen, he might be interested in observing both traces containing
and not containing X;

2. the number of traces that are compliant with an open declarative process model is poten-
tially infinite w.r.t. activities like X.

To address the issues above, we restrict the generation to traces containing only events
belonging to a specified finite set A of activities. For example, let us consider the process
model shown in Fig. 2a. For the sake of the example, we could say:

A = {have a coffee,pay a coffee, chat with the barman},
where the activity chat with the barman is not subject to any constraint. In this case, a subset
of all the positive traces would be the following one1:

τ1 = ∅
τ2 = [have a coffee,pay a coffee]
τ3 = [chat with the barman,have a coffee,pay a coffee]
τ4 = [have a coffee, chat with the barman,pay a coffee]
τ5 = [have a coffee,pay a coffee, chat with the barman]
τ6 = [pay a coffee,have a coffee]
. . .

Negative traces are those ones that violate one or more constraints of the process model.
If we consider again the example shown in Fig. 2a, negative traces are those that violate the

1 For the sake of readability, we omit in the following traces the timestamps: the order in which the events
are written determines which event comes first.

123



820 D. Loreti et al.

only constraint present: they should contain pay a coffee without have a coffee or should
contain have a coffee without pay a coffee. A subset of all the negative traces would be the
following one:

τ7 = [have a coffee]
τ8 = [pay a coffee]
τ9 = [chat with the barman, have a coffee]

τ10 = [have a coffee, chat with the barman]
τ11 = [chat with the barman,pay a coffee]
τ12 = [pay a coffee, chat with the barman]
. . .

where the overline on the trace symbol τi indicates that the trace violates the process model.

4.3 Positive and negative traces w.r.t. procedural closed process models

Positive traces w.r.t. procedural models are only those that are allowed and explicitly con-
sidered by the model. Intuitively, it suffices to walk the structure (the graph) of the process
model, to get instances of positive traces. For example, if we consider the process model
shown in Fig. 1, only two positive traces are allowed:

τ13 = [a,b, e]
τ14 = [a, c,d, e].

Similarly to the case of open declarative models, negative traces w.r.t. closed procedural
models are those traces that violates one or more constraints. More in detail, procedural
constraints are the flow constructs explicitly defined in the process model, plus the constraint
(implicit in the closeness flavour) that anything not considered by themodel is strictly prohib-
ited. Thus, negative traces can be grouped into two sets: (i) traces that contain only (possibly,
a subset of) events explicitly mentioned in the model and that violate one or more flow
structures; and (i i) traces that contain unknown events. Referring to Fig. 1, two examples of
negative traces that belongs to group (i) would be:

τ15 = [a, e]
τ16 = [a, d, c, e]
. . .

In τ15, the activity b is missing; in τ16, instead activities c and d are executed in the wrong
order. The set of negative traces belonging to group (i i) instead is possibly infinite, as possibly
infinite is the set of activities not explicitly envisaged by the procedural model. To cope with
this aspect, we restrict our approach by considering again a finite set A of activities that will
be used for generating the traces. Referring again to Fig. 1, such a set could be:

A = {a, b, c, d, e, f, g}.
The process model does not envisages activities {f,g}: any trace containing one or more of
these activities is a negative trace. For example,

123



Generating synthetic positive and negative business process… 821

τ17 = [a, f, b, e]
τ18 = [a, c, d, e, g]
. . .

5 The SCIFF abductive capabilities

In order to clearly explain our generation approach, we first briefly recall the main concepts
behind the SCIFF abductive capability. The interested reader can refer to the work [6] for a
complete dissertation on this topic. Formally, a SCIFF specification is a triple 〈KB, A, IC〉,
where:

– KB is a knowledge base (i.e. a Logic Program as for [34]);
– A is a set of abducible predicates with functor ABD, E, or EN;
– IC is a set of Integrity Constraints (ICs).

Among the elements of A, predicates with functor ABD correspond to usual abducibles as
in ALP [30], i.e. predicates that can be hypothesized. E and EN are particular abducibles
respectively used for modelling positive expectations—i.e. expectations about the happening
of certain events—andnegative expectations—i.e. prohibitions about the happening of certain
events.

Happened events are represented through predicates with functor H. Hence, in SCIFF a
trace is a set of predicates H(EvDesc, T ), where each predicate stands for the observation
of the happening of an event described by EvDesc at timestamp T . For example, trace τ2
introduced in Sect. 4.2 would be represented in SCIFF as:

τ2 = [H(have_a_coffee, 5),H(pay_a_coffee, 8)],
meaning that at time instant 5 the event have_a_coffee has been observed, and then, at time
instant 8, the event pay_a_coffee has been observed too.

IC is a set of forward rules of the form body → head . They are used to dynamically link
the observation of the happening of events with positive and negative expectations. Roughly
speaking, when body becomes true, also head must be true. The body contains conjunctions
of special terms with functors H, E/EN or ABD, while the head is made of disjunctions of
conjunctions of terms with functors E or ABD. For example, the following IC

H(have_a_coffee, Ta) → E(pay_a_coffee, Tb) (1)

states that every time the event have_a_coffee is observed at a timestamp Ta and then an
event pay_a_coffee is expected to happen (to be observed) at a timestamp Tb.

The IC shown in (5) already provides a powerful hint of how the SCIFF proof procedure
determines if a trace is compliantw.r.t. to amodel. Let us suppose a processmodel is described
in terms of (5). Also, let us suppose to observe the event H(have_a_coffee, 12). The event
triggers IC (5): as a consequence, the positive expectation E(pay_a_coffee, Tb) is abduced.
The SCIFF Proof Procedure then waits for further events. If an event happens, such that it
matches with the positive expectation, we say that such expectation is fulfilled. If no event
matching the expectation happens, the expectation is violated. We do not report here the
definitions of compliance and violation of a trace w.r.t. a model: the interested reader can
refer to [6]. Rather, we highlight the following: given a processmodel describedwith a SCIFF
specification, a trace is compliant with (or violates) that specification, if it is compliant with
(violates) the positive and negative expectations generated by the ICs.

123



822 D. Loreti et al.

In this paper, the goal is to generate traces that are compliant to (or violate) a given
model. To this end, we recur to a technique similar to that of previous works: we start
from a process model represented in terms of ICs. However, instead of using positive and
negative expectations, Integrity Constraints (ICs) are defined in terms of abducibles only,
each abducible representing the hypothesis that an event happens. For example, let us model
the procedural process shown in Fig. 1. First of all, the sequence between the start and the
execution of activity a would be modelled as:

ic1 : ABD(start, Ts) → ABD(a, Ta) ∧ Ta > Ts .

Then, the xor disjunction between b and c would be2:

ic2 : ABD(a, Ta) → ABD(b, Tb) ∧ Tb > Ta ∨ ABD(c, Tc) ∧ Tc > Ta .

Finally, further sequence constraints are needed:

ic3 : ABD(b, Tb) →ABD(e, Te) ∧ Te > Tb.

ic4 : ABD(c, Tc) →ABD(d, Td) ∧ Td > Tc.

ic5 : ABD(d, Td) →ABD(e, Te) ∧ Te > Td .

ic6 : ABD(e, Te) →ABD(stop, Ts) ∧ Ts > Te.

Summing up, the process model in Fig. 1 would be represented by the set {ic1, ic2, ic3, ic4,
ic5, ic6}. Given the start symbol as input, the SCIFF Proof Procedure would produce the
following two trace templates:

τα = [ABD(a, Ta),ABD(b, Tb),ABD(e, Te), Ta < Tb < Te]
τβ = [ABD(a, Ta),ABD(c, Tc),ABD(d, Td),ABD(e, Te), Ta < Tc < Td < Te],

where τα matches τ13 and τβ matches τ14 both introduced in Sect. 4.3.
Finally, notice that τα and τβ are what we call trace templates, since the timestamps are

not grounded to specific values, but are rather variables that can be assigned to any set of
values respecting the inequalities.

6 Generation of a synthetic log through SCIFF

In order to simplify the comprehension of our approach, we first introduce the reader to the
generation of positive traces from a high-level perspective. The process consists of tree steps:

1. the process model is properly translated into a SCIFF specification;
2. the SCIFF proof procedure takes as input the process model expressed as a SCIFF spec-

ification and generates the trace templates;
3. trace templates are groundedwith values respecting the constraints imposed by themodel.

Translation into SCIFF The translation of the process model into a SCIFF specification
depends on the language adopted for the model definition. In previous works, we investigated
how closed procedural approaches can be easily translated into SCIFF [14,15], even with
the support to activity data and temporal constraints [16,18]. In these previous works, the
focus was on establishing if a partial trace could be possibly considered as compliant. If not

2 Although represented with ∨, SCIFF actually performs an exploration of two alternatives only (after a,
either b or c is abduced), thus realizing the semantics of a xor gate [6].

123



Generating synthetic positive and negative business process… 823

compliant because of missing events, we showed how hypothetical reasoning and abduction
could be exploited to determine a possible set of further activities that, once merged with the
initial trace, would make it compliant w.r.t. the model. However, what if the partial trace is
empty? The approach presented here is an extension of the previous ones, where the starting
point is an empty trace, and the SCIFF is queried about the existence of a trace. Differently
from [14,15], here there is no need to verify the compliance, since the initial trace is empty.

Generation of trace templates Starting from aSCIFFmodel specification, the proof procedure
is queried about the existence of a compliant trace. As also highlighted in [18], thanks to its
abductive nature, the same generation process can also be carried out starting from partially
specified traces. The SCIFF generates each trace through hypothetical reasoning, i.e. by
abducing the events as of the rules given in the specification. At this stage, timestamps and
activity data (if present) are indicated as variables thus realizing trace templates. Once a
solution (i.e. a first template) is found, the SCIFF is asked to look for another one: iteratively,
all the templates are emitted. To ensure the termination of this iterative process, we ask the
user to provide in input a meta-information about the process: we require that a maximum
number of events for each trace is specified. This allows to avoid problems due, for example,
to the presence of (indeterministic) loops in the process model.

Grounding the trace templates Finally, SCIFF substitutes the variables in the templates with
all their possible values. Of course, it can happen that a variable have an infinite set of possible
values. For example, consider a timestamp of an event whose only constraint is to be greater
than zero: there are infinite values that can satisfy such constraint. For this reason, we ask
the user to provide in input a meta-information about the process: the user must specify the
maximum allowed timestamp (the minimum is automatically assumed to be zero). Together
with the assumption that timestamps are represented with integer numbers, the maximum
timestamp limit ensures the termination of the grounding process.

As regards the generation of negative examples, since in our approach models are repre-
sented bymeans of SCIFF’s Integrity Constraints (ICs), a negative trace can be seen as a trace
that violates one or more Integrity Constraints (ICs). Hence, to generate a negative trace, it
suffices to take the initial SCIFF specification, obtain a new specification by negating one or
more Integrity Constraints (ICs), and use it to generate traces. The output will be compliant
with the model containing negated Integrity Constraints (ICs); thus, it will violate the initial
model.

First of all, it is important to understand what it means to negate an IC. In SCIFF, Integrity
Constraints (ICs) are (forward) implications: they are violated when the premises are true,
and the consequences are false. In SCIFF, the consequences (named head) are disjunction of
conjunction of literals and abducibles. Let us focus to a simple example of one IC made of
two different conjuncts:

ABD(a, Ta) → ABD(b, Tb) ∧ Tb > Ta . (2)

The intended meaning is that the execution of activity a should be followed by the execution
of activity b. In other words, every time we observe a, we should observe also b after. The
head of the Integrity Constraints (ICs) contains two conjuncts: the first states that whenever
a happens, also b should happen; and the second requires that b should happen after. So, (2)
can be violated in two ways:

123



824 D. Loreti et al.

(i) by having a trace containing activity a, and not containing activity b;
(ii) by having a trace containing a, and containing b happened before a;3

The two cases lead to two different trace templates, each one violating the original IC (2) in
its own way.

Given this explanation of what IC negation implies, the generation process takes place
as follows. The approach starts from a SCIFF specification S = 〈KB,A, IC〉 of a process
model, where IC is the set of one or more Integrity Constraints (ICs) ici :

IC ≡ {ic1, ic2, . . . , icn}. (3)

New sets IC j are obtained by negating one or more ici , 1 ≤ i ≤ n. Notice however that—as
explained for (2)—negating a single ici can lead to different Integrity Constraints (ICs).
Hence for each ici we could obtain ici,1, . . . , ici,mi . For example, let us suppose to negate
ic1, and that this leads to three different Integrity Constraints (ICs). We would get:

IC1 ≡ {ic1,1, ic2, . . . , icn}
IC2 ≡ {ic1,2, ic2, . . . , icn}
IC3 ≡ {ic1,3, ic2, . . . , icn}.

Then, we could negate ic2 (suppose this is possible in two different ways):

IC4 ≡ {ic1, ic2,1, . . . , icn}
IC5 ≡ {ic1, ic2,2, . . . , icn}
. . .

The number of models IC j that can be obtained is given by the cardinality of the power set
of IC, multiplied for the cardinality of the power set of all the possible ways of negating one
or more Integrity Constraints (ICs). SCIFF specifications S j = 〈KB, IC j ,A〉 are obtained
consequently, and each one is used to generate traces. The number of S j provided in this
way is definitely huge. However, not all those specifications will allow for the existence of
traces: indeed, it might happen that by negating two different Integrity Constraints (ICs),
an inconsistent model is obtained, thus not allowing the existence of any trace compliant
with that model. It might also happen that a trace generated from a IC j is again compliant
with the initial IC. For example, if the initial model admits two alternative paths (i.e. IC
includes a xor constraint) and the specification derived from a IC j negates the constraints of
only one path, the traces generated following the other, unmodified path are again compliant
with the initial model. To remove these actually positive traces, after the generation, each
trace is again checked for its non-compliance with the original specification S. Algorithm 1
summarizes the steps of negative trace generation.

6.1 Positive and negative trace generation for open declarative processes

Among the several languages proposed for modelling open declarative approaches, we focus
on Declare [40]. In previous works [37,38], we showed how Declare constructs can be
mapped in SCIFF while preserving the notion of compliance. Here, the shift of perspective

3 Actually, there is another way to violate IC(2): by negating both the conjuncts, i.e. having a trace containing
a, and not containing b, and b happening before a. Clearly, this third option is inconsistent, since it asks for
both the happening and the non-happening of b. Hence, in this case no trace can be generated.

123



Generating synthetic positive and negative business process… 825

Algorithm 1 Generation of all the traces that are non-compliant with a given process model
expressed through a SCIFF specification S.
Input: S = 〈KB,IC,A〉, a SCIFF specification.
Output: T a set of traces non-compliant with S.
1: procedure negativeTraceGeneration(S = 〈KB,IC,A〉)
2: P(IC) = generate the power set of IC
3: for each p ∈ P(IC) do
4: neg(p) = generate the set of all possible negations of p
5: for each p j ∈ neg(p) do

6: IC j = p j ∪ {IC\p}
7: S j = 〈KB,IC j ,A〉
8: T j = generate traces compliant with S j

9: for each t j ∈ T j do
10: if ! compliant(t j ,S) then
11: T = T ∪ t j
12: end if
13: end for
14: end for
15: end for
16: return T
17: end procedure

towards log generation motivates some changes in the way we represent the Declare con-
structs. Moreover, a further issue is given by the fact that, as explained in Sect. 4.1, in open
declarative models there can be activities that are part of the process but are not part of any
constraint. When generating traces, also these activities are interesting and should appear in
the log.

6.1.1 Generating positive traces

As regards the first step of log generation, i.e. the translation of the Declare model into a
SCIFF specification, it stems from the one proposed in [38],whichwas oriented to compliance
monitoring. Differently from [38], here the focus is restricted to the problem of generating
traces; thus, two variations are present: (i) there is no more need for happened events and
positive/negative expectations, but every SCIFF IC is expressed in terms of abducibles only;
(i i) prohibitions can be expressed in terms of a particular type of IC, named denials, like for
instance in the neg_response(A,B) constraint, where the fail constant is used with the special
purpose of addressing an inconsistency or a failure. Table 1 reports a few examples of how
the Declare constructs can be easily mapped.

The translation of the Declare constraints alone is not enough: activities that are not sub-
jected to any existence constraint, or activities that are not mentioned at all by any constraint
(but are allowed due to the openness of the approach) will not appear in any trace. To address
this issue, in the SCIFF specification of a Declare model we add a further set of Integrity
Constraints (ICs). In particular, we assume a finite set A of all activities that have to be
considered. For each activity x ∈ A, we add the following:

true → true ∨ ABD(x, Tx ), (4)

ABD(x, T1) → true ∨ ABD(x, T2) ∧ T2 > T1. (5)

IC (4) ensures that either an activity x is not in a trace, or it is included in at least a trace.
IC (5) instead ensures that, once an activity x has been included in a trace, there is also the

123



826 D. Loreti et al.

Table 1 Mapping of some relevant Declare formulas onto SCIFF

constraintytirgetnIemaN Graphical

existence(A) true → ABD(A, T )

existence N (A) true →
N∧

i=1

(
ABD(A, Ti) ∧ Ti > Ti−1

)

absence(A) ABD(A, T ) →fail

absence N+1(A)
N+1∧

i=1

(
ABD(A, Ti) ∧ Ti > Ti−1

)
→fail

exactly N (A) existence N(A) ∧ absence N+1(A)

response(A,B) ABD(A, TA) →ABD(B, TB) ∧ TB > TA

precedence(A,B) ABD(A, TA) →ABD(B, TB) ∧ TA > TB

succession(A,B) response(A,B) ∧ precedence(A,B)

neg response(A,B) ABD(A, TA) ∧ ABD(B, TB) ∧ TA < TB → fail

chain response(A,B)

response(A,B)

∧ABD(A, TA) ∧ ABD(B, TB) ∧ TA > TB

∧ABD(X, TX) ∧ TX > TA ∧ TX < TB → fail

possibility of generating traces with two, three, . . ., many instances of x. Notice that to avoid
termination issues, we exploit an implementation feature of the SCIFF proof procedure: it
explores the disjoints following the syntactical order in which they have been defined. By
placing as a first disjoint always the true option in both IC (4) and (5), we ensure that the
procedure terminates, and only if requested for further solutions it explores the other disjoints.

6.1.2 Generating negative traces

The generation of negative traces follows exactly the schema presented in Algorithm 1. For
eachDeclare constraint, one or more Integrity Constraints (ICs) are generated, corresponding
to the possible ways of negating the constraint. For example, let us consider again IC (2), that
corresponds indeed to a response(A,B) Declare constraint (i.e. the execution of an activity A
must be followed by the execution of an activity B). We already discussed that there are two
significant ways (out of three) for negating the IC. Formally, they are:

true → ABD(a, Ta)

ABD(a, Ta) ∧ ABD(b, Tb) → fail (6)

123



Generating synthetic positive and negative business process… 827

and

true → ABD(a, Ta)

ABD(a, Ta) ∧ ABD(b, Tb) ∧ Tb > Ta → fail. (7)

ABD(a, Ta) → ABD(b, Tb) ∧ Tb < Ta .

IC (6) states the prohibition of the happening of b, if a has happened. The reader might
wonder why the denial is needed: if we simply resorted to not generate any activity b, we
would have already achieved the goal of a trace with a and not b. However, other Declare
constraints might call for the happening of b. The denial guarantees that the traces will not
contain b, thus ensuring the violation of IC (2).

A final consideration regards inconsistent models. When negating one or more Integrity
Constraints (ICs), inconsistent models will be generated: for example, a model with an IC
asking for the presence of activity a and also an IC prohibiting a. From the perspective of the
SCIFF proof procedure, inconsistent models are not an issue: simply, they will not produce
any trace.

6.2 Positive and negative trace generation for closed procedural processes

A huge number of specification languages for closed procedural processes have been pro-
posed. The number of approaches is so vast that their listing would be out of the scope of this
work. We restrict ourselves to a well-known class of processes, often referred as structured
process models [31] with unique tasks [50]. Although our approach could in theory deal
with unstructured models, we prefer to adopt such restriction since structured models have a
clearer semantics, in particular when dealing with loop patterns and termination conditions.
Such a choice comes at the price that not all real processes can be easily represented, and
more complex models would be needed to capture them. The choice of unique tasks instead
is due to a simpler management of the process model translation into our framework: indeed,
any process model with repeated activities can be always translated into another with unique
tasks by applying a simple renaming of the repeated activities.

6.2.1 Generating positive traces

The generation of positive traces from procedural models follows the general three-step
procedure. As regards the translation of structured process models into SCIFF, we refer to
the previous works [13,15,18]. As for template generation, it is worth noting that, differently
from open approaches, in procedural closed models only those activities that are explicitly
mentioned by the model are allowed in the trace. Hence, the specification of the procedural
model in terms if SCIFF’s constraints is sufficient to ensure the generation of the traces.
There is no need for additional constraints such as IC (4) and (5).

6.2.2 Generating negative traces

When negating flow constructs of a closed procedural model, it is important to consider that
the correct chaining of events might be broken, and certain negative traces might be not
generated. Let us explain the issue through the workflow example shown in Fig. 3, where a
very simple sequence of activities a, b, c is proposed.

123



828 D. Loreti et al.

Fig. 3 A closed, procedural process defined in YAWL

Let us focus, for the sake of comprehension, on generating those traces that violate the
sequence constraint between activities a and b because they do not contain b. These traces
are generated through IC (6). Intuitively, they would be:

τ19 = [a]
τ20 = [a, c].

Since the sequence construct between b and c is represented as:

ABD(b, Tb) → ABD(c, Tc) ∧ Tc > Tb,

in our formalism the generation of activity c is triggered by the presence of b. Its absence
would clearly lead to not generating c. Practically, only trace τ19 would be generated, while
we would miss trace τ20.

We overcome the issue through the same approach discussed in Sect. 6.1.1: for each
activity x ∈ A (thus also for c), we add the two Integrity Constraints (ICs) (4) and (5). Such
a choice would lead to generate a number of non-compliant traces due to the presence of
events at the wrong position in the trace and, eventually in the example, to the generation of
τ20.

It is worth to underline that this is not the only way in which we could have dealt with
the issue. For example, a simple alternative could have been to generate positive traces and
then randomly insert further interesting activities from A. Nonetheless, we believe that our
approach comes with the advantage of using the same logic framework for dealing with
both negative and positives traces. Indeed, constraints (4) and (5) are used: (i) in case of
open models—to insert additional, allowed activities not mentioned by any constraints in
the trace, thus to generate other positive traces; (i i) in case of closed models—to generate
negative traces by inserting additional activities not envisaged by the model (or activities
that do belong to the model but result placed in the wrong position inside the trace). In this
sense, our approach uniformly deals with the generation of both negative and positives traces.
Furthermore, the random insertion of activities in the trace once it is generated could leave
some cases uncovered.

Another point is related to the strategy of identifying all possible ways to negate each
constraint. It is indeed crucial when we deal with alternative flows in the model because it
allows the generation of negative traces mixing activities from both paths. When a xor gate
is in the model, as, for example, in Fig. 1 (see IC ic2 of Sect. 5 for its SCIFF specification),
there are several ways to negate such constraint. As previously discussed for IC (2), there are
two significant ways to negate each of the two alternative sequences [a, b] and [a, c] entailed
by the xor constraints. Furthermore, there are two ways to negate the disjunction: (i) after
a, neither b, nor c are executed; (ii) after a, both b and c are executed. The latter negated
form of the xor constraint generates negative traces containing both b and c, which originally
belonged to alternative paths.

123



Generating synthetic positive and negative business process… 829

7 Evaluation of the prototype

Aiming to empirically verify our approach, we developed a first software prototype which
employs the SCIFF abduction capabilities to generate positive and negative traces starting
from a given business model.

The software, which is publicly available for download [41], allows to specify the input
model in terms of the Integrity Constraints (ICs) that must be fulfilled and a setA of possible
activities that can occur in the traces. As discussed in the previous sections, A can include
further activities that do not appear in any constraint. The user can also specify various
options, useful to control the generation process and the characteristics of the emitted traces.
It is indeed possible to specify:

– if the model is declarative open or procedural closed;
– if positives, negatives or both types of traces must be generated;
– the time limit for each generated trace, i.e. its maximum time length in seconds;
– themaximum length of the generated traces intended as themaximumnumber of events in

each trace—particularly relevant to guarantee the termination of the generation procedure
when loops are in the model;

– the number of instances for each path, i.e. in case the model includes some alternative
choices of different flow paths (as shown in Fig. 1), the maximum number of traces that
must be generated for each alternative path.

The emitted traces are provided in XES format [55], each one reporting a trace identifier
and the list of the events with the corresponding timestamp. The download package includes
a codification of the twomodels in Figs. 1 and 2a—as examples of procedural and declarative
processes, respectively—that can be used to verify the generation abilities of the prototype
as regards both positive and negative traces. The prototype originates 10 positive and 20
negative traces from the declarative model in Fig. 2a when the options of 5-second time
limit, five activities as maximum length and one instance for each path are provided. With
the same options, the procedural model in Fig. 1 originates four positive and 4450 negative
traces (as a consequence of its closeness flavour).

As discussed in [22], the complexity of the main abductive decision problem (i.e. to
determine whether an explanation exists) is located at the second level of the polynomial
hierarchy (�P

2 -complete). In order to empirically evaluate the generation performance of the
proposed tool, we employ an arbitrarily big procedural model composed of a long sequence
of activities. Thus, there is only one path allowed by the model from the start to the stop
activity. We first estimate the time to generate an increasing number of only positive traces
on an average hardware architecture (a quad-core Intel i7 2,9 GHz CPU and 16 GB RAM),
when the SCIFF is given three different models composed of 250, 500 and 750 activities (see
the graph in Fig. 4a). In order to force the generation of a certain number N of traces in each
experiment, we set the time limit and maximum length to high values (so that the generation
process is not influenced by them) and we ask to generate N instances for each path. Since
there is only one possible path in the given model, we obtain exactly N traces in the output.
As highlighted in Fig. 4a, the generation time increases linearly with the number of emitted
traces.

Figure 4b reports the performance of the tool when we fix to 10, 20 and 30 the number
of generated positive traces, but we progressively increase the number of activities in the
model. In this case, as a bigger model corresponds to more Integrity Constraints (ICs) to be
considered, the generation time shows a superlinear trend in the number of activities. This is

123



830 D. Loreti et al.

Fig. 4 Evaluation of the times to generate positive traces for an arbitrarily long procedural model

Fig. 5 Evaluation of the times to generate positive and negative traces for an arbitrarily long procedural model.
The performance decreases rapidly (superlinearly) with the number of activities in the process model (Fig. 5a),
but linearly with the number of generated traces (Fig. 5b). Figure 5b reports the data in logarithmic scale on
both the axis to better appreciate the trend

indeed expected, since a bigger model entails more activities for each instance of the process
execution and requires more time to generate the corresponding trace.

The same test is repeated while asking the tool to generate both positive and negative
traces. As the model is closed procedural, there are far more forbidden process instances
than the allowed ones. Therefore, as shown in Fig. 5a, a slight increase in the number of
model activities corresponds to a huge increase in the space of negative traces to be explored
and, consequently, to a higher generation time. This is further confirmed by the graph in
Fig. 5b, where we relate the number of traces generated in each experiment of Fig. 5a with
the required time (with logarithmic scale on both axes to better appreciate the trend): the two
dimensions are still linearly proportional.

8 Related work

Automated discovery of process models from event logs is one of the main research areas
of process mining. As it focuses on extracting knowledge from business process logs, the
evaluation of process discovery techniques inevitably requires the availability of event logs

123



Generating synthetic positive and negative business process… 831

[20]. For this purpose, some real-life logs have beenmade publicly available [9] and are often
used as benchmarks for testing process discovery tools. Given the real-life origin of these
datasets, they may contain imperfections (i.e. non-compliant traces) or show incompleteness
(i.e. miss some examples of traces that should be considered compliant), thus causing alter-
ations in the discovered business model. Indeed, real-life logs usually reports all the observed
traces without any indication of which cases are non-compliant or which execution paths are
missing. For this reason, a widespread approach in this field is based on process simulation
to artificially generate event logs with predefined characteristics. This allows the researchers
to perform a finer tuning of the developed algorithms and better control the experimental
evaluation. Some model simulators and log generators have been developed for this purpose
[27,28].

In this section we propose a classification of some relevant works on log generation
according to the following main directives:

– the ability to generate process execution examples with the employment of a procedural
approach;

– the ability to support declarative constraints;
– the possibility to generate positive compliant traces;
– the possibility to generate negative non-compliant traces;
– the availability of generation mechanisms from partially specified traces;
– the ability to deal with time constraints;
– the ability to deal with data constraints;
– the possibility to generate traces with a user-defined probability distribution of workflow

execution paths and values;
– the online availability of the proposed generation tool.4

The approaches described in the following are classified according to these directives in
Table 2.

The work [53] introduces a framework for the automated generation of Petri nets repre-
senting processes, according to user-defined rules. In particular, they suggest to gradually
refine Workflow nets [46] in a top-down approach, in order to generate all possible process
models belonging to the class of Jackson nets. A similar approach has been proposed in [8],
where the authors describe a technique to generate Petri nets according to a different set
of refinement rules. In both cases, the generated process models are intended to be used as
benchmarks for process discovery algorithms, but the proposed approaches do not address
the problem of generating traces from the developed Petri nets; hence, we exclude the works
[53] and [8] from the classification in Table 2.

In the works [10,11], the authors present a tool, the Processes Logs Generator (PLG),
developed for the specific purpose of generating process discovery benchmarks. The soft-
ware allows the user to randomly develop business models according to some predefined
parameters and then “execute” the generated model while recording each activity in a log
file. In [24], the authors present an approach based on CPN Tools [29] to simulate business
process models. The key component of the simulator performs a template-oriented transfor-
mation from BPMN process models into CPNs. Another approach based on CPN Tools is
described in [7], where the authors generate XML event logs by the simulation of a CPN. The
work [57] uses simulation to evaluate the impact in terms of performance of re-engineering

4 We checked the availability on 8 April 2019 starting from the URLs reported in the original papers. Note
that some tools have been updated and moved to different web sites. In any case, the interested reader can
contact the authors of the works to request the source code when not available online.

123



832 D. Loreti et al.

Ta
bl
e
2

C
la
ss
ifi
ca
tio

n
of

lo
g/
m
od
el
ge
ne
ra
to
rs
ap
pr
oa
ch
es

ac
co
rd
in
g
th
ei
rm

os
tr
el
ev
an
tf
ea
tu
re
s.
Si
nc
e
pr
ov
id
in
g
a
su
rv
ey

of
al
la
va
ila
bl
e
w
or
ks

on
lo
g
ge
ne
ra
tio

n
is
be
yo

nd
th
e

sc
op

e
of

th
is
pa
pe
r,
th
is
lis
th

as
no

tt
o
be

in
te
nd

ex
ha
us
tiv

e

A
pp
ro
ac
h

Pr
oc
ed
ur
al

D
ec
la
ra
tiv

e
Po

si
tiv

e
tr
ac
e
ge
n.

N
eg
at
iv
e

tr
ac
e
ge
n.

Pa
rt
ia
lly

sp
ec
ifi
ed

tr
ac
es

T
im

e
co
ns
tr
ai
nt
s

D
at
a

co
ns
tr
ai
nt
s

Pr
ob
ab
ili
ty

di
st
ri
bu
tio

n
of

pa
th
s
an
d
va
lu
es

To
ol

av
ai
la
bi
lit
y

B
ur
at
tin

et
al
.[
10
,1
1]

+
−

+
−

−
−

−
+

+
G
ar
cí
a-
B
añ
ue
lo
s
et
al
.[
24

]
+

−
+∗

−
−

−
−

∗∗
+

+a
A
lv
es

de
M
ed
ei
ro
s
et
al
.[
7]

+
−

+∗
−

−
+

+
+

−
W
yn
n
et
al
.[
57
]

+
−

+∗
−

−
+

+
+

−
W
es
te
rg
aa
rd

et
al
.[
56
]

+
+

+
−

−
−

−
−

+
D
iC

ic
ci
o
et
al
.[
20

]
−

+
+

−
−

−
−

−
+

A
ck
er
m
an
n
et
al
.[
3,
4]

−
+

+
−

−
+

+
−

+c
A
cc
or
si
et
al
.[
2,
43

,4
4]

+
−

+
+

−
+

−
+

+
G
oe
de
rt
ie
r
et
al
.[
25
]

+
−

+
+

−
+

+
+

+
B
ro
uc
ke

et
al
.[
51

,5
2]

+
−

+
+

−
+

+
+

+b
SC

IF
F
ap
pr
oa
ch

+
+

+
+

+
+

+
−

+
∗ L

og
ge
ne
ra
tio

n
is
pr
ov
id
ed

th
ro
ug

h
a
co
lo
ur
ed

Pe
tr
in

et
(C

PN
)
to
ol
s

∗∗
C
ur
re
nt
ly

no
te
xp

lo
re
d
al
th
ou

gh
C
PN

To
ol
s
al
lo
w
s
it

a F
ol
lo
w
in
g
an

ex
ch
an
ge

of
co
rr
es
po

nd
en
ce

w
ith

th
e
au
th
or
s,
w
e
un

de
rs
ta
nd

th
at
th
e
to
ol

ha
s
be
en

re
pl
ac
ed

by
B
IM

P
[1
],
av
ai
la
bl
e
at
ht
tp
://
bi
m
p.
cs
.u
t.e
e/

on
8
A
pr
il
20

19
b
A
va
ila
bl
e
at
ht
tp
://
pr
oc
es
sm

in
in
g.
be
/n
ec
on
fo
rm

an
ce
/
on

8
A
pr
il
20

19
c A

va
ila
bl
e
at
ht
tp
s:
//
w
w
w
.a
i4
.u
ni
-b
ay
re
ut
h.
de
/e
n/
re
se
ar
ch
/T
oo
ls
A
nd
R
es
ou
rc
es
/i
nd
ex
.h
tm

l#
ta
b_

68
76

22
87

on
8
A
pr
il
20

19

123

http://bimp.cs.ut.ee/
http://processmining.be/neconformance/
https://www.ai4.uni-bayreuth.de/en/research/ToolsAndResources/index.html


Generating synthetic positive and negative business process… 833

business processes. This approach creates simulation models from workflow processes and
uses simulation results as a feedback to calibrate the model.

All the approaches described so far support only procedural business process models plus
additional information like, e.g. mean execution time of activities, probability of choices,
etc. Eventually, a number of approaches support also the simulation of limited resources,
their allocation, queues, etc. Nevertheless, these procedural approaches show some limita-
tions when the process is characterized by high variability and allows for many alternative
execution paths. In these cases, declarative process models are proven to perform better. For
this reason, CPN Tools has presented an extension [56] of the traditional procedural-based
modeller to graphically add Declare constraints [48]. The simulation of such hybrid mod-
els can be carried out by the user or executed in a random way. The work [20] presents a
synthetic log generator that allows the user to define the process model by listing a number
of declarative constraints expressed in Declare. More recently, another log generator based
on a declarative approach has been presented in [3–5]. Here, the authors employ Declara-
tive Process Intermediate Language (DPIL), a declarative process modelling language, to
create a simulation model, and then generate XES event logs composed of only positive
traces through a second component called Multi-perspective Declarative Process Simulation
(MuDePS). Each generated log describes an exhaustive, distinct set of traces of the desired
length.

TheSCIFFapproach can inherently give support to the definitionof both declarative aswell
as procedural models and naturally exploit abduction to enable the generation. Furthermore,
differently from SCIFF, all these solutions to log generation ignore the necessity of negative
examples in the benchmark event log to determine how robust to noise a certain process
discovery technique is [21]. Since information about state transitions that were prevented
from taking place is often unavailable in real-life logs, it cannot be exploited in order to
guide the learning task. For this reason, as also underlined in [25], in most cases process
discovery techniques are limited to the harder setting of unsupervised learning. Our notion
of negative traces may recall the concept of syntactical noise introduced by Günther in [26].
However, this similarity is only limited to the appearance of the trace (i.e. showing missing,
out of order or unexpected events), whereas the hypothesized use of these instances remains
different:Günther’s noisy traces are intended as a consequenceof distortions in transmitting or
recording the log (and as such, should be identified and discarded during process discovery),
whereas in this work, negative traces are intended as meaningful aspects of the process. Their
non-compliance can be itself a source of knowledge, for example, to instruct an inductive
mining tool.

In [23], the authors assume to have a set of negative events collected from domain experts
who suggests whether a proposed execution plan is feasible or not. Given this knowledge, the
authors combine ILP and partial-order planning techniques to process discovery. Similarly,
other approaches [6,17,32,33] envisage the presence of “non-compliant” traces as a funda-
mental requirement to enable process mining tasks through supervised learning techniques.
In [2,43,44], the authors present a tool that takes a series of business process specifications
as input and generates an event log. Based upon other user-defined security and compliance
requirements, deviations from the defined control flow are generated. In particular, specific
trace properties can be either enforced or violated on a random basis in the resulting event
log. This approach shares with SCIFF the possibility to generate negative examples but
is limited to support the definition of procedural business process models only. The work
[25,51,52] proposes a process discovery learning technique, which starts by generating artifi-
cially induced negative events and later uses these examples to enforce the learning process.
Differently from our approach, in all these works the negative traces are not generated by

123



834 D. Loreti et al.

modifying the model’s constraints, but rather replacing the positive events of each trace and
then checking if a state transition of interest (corresponding to a candidate negative event)
could occur. Specifically, the authors assume that a generated transition can be considered as a
negative example if it is not present in any trace with a similar history in the log. Although this
assumption has the great advantage of allowing the user to deal with negative traces before
having extracted the process model, it can lead to incorrect results. Indeed, the initial hypoth-
esis of having all the positive examples in the log cannot be always guaranteed, causing the
allowed state transitions that are not reported in the log to be classified as negative examples.
On the contrary, if the log contains some not allowed trace, the generator will erroneously
consider them as positive examples. Differently from these works, the SCIFF approach is
able to ensure the validity of the generated positive and negative traces w.r.t. a model. This
feature could be useful, for example, in conjunction with an inductive miner (employing
both positive and negative instances) to iteratively refine a business process model through
subsequent steps of generation and mining.

9 Conclusions and future works

In the recent years, as the interest in BPM and process mining techniques has increased, the
need for event log benchmarks with predefined characteristics has become more and more
popular.

This work presents a novel approach for generating synthetic logs starting from a declara-
tive or procedural business processmodel.We analysed the theoretical aspects of positive and
negative trace generation and evaluate the feasibility of our method by providing a standalone
prototype able to generate trace templates aswell as completely grounded traces.Also, custom
constraints on data and time can be specified tomeet the application-dependent requirements.
The performance evaluation of the proposed tool is promising although a superlinear trend
in the generation time for increasing model dimension is clearly highlighted. The proposed
approach is then put through a deep qualitative comparison with the existing literature on
business process simulation, revealing the numerous advantages of the employment of the
SCIFF framework in this field. Namely, the possibility to deal with both open declarative and
closed procedural model specifications while producing positive and negative traces, and the
ability to deal with partially specified traces.

This analysis of the state of the art has also highlighted some shortcomings of our approach,
whichwill be addressed in the future. In particular, the generationof traces and their grounding
does not consider anyprobability information,while somepaths in the processmodelmight be
more frequent than others, as well as some data values and activity durations might be more
probable than others. Furthermore, as data constraints are currently supported by directly
modifying the SCIFF constraints, for the future, we plan to introduce some higher-level
mechanism aiming to meet the needs of a non-technical user.

Since positive/negative log generation explores all the possible allowed and non-allowed
traces given a business model, the process can require a significant amount of time, depend-
ing on the length of the model, the number of possible paths and the quantity and quality of
constraints to be checked. When the SCIFF framework is used for compliance monitoring
purposes, previous works [12,35] have proven the possibility to significantly speed up the
checking process through the employment of programming models for distributed computa-
tion like MapReduce [19]. A similar approach could be useful to accelerate positive/negative
log generation when a collection of computing nodes is available. For the future, we plan to

123



Generating synthetic positive and negative business process… 835

explore this possibility in order to partition the generation process into smaller tasks that can
be easily concurrently executed with the support of a large-scale data processing engine.

References

1. Abel M (2011) Lightning fast business process simulator. Master’s thesis, University of Tartu, Estonia
2. Accorsi R, Stocker T (2013) SecSy: synthesizing smart process event logs. In: Jung R, Reichert M

(eds) Enterprise Modelling and Information Systems Architectures: proceedings of the 5th international
workshop on enterprise modelling and information systems architectures, EMISA 2013, St. Gallen,
Switzerland, September 5–6, 2013, LNI, vol 222, pp 71–84. GI. https://dl.gi.de/20.500.12116/17247.
Accessed 19 June 2019

3. Ackermann L, Schönig S (2016) MuDePS: multi-perspective declarative process simulation. In: Azevedo
L, Cabanillas C (eds) BPM demo track 2016, CEUR workshop proceedings, vol 1789, pp 12–16. CEUR-
WS.org. http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper3.pdf. Accessed 19 June 2019

4. Ackermann L, Schönig S, Jablonski S (2016) Simulation of multi-perspective declarative process models.
In: BPM 2016 Workshops, LNBIP, vol. 281, pp 61–73. https://doi.org/10.1007/978-3-319-58457-7_5

5. Ackermann L, Schönig S, Jablonski S (2016) Towards simulation- and mining-based translation of
resource-aware process models. In: Business process management workshops - BPM 2016 international
workshops, Rio de Janeiro, Brazil, September 19, 2016, Revised Papers, LNBIP, vol 281, pp 359–371.
https://doi.org/10.1007/978-3-319-58457-7_26

6. Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P (2008) Verifiable agent interaction in
abductive logic programming: the SCIFF framework. ACM Trans Comput Log 9(4):29:1–29:43. https://
doi.org/10.1145/1380572.1380578

7. Alves de Medeiros AK, Günther CW (2005) Process mining: using CPN tools to create test logs for
mining algorithms. In: Proceedings of the 6th workshop on practical use of coloured Petri nets and the
CPN tools, pp 177–190

8. BergmannG, Horváth Á, Ráth I, Varró D (2008) A benchmark evaluation of incremental pattern matching
in graph transformation. In: Ehrig H, Heckel R, Rozenberg G, Taentzer G (eds) Graph transformations,
4th international conference, ICGT 2008, Leicester, UK, September 7–13, 2008. Proceedings, Lecture
Notes in Computer Science, vol 5214, pp 396–410. Springer. https://doi.org/10.1007/978-3-540-87405-
8_27

9. BPI Challenge Real life Event Logs (2017). https://data.4tu.nl/repository/collection:event_logs_real.
Accessed 19 June 2019

10. Burattin A (2016) PLG2: multiperspective process randomization with online and offline simulations.
In: Azevedo L, Cabanillas C (eds) Proceedings of the BPM demo track 2016 co-located with the 14th
international conference on business processmanagement (BPM2016), Rio de Janeiro, Brazil, September
21, 2016, CEUR workshop proceedings, vol 1789, pp 1–6. CEUR-WS.org. http://ceur-ws.org/Vol-1789/
bpm-demo-2016-paper1.pdf. Accessed 19 June 2019

11. Burattin A, Sperduti A (2010) PLG: a framework for the generation of business process models and
their execution logs. In: zur Muehlen M, Su J (eds) BPM 2010 workshops, LNBIP, vol 66. Springer,
pp 214–219. https://doi.org/10.1007/978-3-642-20511-8_20

12. Chesani F, CiampoliniA, Loreti D,Mello P (2016) Processminingmonitoring formap reduce applications
in the cloud. In: Proceedings of the 6th international conference on cloud computing and services science.
https://doi.org/10.5220/0005864000950105

13. Chesani F, Ciampolini A, Loreti D,Mello P (2018) Abduction for generating synthetic traces. In: Teniente
E, Weidlich M (eds) Business process management workshops. Springer, Cham, pp 151–159

14. Chesani F, De Masellis R, Francescomarino CD, Ghidini C, Mello P, Montali M, Tessaris S (2016)
Abducing compliance of incomplete event logs. In: AI*IA 2016, proceedings, LNCS, vol 10037,
pp 208–222. Springer. https://doi.org/10.1007/978-3-319-49130-1_16

15. Chesani F, De Masellis R, Francescomarino CD, Ghidini C, Mello P, Montali M, Tessaris S (2016)
Abducing compliance of incomplete event logs. arXiv:1606.05446

16. Chesani F, De Masellis R, Francescomarino CD, Ghidini C, Mello P, Montali M, Tessaris S (2016)
Abducing workflow traces: a general framework to manage incompleteness in business processes. In:
ECAI 2016, frontiers in artificial intelligence and applications, vol 285, pp 1734–1735. IOS Press. https://
doi.org/10.3233/978-1-61499-672-9-1734

17. Chesani F, Lamma E, Mello P, Montali M, Riguzzi F, Storari S (2009) Exploiting inductive logic pro-
gramming techniques for declarative process mining. Trans Petri Nets Other Models Concurr 2:278–295.
https://doi.org/10.1007/978-3-642-00899-3_16

123

https://dl.gi.de/20.500.12116/17247
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper3.pdf
https://doi.org/10.1007/978-3-319-58457-7_5
https://doi.org/10.1007/978-3-319-58457-7_26
https://doi.org/10.1145/1380572.1380578
https://doi.org/10.1145/1380572.1380578
https://doi.org/10.1007/978-3-540-87405-8_27
https://doi.org/10.1007/978-3-540-87405-8_27
https://data.4tu.nl/repository/collection:event_logs_real
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper1.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper1.pdf
https://doi.org/10.1007/978-3-642-20511-8_20
https://doi.org/10.5220/0005864000950105
https://doi.org/10.1007/978-3-319-49130-1_16
http://arxiv.org/abs/1606.05446
https://doi.org/10.3233/978-1-61499-672-9-1734
https://doi.org/10.3233/978-1-61499-672-9-1734
https://doi.org/10.1007/978-3-642-00899-3_16


836 D. Loreti et al.

18. Chesani F, Mello P, Masellis RD, Francescomarino CD, Ghidini C, Montali M, Tessaris S (2018) Compli-
ance in business processes with incomplete information and time constraints: a general framework based
on abductive reasoning. Fundam Inform 159(1–2):35–63. https://doi.org/10.3233/FI-2018-1657

19. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM
51(1):107. https://doi.org/10.1145/1327452.1327492

20. Di Ciccio C, Bernardi ML, Cimitile M, Maggi FM (2015) Generating event logs through the simulation
of declare models. In: EOMAS 2015, Held at CAiSE 2015, LNBIP, vol 231, pp 20–36. Springer. https://
doi.org/10.1007/978-3-319-24626-0_2

21. Di Ciccio C, Mecella M, Mendling J (2013) The effect of noise on mined declarative constraints. In:
Data-driven process discovery and analysis - third IFIPWG 2.6, 2.12 international symposium, SIMPDA
2013, Riva del Garda, Italy, August 30, 2013, Revised Selected Papers, LNBIP, vol 203, pp 1–24. Springer.
https://doi.org/10.1007/978-3-662-46436-6_1

22. Eiter T, Gottlob G (1995) The complexity of logic-based abduction. J ACM 42(1):3–42. https://doi.org/
10.1145/200836.200838

23. Ferreira HM, Ferreira DR (2006) An integrated life cycle for workflow management based on learning
and planning. Int J Cooperative Inf Syst 15(4):485–505. https://doi.org/10.1142/S0218843006001463

24. Garcıa-Banuelos L, DumasM (2009) Towards an open and extensible business process simulation engine.
In: CPN workshop 2009, pp 199–208

25. Goedertier S,MartensD,Vanthienen J, Baesens B (2009) Robust process discoverywith artificial negative
events. J Mach Learn Res 10:1305–1340. https://doi.org/10.1145/1577069.1577113

26. Günther C (2009) Process mining in flexible environments. Ph.D. thesis, Department of Industrial Engi-
neering & Innovation Sciences. https://doi.org/10.6100/IR644335

27. Imam I, Nounou N, Hamouda A, Khalek HAA (2011) Survey of business process simulation tools:
a comparative approach. In: Proceedings of SPIE 8285, international conference on graphic and image
processing (ICGIP 2011), 82853B (1October 2011), vol 8285, pp 1–7. https://doi.org/10.1117/12.914265

28. Jansen-vullers MH, Jansen-vullers MH, Netjes M (2006) Business process simulation—a tool survey. In:
Workshop and tutorial on practical use of coloured petri nets and the CPN. https://doi.org/10.1.1.87.8291

29. Jensen K, Kristensen LM,Wells L (2007) Coloured Petri nets and CPN tools for modelling and validation
of concurrent systems. STTT 9(3–4):213–254. https://doi.org/10.1007/s10009-007-0038-x

30. Kakas AC, Kowalski RA, Toni F (1992) Abductive logic programming. J Log Comput 2(6):719–770.
https://doi.org/10.1093/logcom/2.6.719

31. Kiepuszewski B, ter Hofstede AHM, Bussler C (2013) On structured workflow modelling. In: Jr JAB,
Krogstie J, Pastor O, Pernici B, Rolland C, Sølvberg A (eds) Seminal contributions to information systems
engineering, 25 Years of CAiSE, pp 241–255. Springer. https://doi.org/10.1007/978-3-642-36926-1_19

32. Lamma E, Mello P, Montali M, Riguzzi F, Storari S (2007) Inducing declarative logic-based models
from labeled traces. In: Alonso G, Dadam P, Rosemann M (eds) Business process management, 5th
international conference, BPM 2007, Brisbane, Australia, September 24–28, 2007, proceedings, Lecture
Notes in Computer Science, vol 4714, pp 344–359. Springer. https://doi.org/10.1007/978-3-540-75183-
0_25

33. Lamma E, Mello P, Riguzzi F, Storari S (2007) Applying inductive logic programming to process mining.
In: Blockeel H, Ramon J, Shavlik JW, Tadepalli P (eds) Inductive logic programming, 17th international
conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007, revised selected papers, Lecture Notes in
Computer Science, vol 4894, pp 132–146. Springer. https://doi.org/10.1007/978-3-540-78469-2_16

34. Lloyd JW (1987) Foundations of logic programming, 2nd edn. Springer, Berlin
35. Loreti D, Chesani F, Ciampolini A, Mello P (2018) A distributed approach to compliance monitoring of

business process event streams. Future Gener Comput Syst 82:104–118. https://doi.org/10.1016/j.future.
2017.12.043

36. Marrella A, Lespérance Y (2017) A planning approach to the automated synthesis of template-based
process models. Serv Oriented Comput Appl 11(4):367–392. https://doi.org/10.1007/s11761-017-0215-
z

37. Montali M (2010) Specification and verification of declarative open interaction models—a logic-based
approach, Lecture Notes in Business Information Processing, vol 56. Springer. https://doi.org/10.1007/
978-3-642-14538-4

38. MontaliM, PesicM, van derAalstWMP,Chesani F,Mello P, Storari S (2010)Declarative specification and
verification of service choreographiess. TWEB 4(1):3:1–3:62. https://doi.org/10.1145/1658373.1658376

39. Muggleton S, Raedt LD (1994) Inductive logic programming: theory and methods. J Log Program
19(20):629–679. https://doi.org/10.1016/0743-1066(94)90035-3

40. Pesic M, van der Aalst WMP (2006) A declarative approach for flexible business processes management.
In: Eder J, Dustdar S (eds) Business processmanagement workshops, BPM2006 international workshops,
BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria, September 4–7, 2006, proceedings,

123

https://doi.org/10.3233/FI-2018-1657
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-662-46436-6_1
https://doi.org/10.1145/200836.200838
https://doi.org/10.1145/200836.200838
https://doi.org/10.1142/S0218843006001463
https://doi.org/10.1145/1577069.1577113
https://doi.org/10.6100/IR644335
https://doi.org/10.1117/12.914265
https://doi.org/10.1.1.87.8291
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1093/logcom/2.6.719
https://doi.org/10.1007/978-3-642-36926-1_19
https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-540-78469-2_16
https://doi.org/10.1016/j.future.2017.12.043
https://doi.org/10.1016/j.future.2017.12.043
https://doi.org/10.1007/s11761-017-0215-z
https://doi.org/10.1007/s11761-017-0215-z
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1016/0743-1066(94)90035-3


Generating synthetic positive and negative business process… 837

Lecture Notes in Computer Science, vol 4103, pp 169–180. Springer. https://doi.org/10.1007/11837862_
18

41. Synthetic log generation through abduction (2018) https://doi.org/10.5281/zenodo.2625707. http://ai.
unibo.it/LogGeneration. https://github.com/ai-unibo/log-generator. Accessed 19 June 2019

42. Shanahan M (2000) An abductive event calculus planner. J Log Program 44(1):207–240. https://doi.org/
10.1016/S0743-1066(99)00077-1

43. Stocker T, Accorsi R (2013) SecSy: security-aware synthesis of process event logs. In: Lecture Notes in
Informatics (LNI), proceedings - series of the Gesellschaft fur Informatik (GI), pp 71–84

44. Stocker T, Accorsi R (2014) SecSy: a security-oriented tool for synthesizing process event logs. In:
Proceedings of the BPM demo sessions 2014, CEUR Procs., vol 1295, p 71. CEUR-WS.org. http://ceur-
ws.org/Vol-1295/paper13.pdf. Accessed 19 June 2019

45. van der Aalst WMP, Adriansyah A, Alves de Medeiros AK, et al (2011) Process mining manifesto.
In: Business Process Management Workshops - BPM 2011 International Workshops, Clermont-Ferrand,
France, August 29, 2011, Revised Selected Papers, Part I, Lecture Notes in Business Information Pro-
cessing, vol 99, pp 169–194. Springer. https://doi.org/10.1007/978-3-642-28108-2_19

46. van der Aalst WMP, van Hee KM (2002) Workflow management: models, methods, and systems. MIT
Press, Cambridge

47. van derAalstWMP, terHofstedeAHM(2005)YAWL: yet anotherworkflow language. Inf Syst 30(4):245–
275. https://doi.org/10.1016/j.is.2004.02.002

48. van der Aalst WMP, Pesic M (2006) DecSerFlow: towards a truly declarative service flow language. In:
Bravetti M, Núñez M, Zavattaro G (eds) Web services and formal methods, third international workshop,
WS-FM 2006 Vienna, Austria, September 8–9, 2006, Proceedings, Lecture Notes in Computer Science,
vol 4184, pp 1–23. Springer. https://doi.org/10.1007/11841197_1

49. van der AalstWMP, PesicM, SchonenbergH (2009) Declarative workflows: balancing between flexibility
and support. Comput Sci R&D 23(2):99–113. https://doi.org/10.1007/s00450-009-0057-9

50. van der Aalst WMP, Weijters T, Maruster L (2004) Workflow mining: discovering process models from
event logs. IEEE Trans Knowl Data Eng 16(9):1128–1142. https://doi.org/10.1109/TKDE.2004.47

51. vanden Broucke S (2014) Advances in process mining: artificial negative events and other techniques.
Ph.D. thesis, Katholieke Universiteit Leuven, Belgium. https://lirias.kuleuven.be/handle/123456789/
459143. Accessed 19 June 2019

52. vanden Broucke S, Weerdt JD, Baesens B, Vanthienen J (2012) Improved artificial negative event gener-
ation to enhance process event logs. In: Ralyté J, Franch X, Brinkkemper S, Wrycza S (eds) Advanced
information systems engineering - 24th international conference, CAiSE 2012, Gdansk, Poland, June
25–29, 2012. Proceedings, Lecture Notes in Computer Science, vol 7328, pp 254–269. Springer. https://
doi.org/10.1007/978-3-642-31095-9_17

53. van Hee KM, Liu Z (2010) Generating benchmarks by random stepwise refinement of Petri nets. In:
Donatelli S, Kleijn J, Machado RJ, Fernandes JM (eds) Proceedings of the workshops of the 31st interna-
tional conference on application and theory of petri nets and other models of concurrency (PETRI NETS
2010) and of the 10th international conference on application of concurrency to system design (ACSD
2010), Braga, Portugal, June, 2010, CEUR workshop proceedings, vol 827, pp 403–417. CEUR-WS.org.
http://ceur-ws.org/Vol-827/31_KeesHee_article.pdf. Accessed 19 June 2019

54. van Hee KM, Sidorova N, van der Werf JMEM (2013) Business process modeling using petri nets. Trans
Petri Nets Other Models Concurr 7:116–161. https://doi.org/10.1007/978-3-642-38143-0_4

55. Verbeek HMW, Buijs JCAM, van Dongen BF, van der Aalst WMP (2010) XES, XESame, and ProM 6.
In: Soffer P, Proper E (eds) Information systems evolution - CAiSE Forum 2010, Hammamet, Tunisia,
June 7–9, 2010, selected extended papers, Lecture Notes in Business Information Processing, vol 72, pp
60–75. Springer. https://doi.org/10.1007/978-3-642-17722-4_5

56. Westergaard M, Slaats T (2013) CPN tools 4: a process modeling tool combining declarative and imper-
ative paradigms. In: BPM Demo sessions 2013, CEUR Procs., vol 1021, pp 1–5. CEUR-WS.org. http://
ceur-ws.org/Vol-1021/paper_3.pdf. Accessed 19 June 2019

57. Wynn MT, Dumas M, Fidge CJ, ter Hofstede AHM, van der Aalst WMP (2007) Business process sim-
ulation for operational decision support. In: BPM workshops, BPM 2007, LNCS, vol 4928, pp 66–77.
Springer. https://doi.org/10.1007/978-3-540-78238-4_8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/11837862_18
https://doi.org/10.1007/11837862_18
https://doi.org/10.5281/zenodo.2625707
http://ai.unibo.it/LogGeneration
http://ai.unibo.it/LogGeneration
https://github.com/ai-unibo/log-generator
https://doi.org/10.1016/S0743-1066(99)00077-1
https://doi.org/10.1016/S0743-1066(99)00077-1
http://ceur-ws.org/Vol-1295/paper13.pdf
http://ceur-ws.org/Vol-1295/paper13.pdf
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1109/TKDE.2004.47
https://lirias.kuleuven.be/handle/123456789/459143
https://lirias.kuleuven.be/handle/123456789/459143
https://doi.org/10.1007/978-3-642-31095-9_17
https://doi.org/10.1007/978-3-642-31095-9_17
http://ceur-ws.org/Vol-827/31_KeesHee_article.pdf
https://doi.org/10.1007/978-3-642-38143-0_4
https://doi.org/10.1007/978-3-642-17722-4_5
http://ceur-ws.org/Vol-1021/paper_3.pdf
http://ceur-ws.org/Vol-1021/paper_3.pdf
https://doi.org/10.1007/978-3-540-78238-4_8


838 D. Loreti et al.

Daniela Loreti is a postdoc researcher at CIRI Health Sciences and
Technologies (HST) and assistant professor of Operating Systems at
DISI—University of Bologna. She received the PhD degree in Com-
puter Science in 2016. Her research focuses on big data and stream
process architectures as well as distributed programming models. She
is also interested in artificial intelligence techniques for process min-
ing, expert systems and argumentative agents. She is currently involved
in the POR-FESR project Habitat, which aims to realise an assistive
domestic system to support the life of elderly people through IoT smart
objects and rule-based decision support systems.

Federico Chesani PhD is associate professor of Computer Science
at DISI—University of Bologna. His research and teaching activities
focus on the area of logic programming, business processes modelling,
distributed verification and monitoring, and rule-based decision sup-
port systems. Federico Chesani has published more than 100 papers in
international conferences and journals and established collaborations
with several research groups, universities and private companies. He
has been involved in several projects, as workpackage leader for the
prototypes implementation (EU FP7 e-Policy), and as researcher for
probabilistic and monitoring tools (EU FP7 Farseeing, H2020 Preven-
tIT).

Anna Ciampolini PhD in Computer Science and Engineering is full
professor at the Department of Computer Science and Engineering—-
University of Bologna, where she teach Operating Systems. She cur-
rently is the deputy head of the department. Her research interests
include: operating systems, virtualization techniques and cloud com-
puting, parallel and distributed programming, automatic management
of cloud computing systems, distributed platforms for big data anal-
ysis, and distributed artificial intelligence, with particular regard to
distributed automated reasoning. She has been involved in several inter-
national projects and also in coordination roles. Her research covers
both application and theoretical aspects as shown by her broad bibli-
ographic production.

123



Generating synthetic positive and negative business process… 839

Paola Mello is full professor at the University of Bologna since 1994,
she conducts her research in artificial intelligence. In particular, her
research interests, both practical and theoretical, are about knowledge
representation, computational logic and logic languages, multi-agent
and decision support systems, monitoring and verification, with appli-
cations in medicine, web services configuration, and business pro-
cesses management. She is involved in different research projects both
national and international, and she is author of numerous publications
in prestigious conferences and journals. In 2017, she has been nom-
inated fellow of the European Association for Artificial Intelligence
(EurAI).

123


	Generating synthetic positive and negative business process traces through abduction
	Abstract
	1 Introduction
	2 Preliminaries
	3 Motivations for positive and negative log generation
	4 On different modelling approaches and how they affect log generation
	4.1 Procedural versus declarative and open versus closed modelling approaches
	4.1.1 Relation between two orthogonal dimensions

	4.2 Positive and negative traces w.r.t. declarative open process models
	4.3 Positive and negative traces w.r.t. procedural closed process models

	5 The SCIFF abductive capabilities
	6 Generation of a synthetic log through SCIFF
	6.1 Positive and negative trace generation for open declarative processes
	6.1.1 Generating positive traces
	6.1.2 Generating negative traces

	6.2 Positive and negative trace generation for closed procedural processes
	6.2.1 Generating positive traces
	6.2.2 Generating negative traces


	7 Evaluation of the prototype
	8 Related work
	9 Conclusions and future works
	References




